
nanoTabPFN: A Lightweight and Educational
Reimplementation of TabPFN

Alexander Pfefferle∗1,2 Johannes Hog∗2 Lennart Purucker2 Frank Hutter3,1,2
1ELLIS Institute Tübingen 2University of Freiburg 3Prior Labs

pfeffera@cs.uni-freiburg.de

Abstract

Tabular foundation models such as TabPFN have revolutionized predictive machine
learning for tabular data. At the same time, the driving factors of this revolu-
tion are hard to understand. Existing open-source tabular foundation models are
implemented in complicated pipelines boasting over 10 000 lines of code, lack
architecture documentation or code quality. In short, the implementations are hard
to understand, not beginner-friendly, and complicated to adapt for new experiments.
We introduce nanoTabPFN, a simplified and lightweight implementation of the
TabPFN v2 architecture and a corresponding training loop that uses pre-generated
training data. nanoTabPFN makes tabular foundation models more accessible to
students and researchers alike. For example, restricted to a small data setting it
achieves a performance comparable to traditional machine learning baselines within
one minute of pre-training on a single GPU (160 000× faster than TabPFN v2
pretraining). This eliminated requirement of large computational resources makes
pre-training tabular foundation models accessible for educational purposes. Our
code is available at https://github.com/automl/nanoTabPFN.

1 Introduction

The field of tabular data has recently been undergoing significant changes with the introduction of
Tabular Foundation models. This revolution was started with the introduction of TabPFN [Hollmann
et al., 2023] and continued with newer foundation models such as TabDPT [Ma et al., 2024],
TabICL [Qu et al., 2025], LimiX [Zhang et al., 2025a] and TabPFN v2 [Hollmann et al., 2025].
TabPFN v2 significantly improved over TabPFN by introducing a new architecture, a new prior
for training data, and many small tricks in the inference pipeline. This improvement comes with a
significant increase in the complexity of its implementation, with the official repository currently
boasting over 10 000 lines of Python code. Such complexity presents a substantial hurdle for
researchers and students who want to understand, modify, or build upon TabPFN.

We solve this issue by introducing nanoTabPFN, a simplified and lightweight implementation of
the TabPFN v2 architecture and a training pipeline in under 500 lines of code. We also provide an
interface to load pre-generated training data. Our code can be used to pre-train nanoTabPFN for
small tabular prediction tasks within minutes. The lightweight and modular design of our code allows
users to quickly familiarize themselves with tabular foundation models and allows for fast iterations
of research ideas for the prior, training pipeline, or architecture. We believe that nanoTabPFN will
serve as a first step in the journey of students towards TFMs and will make this field of research more
accessible.

The contributions of our work are: (1) our repository itself, containing a simplified reimplementa-
tion of the TabPFN v2 architecture, along with an in-depth explanation and (2) experiments showing

*Equal contribution.

AI for Tabular Data workshop at EurIPS 2025

https://github.com/automl/nanoTabPFN


Figure 1: nanoTabPFN Architecture. The architecture consists of the FeatureEncoder, which
normalizes and embeds the features, the TargetEncoder, which pads up the labels to the full length
of rows and embeds the Targets, followed by a repeated TransformerEncoderStack, and the
Decoder, which maps the high-dimensional embeddings to our predictions. Adapted from Figure 1
of Hollmann et al. [2025].

that nanoTabPFN achieves a performance comparable to traditional machine learning baselines within
one minute of pre-training on a single GPU in a small data setting.

2 Related Work

nanoTabPFN is inspired by the success of minGPT [Karpathy, 2020] and nanoGPT [Karpathy, 2022].
minGPT provides a minimal educational implementation of GPT-2 [Radford et al., 2019], while
nanoGPT advances this work with a performance-centric reimplementation. nanoGPT is one of
the most popular GPT-2 implementations, with over 47 000 stars on GitHub currently. It enabled
many students and researchers to learn about large language models and bootstrap research, such as
research on optimizers, including Muon [Jordan et al., 2024] or Adam-mini [Zhang et al., 2025b].

3 nanoTabPFN

nanoTabPFN consists of two parts: the model architecture and its training loop. In this section,
we provide an in-depth explanation of both of these parts, as well as a small code example and a
description of the differences to the original TabPFN v2 implementation.

3.1 Model Architecture

Figure 1 illustrates the architecture of nanoTabPFN, which consists of four parts: the
FeatureEncoder, which normalizes the features and creates an embedding for each cell in
the feature-part of the table; the TargetEncoder, which initializes the unknown test targets
cells, and creates an embedding for each cell in the target-column of the table; multiple
TransformerEncoderLayers, the main transformer layers adapting the embeddings of all cells in
the table; and the Decoder, which maps the high-dimensional embedding of the unknown test targets
to the predictions.

On an abstract level, TabPFN v2 works by alternating between applying attention between features
and attention between datapoints on the table, as illustrated in Figure 2. To do this, we must first create
an embedding for each cell in the table. We create the embeddings for all the features (X_train and
X_test) using the FeatureEncoder. The FeatureEncoder normalizes each feature based on the
mean and standard deviation of the training set, and removes outliers by clipping features that are
too large or too small. Then it applies a linear layer to map the scalar values in the table to high-
dimensional feature embeddings. Note that we use no positional embedding in our reimplementation
since we want our model to be permutation-invariant with respect to datapoints and features. The
TargetEncoder creates the embeddings for the target column; it extends y_train with its mean
values to create entries for y_test, which we try to predict. Afterwards, it also applies a linear layer.

Now that we have an embedding for each cell in the table we apply multiple
TransformerEncoderLayers sequentially, each of which applies bi-attention on the embeddings
of the cells in our table (attention between features followed by attention between datapoints). In the

2



Feature
Attention

Datapoint
AttentionNorm Norm

Feed-
forward NormInput Output

Transformer Layer

Figure 2: Transformer Layer. The Transformer Layer consists of Feature Attention, Datapoint
Attention and a 2-layer MLP at the end. We have skip connections around each of the attention blocks
and the MLP. A Layer Norm follows each skip connection.

attention between datapoints, the training data can only attend to itself and not the test data, while
the test data can only attend to the training data. This restriction ensures that the test data is not
attended to, thereby guaranteeing that adding or removing datapoints to X_test does not change the
predictions for other datapoints.

The TransformerEncoderLayer has separate skip connections [He et al., 2016] around feature
and datapoint attention, followed by layer normalizations [Ba et al., 2016]. After bi-attention the
embeddings are further adapted by a cell-wise MLP, consisting of two feed-forward layers. This is
surrounded by a skip connection and followed by a Layer Norm, see Figure 2.

The last part of our architecture is the Decoder, which takes the embeddings of the y_test cells as
input and applies a 2-layer MLP. We treat the output of the MLP as logits for classification.

3.2 Training
from model import NanoTabPFNModel
from train import PriorDumpDataLoader
from train import train

model = NanoTabPFNModel(
embedding_size=96,
num_attention_heads=4,
mlp_hidden_size=192,
num_layers=3,
num_outputs=2

)

prior = PriorDumpDataLoader(
"300k_150x5_2.h5",
num_steps=2500,
batch_size=32,

)

model, _ = train(
model,
prior,
lr=4e-3,

)

Figure 3: Code example showing how to train
nanoTabPFN.

We provide a simple training loop that trains the
model on the data given by a dataloader, using
the scheduler-free [Defazio et al., 2024] version
of the AdamW [Loshchilov and Hutter, 2019]
optimizer without weight decay. We support
loading datasets that have been pre-generated
and saved to the HDF5 [The HDF Group] for-
mat on disk. Enabling the loading of datasets
from a file dump allows faster prototyping of the
architecture and training code, since generating
a new batch of data from a prior is quite expen-
sive, and thus loading a pre-generated version
drastically reduces the training time.

3.3 Code Example

On the right, we show a small example code
for pretraining a 3-layer nanoTabPFN model
on a pre-generated list of 80 000 datasets with
exactly 150 datapoints, 5 features, and 2 classes.
We later report results precisely for this code.

3.4 Differences to TabPFN v2

We intend nanoTabPFN to be an easier-to-understand and more lightweight version of TabPFN,
and as such, we only include its core features. We do not include functionality of TabPFN that
allows for combining neighboring pairs of features when creating the feature embedding, as it
substantially increases code complexity, reduces interpretability and destroys permutation invariance
of the features. Another feature we do not include adds a column filled with row hashes to the table to
differentiate between datapoints. Finally, to keep our implementation minimal, we do not inherently

3



handle categorical features and missing values. If a user wants to evaluate nanoTabPFN on datasets
containing categorical features or missing values, they have to preprocess them beforehand.

4 Results

Figure 4: Within 60 seconds of pretraining on
one consumer GPU, nanoTabPFN achieves aver-
age ROC AUC on a subset of subsampled datasets
from TabArena comparable to traditional machine
learning baselines.

We evaluate nanoTabPFN in a small data set-
ting for educational use, demonstrating strong
performance within minutes of pretraining.

We pretrained a small version of nanoTabPFN
with 3 layers, 4 attention heads, an embedding
size of 96, and a hidden layer size of 192 on
80 000 synthetically-generated datasets with ex-
actly 150 datapoints and 5 features and 2 classes
each, with a batch size of 32, using the example
code from Figure 3. Training converged after
one minutes on a single NVIDIA GeForce RTX
2080 Ti GPU (11GB VRAM), whereas TabPFN
v2 was pretrained on eight of these GPUs for
two weeks. This is more than 160 000× faster
(14*24*60*8=161 280), substantially lowering
the barrier to entry.

The traditional baselines we use are k-nearest
neighbors, a decision tree, and a random forest, in their default scikit-learn [Pedregosa et al., 2011]
configuration. For TabPFN we evaluate two configurations, one is the default configuration and the
other disables ensembling and pre-processing. The latter configuration more closely aligns with
the feature set of nanoTabPFN, enabling a fairer comparison of the trained models rather than the
surrounding pipelines. For more detailed information about our experimental setup and the evaluation
strategy, including the datasets we used, we refer to Appendix A.

Figure 4 shows nanoTabPFN’s average ROC-AUC over its training time. Within 60 seconds of
training, nanoTabPFN reaches a higher ROC AUC than all traditional machine learning baselines,
thereby demonstrating its effectiveness. After only a few more seconds, the similar scale of prior and
the evaluation setting allowed nanoTabPFN to quickly learn in this restricted setting, outperforming
the more generally trained TabPFN configuration without preprocessing. We present per-dataset
results in Appendix B.

5 Conclusion

In this paper, we introduced nanoTabPFN, a small and lightweight implementation of the TabPFN
v2 architecture. nanoTabPFN includes the core features of TabPFN, resulting in an implementation
consisting of less than 500 lines of code, compared to the over 10 000 lines of code of the TabPFN
repository. This allows us to train a model within minutes that performs comparably to traditional
machine learning algorithms on small datasets. nanoTabPFN’s fast training speed, combined with
our lightweight implementation, enables researchers and students to understand the inner workings of
TabPFN more easily and enables faster prototyping of new research ideas, in the same way minGPT
and later on nanoGPT did for the space of large language models.

Since nanoTabPFN focuses on simplicity and educational value, we did not include all features
of TabPFN v2 which results in performance limitations. For example, we do not include code for
regression, handling missing values and ensembling across different pre-processings of the data.
Despite these limitations we are able to achieve good performance on small datasets. We intentionally
focus on small-scale data, as the repository is aimed at educational value with small-scale compute.
Lastly, while nanoTabPFN’s repository contains code for its architecture and training, it lacks a
simplified prior implementation, which we leave to future work.

To conclude, with nanoTabPFN, we take an important first step towards democratizing the field
of TFMs, lowering the barrier to entry, and accelerating research on TFMs. We look forward to
nanoTabPFN being used in many university courses to teach TFMs.

4



Disclaimer

Funded by the European Union. Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the European Commission. Neither
the European Union nor the European Commission can be held responsible for them.

Acknowledgement

We thank the reviewers for their feedback, which contributed to improving this work. Additional
we would also like to thank Jake Robertson for his input regarding our prior selection. This paper
was supported by European Union’s Horizon Europe research and innovation programme under
grant agreement number 101214398 (ELLIOT). Johannes Hog and Lennart Purucker acknowledge
funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under SFB
1597 (SmallData), grant number 499552394. Frank Hutter acknowledges the financial support of the
Hector Foundation.

References
Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer

that solves small tabular classification problems in a second, 2023. URL https://arxiv.org/
abs/2207.01848.

Junwei Ma, Valentin Thomas, Rasa Hosseinzadeh, Hamidreza Kamkari, Alex Labach, Jesse C.
Cresswell, Keyvan Golestan, Guangwei Yu, Maksims Volkovs, and Anthony L. Caterini. Tabdpt:
Scaling tabular foundation models, 2024. URL https://arxiv.org/abs/2410.18164.

Jingang Qu, David Holzmüller, Gaël Varoquaux, and Marine Le Morvan. Tabicl: A tabular foundation
model for in-context learning on large data. arXiv preprint arXiv:2502.05564, 2025.

Xingxuan Zhang, Gang Ren, Han Yu, Hao Yuan, Hui Wang, Jiansheng Li, Jiayun Wu, Lang Mo,
Li Mao, Mingchao Hao, et al. Limix: Unleashing structured-data modeling capability for generalist
intelligence. arXiv preprint arXiv:2509.03505, 2025a.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319–326, 2025.

Andrej Karpathy. minGPT. https://github.com/karpathy/minGPT, 2020.

Andrej Karpathy. nanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P. Kingma, Yinyu Ye,
Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more, 2025b. URL
https://arxiv.org/abs/2406.16793.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Aaron Defazio, Xingyu Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and Ashok
Cutkosky. The road less scheduled, 2024.

5

https://arxiv.org/abs/2207.01848
https://arxiv.org/abs/2207.01848
https://arxiv.org/abs/2410.18164
https://github.com/karpathy/minGPT
https://github.com/karpathy/nanoGPT
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://arxiv.org/abs/2406.16793
https://arxiv.org/abs/1607.06450


Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

The HDF Group. Hierarchical Data Format, version 5. URL https://github.com/HDFGroup/
hdf5.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Nick Erickson, Lennart Purucker, Andrej Tschalzev, David Holzmüller, Prateek Mutalik Desai, David
Salinas, and Frank Hutter. Tabarena: A living benchmark for machine learning on tabular data,
2025. URL https://arxiv.org/abs/2506.16791.

6

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://github.com/HDFGroup/hdf5
https://github.com/HDFGroup/hdf5
https://arxiv.org/abs/2506.16791


A Detailed Experimental Setup

Hyperparameter Optimization We have chosen our prior, model, and training configuration based
on a random search where we sampled 200 configurations. The training time was limited to two
minutes and we evaluated the performance on a synthetic prior consisting of 1600 datasets. For
generating training and evaluation data, we relied on TabICL’s prior implementation. The sampling
was done on-the-fly and not included in the runtime measurement since we used pre-generated data
when rerunning our best configuration. The search space and best configuration can be seen in Table 1.
For our comparison in Section 4, we rounded the configuration values before training.

Table 1: Hyperparameter Search Space and Optimal Configuration

Hyperparameter Search Space Optimal Value

lr [10−4, 5× 10−2] (log scale) 0.003892
weight_decay [10−9, 10−4] (log scale) 1.00× 10−7

effective_batch_size {8, 16, 32, 64} 32
num_features [3, 13] 4
num_datapoints_max [50, 300] 154
num_attention_heads {2, 4, 8} 4
embedding_size {64, 80, 96, 112, 128, 144, 160, 176, 192} 96
mlp_multiple {2, 4} 2

Experimental Setup We limited our evaluation to the binary classification datasets, which contain
no missing values, in TabArena [Erickson et al., 2025] with at most 10 features and subsampled
the number of datapoints to 200. The evaluation employed stratified 5-fold cross-validation with 20
repetitions. We only measured the accumulated training time and excluded the evaluation time at
each step. Our baselines used scikit-learn version 1.6.1 and tabpfn version 2.2.1.

B Additional Results

Figure 5 shows the ROC AUC during pretraining (Section 4) on the individual evaluation datasets.

Figure 5: Per dataset results

7


	Introduction
	Related Work
	nanoTabPFN
	Model Architecture
	Training
	Code Example
	Differences to TabPFN v2

	Results
	Conclusion
	Detailed Experimental Setup
	Additional Results

