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ABSTRACT

Drug discovery, and molecular discovery more broadly, can be framed as a se-
quential active learning problem —facing a candidate pool, strategies are designed
to sequentially acquire molecules to assay, aiming to find the best molecule within
the fewest rounds of trial and error. To automate this process, Bayesian opti-
mization (BO) methods can mimic the approach of human medicinal chemists by
constructing representations from existing knowledge, quantifying uncertainty for
the predictions, and designing acquisition experiments that balance exploitation
and exploration. Traditionally, these three stages are implemented using build-
ing blocks such as graph neural networks (GNN) as representations, variational
inference (VI) or Gaussian process (GP) for uncertainty quantification, and ana-
lytical expressions as acquisition functions. To facilitate the integration of both
domain-specific and general knowledge into various stages of this process, in this
paper, we investigate which parts of this workflow can be augmented or replaced
by large language models (LLM). To this end, we present COLT 1, a software li-
brary for Chemical Optimization with Language- and Topology-based modules,
and thoroughly benchmark the combination thereof. We found that none of the
LLMs, no matter incorporated at what stage, can outperform the simple and fast
Bayesian baseline with GNN and GP. As a remedy, we offer a new tuning recipe
with direct preference optimization (DPO), where the optimization of synthetic
properties can be used to increase the efficiency of the acquisition in real-world
tasks.

The short answer to the question asked in the title is: Not easily.

1 INTRODUCTION: DRUG DISCOVERY AS SEQUENTIAL ACTIVE LEARNING

A drug discovery campaign—the endeavor to search, from the vast chemical universe, for a new
chemical entity with some desired therapeutic efficacy—takes decades and billions of dollars and
has its decision-making process traditionally reliant on human experts [1; 2]. When a human expert
makes a decision to prioritize a certain compound(s) in the pre-clinical stage of a drug discovery
project, their thought process, not without some oversimplification (regarding the multitask, con-
strained, and batched nature of the optimization), could be broken down as follows: first, an un-
derstanding of the current chemical space is constructed from existing medicinal chemistry data, as
well as general knowledge distilled from years of training and experience (sometimes referred to
as the chemical intuition [3]); second, this understanding is applied to the chemical space yet to be
assayed, providing predictions with associated uncertainty; finally, by leveraging expectation and
uncertainty, while balancing exploration vs. interpolation, she selects candidates to be synthesized
and characterized, generating assay data to refine her belief. This process is carried out iteratively
until a therapeutic candidate suitable for clinical trials is identified.

Bayesian optimization methods [4; 5] can work analogously to human experts when optimizing
over the chemical space, with the aforementioned three stages corresponding to representation, un-
certainty quantification, and acquisition in the active learning process. We can use graph neural
networks (GNNs) [6; 7; 8; 9; 10; 11; 12] to represent the molecule (§ 2.1), variational inference
(VI) [13] or Gaussian process (GP) regression [14; 15] to quantify the uncertainty of the predictions
(§ 2.2), and analytical expressions as the acquisition functions (§ 2.3).

1code at: https://anonymous.4open.science/r/colt-6B75/
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Figure 1: Semantic illustration. The experiment design in drug discovery can be broken down
into the representation, uncertainty quantification, and acquisition stages, working analogously to
the chemical intuition of human medicinal chemists. Bayesian optimization (§ 2) typically employs
GNN as representation (§ 2.1), VI or GP (§ 2.2) as uncertainty quantification, and analytical func-
tions (§ 2.3) for acquisition, which can be modularly replaced by LLMs using the example prompts.

Notably, the majority of early-stage drug discovery problems dwell in the small-data regime. Un-
like the abundant cat pictures or blog posts readily scraped from the internet, in drug discovery,
each data point is the result of costly and time-consuming wet lab experiments. Consequently,
even the largest pharmaceutical companies rarely work with a candidate pool larger than 1 million
compounds [16]—the number being smaller in magnitude for biotech startups. ChEMBL [17], the
largest public chemical data repository, contains merely 15 million assays of various kinds over 1.8
million compounds. On one hand, this makes principled Bayesian models particularly well suited,
thanks to their inherent regularization and uncertainty quantification. On the other hand, while work-
ing with graph-structured data provides useful inductive biases, incorporating these biases into such
Bayesian, graph-based models remains challenging [18; 19], unlike LLMs, which can easily ab-
sorb language-structured knowledge by training on texts. In the chemistry domain, for instance, the
success of LLMs has been demonstrated through numerous models fine-tuned for diverse modeling
tasks [20; 21; 22; 23].

Main contributions. In this paper, we offer a comparison between the efficacy of knowledge
versus inductive bias by evaluating the optimization efficiency of LLMs against that of BO with
graph-based representation. First, we review the abstractions underlying the building blocks of
Bayesian active learning and propose solutions to replace each of them with LLMs. To this end,
we introduce a package for Chemical Optimization with Language- and Topology-based models
(COLT), which offers an easy-to-use API for molecular active learning. Using this program, we
combinatorially benchmark the effect of LLMs when placed at various stages of active learning,
and find that none of the solutions are as performant as the GNN + GP baseline. Offering a beacon
of hope amidst the negative results, we provide a general tuning recipe based on direct preference
optimization (DPO) [24], where learning occurs directly on the per-step acquisition trajectory, and
find that tuning on synthetic datasets has a positive impact on optimizing real-world tasks.

Limitations. In this paper, we only consider the optimization on a finite candidate space, whereas
the combinatorial chemical space is infinite and can be treated continuously [25]. Additionally,
to enable rapid benchmarking with a limited computational footprint, we restrict our analysis to
small datasets, resulting in high variance across the benchmark results. Similarly, we restrict our
experiments to smaller, open-source LLMs.
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2 BAYESIAN OPTIMIZATION (BO) FOR MOLECULAR ACTIVE LEARNING

First, we formalize the drug discovery campaign introduced in § 1. Given a finite pool of candidate
chemical compounds, represented by chemical graphs F = {Gi, i = 1, 2, . . . N}, each associated
with a potency y(Gi) ∈ R, of which a noisy observation is expensive to acquire, we are interested
in finding the compound with the highest potency G∗ = argmaxi y(Gi) with fewest function evau-
lations. This can be achieved via active learning, starting with an empty portfolio P = ∅, and in
each round, choosing a compound from the candidate pool, F , based on a decision informed by
the current portfolio, Ĝ = D(F|P), Ĝ ∈ F . Subsequently, we subtract this compound from the
candidate pool to add it to the portfolio, F ← F \ {Ĝ},P ← P ∪ {Ĝ}.
Bayesian optimization (BO) is a powerful approach in active learning where the decision D(F|P) is
constructed in a modular way. Firstly, we extract fixed D-dimensional features from the compounds
to form a representation: H = h(G) ∈ RD; secondly, this representation is used to construct
a predictive posterior distribution with uncertainty quantification: p(y|G; Θ),Θ = θ(H), whose
parameters Θ is is mapped from the graph representations. Lastly, an acquisition function, α, is
applied on this predictive posterior to form a score, on the basis of which a decision is made: Ĝ =
D(F|P) = argmaxG∈F α(p(y|G)).
In sum, the acquisition trajectory represents a sequential decision process, where the probability of
a given trajectory can be written as:

p(P = {Gi}) = p(G0)
t=|F|∏
t=0

p(Gt|{Gt=0,··· ,t}) (1)

= p(G0)
t=|F|∏
t=0

∫
dΘp(Θ|{Gt=0,··· ,t}))P [α(p(y|Gt,Θ)) ≥ α(p(y|Gi,Θ)),∀Gi ∈ F ]., (2)

where the first equality (1) stands generally for active learning strategies surveyed in this paper (§ 2
and § 3), and the second equality stands only for traditional Bayesian optimization (§ 2).

2.1 REPRESENTATION: GRAPH NEURAL NETWORKS (GNN)

Graph neural networks (GNNs) have emerged to be the modern workhorse for graph representation.
A GNN can be most generally defined as one adopting a layer-wise updating scheme that aggre-
gates representations from a node’s neighborhood N (v) (based on the edges Âuv) and updates its
embedding:

X′
v = ϕ(Xv, ρ(Xu, Âuv, u ∈ N (v))), (3)

where ϕ, ρ are the update and aggregate function, repsectively. Omitting the nonlinear transfor-
mation step ϕ, common to all neural network models, and assuming a convolutional aggregate
function, ρ = SUM or ρ = MEAN, a GNN layer is characterized by the aggregation/convolution
operation that pools representations from neighboring nodes. This forms an intermediary represen-
tation X′, which on a global level, with activation function σ and weights W , can be written as:
X′ = σ(ÂXW ). The primary difference among architectures lies in the choice of effective adja-
cency matrix, Â. The most classical examples include: graph convolutional networks [6] (GCN),
which normalize Â by the node in-degree, Dii =

∑
j Aij , and graph attention networks [11] (GAT),

which take Â to be the attention score;

ÂGCN = D− 1
2AD− 1

2 ; ÂGAT,ij = Softmax(σ(NN(Xi||Xj))); (4)
Stacking GNN layers, we can get a representation of the graph

H = X(l) = σ(Âσ(Âσ(Â...σ(Â︸ ︷︷ ︸
l times

XW...W )W )W )︸ ︷︷ ︸
l times

. (5)

2.2 UNCERTAINTY QUANTIFICATION: VARIATIONAL INFERENCE (VI) AND GAUSSIAN
PROCESSES (GP) REGRESSION

Bayesian neural networks. Under the Bayesian formalism, given sets of (graph, measurement)
pairs as training data D = {G(i), y(i), i = 1, 2, 3, ..., n}, the probability distribution of the unknown

3
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quantity of the measurement y(n+1) could be modelled with respect to the posterior distribution of
the modelM with parameters θ as:

p(y∗|M,D,G∗) =
∫

p(y∗|G∗,Θ)P (Θ|D) d θ. (6)

This integral, of course, is not tractable, and fully Bayesian methods using a Markov chain Monte
Carlo-based sampling scheme can turn out to be prohibitively expensive with realistically sized
datasets and models. We review two common techniques to approximate Equation 6.

Variational inference on the parameter space. Variational inference [13] turns the sampling
problem into an optimization problem by assuming the distribution belongs to a specific family
and and then optimizing its parameters to best approximate the true distribution. Concretely, on
a parameter space [26], we assume such class of distribution to be a multivariate Gaussian with
diagonal covariance matrix q(Θ) = N (µ,σ), whose parameters can be optimized by minimizing
the Kullback-Leibler (KL) divergence between the variational and true Bayesian posterior (also
known as variational free energy):

µ∗,σ∗ = argmin
µ,σ

DKL[q(θ|µ,σ)||P (θ|D)] = argmin
µ,σ

DKL[q(θ|µ,σ)||P (θ)]−Eθ∼q(µ,σ)[logP (D|θ)],

(7)

Gaussian process (GP) regression with deep kernel learning (DKL) Within the deep kernel
learning framework [27], a graph kernel can be defined by applying a standard kernel (such as the
radial basis function, RBF) with parameters γ, to the output of GNNs.

k(G,G′) = kRBF(GNN(G|Θ),GNN(G′|Θ), γ) (8)

Equation 6 can then be written as:

p(y∗|G∗,D = {G}) ∼ N (E[y∗], cov(y∗)), (9)

where:

E[y∗] = K(G∗, {G})[K({G}, {G}) + σ2
nI]

−1y; (10)

cov(y∗) = K({G∗}, {G∗})−K({G∗}, {G})[K({G}, {G}) + σ2
nI]

−1K({G}, {G∗}). (11)

The neural network and the kernel parameters {Θ, γ} can be jointly optimized to produce a maxi-
mum likelihood fit to the dataset.

2.3 ACQUISITION FUNCTIONS

Once the model is trained, we can use the predictive posterior, p(y∗|G∗,θ), of a given compound
to prioritize compounds from a candidate pool by defining an acquisition function α and greedily
selecting the candidate with the largest α for subsequent assaying. Popular choices include [28]:

Probability of Improvement (PoI),

αPI(G∗|D,Θ) = 1− ΦP (y∗|G∗,θ)(max(y)), (12)

characterizes the probability of the best current value, where Φ denotes the CDF of the corresponding
distribution, and max(y) is obtained within the training set D = {Gi, yi}
Expected improvement (EI),

αEI(G∗|D,Θ) = EP (y∗|G∗,θ) min{{y∗} −max(y), 0}, (13)

measures the expectation of improvement over the current best.

For tractable distributions such as the Gaussian family, these expressions can be evaluated analyti-
cally, though in general they can also be estimated via samples drawn from these distributions.

4
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3 MODULARLY REPLACING BO COMPONENTS WITH LLMS

Large language models (LLMs)—neural networks composed primarily of transformer [29]—have
shown surprising promise [30; 31; 32; 33] in representing and generating text-structured data and
gained popularity very quickly in recent years. Their impressive generative ability led the field to
describe them with personifying terms, such as understanding, and to employ them in seemingly
impossible tasks, from reasoning [34] to planning [35].

In recent years, LLMs [31; 30] have been routinely incorporated into active learning pipelines, from
hyperparameter search [36] to material design [37; 38]. Little attention, however, has been paid to
dissecting which stage of the active learning process can LLMs be most effective in. To answer
this question, and to compare the efficacy of LLMs with time-tested workflows, we propose three
solutions to incorporate LLMs into molecular active learning by modularly replacing components
outlined in § 2 by LLMs.

3.1 LLM AS REPRESENTATION

h = transformers.pipeline("feature-extraction")(molecule.smiles)

Replacing the GNNs (§ 2.1), one can use an LLM as a feature extractor to come up with the rep-
resentation of molecules. The input of the LLM is a string representation of the graph, such as
the SMILES string [39] common in molecular representation. This is consistent with the method
Kristiadi et al. [38] used for material discovery.

Even before the era of LLMs, to represent molecules as strings and feeding them into transformer- or
recurrent neural networks (RNN)-based models have long been used in various pipelines of molecu-
lar modeling, from property prediction to active learning [25], where pretraining on large ensembles
of data has been proven as an effective avenue towards better performance [40]. We are interested in
testing whether the added complexity and knowledge in LLM would help refine this representation.

3.2 LLMS AS REPRESENTATION AND UNCERTAINTY QUANTIFICATION

data = [molecule.smiles, str(molecule.y) for molecule in data]
prompt = f"""
Given a list of molecules with associated properties: {data},
what is the property of the molecule {new_molecule}?
"""
posterior_samples = [vllm.LLM().generate(prompt) for _ in range(N)]

The generation process of LLMs is intrinsically stochastic, and one can harvest the stochasticity of
that process as a proxy of the uncertainty. Specifically, the predictions of a property of a molecule
can be predicted by LLMs in a few-shot, in-context [41] manner, where a few examples are provided
in the prompts, based on which a prediction of the desired property is made. This replaces both the
representation (§ 2.1) and the uncertainty quantification (§ 2.2) stages of the Bayesian optimization.
Ramos et al. [37] employed this method for quantifying the uncertainty of property predictions of
materials. A natural challenge present here, as in all in-context learning methods, is the curse of
the token limit, which allows very few samples to be included. When moving from the small-
data to big-data regime, this can be solved via selecting in-context learning examples via similarity
measures.

3.3 LLMS AS REPRESENTATION, UNCERTAINTY QUANTIFICATION, AND ACQUISITION

data = [molecule.smiles, str(molecule.y) for molecule in data]
candidates = [candidate.smiles for candidate in candidates]
prompt = f"""
In an active learning setting,
given a list of molecules with associated properties: {data},
which among the {candidates} to assay next to maximize the property
within the fewest rounds of assay?
"""

5
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Finally, we can replace all building blocks introduced in § 2 with LLMs and let them make final
choices of compounds to assay in the next round. When the pool of candidates is large, the length
of the prompt will grow quickly. To enable token-efficient search among large candidate pools, we
introduce a tournament search model, where we separate the candidates into groups, and iteratively
compare the best candidate within groups. As such, if the token limit can originally fit only N
candidates, the tournament search model can allow up to NM candidates to be compared within
NM prompts.

4 COLT: A LIBRARY FOR MOLECULAR ACTIVE LEARNING.

from colt import *
for representation in [GCN, LLMRepresentation]:

for uncertainty in [VI, GP, LLMUncertainty]:
for acquisition in [EI, LLMAcquisition]:

model = acquisition(uncertainty(representation()))
trial = Trial(model=model, data=ESOL(), steps=100)

To rapidly benchmark the three strategies illustrated in Section 3, and to provide a platform for
medicinal chemists to seamlessly integrate both traditional and language-based active learning ap-
proaches into their workflows – thereby accelerating the design of life-saving therapeutics – we
introduce COLT, a software package for chemical optimization using language- and topology-based
methods. The above is a illustration of the COLT library interface used to generate the results in
§ 5, where representation (§ 2.1 or § 3.1), uncertainty quantification (§ 2.2 or § 3.2), and acquisition
function (§ 2.3 or § 3.3) are modularly abstracted.

Speed. Designed for practical simulation, the efficiency in terms of wall time has been a focus
of the design from the beginning. As such, in this PyTorch [42]-based package, the GNNs are im-
plemented with generalized sparse matrix-matrix multiplication in deep graph library (DGL) [43],
variational inference parallelized on GPU using Pyro [44] for variational inference, Gaussian pro-
cesses regression with kernel interpolation [45] implemented in GPytorch [14], and fast deployment
of LLMs with Huggingface [46] and vLLM [47].

Similar packages. GAUCHE [48] performs Gaussian process regression using graph- and string-
based kernels. Lapeft-Bayesopt [38] uses the representation from LLMs to perform Bayesian
optimization to discover materials. COLT differs from these efforts in its ability to perform both
traditional BO and LLM-based optimization, with both VI- and GP-based uncertainty quantification.
It also stands out for its modular design and user-friendly interface.

5 EXPERIMENTS: A BENCHMARK OF COMBINING BUILDING BLOCKS.

Having introduced the machinery to modularly carry out the benchmark experiments on the molec-
ular space, we benchmark the Bayesian graph- and language-based active learning strategies.

Data. While we are interested in benchmarking the ability of our active learning algorithms to opti-
mize the potency of compounds, high-quality, consistent potency data in the public domain is scarce
due to the close-source nature of most drug discovery campaigns. Nevertheless, from a method-
ological point of view, the potency function f is no more than a mapping from the graph structure
to R, and has the same functional signature as, and is dependent upon, the physiochemical proper-
ties of molecules. As such, we used the physical property datasets, ESOL [49], FreeSolv [50], and
Lipophilicity from MoleculeNet [51]. The targets are normalized to be distributed within the range
of [0, 1], so the reported metrics are problem-agnostic [52]. Following the conceptual framework
outlined in § 2, for all experiments, we start with an empty set, randomly select the first candidate,
and iteratively refine the model based on the data already evaluated.

LLMs are not as performant as more traditional models. Despite the high variance in the data,
we notice that the best models uniformly arise from the composition of GNN, GP, and EI (except
for the last row for the DPO model to be introduced). The more LLMs are involved in the active

6
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Marker Model Normalized Cumulative Regret
Rep. U.Q. Acq. ESOL FreeSolv Lipophilicity

· · · Random 2.27± 1.31 2.38± 1.57 2.19± 1.70
—

GCN [6]
VI EI 2.18± 1.15 1.62± 1.16 2.02± 1.40

PoI 2.82± 1.58 2.18± 1.15 1.80± 0.78
— GP EI 1.61± 0.67 1.67± 1.06 1.54± 1.07

PoI 2.39± 0.38 2.52± 0.50 1.10± 0.43
—

GAT [11]
VI EI 1.29± 0.77 2.04± 1.29 2.65± 2.00

PoI 2.41± 1.16 1.24± 0.52 1.60± 1.22
— GP EI 2.08± 1.03 1.08± 0.46 1.73± 0.93

PoI 2.17± 1.02 2.11± 0.57 1.07± 0.63
—

Llama-8B [30]
VI EI 2.32± 1.69 1.96± 1.36 1.91± 1.36

PoI 2.88± 1.30 2.06± 1.40 1.84± 1.37
— GP EI 2.13± 1.33 1.92± 1.19 1.81± 1.54

PoI 2.25± 1.04 2.01± 1.09 1.09± 0.61
bert [53] GP EI 2.10± 1.23 2.03± 1.30 1.90± 0.80

Llama-8B EI 2.40± 1.30 2.60± 1.45 1.95± 0.43
galactica-6.7b 1.98± 0.85 1.70± 0.48 1.30± 0.85

— Llama-8B 2.77± 1.70 3.00± 1.24 2.17± 1.37
Llama-8Bdescription 2.30± 1.82 1.95± 1.48 1.96± 1.18

galactica-6.7b [54] 1.76± 1.07 2.04± 1.54 1.43± 1.23
galactica-6.7bdescription 2.15± 1.28 1.87± 1.44 1.89± 1.24

ChemLLM-7B [20] 3.41± 1.16 2.66± 1.42 2.51± 1.48
ChemLLM-7Bdescription 2.42± 1.39 2.86± 1.75 2.63± 1.86

DPO (§ 6) 1.64± 1.24 0.91± 0.38 1.03± 0.45

Table 1: Benchmark experiment on real-world dataset: The effect of replacing BO components
with LLMs. Normalized cumulative regret (↓) with various representation, uncertainty quantifica-
tion, and acquisition modules. Representative configurations are also plotted: the maximum value
yMAX (averaged over 50 runs) plotted against the steps of acquisition. The random baseline is plot-
ted in a dotted dark line. Confidence intervals are omitted in the figures for clarity.

learning pipeline, the worse the acquisition efficiency is—they can pass as feature extractor [38]
when coupled with a GP (this is consistent with the findings of Ramos et al. [37]), achieving similar
performance as a simple transformer [53]; when used as uncertainty quantification in an in-context
manner, their performance deteriorates; and when used in an end-to-end manner to pick candidates
directly, they act no different than the random acquisition function. At the same time, each graph-
based, Bayesian model completes trials within a minute, whereas LLM-based models require by
magnitude more time.

The effect of domain-specific models. There have been a plethora of LLMs for chemistry-related
tasks [55], the most popular ones include Yu et al. [22]; Zhang et al. [20], which have been fine-
tuned on instruction datasets [56]. Since they have “seen” more chemistry-related texts, it is reason-
able to expect that they will perform better than the general-purpose models. This is the case for
galactica [54], an LLM dedicated to science-related tasks, which outperforms the base Llama
model.
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Figure 2: Comparison of active learning algorithms on synthetic datasets. Kernel density esti-
mate (KDE) over the normalized cumulative regret (↓) with GCN + GP + EI and LLM (Llama-8B)
acquisitions over a range of synthetic targets defined in Equation 14. The candidate space is taken
from the real-world dataset.

Does knowing the target help? Again, the datasets employed in this section are reliably measured
physiochemical properties. We decorate the prompt with the physical meaning of the targets in the
trials marked with “description”: aqueous solubility in ESOL, hydration free energies in FreeSolv,
and the octanol/water distribution coefficient in Lipophilicity. Improvements are observed with
descriptions added to the prompt.

Have LLMs already seen this data? A risk ubiquitous in benchmarking LLMs on real-world
data in the public domain is that there is no guarantee that the data was not in the training set. For
instance, the datasets benchmarked here are explicitly included in the training set of Yu et al. [22].
Despite this risk, Table 1 illustrates that even with possible leakage, LLMs is still less competitive
compared to GNN + GP initialized afresh. For a fairer comparison nonetheless, we synthesize an
artificial target:

f(G) =
∑
i

λiKi(G, gi), (14)

where K is a set of pre-defined graph kernels comparing the graph with certain fragments gi, termed
Morgan fingerprints [57], and λi is taken from a Gaussian distribution. With each set of {λi}, we
can correspondingly define a target. As shown in Figure 2, with synthetic dataset, the difference
between the traditional, graph- and GP-based acquisition and the LLM is even more obvious.

Experimental details and fixed degrees of freedom. Since the space of hyperparameter is vast
and to find the best-performing model for each class is not in the scope of the paper, we prescribe
a set of fixed experiment protocols for the graph-based Bayesian models benchmarked in Table 1.
Within each round of acquisition, the neural network model is trained for 50 epochs with Adam [58]
optimizer with learning rate 1e− 3 and L2 regularization factor 1e − 5; 8 samples are taken for all
training and inference steps; and 1 attention head is used for GAT [11]. In this paper, we only con-
sider exact GPs, leaving its variational counterpart [59] for future study. Even under these arbitrarily
defined hyperparameters, these traditional models still perform better than more advanced LLMs.

6 DIRECT PREFERENCE OPTIMIZATION (DPO) PRETRAINING FOR MORE
EFFICIENT OPTIMIZATION: TO THINK LIKE A GP, AND BETTER.

LLMs are routinely instruction-tuned [56] on supervised learning tasks to offer better predictions and
“understandings” of certain candidate spaces. Without uncertainty calibration and carefully chosen
acquisition functions, reliable predictions cannot be readily translated into efficient experimental
design. In this section, we provide a general recipe to readily optimize the acquisition efficiency
of LLMs in an end-to-end manner, i.e. taking over all of the representation, uncertainty quantifica-
tion, and acquisition steps. We achieve this by learning from all of the choices (Equation 1) from
successful trials driven by GNN + GP active learning algorithms.
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Recall the sequential nature of the active learning—by assuming the greediness of Equation 1, we
optimize the efficiency of the entire trial by optimizing that of each acquisition. We use direct
preference optimization (DPO) [24] to achieve this goal. Specifically, note that in Table 1, the
combination of GNN + GP is a uniformly strong baseline, we use this method to generate a cohort
of N trials, and find the most efficient trial, judged by the lowest normalized cumulative regret.
Based upon our hypothesis, each step in the trial is efficient and worth encouraging. We therefore
pair each acquisition step with a step generated from the random acquisition function as preferred
and dispreferred samples, arriving at the policy objective:

LDPO = −E(G ∈ P,GGPt = argmaxG∈F αEI(p(yi)|G), P (Grandom) = Categorical(G>t))

[log σ(β log
πθ(GGPt |G<t)

π0(GGPt |G<t)
− β log

πθ(Grandom
t |G<t)

π0(Grandom
t |G<t)

)] (15)

Descending this objective leads to the LLM active learner not only to think like a GNN + GP
algorithm, but also generating only the most successful trials. As shown in the last row of Ta-
ble 1, this turns out to be a highly useful strategy. Starting from a particularly small model of
Qwen-0.5B [60], we tune the acquisition efficiency to surpass that of the strong baseline of GNN
+ GP. Even though this particular experiment is small and only demonstrative, this only positive
result amidst the discouraging performance of LLMs offers a promising avenue for tuning LLMs to
directly make step-wise decisions in an active learning setting.

7 CONCLUSION.

In this paper, we abstract drug discovery as a sequential active learning process, and survey the
Bayesian optimization (BO) building blocks that can lead to principled and efficient experiment
design. Next, we review possible ways for these building blocks to be replaced by LLMs. A software
package, COLT, is provided for carrying out active learning experiments and assessing its efficiency.
Using this package, we thoroughly benchmark the effects of replacing BO building blocks with
LLMs, and found that such replacement causes only slowdown and performance drop. This suggests
that a large quantity of noisy knowledge (represented by LLMs) is not as effective as a principled
model with appropriate inductive biases (BO + GNN). Nevertheless, under the framework of direct
preference optimization (DPO), we provide a recipe for tuning LLMs directly for generating step-
wise optimization decisions.
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