Simple and Effective
Specialized Representations for Fair Classifiers

Alberto Sinigaglia* Davide Sartor*
Human Inspired Technology Research Center Department of Information Engineering
University of Padua University of Padua
alberto.sinigaglia@phd.unipd.it davide.sartor.4@phd.unipd.it
Marina Ceccon Gian Antonio Susto
Department of Information Engineering Department of Information Engineering
University of Padua University of Padua
marina.ceccon@phd.unipd.it gianantonio.susto@unipd.it
Abstract

Fair classification is a critical challenge that has gained increasing importance due
to international regulations and its growing use in high-stakes decision-making set-
tings. Existing methods often rely on adversarial learning or distribution matching
across sensitive groups; however, adversarial learning can be unstable, and distri-
bution matching can be computationally intensive. To address these limitations,
we propose a novel approach based on the characteristic function distance. Our
method ensures that the learned representation contains minimal sensitive infor-
mation while maintaining high effectiveness for downstream tasks. By utilizing
characteristic functions, we achieve a more stable and efficient solution compared
to traditional methods. Additionally, we introduce a simple relaxation of the ob-
jective function that guarantees fairness in common classification models with no
performance degradation. Experimental results on benchmark datasets demonstrate
that our approach consistently matches or achieves better fairness and predictive
accuracy than existing methods. Moreover, our method maintains robustness and
computational efficiency, making it a practical solution for real-world applications.

1 Introduction

Algorithmic fairness has become a central concern in deploying automated decision-making systems,
especially in high-stakes domains like hiring, lending, criminal justice, and healthcare [4} 49,24, 21].
The growing reliance on these systems has raised concerns about their potential to reinforce or
amplify societal biases [3} 15,48, |6]. In response, a large body of research has focused on detecting,
analyzing, and mitigating bias throughout the algorithmic pipeline [44, 55, 36, 9]

Numerous fairness definitions and metrics have been proposed, reflecting a wide range of normative
and technical perspectives [18], 27, [16]. A common criterion is statistical independence, which
requires that model predictions be independent of sensitive attributes like ethnicity or gender [42, 3]
A simple strategy for enforcing this criterion is to exclude the sensitive attribute from the model’s
input features, an approach commonly referred to as Fairness through Unawareness [10]. However,
this method is often ineffective in practice, as sensitive information may still be indirectly captured
through other correlated features, so-called proxy variables [39]. Removing all proxies typically
results in significant degradation of performance, as task-relevant information is also discarded [[10].

*These authors contributed equally.
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Figure 1: Overview of the proposed approach. Each sample X is associated with a sensitive attribute
S and a target label Y. The conditional distribution IP x| 5 is mapped to a new distribution P |5, which

is encouraged to resemble a Gaussian Distribution via the Characteristic Function Distance (CFD).
The encoded representation Z minimizes A (P 750> Pz|s, ) While retaining task-relevant information.

To better balance fairness and predictive accuracy, many approaches aim to learn fair representations
by projecting input data into a latent space that obscures sensitive information while preserving
task-relevant structure [53} 35,37, 2]. Once optimized, these representations can replace the original
data during both training and testing, enabling fair decision-making in scenarios where sensitive
attributes must not be explicitly used, such as determining loan approvals or hiring decisions. These
approaches typically fall into two categories, which we refer to as specialized and general. Specialized
representations are tailored to a specific task, filtering out sensitive and irrelevant features for improved
performance. General representations, in contrast, are task-agnostic and aim for broad applicability
across multiple tasks while being insensitive to protected attributes, but are harder to learn and may
compromise predictive accuracy. Returning to the loan approval example, specialized representations
learned in that context would be suitable only for predicting creditworthiness. If reused for another
task, e.g. default risk or customer lifetime value, they might lack task-relevant information that was
discarded during the fairness optimization. General representations, instead, preserve information that
remains broadly useful across prediction tasks while still mitigating sensitivity to protected attributes.

A popular class of methods uses Variational Autoencoders (VAEs) to learn fair, specialized represen-
tations [37]]. In VAE-based approaches, fairness is optimized indirectly, either via a variational
bound or Maximum Mean Discrepancy (MMD), which can misalign with true fairness goals and
yield suboptimal results [2]].

Other methods rely on Adversarial Networks that ensure specialized fair representations through
a minimax game between a predictor and a fairness discriminator [19] 28]. Such approaches are
often unstable and sensitive to hyperparameters, making the fairness-performance trade-off more
challenging to manage [20]. Additionally, fairness guarantees are tied to the specific adversary used
during training and may fail if a stronger or different adversary is applied later 43].

Fair Normalizing Flows (FNF) [2] offer representations that are robust to any adversary, positioning
itself as a state-of-the-art alternative to adversarial methods. Nonetheless, it has key limitations. It
requires sensitive attribute information at inference, conflicting with privacy goals. It also trains
a separate model for each sensitive group, which is computationally expensive, especially with
multi-class attributes or large datasets. Crucially, while FNF aims to learn general representations, the
inclusion of a classification loss can bias the model toward task-specific features. This may introduce
group-specific information, potentially weakening fairness guarantees through representation bias.

There is an inherent trade-off between general and specialized representations: while general represen-
tations are broadly useful and transferable, achieving high predictive performance often requires some
degree of specialization. Even models like FNF, which explicitly aim for generalization, ultimately
rely on task-specific loss functions that guide representations toward specialization to optimize accu-
racy. This reliance suggests that specialization is not merely a byproduct but a necessary condition
for strong predictive performance. Recognizing this, it becomes clear that embracing specialization
is not only pragmatic but essential. Adversarial approaches naturally embody this perspective by
tailoring representations to specific prediction tasks. However, they come with significant limitations,
most notably, weaker guarantees around fairness and robustness [43]). This underscores the



need for alternative methods that, like adversarial techniques, pursue specialization, but do so through
more transparent and controllable means, offering stronger fairness guarantees as a result.

To address these challenges, we propose a novel framework that embraces specialization in repre-
sentations while rigorously enforcing fairness, without relying on adversarial training. In addition
to stronger guarantees, our method is significantly simpler and more lightweight than existing ap-
proaches. This further justifies the aim to achieve specialized representations, as the advantages of
transferability offered by general representations might not outweigh the benefit of higher prediction
accuracy in settings where re-training for a different task is computationally lightweight. Our key
contributions are summarized as follows:

* We introduce a new approach based on distribution matching via characteristic functions. This
formulation avoids reliance on auxiliary components such as variational autoencoders, adversarial
networks, or normalizing flows.

* We derive a simplified version of the proposed framework tailored to classification, which allows
for formal guarantees on the sensitive information accessible to downstream classifiers.

* We conduct extensive experiments demonstrating that our method effectively removes sensitive
information while matching SotA accuracy and delivering significantly fairer representations.

In summary, our approach offers a principled alternative for learning fair, specialized representations.
It seamlessly combines simplicity, training stability, and robust fairness guarantees, all without relying
on sensitive attributes during inference. This makes our method both practical and privacy-conscious,
showing promising improvements over the current state-of-the-art [2].

2 Related Work

Variational Autoncoders In the context of fairness through representation learning, prior work
has explored the use of Variational Autoencoders (VAEs) to disentangle sensitive attributes from
learned data representations [32, [37, [11,131]]. The encoder extracts task-relevant representations,
while the decoder reconstructs the input. Though reconstruction may retain extra information, the
optimization encourages representations tailored to prediction. A notable approach is the Variational
Fair Autoencoder (VFAE) [32]], which extends the standard VAE framework to enforce invariance in
the latent space with respect to protected attributes. VFAE achieves this by introducing a penalty
that explicitly encourages independence between the latent representation and the sensitive attributes.
A related method was proposed by Moyer et al. [37], who combine ideas from VAEs and the
Variational Information Bottleneck (VIB) to learn representations that are both informative and robust
to variations in sensitive inputs.

Adversarial Learning Another line of research focuses on fairness-aware learning through ad-
versarial and information-theoretic methods to induce invariant representations [51, |41} 46]. In
adversarial settings, a model such as an encoder or predictor is trained in opposition to an adversary
whose goal is to recover sensitive attributes from the learned representation. This adversarial pressure
encourages the model to generate latent features that do not reveal sensitive information, thereby
promoting invariance with respect to protected variables [19}22]. Xie et al. [51] proposed a general
adversarial framework for learning representations that are invariant to arbitrary nuisance attributes.
Their method formulates the learning process as a three-player minimax game involving an encoder,
a task-specific predictor, and a discriminator that attempts to infer the nuisance attribute. Madras et
al. [35] introduced Learning Adversarially Fair and Transferable Representations (LAFTR), which
incorporates adversarial objectives aligned with specific fairness definitions, to learn representations
that remain fair even when deployed by downstream classifiers without explicit fairness constraints.
Roy and Bodetti [41] extended this adversarial paradigm by proposing MaxEnt-ARL, which maxi-
mizes the entropy of the adversary’s prediction of the sensitive attribute rather than minimizing its
accuracy. This approach improves privacy, as it offers the practical benefit of not requiring access
to sensitive labels during encoder training. Jaiswal et al. [28]] introduced Adversarial Forgetting, a
framework that decouples the learning of rich representations from the selective forgetting of sensitive
or nuisance information via a dedicated forget-gate mechanism. Building on adversarial fairness
frameworks, FR-Train [40] incorporates a mutual information-based formulation and adds a second
adversary to enhance robustness to poisoned data.



Other Approaches Recognizing the limitations of adversarial frameworks, particularly their insta-
bility and lack of formal guarantees [20, 26| 22], researchers have explored alternative paradigms
for learning fair representations. Jiang et al. [29] propose a theoretically grounded approach that
enforces demographic parity by minimizing the Wasserstein-1 distance between model outputs across
different sensitive groups. Tucker and Shah [47] present Concept Subspace Networks (CSNs), a
prototype-based architecture that unifies fair and hierarchical classification within a single model.
Ultimately, building on these ideas, Balunovi¢ et al. [2] introduce Fair Normalizing Flows (FNF), a
framework that provides provable fairness guarantees against any downstream adversary. FNF repre-
sents the current state-of-the-art in terms of fair representations. It employs separate normalizing flow
encoders for each sensitive group and ensures fairness by minimizing the statistical distance between
the resulting latent distributions. This formulation enables exact likelihood computation in the latent
space, allowing for theoretical upper bounds on unfairness for any downstream classifier, a property
not commonly achieved in existing fair representation learning methods. Furthermore, Balunovi¢
et al. [2] show how adversarial learning inherently causes a false sense of fairness [22} 52} 20, 26].
Indeed, they show how multiple methods based on such techniques share a tendency to break once
the learned representations are tested on more powerful families of classifiers. Though adversarial
learning is the only approach offering specialized representations, such evidence reinforces the need
to develop novel directions to achieve them without the instabilities of adversarial learning.

3 Background

Let X € R? denote a feature vector, Y € {0,1} a binary label, and S € {s1,...,s,} a sensitive
attribute, taken from some joint distribution Px y,s. The most common scenario in fairness-critical
applications is binary sensitive attribute S' € {0, 1}. Traditional classification algorithms fit a classifier
fo : R? — {0,1} to predict the task label Y from X. The sensitive attribute S is often statistically
correlated with both the feature vector X and the target label Y, raising fairness concerns. A prevalent
approach in state-of-the-art fairness-aware methods involves constructing fair representations Z from
X prior to predicting Y.

Statistical Distance and Adversarial Evaluation Since strict fairness criteria often entail accuracy
trade-offs due to correlation between the sensitive S and the task label Y, fair representations typically
result in either performance reductions or leakage of the sensitive information in the classification.
Consequently, we adopt the concept of e-fairness, where € represents the statistical distance between
the learned representations Pz 5. This enables the application of bounds from Madras et al. [35]
relating statistical distances to several fairness metrics (see appendix [A.4). Specifically, they consider
the Total Variation (TV) distance, defined for distributions Py and IP; as:

APy, Py) = / |Po(z) — P1(z)| dz. ey

Balunovi€ et al. [2] estimate the statistical distance directly. However, this can be extremely hard
in the general case, and inaccuracy in the estimation might lead to a poor estimation of fairness.
Given that the proposed method does not always impose specific distributional assumptions on Z, we
uniformly adopt adversarial evaluation to quantify fairness throughout the whole paper. Indeed, for
an optimal adversarial classifier f, the statistical distance between conditional distributions can be
precisely expressed as:

supmaxP(Y = g(X)) =

up 12 (14 A(Pzjs—0,Pzj5=1)) - 2

l\.’)\»—~

Adversarial Evaluation should not be confused with Adversarial Learning. Adversarial Learning
learns a latent fair representation Z from X optimizing eq. (2) directly via a min-max training, which
can lead to training instability [22} 37, 120]. Adversarial frameworks are typically robust only to the
class of functions used during training. Adversarial Evaluation simply assesses the fairness of a fixed
representation Z by quantifying how accurately a classifier (often an Multi Layer Perceptron (MLP))
can predict the sensitive attribute .S from Z.

Logistic Regression Logistic Regression (LR) is a popular classification algorithm used to model
the probability of a binary outcome Y € {0, 1} as a function of a set of predictors X € R?. The



model is defined by the logistic function o5 : R — (0, 1):

1
T 14 e Po-Si e

o5(2) 3)

where the coefficients 3 € R4 are the model parameters, with B0} denoting the bias term. The
model output o(z) is used to learn P(Y = 1 | X = z) via maximum likelihood estimation. To
achieve this, the objective function to be minimized is given by the negative log-likelihood:

LR(B) = —Exy [Y log(05(X)) + (1 — Y) log(1 — 05(X))] 4)

A key advantage of LR over other families of classifiers, such as MLP, is the convexity of its objective
function. Since this loss function is convex, it has a global optimum that can be provably reached.
This property not only guarantees convergence but also enables the use of second-order optimization
techniques such as Newton-Raphson or its variant, Iteratively Reweighted Least Squares. These
methods leverage the Hessian of the loss function to achieve quadratic convergence, significantly
accelerating the optimization compared to first-order methods like gradient descent.

4 Fair Representations matching Characteristic Function

The concept of Characteristic Function has been Algorithm 1 EmCF loss term

extensively studied for a long time in the statis-
tical testing literature [33], but interest in its ap-  1: Input: encoder hy, predictor fy, batch B =
plication to ML has only recently grown [1]]. As {(zi,yi,81) ~ Pxy,s}

discussed in section [3] to incentivize fair repre- z < hy(z)

sentation, we need to match the different condi- g < fo(2)

tional distributions P 5, thus minimizing their for all s € S do

relative statistical distance. To achieve this, we forall j € {1,...,k} do

propose the addition of a differentiable penalty Sample t; ~ Pr

term based on the Characteristic Function Dis- onr(t;) « e 05l 117

tance. We refer to the overall approach as Fair- Pz1s(ty) = % S ei(ts,2i)

A A A ol

ness matching Characteristic Function (FmCF). end for

Characteristic Function Distance Given a 10: end for Lk

random variable X € R? an alternative . P 2
’ 11: Lcg - t;) — t;

way to describe the distribution of X is the cr S%;g k ; [ oac(ty) = Pzs(ty)]

Characteristic Function (CF) px : R" — C. 12

. e L+ Loy, L
Denoting by Px the probability measure of X, co(§,y) + o Ler

the characteristic function ¢ x is defined as:
px (1) = Bx [¢X0)] = / D Py 5)
z€R?

The CF is closely related to the notion of the Fourier Transform, and inherits several important
properties. It always exists, it’s bounded |px ()| < 1, but most importantly, there is a one-to-one
correspondence between probability measures and CFs [33]]. That is, given two random variables X
and Y, with probability measures Px and Py then it holds that:

px = py <= Px =DPy. (6)

The CF can be used to define a distance metric between probability measures [1]. Given two random
variables X € R4, Y € R? with probability measures Px and Py, the CFD is defined as:

CFD,. (Px,Py) = Er ||ox(T) — soy(T)\Q} : %)
The value of CFDp,. depends on the weighting kernel Pr. When supp(Pr) = R?, then the CFD is

strict, in the sense that CFDp,. (Px,Py) =0 <= Px = Py. Common choices for P that ensure
this property are the Normal and Laplace distributions.



Au=0.00

' f 7.
mIJ| 5|||L fffffffff Al _..|I|"|||..|i||||||....

15 20-20 -15 -10 -~ -1.0 -05 0.0 0.5 1.0 15 20

0
-20 -15 -10 -0.5

. P(X|Y=0) P(X]Y=1)  ----- Optimal Logistic Regression

Figure 2: The closer E[X |y = 0] is to E[X |y = 1], the less predictive power the feature has, causing
the LR coefficient 5 to approach 0.

Derivation of Penalty Term Instead of matching P75 to each other, each Pz s is matched
independently to a common target distribution. This simplifies and stabilizes the training procedure.

In this work, we use a standard Normal distribution as the target, although in principle, any distribution
could be used. The CF of the standard Normal distribution ¢/ is given by:

oxt) = [ emFe

Ie)2

Tt dy — e "2, (8)

(B

The CFD between IPz| s and the target distribution can be estimated using Monte Carlo sampling.
Given a batch of i.i.d. samples z1, ..., z, taken from Pz g and ¢1, .. ., ?; taken from the weighting
kernel P the CFD can be approximated as:

CFD3, (Pzs,By) &

?r\'—‘

k
Z — st )

where ¢ z|5(t) = IS e?(t#:) denotes the empirical CF. The total penalty term is obtained by
summing the CFD estimate across all different sensitive groups &

Z Z lon(t5) = Gzis=s ()] - (10)

SGS

Comparison to Adversarial Learning and FNF Similarly to FmCF, Adversarial Learning offers
highly specialized representations; however, they have been shown to provide only an illusory sense
of fairness 143]), primarily due to the inherent characteristics of the underlying optimization
problem. In contrast, the proposed approach seeks to learn representations that are strongly predictive
of Y while minimizing information about .S, without the need for adversarial losses.

Compared to FNF [2]], FmCF offers multiple advantages compared to Normalizing Flows (NF).
Firstly, NFs require carefully designed architectures. To efficiently compute the Jacobian determinant,
only specific layer structures are suitable. Additionally, to ensure invertibility, the dimensionality
of the input vector X must be preserved throughout the transformation. This constraint makes
NFs computationally expensive for high-dimensional data. In contrast, for FmCEF, any function
approximator can serve as an encoder. This architectural flexibility enables the learned representation
Z to focus solely on the information pertinent to the downstream task (e.g., classification). Moreover,
FmCF eliminates the need for sensitive information during deployment. Since the classifier internally
debiases X, it does not require access to the sensitive attribute .S at test time. On the other hand, FNF
not only necessitates access to the sensitive attribute but also requires training a separate Normalizing
Flow for each sensitive class, significantly increasing training costs. This distinction is particularly
important for minimizing potential discrimination and addressing concerns related to the explicit
collection of sensitive data.



S Fair Classification matching Sufficient Statistics

The met[hod introduced in sect.ion M pr.ov.ides Algorithm 2 FmSS Training
a versatile framework for learning specialized

representations Z from X independent from S 1: Input: encoder hg, linear regression fg, batch
for a general task. However, in practice, most B = {(z,yi,8:) ~ PX,Y,S}-

fairness-aware scenarios involve classification z 4 hy()

[5011341154]]. By simplifying the approach, tailor- 9§« fs(2)

ing it to fair classification, we can provide prov- for all s € S do

able post-hoc fairness guarantees. Furthermore, o3 « Var[Z | S = 5]

A A

we can also make it computationally cheaper, ps < E[Z ]S ]
relaxing the need for a Monte Carlo estimate of end for ) ) )
the CF. Ly Y _lo? + p2 — 1 —logo?||y

seS
Connection to Distribution Moments The 9. £« Lo(7,y) + o Lk

penalty term introduced in section [ involves
sampling multiple points ¢ ~ P from the weighting kernel where the empirical CF is evaluated
at. The number of points needed for a reliable estimate of the CFD grows rapidly in the number of
dimensions [[1]].

In this section, we propose an alternative to reduce the number of points needed for the evaluation.
Consider the multidimensional Maclaurin expansion of the CF:

o] o] tnl .. t’ﬂd 8”
(1] [d] X
X (t) ~ n1 n
z::o tmz;@d_ mi!-- ! (‘%1 "'8t[cﬁ>

QY

=0

Assuming that ¢ x is analytic, matching the derivatives evaluated at ¢ = 0 would be sufficient to
ensure fairness, without the need for sampling from Pr. There exist statistical tools to estimate the
full series (appendix [A.3)); however, they might lead to strong instabilities in training.

A pragmatic approach is to truncate the expansion to some order /N. This objective does not guarantee
that the two distributions are exactly equal; however, we will show that truncating to N = 2 is
sufficient to ensure fair classification.

In fact, there is a direct connection between the derivatives of the CF and the moments of a distribution.

Theorem 5.1. The n-derivative of the CF evaluated at t = 0 is related to the n-th moment of the

distribution:
0"ox .
_— =i"Ex | Xip1...X . 12
8t[k1], ceey 815[,%] t=0 vEXx [ (k1] [knﬂ (12)

Similarly, the n-th empirical moment is equivalent to the n-th derivative of the empirical CF.

Simplified Penalty for Classification A generic MLP with M layers used for classification can be
interpreted as M — 1 layers of encoder z = hy(x), and a final layer of a LR § = o3(%). Therefore,
by applying a fairness penalty to z, we can restrict the analysis to the family of LR classifiers.

There exists an optimal condition under which LR is provably fair. In particular, if the first moment
E [Z | S] is the same for all s € S, then such a representation Z has no predictive power for LR (i.e.
B = 0) in predicting S.

Theorem 5.2. For a representation Z € R® and a binary sensitive attribute S € {0, 1}, the optimal
LR classifier o+ with S as target is invariant to Zj;) when Ez|g [Z[i]] =Ez [Z[iﬂ .

Theorem shows that, building an intermediate representation Z with Ez g [Z] = Ez [Z] is
sufficient to ensure that LR models do not use information about the sensitive attribute S.

However, it is possible to derive an even stronger guarantee, analyzing what happens for
Ez [Z[i] | S] ~Eyz [Z[i]]' In particular, theorem highlights that the mean and variance of
IPz|s are enough to fully characterize the predictive power of a feature.



Theorem 5.3. The predictive power of a feature Z|; goes to zero the more its conditional expectation
2
_ lEzs[Z0]-E2[Z:]]]

Ez |22

is close to the marginal one. That is, given §)

One empirical example of the consequences of theorem [5.3|is shown in fig. 2] where a Gaussian and a
mixture of Gaussians are used to model Pz|s, and Ez|5 [Z] gradually converge to the same value,
while the variance is preserved.

Similarly to sectionE|we adopt a Gaussian target distribution for P 7|5 This is a particularly compelling
choice from the lens of the maximum entropy principleﬁ

The fairness penalty term can be obtained from the Kullback-Leibler (KL) divergence between a
standard Gaussian A/(0, 1) and N (2, 0®), which is given by

1
KL(p,0) = 5 (?+p*—1-— logaQ) .

Accordingly, the total penalty term can be obtained as

L5 =" |Var[Z|S=s]+E[Z ]S =5 —1—log(Var[Z | S = s])] . (14)
seS

where Var[Z | S] and E [Z | S] denote the empirical moments.

Fairness Guarantees This approach fundamentally departs from popular methods in the literature,
which primarily focus on minimizing A(Pz|s—o,Pz|s—1), by permitting the sensitive attribute S to
be encoded within the learned representation. Crucially, it ensures that .S is embedded in a manner
that renders it provably inaccessible to the classifier being trained. Leveraging the convexity of LR,
one can precisely quantify the e-fairness of a given representation z, thus establishing that no logistic
classifier og(x) can extract more than an ¢ amount of information regarding the sensitive attribute s.
This constitutes a substantially stronger guarantee than adversarial evaluation, which lacks provable
tightness and robustness.

Sensitive Task

6 Experimental Evaluation

FNF [2] offers the strongest theoretical and em-
pirical guarantees, making it the current state of
the art in fair representation learning. Therefore,
we primarily evaluate the performance of our
proposed methods on the same suite of bench-
marks, while also considering additional meth-
ods and datasets for a more comprehensive anal-
ysis. In all tested datasets, both proposed ap-
proaches match or surpass the performances of
state-of-the-art approaches in terms of accuracy,
while providing fairer representations. Surpris-
ingly, even though the approach presented in
section[5]gives guarantees against the worst-case
linear attacker, it still holds good performances
against adversarial evaluations using deep neu-
ral networks. Other results on different setups
can be found in appendix [A.5] where we addi-
tionally report more Pareto plots using different Figure 3: Latent distributions of Pz g and Py
hyperparameters for both FmSS (section[5) and  opiained using FmCF.

FmCF (section )

Adult

German

— =) e S=] ommmm Y =0 o—Y=1

>When constrained by fixed first and second moments, the Gaussian distribution uniquely maximizes entropy.
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Figure 4: Pareto front between FmCF and FNF comparing task accuracy and fairness (95% confidence
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Adult Dataset This dataset is the most fun- Table 1: Comparison on Adult dataset.
damental benchmark in fairness, as almost
all methods in literature are evaluated on it Adv. Accuracy

[28L 141} 135, 12]. It requires predicting the income
of a person without considering their gender Model Acc. g€G g¢¢
[14]. For this dataset, we use the same setup as Random 75.20 50.00 50.00
[2], by evaluating our approach both on a classi- ~ AdvForgetting [28] 85.99 66.68 74.50
fier in the same family as the classifier used for MaxEnt-ARL [41] 84.80 69.47 85.18
the task, and one from a family of much more LAFTR [35]] 86.09 72.05 84.58
expressive ones, thus deeper and wider. This FNF [2] 84.43 N/A  59.56
allows for a much tighter evaluation of the sta- o

tistical distance A(Pz|5—¢,Pz|s—1). However, Eﬁgg 83;:)) 2285 2_117)(2) 2?_6;
in appendix we compare to other baselines ) ) .
that only offer guarantees on the trained family
of functions. For the proposed methods in table g € G is the class of LR classifiers, while g ¢ G
are deep MLPs (see appendix [A.7]for details). By construction, FmCF should be evaluated for g ¢ G,
while FmSS for g € G.

German dataset The German dataset has been explored

in the literature under different settings. In particular, [37] Table 2: Comparison on German dataset.
considers gender as the sensitive attribute, with the task
of predicting income based on a set of personal features. Model Acc.  Adv. Acc.
To ensure a fair comparison, we evaluate our approach Random 69.00 70.00
against several existing methods using the same exper- VFAE [32] 72'00 71'70
imental setup as in [37]], as presented in table 2l The CIAFL [32] 69'50 81.10
proposed method outperforms the other approaches both IRWAL [37] 71'00 69.80
in terms of accuracy and fairness, showcasing the effec- i i
tiveness of the novel penalties. Further comparison under ~ FmCF (ours)  74.60  69.00
sensitive attributes is presented in appendix [A.3] FmSS (ours)  74.20 69.00

Comparison with FNF [2] Since [2] achieves the best

balance between fairness and accuracy, in section [ we compare our proposed method from section 4]
against all datasets used in their evaluation. These include four distinct datasets: Crime and Health,
which contain continuous features that NFs can handle directly, and Compas and Adult, which include
discrete features requiring separate handling by Normalizing Flows.

The plots demonstrate that our proposed method consistently outperforms or matches [2], with
the added advantage of not requiring the sensitive attribute during evaluation. Additionally, in
appendix [A.5] we report the Pareto fronts obtained by varying the latent dimension size, highlighting
the impact on performance.

Visualization of Learned Representations In order to have a better sense of what the CF approach
presented in section []is learning, we visualize the learned representation in fig.



Indeed, it can be seen that for both datasets, the distribution P ARE which is the distribution of
interest to evaluate the fairness of a representation, is very close to being a Gaussian. Thus, the
CF is effectively enforcing the similarity to such a distribution. Instead, Pz‘y, which instead is the
distribution of interest learn the downstream task, does not resemble a Gaussian distribution, and in
particular, while PZ\S:O ~ IPZ|S:17 PZ|Y:0 55 PZ|Y:1'

7 Conclusions

In this work, we introduce a novel framework for learning fair specialized representations using
CFD, addressing key limitations of existing adversarial and normalizing flow-based approaches. By
leveraging CFs, our method ensures stable and efficient fairness by minimizing sensitive information
leakage while maintaining high predictive performance. We also present a simplified version of
the framework that allows for certifiable bounds on the amount of sensitive information used by
downstream tasks. Experimental results show that our approaches consistently outperform or match
state-of-the-art methods in terms of the fairness-accuracy trade-off across a range of benchmark
datasets. Unlike many existing approaches, our method does not require access to sensitive attributes
at inference time, making it more practical for real-world applications. Our approach opens a new
avenue for research in fair representation learning by offering a principled, non-adversarial alternative
to existing methods. However, despite its simplicity and effectiveness, the proposed framework
has certain limitations. Similar to many fairness-oriented algorithms, it encounters challenges in
high-dimensional settings, where the CFD tends to lose effectiveness. Moreover, the moment-based
approach is inherently tailored to classification tasks, leaving opportunities for extending such
approaches to regression contexts. These limitations underscore the need for further research to
improve the scalability and robustness of our method in such scenarios. Additionally, current fairness
benchmarks largely focus on low-dimensional datasets, limiting the ability to comprehensively
evaluate and compare methods in more realistic and complex settings. Developing more sophisticated,
high-dimensional fairness datasets would greatly enhance the evaluation of approaches like ours and
drive further innovation in the field.

Broader Impact

This research utilizes the Adult, COMPAS, German, Crime, and Health datasets, each of which is
extensively acknowledged as a benchmark in the domain of machine learning fairness. Our study
is conducted with stringent adherence to ethical standards and a commitment to transparency. By
meticulously employing responsible methodologies, we strive to make substantive contributions
to the advancement of Al ethics. This work underscores our dedication to fostering fairness and
promoting socially responsible practices within the broader machine learning community.
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A Appendix

This appendix provides additional theoretical derivations, algorithmic details, and extended empirical
results to support the main paper. It is organized as follows:

+ Appendix[A.I} Complete derivations for Theorems 5.1} [5.2] and[5.3]

* Appendix[A.2} Analysis of MMD, its relation to characteristic-function distances, and links to
adversarial representation learning.

* Appendix[A.3} Discussion of full moment-matching, the Russian-Roulette estimator for unbiased
series truncation, and practical considerations.

* Appendix[A.4 Formal definitions and commentary on Demographic Parity, Equalized Odds, and
other group-fairness criteria.

* Appendix Extended comparisons against baselines, Pareto-front ablations over latent
dimensions, and robustness checks.

* Appendix [A.6} Detailed descriptions of all benchmark datasets, preprocessing pipelines, and
protected attribute encoding.

* Appendix [A.7} Implementation specifics, optimizer settings, hyperparameters, and hardware
configuration.

A.1 Proofs of Theorems
Proof. of theorem[5.1]

Taking the derivative inside the expectation

px _ O"Ex [e/X:)] 15)
8t[k1]7 A ,8t[kn] 3t[k1], Ceey 8t[kn]
8n6i<X,t>
=Ex {} (16)
8t[k1]7 .. ,at[kn]
—Ey {i"X[k.l] - X[kn]eﬂxﬂ . (17)
Evaluating both sides at ¢ = 0 concludes the proof: O
Proof. of theorem[5.2]
Defining x[g) = 1, the derivative of the logistic function can be expressed as
dop(x)
=z 05(x)(1 —og(x)). (18)
‘95[1] [1] B( )( 5( ))
The derivative of the log-likelihood function in eq. (@) can be expressed as
OLMR 0
D)~ % By [V loa(o3(X)) + (1~ ) log(1 — 75(X)] (19)
9By 9By
1 80'[3 (X) 1 80'[3 (X)
— Exy —(1-Y) (20)
op(X) 9B (1—0s(X)) 0By
= —Exy [V (1-05(2)) = (1= Y) 2 05(2)] @
= -Exy [z (Y —0s(x))]. (22)

At the optimum (%, the gradient of the log-likelihood is zero. Considering the partial derivative with
respect to By

_ OLM(BY)

0= T[O] =-Exy[Y —o05-(X)] (23)

= —Ey Y]+ Ex [05-(X)] (24)
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showing that Ey [Y] = Ex [0+ (X)].
Considering the partial derivative with respect to 3};) for i # 0

6£LR *
0= Wq(f) = —Exy [Xp (V = 05 (X))] 2

= EX [XM O‘ﬁ*(X)] — Ey [Y ]EX|Y [XM]] . (26)

Substituting Ex [03«(X)] = Ey [Y] and the hypotesis Ex|y [X[;j]] = Ex [X]

8£LR(ﬁ*)

0= 9By = Ex [X 0p-(X)] - Ey [Y] Ex [X;] @7)
=Ex [Xp 0p-(X)] — Ex [op-(X)] Ex [X(5] (28)
= Cov (X[i];O'B* (X)) (29)

Unless X7;) is constant, the condition Cov (X 15 0+ (X )) = 0 is obtained for 5[*2.] = 0, making
o+ (X) independent of X1;). O

Proof. theorem[5.3]
Following the same steps of the proof for theorem[5.2} we can show that Ex [03- (X)] = Ey [Y] and
Ex [Xpy 05+ (X)] = Ey [Y Expy [Xg]]-

Therefore, the correlation Corr (X 15 0+ (X )) can be expressed as:

Corr (X 05- (X)) = =X [(Xj) = Bx [Xpg]) (05 (X) = Ex [~ (X)])] 0
\/EX [X[i.]] Ey {0123* (X)}

_ Ex [Xpyos-(X)] — Ex [Xjy] Ex [op- (X)] an

\/EX X2 Ex [03. ()]

Using the triangle inequality Ex [05(X)?] > Ex [O'B(X)]2 and substituting og(X) = Ey [Y] and
Ex [Xjy 0p-(X)] = Ey [Y Ex)y [X]]:

EX [XMO'B* (X)} —EX [X[z]] IEX [Jﬂ*(X)]

Corr (Xm;oﬁ*(X)) < (32)
Ex [X3]Ex [o5- (X))
_ By [V Exy [Xpg]] - Ex [Xpg]Ey [Y] 33
Ex {X@J]Ey v]
_ By [Y Exyy [Xpg] — Bx [Xw])] 34
Ex [X[Qi]}Ey Y]
Assuming 2 = [Ex v [E[H][;f)j ]l < € we can bound the correlation with
X1
Corr (X3 05+ (X)) < Ve (35)

Showing that limg_,o Corr (X[;j;04+(X)) = 0. When X[; is not constant, this also implies
limg 0 B = 0 0

15



A.2 Connections to Maximum Mean Discrepancy

The Maximum Mean Discrepancy (MMD) is a popular distance measure between distributions. Given
a Reproducing Kernel Hilber Space (RKHS) H, it is defined as follows

MMDy, (Px,Py) = sup E[f(X)]—E[f(Y)]. (36)

715 <1

Connections from Characteristic Function For random variables X € R%, Y € R9, the MMD
can be expressed in terms of the CFs [8].

MMDZ, (Px, Py) = / (1) — v (O w(t)dr (37)

where the weighting function w(¢) is the inverse Fourier Transform of the kernel of 7. When w is a
probability density function, then the integral can be interpreted as an expectation, and

MMDy, (Px,Py) = CFDp,, (Px,Py) (38)

Connections from Sufficient Statistics The formulation presented in section [3] shares some
similarities with Maximum Mean Discrepancy (MMD) used by VFAE. Indeed, MMD states that
given two distributions, they are equal as long as the maximum distance between their expected value
under a transformation f is zero.

Thus, if MMDy, (Px,Py) = 0 then Px = Py. This is indeed exploited by Adversarial Learning,
which tries to find f by means of a min-max optimization. However, as shown by [2], Adversarial
Learning fails as finding such f is extremely hard, due to the fact that the two distributions are
constantly changing based on the current f. Therefore, if MMDy, (Px,Py) # 0, no provable
guarantee on the fairness can be given. Instead, if f is in the family of LR, theorem shows that
the second moment bounds the predictive power of such a representation.

This is a weaker condition than the one that [2], Adversarial Learning, CVAE, uses to learn, by
matching the distribution. Indeed, P ;|- = Pz5=1 = E[Z | S = 1] = E[Z | S = 0] but not the
other way around.

Yet, given LR has a convex loss function, the optimal adversarial classifier can be provably trained to
convergence with a second-order optimizer, thus giving guarantees on the amount of sensitive S that
can at most be used in the classification.

A.3 Matching All Moments

The approaches presented in sections [ and [5| can be reconducted to matching the moment generating
function, or directly the moments of a distribution. Indeed, matching all moments of two distributions
with bounded support ensures that they are equal almost everywhere. Even though it is trivial to force
the support of Z to be bounded, directly applying moment matching to the distributions PP 5 might
be impractical, as all moments are needed to characterize a distribution, which is computationally
unfeasible. Furthermore, truncating to the k-th moment leads to a biased estimation, and, in the
context of this work, potential leakage of the sensitive attribute S.

One powerful tool for unbiased estimation of the complete infinite series of moments is the Russian
Roulette estimator. Consider an infinite series of the form Y = >°°° Y;. The Russian Roulette
estimator randomly chooses a truncation point [V and calculates the partial sum up to N, while
adjusting the weight of the computed sum to ensure that the estimator remains unbiased:

. XN Y,
Y = ; PINS T (39)

While the Russian Roulette estimator is unbiased, it can result in high variance if the truncation
probabilities are not chosen carefully. Therefore, balancing computational efficiency and variance is
essential in practical applications.

Instead, the proposed approaches presented in sections [ and [5|use a more principled and computa-
tionally stable way of matching two distributions.
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A.4 Additional Fairness Metrics

Although various fairness criteria have been proposed, balancing the fairness-accuracy trade-off
remains challenging.

Demographic Parity (DP) is a widely used group fairness criterion that requires the outcome of
a decision-making process to be independent of a sensitive attribute such as race, gender, or age
(18 13]]. Let hy denote a representation function that maps inputs X to a latent space Z = hy(X),
and let f denote a classifier applied to this representation, producing predictions ¥ = f5(hg(X)).

Then, DP requires the probability of receiving a favorable outcome (e.g., Y = 1) to be the same
across all demographic groups s € S:

PY=1|S=s)=P(Y =1) VseS. (40)

This states that the positive outcome rate for any group s should be equal to the overall positive
outcome rate in the population. Since demographic parity is independent of the ground truth labels,
it is especially salient in contexts where reliable ground truth information is hard to obtain and a
positive outcome is desirable, including employment, credit, and criminal justice [16] 23].

To quantify deviations from this ideal, we measure the Demographic Parity Difference (DPD). In
binary group settings (e.g., involving an advantaged group a and a disadvantaged group d), it is
defined as: R .

DPD=PY=1|S5=a)-PY =1]|5=4d). (41)

In real-world scenarios, sensitive attributes are often multi-class (e.g., race with more than two
categories). In these cases, generalizations for measuring DPD violation include:

» The Maximum Pairwise Difference, capturing the largest disparity in positive outcome rates
between any two groups:

DPD = max ‘]P’(Yzl|S:si)—P(Y:1|S:sj)’. 42)

8i,8;5 €S

» The Average Absolute Pairwise Difference, computing the average disparity across all pairs:

DPD:#ZZ‘P(?:l\S:si)—P()}:HS:sj)’. (43)

$; €S Sj €S

Since achieving perfect demographic parity (where all the above differences are zero) can be imprac-
tical, the objective is often relaxed to minimizing the Demographic Parity Distance:

AP =3PV =15 =)~ PV = 1)]. (44)
seS

While demographic parity is often defined in terms of these outcome rate differences, it can also be
understood more generally in terms of statistical distance between group-conditional distributions
of model predictions or representations [35]. Let Zy and Z; denote the distributions of these
representations conditioned on different sensitive attribute values S = 0 and S = 1, respectively.
Then, for any measurable test function fy applied to the model outputs, one can define the test
discrepancy as:

AP*(fo 0 ho) = |Ez,[fo(2)] — Ez, [fo(2)]] - (45)

The statistical distance (or total variation distance) between Z; and Z; is the supremum of this
discrepancy over all measurable test functions

A*(Zo, Z1) = sup Bz, [1(2)] — Ez, [1(2)]]| - (46)
w
It follows that for any fy,
APP(fg 0 hg) < A*(Zo, Z1), (47)

and APP(fp o hy) = 0if and only if fp(he(X)) L S, i.e., demographic parity holds.
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In contrast to Demographic Parity, the Equal Opportunity (EO) criterion incorporates information
about the target variable Y [27]]. Specifically, EO requires that the true positive rate (TPR) be equal
across all demographic groups. Formally:

PY=1|S=sY=1)=PY =1|Y=1) VseS. (48)

This fairness criterion is especially salient in domains where false negatives are particularly harmful
and reasonably accurate ground truth labels are available, such as in healthcare, criminal justice, and
risk assessment [[7, 143} 138]]. The corresponding EO distance is defined as:

AR (fgo ho) = |[Ez[fo(Z) | S =0,Y = 1] = Ez[fo(2) | S =1,Y =1]| (49)

which can be upper bounded by the objective value of an optimal adversary ¢g* trained to distinguish
between Z | Y = 1 for different groups [35].

An alternative fairness criterion is Equalized Odds (EOd) [27], which extends Equal Opportunity by
requiring that prediction outcomes be conditionally independent of the sensitive attribute given the
true label. Formally, EOd demands that for all s € S:

P(Y=1|Y=1,S=s)=PY =1|Y=1) VseS (50)
and
P(Y=1|Y=0,S=s)=PY =1|Y=0) VseS (51)

These constraints ensure that both the true positive rate (TPR) and false positive rate (FPR) are equal
across all groups [56} 25]. This criterion is particularly applicable in decision-making contexts where
reliable ground truth labels are available and both false negatives and false positives incur significant
societal or personal costs [[12}53]]. The EOd distance is defined as:

AR(fg o hg) =|Ez[fo(Z) | S=0,Y =1] - Ez[fo(2) | § = 1Y =1]|
TEz[fo(2) | S =0,Y =0] =Ez[fo(2) | S =1,Y = 0]]|. (52)

A.5 Additional empirical evaluations and ablations

In table [3al we compare our proposed approaches to other baselines on the Adult dataset, with the
same setup as in [37]. Given that no distinction is made on the family of functions used for the
evaluation, we report the Adv. Accuracy of FmCF and FmSS approaches using a deep and wide
MLP. The same holds true for the results reported in table[3b] where we compare out methods to the
same setup from [47]

(b) Comparison on Adult dataset using the setup
(a) Comparison on Adult dataset using the setup from [47].
from [37]).

Model Acc. Adv. Acc.
Random 70.0 81.0

Model Acc. Adv. Acc.

Random 75.2 67.5 CSN [47]] 73.1 81.3
VFAE [32] 84.2 88.2 CIAFL [51] 73.6 81.1
CIAFL [51] 83.1 88.8 VFAE [32] 72.8 81.2
IRWAL [37] 84.2 77.6 FRTrain [40] 72.7 80.9

WassDB [29] 72.8 81.1

FmCEF (ours) 85.0 67.8
FmSS (ours) 85.0 67.9 FmCF (ours) 74.1 81.1
FmSS (ours) 74.2 81.1

In figs. [5]to [8] we report the tradeoffs between adversarial balanced accuracy and task accuracy.
We evaluate FmCF section [] against an adversarial MLP as reported in appendix Instead, we
evaluate FmSS section [5|both against an MLP and against a LR. In particular, for all images, in black
is reported the performance of Fair Normalizing Flows [2], while in blue is reported the performance
using 1 dimension, in orange 2 dimensions, and in green 3 dimensions. We observe that the lower
the dimension, the easier it is for the penalties to be effective, giving surprising performances for
extremely low-dimensional latent spaces. Notably, such a characteristic is not limiting for the
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downstream task, as even in the lowest-dimensional setting, both approaches outperform all the
baselines.
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Figure 6: Pareto varying latent dimension on Compas dataset.

0.85 1 0.854 4 0.851
0.80 7 0.80 4 0.801
20751 0.75 4 0.754 Y/
@ /
5 0.704
I} 0.704 0.707
)
< 0.65 0es
% 0.65
G 0.60
= 0604 0.60 1
0.551
0.50 0.55 0357
T T T T T T T T T T 0.50+ T T T T T T
05 06 07 0.8 0.9 10 05 0.6 0.7 0.8 0.9 1.0 05 0.6 07 038 0.9 1.0
Adversarial Accuracy (MLP) Adversarial Accuracy (MLP) Adversarial Accuracy (Linear)

Figure 7: Pareto varying latent dimension on Crime dataset.
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Figure 8: Pareto varying latent dimension on Adult dataset.

Furthermore, we evaluated the effects of batch size on the reliability of the CFD estimation. As
confirmed by appendix [A.3] larger batches yield more stable and reliable CFD estimates. The
variance of the estimates decreases consistently with increasing batch size, aligning with the expected
theoretical scaling of O(-).

1
n
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Given that all benchmarks considered thus far pertain to classification tasks, we now present a simple
example demonstrating the applicability of FmCF to alternative problem settings. Specifically, in
fig. [0l a conditional convolutional autoencoder is employed to learn a latent representation of the
MNIST handwritten digits dataset. Subsequently, the loss function described in algorithm I]is utilized
to penalize the divergence between IP| s and a Gaussian distribution. When this condition is satisfied,
it ensures that Z 11 S, indicating that the latent representation Z encodes information about X that is
independent of .S. Consequently, when the model is prompted to reconstruct an input with a different
label, it retains the essential characteristics of the original input while generating a digit consistent

Table 4: Standard deviation of FmCF Penalty estimator.
Batch Size Adult German Compas Health

8 0.1150  0.1252 0.0924  0.1004
16 0.0596  0.0854 0.0361  0.0422
32 0.0164  0.0172 0.0129  0.0121
64 0.0063  0.0056 0.0052  0.0054
128 0.0026  0.0024 0.0022  0.0027
256 0.0016  0.0004 0.0010  0.0015
512 0.0007  0.0000 0.0007  0.0009

with the newly specified label.

Indeed, the decoder is able to generate images preserving characteristics such as rotation, while only

relying on the fed label for the kind of digit to show.

Figure 9: Latent representations Z are extracted from the left-most column and combined with
arbitrary target labels to generate stylistically consistent images of different classes, shown on the
right.
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For more details on the datasets, please refer to appendix [A.6]
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A.6 Datasets

We utilize six well-known datasets in our study, sourced from both the UCI Machine Learning
Repository and other publicly available resources. These datasets include Adult, Crime, Compas,
Law School, Health, and the Statlog (German Credit Data) dataset. Each of these datasets presents
distinct challenges and characteristics relevant to fairness and predictive modeling. Below, we briefly
introduce each dataset and outline the preprocessing steps employed:

. Adulﬂ The Adult dataset, also known as the Census Income dataset, originates from the 1994
Census database and is available through the UCI repository [17]. It contains 14 attributes,
including age, workclass, education, marital status, occupation, race, and sex. The prediction task
is to determine whether an individual’s income exceeds $50,000 per year. To facilitate modeling,
we discretize continuous features and retain categorical variables related to demographics and
employment. Sex is treated as the protected attribute in fairness analyses.

« Crimd’t The Communities and Crime dataset combines socio-economic data from the 1990 US
Census, law enforcement data from the 1990 LEMAS survey, and crime data from the 1995 FBI
UCR. The goal is to predict whether the violent crime rate of a community is above or below
the median. We utilize attributes such as race percentages, income levels, and family structure
indicators. Race is designated as the protected attribute, derived from the proportions of racial
groups within each community.

. Compasﬂ The Compas dataset contains data related to criminal history, jail and prison time,
demographics, and COMPAS risk scores from Broward County (2012-2013) [S]. The prediction
task involves forecasting recidivism within two years. Key attributes include age, prior count, and
charge degree, with race being the protected attribute. We preprocess the dataset by discretizing
continuous variables and retaining categorical ones, critical for risk prediction.

. Healtkﬂ The Health dataset was part of the Heritage Health Prize competition on Kaggle and
contains medical records of over 55,000 patients. We focus on the merged claims, drug count,
and lab count attributes while removing personal identifiers to ensure privacy. Age is treated as a
protected attribute, divided into binary groups: above and below 60 years. The primary prediction
task is to assess the maximum Charlson Comorbidity Index, reflecting the long-term survival
prospects of patients with multiple conditions.

* Law Schooﬂ The Law School dataset consists of data from admissions cycles between 2005
and 2007, covering over 100,000 individual applications. Attributes include LSAT scores,
undergraduate GPA, race, gender, and residency status. To enhance privacy, data has been
aggregated where necessary. We consider race as the protected attribute, binarizing it into white
and non-white categories. The main task is to predict law school admission outcomes.

. Germarﬂ The German Credit Data dataset, sourced from the UCI Machine Learning Reposi-
tory [[17]], consists of 1,000 records of credit applicants. Each instance is labeled as either "good"
or "bad" credit risk. The dataset contains 20 features, including age, credit amount, employment
status, and personal status, among others. Both categorical and numerical data are present,
requiring careful preprocessing. We encode categorical variables using one-hot encoding and
normalize numerical features. The protected attribute for fairness evaluation in this dataset is age,
segmented into groups representing different age ranges.

However, in [2], the Lawschood dataset is also used to show the effectiveness of FNF. Through
the extensive research, we did not find any publicly available version of such a dataset, thus our
approaches are not evaluated on it.

A.7 Training details

All experiments reported in this paper were implemented using PyTorch. The models were trained on
a server equipped with an AMD Ryzen Threadripper PRO 5995WX CPU (64 cores, 128 threads),

*https://archive.ics.uci.edu/dataset/2/adult
*https://archive.ics.uci.edu/dataset/183/communities+and+crime
>https://github.com/propublica/compas-analysis
Shttps://paperswithcode.com/dataset/heritage-health-prize
"https://eric.ed.gov/?id=ED469370
%https://archive.ics.uci.edu/dataset/522/south+german+credit
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512 GiB of RAM, and three NVIDIA RTX A6000 GPUs. Despite this powerful setup, none of the
models utilized more than 4 GiB of VRAM during training.

All reported results are averages over 10 different seeds of the proposed approaches. No extensive
hyperparameter tuning was performed for any of the reported results, underscoring the effectiveness
of the proposed methods. All MLPs used for adversarial evaluations, encoding, and classification
consist of four layers with 64 neurons each. Additionally, larger MLPs for fairness adversarial
evaluations, configured with 128 and 256 neurons, were tested but resulted in poorer performance.

The Adam optimizer [30] was employed for all training sessions, with a learning rate of 0.0003.
Training was conducted for 100 epochs, incorporating L2 regularization with a weight penalty of
0.0001 to mitigate overfitting. Since accuracy and fairness often involve a trade-off, early stopping
was not applied. Instead, the model from the final epoch was used for evaluation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: In the abstract, we introduce prior works highlighting limitations in approaches to
learning specialized representations. We then show theoretically and empirically that the proposed
approaches learn specialized representations without any adversarial loss in an effective manner,
surpassing the current state-of-the-art.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims made in
the paper.
 The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the conclusions (and briefly in the sections presenting the new methods), lim-
itations are highlighted, bringing attention to the difficulty of learning high-dimensional fair
representations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to vi-
olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]
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Justification: In the appendix, we provide formal proofs for each theorem in the main text, with
numbered equations. In the main text, we provide visual examples and theorem statements.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the appendix, we provide information on the used datasets, preprocessing,
and training, with details on the setup and hardware being used. Furthermore, for easy better
interpretation, we include in the main text a pseudocode of the proposed approaches. Finally, we
provide the code as supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code

and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to

make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For

example, if the contribution is a novel architecture, describing the architecture fully might

suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the

results, access to a hosted model (e.g., in the case of a large language model), releasing of a

model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions

to provide some reasonable avenue for reproducibility, which may depend on the nature of

the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]

Justification: Datasets are publicly available. We provide the code, preprocessing, configurations,
and dataloaders to reproduce all results in the paper.
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Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: In the appendix, we address all the details of the training. Furthermore, the provided
code is already set to the same parameters used for creating such results. No hyperparameter
tuning has been carried out for the proposed methods.
Guidelines:

* The answer NA means that the paper does not include experiments.
» The experimental setting should be presented in the core of the paper to a level of detail that
is necessary to appreciate the results and make sense of them.
¢ The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bars in all the Pareto plots. However, given that all other approaches
did not report the error bars, we do not report them in the tables.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
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8.

10.

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: In the appendix, all hardware specifications and usages are specified.
Guidelines:
* The answer NA means that the paper does not include experiments.
* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.
* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.
 The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We include reproducibility details, the data are publicly available, and we address
the broader impact and societal implications at the end of the main paper.
Guidelines:
* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: Though no major broader impact can be foreseen, we partially address such concerns
at the end of the main paper. However, the whole paper aims at developing fair classifiers which
has an inherent positive societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.
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13.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA|

Justification: We find that this paper poses no such risk.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We work with open source libraries and datasets that are publicly available and we
cited them properly.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets|has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide code and instructions on how to run the code in order to reproduce our
results.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
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Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: LLMs have been used only for paraphrasing and grammar checking.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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