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Lite-Mind:
Towards Efficient and Robust Brain Representation Learning

Anonymous Authors

ABSTRACT
The limited data availability and the low signal-to-noise ratio of
fMRI signals lead to the challenging task of fMRI-to-image retrieval.
State-of-the-art MindEye remarkably improves fMRI-to-image re-
trieval performance by leveraging a large model, i.e., a 996M MLP
Backbone per subject, to align fMRI embeddings to the final hid-
den layer of CLIP’s Vision Transformer (ViT). However, significant
individual variations exist among subjects, even under identical ex-
perimental setups, mandating the training of large subject-specific
models. The substantial parameters pose significant challenges
in deploying fMRI decoding on practical devices. To this end, we
propose Lite-Mind, a lightweight, efficient, and robust brain repre-
sentation learning paradigm based on Discrete Fourier Transform
(DFT), which efficiently aligns fMRI voxels to fine-grained informa-
tion of CLIP. We elaborately design a DFT backbone with Spectrum
Compression and Frequency Projector modules to learn informa-
tive and robust voxel embeddings. Our experiments demonstrate
that Lite-Mind achieves an impressive 94.6% fMRI-to-image re-
trieval accuracy on the NSD dataset for Subject 1, with 98.7% fewer
parameters than MindEye. Lite-Mind is also proven to be able to
be migrated to smaller fMRI datasets and establishes a new state-
of-the-art for zero-shot classification on the GOD dataset.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; • Ap-
plied computing→ Computational biology; • Human-centered
computing→ Human computer interaction (HCI).

KEYWORDS
fMRI, Brain-computer Interface (BCI), Cross-modal Retrieval, Effi-
cient Model

1 INTRODUCTION
Brain decoding holds immense significance in elucidating intri-
cate mental processes and serves as a pivotal technology for brain-
computer interfaces [14, 25, 27]. Among diverse brain decoding
tasks, the decoding of visual information stands out as a paramount
yet challenging endeavor, allowing us to unravel the complex mech-
anisms involved in visual processing, object recognition, scene
understanding, and even higher-order cognitive functions. In the
pursuit of decoding natural visual information, functional magnetic
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Figure 1: The significance of lightweight brain decoding
model. Subject-specific models are visually represented by
clouds of distinct colors, and the cloud size correlates with
model parameters.

resonance imaging (fMRI) is widely employed as a non-invasive
modality to decipher the perceptual and semantic information in-
tricately encoded within the cerebral cortex [21]. It draws consider-
able attention to fMRI-to-image retrieval/reconstruction tasks. This
paper focuses primarily on tasks related to fMRI-to-image retrieval.

The success of fMRI-to-image retrieval heavily relies on aligning
fMRI signals with the representation space of images. However,
fMRI data often suffers from spatial redundancy, noise, and sam-
ple sparsity, leading to poor representation of fMRI signals and
potential overfitting to noise distribution for deep models. To ad-
dress these challenges, previous studies have found ridge regression
and shallow linear models to be effective solutions for fMRI-based
models [1, 9, 13, 15, 28, 46]. Recently, it has been demonstrated
the effectiveness of leveraging pretrained CLIP models [29] as a
powerful bridge between fMRI voxels and images, since CLIP’s
image embeddings capture fine-grained and semantic information
of pictures [20, 22, 24, 34]. Initially, the CLS embeddings of the
CLIP image encoder was used to align voxels in Mind-Reader [20].
Considering the CLS embeddings alone provide limited information
for fMRI data, BrainClip [22] and UniBrain [24] introduce the text
annotations of images to assist in aligning fMRI voxels with image
representations. Brain-diffuser [26] aligns voxel representations
with the last hidden layer of CLIP using large-scale linear models
(257 × 14M) for the first time.

Among the CLIP-related models, MindEye [34] stands out by
employing a large-scale (996M) MLP Backbone and Projector to
map fMRI voxels and align their representations with the final hid-
den layer of CLIP using contrastive learning. MindEye achieves
remarkable breakthroughs, surpassing 90% accuracy for both im-
age and brain retrieval, outperforming previous state-of-the-art
accuracies that were below 50%. However, the practical application
of large-scale models in brain science research faces limitations.
Each subject’s fMRI data can exhibit significant variations, even
within identical experimental setups, making it currently infeasi-
ble to establish a universal encoding model that performs well for

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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all individuals. Consequently, training individual encoding mod-
els for each subject becomes necessary, as depicted in Figure 1.
Apparently, it is impractical to expect hospitals to have access to
computing resources with sufficient performance to train a unique
large-scale model (e.g., MindEye) for each individual. Therefore,
the ideal scenario involves equipping individuals with lightweight
brain-computer interface edge devices, enabling image representa-
tions to be efficiently retrieved by a lightweight model. To this end,
there is an urgent need to develop a brain network that is light-
weight and efficient, as illustrated in the right segment of Figure 1,
for practical implementation and deployment of brain-computer
interfaces in real-world scenarios.

MindEye strongly benefits from an MLP backbone with a high
parameter count, which allows for straightforward and powerful
compression and preservation. However, when dealing with fMRI
data, which typically has a low signal-to-noise ratio, an MLP fo-
cusing on voxel value-wise mappings may inadvertently suppress
informative voxel signal values while being inefficient at reducing
noisy values. This can lead to model parameter redundancy and de-
celerated convergence speed. Recently, the Fourier Transform has
gained attention in deep learning, demonstrating lightweight char-
acteristics and improved efficiency in learning frequency domain
patterns, due to its global perspective and energy concentration
properties [45]. Additionally, the Fourier Transform naturally pos-
sesses the advantage of processing signals: it is more effective and
efficient to filter out noise and maintain informative voxel signals
in the frequency domain. It presents a promising alternative to
large-scale MLPs for encoding fMRI signals.

In order to mitigate the noise effect of fMRI and obtain more
robust latent representations, we designed global filter-based Fil-
ter Blocks for fMRI denoising and fMRI spectrum compression. In
addition to the global view property of frequency domain filter-
ing, which can block out the noise and thus obtain better robust
representations, the frequency domain computation also brings a
great efficiency improvement compared to the large MLP structure.
Since the features of the compressed fMRI we obtain are more con-
centrated in the frequency domain, we also design a Frequency
Projector based on MLP in the frequency domain. Combining all
our computational paradigms in frequency domain, we propose
Lite-Mind, a lightweight, efficient, and robust brain representation
learning paradigm. We redesign MindEye with our elaborate Dis-
crete Fourier Transform (DFT) Backbone, avoiding the large MLP
Backbone used in MindEye. Extensive experiments show that Lite-
Mind achieves 94.6% retrieval accuracy for Subject 1 on the NSD
dataset, with 98.7% fewer parameters than MindEye. Lite-Mind
also proves its adaptability to smaller brain datasets and establishes
a new state-of-the-art zero-shot classification on the GOD dataset.
Our contributions are summarized as follows:

• We demonstrated that the Fourier Transform has the advan-
tage of being lightweight and efficient for fMRI representa-
tion learning in the frequency domain.
• We proposed a novel DFT Backbone with elaborate Spec-
trum Compression and Frequency Projector modules, which
is theoretically and empirically verified lightweight, efficient,
and robust for brain representation.

• We migrated Lite-Mind to various downstream tasks, and
demonstrated its robustness. It achieves state-of-the-art zero-
shot classification performance on the GOD dataset.

2 RELATEDWORK
2.1 Brain Visual Decoding
The study of visual decoding using fMRI in the human brain has
been a long-standing endeavor. In the most important fMRI-image
reconstruction and partial fMRI-image retrieval tasks, the foun-
dation is how to align fMRI signals to the image representation
space or intermediate space. Due to the low signal-to-noise ratio of
fMRI, the initial research emphasized using models based on linear
regression to extract fMRI signals and images into the intermediate
space for functional decoding of the human brain or reconstruc-
tion of faces and natural scenes [37]. Further research utilizes pre-
trained VGG to enrich hierarchical image features [7, 13, 35]. With
the development of cross-modal tasks, the image-text pre-training
model CLIP has been introduced into fMRI-image research. Mind-
reader [20] is the first to adopt a contrastive learning approach,
using the nsdgenal ROI region of NSD data and a shallow Resnet-like
model to align fMRI with the CLS embeddings output by the CLIP
image encoder. Mind-Reader did not achieve good performance in
fMRI-image retrieval when using InfoNCE loss. BrainClip [22] uses
a VAE model for retrieval tasks while still using the CLS embed-
dings. Brain diffuser [26] introduced a fine-grained representation
of the image of the last hidden layer in CLIP. However they used
257 different linear regression models to align each layer of the
257 hidden layers, resulting in the model being too cumbersome.
Mind-Vis [5] conducted self-supervised mask pre-training on fMRI
signals for another dataset, BOLD5000, and demonstrated that voxel
patches can be used to process fMRI voxel values. MindEye [34]
uses a large MLP backbone for contrastive learning, aligning the
last hidden layer 257 × 768 of CLIP, and using diffusion prior in
DALLE·2 [30] for the first time to narrow the disjointed vectors. At
the same time, it creatively proposed a mixed contrast loss MixCo
as a data augmentation method to make the large model converge.
The recent trend in brain fMRI decoding research tends to use larger
models to achieve better performance on downstream tasks [16, 41],
ignoring the privacy and deployment issues discussed above. How-
ever, to the best of our knowledge, no previous research has focused
on lightweight and efficient brain networks.

2.2 Fourier Transform in Deep Learning
Fourier Transform plays a vital role in the area of digital signal
processing. It has been introduced to deep learning for enhanced
learning performance [8, 11, 44], and has demonstrated excellent
performance in many fields, such as computer vision, natural lan-
guage processing, and time series analysis. In the field of computer
vision, GFNet [31] utilizes Fast Fourier Transform(FFT) to convert
images to the frequency domain and exchange global information
between learnable filters. As a continuous global convolution inde-
pendent of input resolution, Guibas et al. [12] design the Adaptive
Fourier Neural Operator(AFNO) frame token mixing. Xu et al. [42]
devise a learning-based frequency selection method to identify
trivial frequency components and improve image classification ac-
curacy. As for natural language processing, Lee-Thorp et al. [19] use
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Figure 2: Overview of our Lite-Mind. Figures (a) and (b) show the architecture of the MLP Backbone of MindEye and the DFT
backbone and Retrieval Pipeline, respectively. fMRI voxels are inputted into DFT Backbone to obtain voxel embeddings.

the Fourier Transform as a text token mixing mechanism for text
classification. In research of time series forecast, Fourier Transform
has deeper applications [3, 17, 18, 43]. To increase the accuracy of
multivariate time-series forecasting, Cao et al. [3] propose a spec-
tral temporal graph neural network (StemGNN), which mines the
correlations and time dependencies between sequences in the fre-
quency domain. Yang et al. [43] propose bilinear temporal spectral
fusion (BTSF), which updates the feature representation in a fused
manner by explicitly encoding time-frequency pairs and using two
aggregation modules: spectrum-to-time and time-to-spectrum. Yi
et al. [45] prove that frequency-domain MLP is more efficient than
time-domain MLP. Processing fMRI frequency domain information
is more helpful for understanding the mechanism of collaborative
operation within the human brain. However, there is currently no
research on processing fMRI signals in the frequency domain for
representation learning.

3 LITE-MIND
3.1 Overview
As illustrated in Figure 2, Lite-Mind comprises two main compo-
nents: 1) DFT Backbone consists of fMRI Spectrum Compression
and Frequency Projector, mapping flattened voxels to an intermedi-
ate space. 2) Retrieval pipeline contains Diffusion Projector, Con-
trastive Learning, and Downstream tasks with the voxel embeddings
from the DFT backbone.

3.2 DFT Backbone
Sampling an fMRI-image pair (𝑥 ,𝑦) from dataset 𝐷 , 𝑥 denotes the
fMRI data and 𝑦 denotes the paired image.

3.2.1 fMRI Spectrum Compression. Patchify and Embedding
The fMRI data 𝑥 after ROI preprocessing and flattening is a one-
dimensional long vector composed of voxels. We conduct patchify
firstly because it has been verified as simple and effective for spa-
tial/temporal representation of long sequences or high-dimensional
vectors. At first, we divide 𝑥 into 𝑛 non-overlapping patches 𝑥 =

[𝑥1, 𝑥2, ..., 𝑥𝑛] using zero-padding, and adopt convolutions with
positional encoding to obtain multiple tokens 𝑡 = [𝑡1, 𝑡2, ..., 𝑡𝑛].

Filter Block. The spectrum of voxel tokens is obtained by 1D
DFT as follows:

𝑋 [𝑘] = 𝐹 (𝑡) =
𝑛∑︁
𝑖=1

𝑡𝑖𝑒
−𝑘𝑖 (2𝜋/𝑛) 𝑗 (1)

Where 𝑋 ∈ C𝑛×𝑑 is a complex tensor, 𝑋 [𝑘] is the spectrum of 𝑡 at
the frequency 2𝜋𝑘/𝑛, 𝐹 (·) denotes the 1DDFT along the voxel token
dimension. 𝑖 denotes the 𝑖-th token, and 𝑗 denotes unit imaginary.

Voxel spatial features are effectively consolidated within each
element of the frequency spectrum of voxel tokens, enabling the
extraction of informative features from voxels through the point-
wise product in the frequency domain. Accordingly, we introduce
learnable filters K = [k1,k2, ...,k𝑀 ] to filter and compress the
spectrum as follows, where K denotes the filter library and 𝑀 is
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the number of filters in the library.

𝑋 =

𝑀∑︁
𝑚=1

1
𝑛
|𝑋 |2 ⊙ k𝑚𝑐𝑜𝑠 ( (2𝑚 − 1)𝜋

2𝑀
) (2)

where ⊙ is the element-wise multiplication, |𝑋 |2 is the power spec-
trum of 𝑋 . The |𝑋 |2 operation smooths the spectrum, highlighting
the main components of the fMRI spectrum from a global perspec-
tive. 𝑐𝑜𝑠 ((2𝑚−1)𝜋/2𝑀) adopts the filtering form of Discrete Cosine
Transform (DCT), which compacts better energy and can aggregate
the significant information in fMRI voxels. Its combination with
the channel filter library K allows for efficient feature compression
and noise denoising for fMRI from the frequency domain.

Finally, we employ Inverse Discrete Fourier Transform (IDFT)
𝐹−1 (·) to convert the spectrum back into the spatial domain:

𝑡 ← 𝐹−1 (𝑋 ) (3)

3.2.2 Frequency Projector. The fMRI spectrum after filtering has a
more concentrated feature in the frequency domain compared to
the spatial domain, which is caused by the energy concentration
effect of the frequency domain calculation. We therefore designed
a Frequency Projector in the frequency domain to align the image
tokens, which has the added benefit of maintaining all computations
of our DFT Backbone in the frequency domain, where lightness and
efficiency are guaranteed. To align voxel tokens to image tokens, we
mapped the filtered and compressed fMRI tokens by an MLP-like
projector in the frequency domain(FreMLP). Similarly, we follow
Equation (2) to convert 𝑡 to the frequency domain.

FreMLP. Following Equation (2), the complex number output of
𝑡 after DFT is 𝑋 ∈ C𝑛×𝑑 . Given a complex number weight matrix
W ∈ C𝑛×𝑛′ , and a complex number bias B ∈ C𝑛′ , then the FreMLP
can be formulated as:

𝑋 ′ = 𝜎 (𝑋𝑇W +B)𝑇 (4)

Where 𝑋 ′ ∈ C𝑛′×𝑑 is the final output, and 𝜎 is the activation
function. As both 𝑋 andW are complex numbers, according to the
rule of multiplication of complex numbers(see Appendix D.1 for
details), we further extend the Equation (5) to:

𝑋 ′ = (𝜎 (𝑅𝑒 (𝑋𝑇 )W𝑟 − 𝐼𝑚(𝑋𝑇 )W𝑖 + B𝑟 )

+ 𝑗𝜎 (𝑅𝑒 (𝑋𝑇 )W𝑖 + 𝐼𝑚(𝑋𝑇 )W𝑟 + B𝑖 ))𝑇
(5)

Where 𝑅𝑒 (·) denotes the real part of𝑋𝑇 , 𝐼𝑚(·) denotes the imag-
inary part,W =W𝑟 + 𝑗W𝑖 and B = B𝑟 + 𝑗B𝑖 . Due to the more
significant features of filtered and compressed tokens in the fre-
quency domain, we replace the final FC layer of MindEye’s MLP
Backbone with FreMLP. For more theoretical proof and implemen-
tation of FreMLP, please refer to Appendix D.1. Finally, we follow
IDFT 𝑡 ′ ← 𝐹−1 (𝑋 ′) to get final tokens 𝑡 ′, and use voxel embedding
𝑓 to represent them.

3.3 Retrieval Pipeline
3.3.1 Optimization Objective. The optimization objective for the
retrieval task is as follows:

𝜔∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜔

∑︁
(𝑥,𝑦) ∈𝐷

𝑆𝐼𝑀 (𝐷𝐹𝑇 (𝑥 ;𝜔),𝐶𝐿𝐼𝑃 (𝑦)) (6)

where 𝜔 is the weight of our DFT backbone, 𝑆𝐼𝑀 (·) denotes the
cosine similarity, and 𝐶𝐿𝐼𝑃 (·) denotes using CLIP model to extract
image embedding.

3.3.2 Diffusion Projector. When searching on a large-scale dataset
like LAION-5B, image-to-image performs better than fMRI-to-image
and can findmore similar images. Therefore, we used a diffusion pro-
jector to translate the disjointed voxel CLS embeddings of the DFT
Backbone output, using a DALLE · 2[30] similar diffusion model
to obtain the image CLS embeddings and retrieve it on LAION-5B:
V′ = 𝐷𝑖 𝑓 𝑓 𝑢𝑠𝑖𝑜𝑛(𝑓 ). The Diffusion Projector consists of a trans-
former for image CLS embedding forecasting.

3.3.3 Contrastive Learning. Due to the inherent differences be-
tween different modalities, we use CLIP’s contrastive loss to train
the DFT backbone. Sampling a batch 𝐵 from voxel-image pairs, the
contrastive loss is defined below:

𝐿𝑐𝑜𝑛𝑡𝑟 = − 1
|𝐵 |

|𝐵 |∑︁
𝑠=1

log
exp(𝑓 ⊤𝑠 · V𝑠/𝜏)∑ |𝐵 |
𝑖=1 exp(𝑓

⊤
𝑠 · V𝑖/𝜏)

, (7)

where 𝑓𝑠 is the 𝑠-th voxel embeddings, V𝑠 is its corresponding
image embeddings, 𝜏 is a temperature factor.

To perform image-to-image retrieval on LAION-5B, we use MSE
loss to constrain the generation of approximate image embeddings:

𝐿𝑚𝑠𝑒 =
1
|𝐵 |

|𝐵 |∑︁
𝑠=1
| |V𝑠 −V′𝑠 | |22 (8)

Accordingly, the training loss is defined below:

𝐿 = 𝐿𝑐𝑜𝑛𝑡𝑟 + 𝛼𝐿𝑚𝑠𝑒 (9)

In general, when 𝛼 = 0, Lite-Mind is trained to output voxel em-
beddings for retrieval on the NSD test set. However, for LAION-5B
retrieval, 𝛼 is non-zero to map the voxel CLS embeddings outputted
by Lite-Mind to image CLS embeddings, enabling online retrieval.

3.3.4 Downstream tasks. The retrieval process on various down-
stream tasks is shown in the upper right of Figure 2.
Test set retrieval. The cosine similarities between voxel embed-
dings from DFT Backbone and image embeddings from CLIP ViT
are directly calculated.
LAION-5B retrieval. Voxel CLS embeddings from the DFT back-
bone are translated to image CLS embeddings through the Diffusion
Projector for online LAION-5B retrieval.
Zero-shot classification. Image retrieval is performed on novel
classes on the test set, and the similarities between the retrieved
images and simple CLIP class text prompts are calculated for classi-
fication tasks.

4 EXPERIMENTS
4.1 Dataset
Natural Scenes Dataset (NSD) is an extensive 7T fMRI dataset
gathered from 8 subjects viewing images from MSCOCO-2017
dataset [1], which contains images of complex natural scenes. Par-
ticipants viewed three repetitions of 10,000 images with a 7-Tesla
fMRI scanner over 30–40 sessions. More details can be found on the
NSD official website1. Our experiments focused on Subj01, Subj02,
1https://naturalscenesdataset.org

https://naturalscenesdataset.org
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Figure 3: Partial retrieval results of Lite-Mind on all 982 test images for Subject 1. With 12.5M DFT Backbone, Lite-Mind can
still find the exact Top-1 image pair from the test set of 982 images with 89.3% accuracy and 95.5% accuracy of image-fMRI
retrieval(random chance = 0.1%) and can distinguish among confusable candidates. The number below each image represents
the similarity score. See more cases including failure retrieval in Appendix C.4.

Subj05, and Subj07, who finished all viewing trials. Each subject’s
training set comprises 8859 image stimuli and 24980 fMRI trials
(with the possibility of 1-3 repetitions per image). The test set con-
tains 982 image stimuli and 2770 fMRI trials. Responses for images
with multiple fMRI trials are averaged across these trials. By apply-
ing the nsdgeneral ROI mask with a 1.8 mm resolution, we obtained
ROIs for the four subjects, comprising 15724, 14278, 13039, and
12682 voxels respectively. These regions span visual areas ranging
from the early visual cortex to higher visual areas. Our experimental
setup is consistent with the NSD image reconstruction and retrieval
articles [20, 24, 26, 34, 37].

Generic Object Decoding (GOD)Dataset2 was created byHorikawa
and Kamitani [13], consisting of fMRI recordings of five healthy
subjects who were presented with images from ImageNet [6]. The
GOD Dataset includes 1250 distinct images selected from 200 Im-
ageNet categories. Among these, 1200 training images are drawn
from 150 categories, and 50 test images are from the remaining 50
categories. The training and test image stimuli were presented to
the subjects once and 35 times respectively, resulting in 1200 and
1750 fMRI instances. We used preprocessed ROIs, encompassing
voxels from the early visual cortex to higher visual areas. For each
test image, the fMRI responses from different trials were averaged.

4.2 Implementation details
To fairly compare different backbones, we did not use any data
augmentation methods, such as voxel mixing loss MixCo and image
slicing enhancement. Due to MindEye only disclosing the MLP
Backbone performance of Subject 1, only the performance of Subject
1 is provided in Table 1a. The experimental results of more subjects
are shown in Appendix B.1. All of our experiments were conducted
on a single Tesla V100 32GB GPU. More experimental details and
hyperparameter settings can be found in Appendix A.

2http://brainliner.jp/data/brainliner/Generic_Object_Decoding

5 RESULTS
5.1 fMRI/image retrieval
Image retrieval refers to retrieving the image embeddings with the
highest cosine similarity based on voxel embeddings on the test set.
If a paired image embedding is retrieved, the retrieval is considered
correct. fMRI retrieval is the opposite process mentioned above.
Note that there are many semantically and visually similar images
on the NSD test set, considered to be similar in CLIP space. Whether
the model can correctly retrieve as MindEye tests the fine-grained
alignment ability to the image. For test retrieval, we adhered to
the identical methodology as Lin et al. [20] and MindEye [34] to
compute the retrieval metrics presented in Table 1a. For each test
sample, we randomly selected 299 images from the remaining 981
images in the test set and calculated the cosine similarity between
the voxel embeddings and 300 images. The retrieval accuracy refers
to the proportion of successful retrieval of corresponding images in
the 982 voxel embeddings of the test set. We adjusted the random
number seed of 30 randomly selected images to average the accu-
racy of all samples. The experimental results are shown in Table 1a.
We also conducted retrieval experiments on the remaining three
subjects to demonstrate the universality of DFT Backbone. The
detailed results and discussions are in Appendix B.2.

As shown in Table 1a, compared to MLP Backbone, our DFT
Backbone improves retrieval accuracy by 5% and 14.9% for two
retrieval ways, indicating that the fine-grained representation of the
image comes from the rich representation of the last hidden layer
of CLIP rather than MLP’s excessive attention to each voxel value.
Note that our DFT Backbone is closest to MindEye’s MLP Backbone
with only contrastive learning, while Prior in MLP Backbone+Prior
includes MSE loss for image reconstruction.

http://brainliner.jp/data/brainliner/Generic_Object_Decoding
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Method Model Parameters Retrieval
Image↑ Brain↑

Lin et al. [20] deep models 2.34M 11.0% 49.0%
Ozcelik... [26] 257 separate linear regression models 3B 29.9% 21.4%
MindEye [34] MLP Backbone 940M 89.6% 82.2%
MindEye [34] MLP Backbone+Projector 996M 88.8% 84.9%
MindEye [34] MLP Backbone+Prior 1.2B 93.4% 90.1%
Lite-Mind(ours) DFT Backbone 12.5M 94.6% 97.1%

(a) Quantitative comparison of Lite-Mind retrieval performance against other models for Subject 1. Image retrieval refers to the hit rate of
correct retrieval from 300 candidates, given the associated brain sample (chance=0.3%); vice-versa for brain retrieval. Lite-Mind only uses a
parameter quantity of 12.5M, achieving extremely high retrieval performance without using any model to close vectors of different modalities
(see Appendix B.1 for remaining subject models).

Method Low-Level High-Level

PixCorr↑ SSIM↑ Alex(2)↑ Alex(5)↑ Incep↑ CLIP↑ Eff↓ SwAV↓
Lin et al. [20] - - - - 78.2% - - -
Takagi... [37] - - 83.0% 83.0% 76.0% 77.0% - -
Gu et al. [10] .150 .325 - - - - .862 .465
Ozcelik... [26] .254 .356 94.2% 96.2% 87.2% 91.5% .775 .423
BrainCLIP [22] - - - - 86.7% 94.8% - -
MindEye [34] .309 .323 94.7% 97.8% 93.8% 94.1 .645 .367

MindEye-125M(LAION-5B) .130 .308 84.0% 92.6% 86.9% 86.1% .778 .477
Lite-Mind-8M(LAION-5B) .125 .331 78.7% 89.4% 87.9% 88.7% .724 .446

(b) LAION-5B retrieval performance. The upper part is based on various fMRI-image reconstruction methods using generative neural networks,
while the lower part represents the retrieval performance of the large-scale dataset LAION-5B as an alternative to fMRI-image reconstruction.
All results are averaged across four subjects, and Lite-Mind achieved higher performance with a lighter backbone, even exceeding the accuracy
of many reconstruction methods.

Table 1: Main results of Lite-Mind retrieval and LAION-5B retrieval on the NSD dataset.

5.2 LAION-5B retrieval
Although the retrieval scale on NSD is large enough, we can still
expand it to larger datasets, such as LAION-5B [33]. The final layer
CLIP ViT-L/14 CLS embeddings for all 5 billion images are available
at https://knn.laion.ai/ and can be queried for K-nearest neighbor
lookup via the CLIP Retrieval client [2]. For LAION-5B retrieval,
we train another similar Lite-Mind-8M, aligning voxels to the CLS
embeddings of CLIP. For each test sample, we conduct a retrieval
strategy in the same way as MindEye (first retrieve 16 candidate
images using CLS embeddings, and the best image is selected based
on having the highest cosine similarity to the fMRI voxel embed-
dings aligned to the final hidden layer of CLIP). Unlike MindEye,
in the LAION-5B retrieval process, we used the Diffusion Projector
to conduct image-to-image retrieval.

To compare the performance of large-scale dataset retrieval,
we use metrics of image reconstruction for evaluation with previ-
ous image reconstruction methods. The experimental results are
shown in Table 1b. The specific evaluation metrics in the table
are as follows: PixCorr represents pixel-wise correlation between
ground truth and retrieval/reconstruction images; SSIM is struc-
tural similarity index metric [39]; EfficientNetB1("Eff") [38] and
SwAV-ResNet50("SwAV") [4] refer to average correlation distance;
all other metrics refer to two-way identification (chance = 50%).

Experiments show that our DFT Backbone performs better than
MindEye in high-level metrics, as shown in Table 1b, although the
backbone only has 8M parameters (MindEye-CLS backbone still has

125M. Note that both MindEye and Lite-Mind perform LAION-5B
retrieval based on CLS alignment, resulting in a smaller number
of parameters compared to full models). The results indicate that
an efficient DFT backbone can also assist downstream retrieval
tasks. The retrieval visualization results of Lite-Mind on LAION-
5B retrieval for Subject 1 are shown in Figure 4, and the specific
retrieval performance and visualization results of each Subject are
shown in Appendix B.2.

5.3 GOD zero-shot classification
Since fMRI data are much fewer and shorter than those of the NSD
dataset usually, we conducted zero-shot classification tasks on a
smaller fMRI dataset to verify Lite-Mind’s generalization ability.
The voxel lengths collected by Subjects on the GOD dataset range
from 4133 to 4643, approximately 30% of NSD, and there are only
1200 fMRI-image pairs on the training dataset (4.8% of NSD).

We conduct zero-shot classification by using fMRI-to-image re-
trieval to find the specific image and using simple prompt text
templates "An image of [class]" to obtain the category of retrieved
images(CLIP has a classification accuracy of 76.2% on ImageNet
without pre-training on it, so it can be seen as zero-shot classifi-
cation). We train our Lite-Mind-15.5M to align voxels to images
on the GOD dataset. We also replicated the MLP backbone and
projector of MindEye, changing the residual block of 4096 × 4096
to 1024 × 1024 to accommodate the reduction of voxel length(We
empirically found that the original 4096 × 4096 performed even

https://knn.laion.ai/
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Figure 4: Retrieval results of Lite-Mind from LAION-5B for Subject 1. The left columnmarked by a red box in every two columns
represents the original image seen by the Subject, and the right column represents the image retrieved from LAION-5B.

Methods Modality Prompt Subject1 Subject2 Subject3 Subject4 Subject5

top-1 top5 top-1 top5 top-1 top5 top-1 top5 top-1 top5

CADA-VAE [32] V&T - 6.31 35.70 6.45 40.12 17.74 54.34 12.17 36.64 7.45 35.04
MVAE [40] V&T - 5.77 31.51 5.40 38.46 17.11 52.46 14.02 40.90 7.89 34.63
MMVAE [36] V&T - 6.63 38.74 6.60 41.03 22.11 56.28 14.54 42.45 8.53 38.14

MoPoE-VAE [23] V&T - 8.54 44.05 8.34 48.11 22.68 61.82 14.57 58.51 10.45 46.40
BraVL [7] V&T - 9.11 46.80 8.91 48.86 24.00 62.06 15.08 60.00 12.86 47.94

BrainClip-VAE [22] V&T Text 8.00 42.00 24.00 52.00 20.00 58.00 20.00 58.00 20.00 46.00
BrainClip-VAE [22] V&T CoOp 14.00 54.00 20.00 60.00 21.33 64.67 16.67 66.67 18.00 52.00
MindEye-211M [34] V Text 6.00 40.00 20.00 60.00 28.00 70.00 14.00 54.00 10.00 64.00

Lite-Mind-15.5M(ours) V Text 26.00 74.00 28.00 70.00 30.00 80.00 34.00 76.00 24.00 66.00

Table 2: Zero-shot visual stimulus classification on the GOD dataset. The test set contains 50 categories that have no overlapping
with the training set (top-1 chance=2.0%). The results for CADA-VAE,MVAE,MMVAE,MoPoE-VAE, and BraVL are taken from [7].
MindEye(211M) is a smaller version consisting of MLP backbone and projectors, with a residual block size of 1024 × 1024 (See
Appendix B.3 for retrieval performance on the GOD dataset).

worse), and MindEye still has 210M parameters. As shown in Table
2, the experimental results indicate that our proposed Lite-Mind
still guarantees robustness and establishes a new state-of-the-art
for zero-shot classification on the GOD dataset without complex
text prompt templates or auxiliary text representation training. On
the contrary, due to the sudden decrease in dataset size and voxel
length, the performance of MindEye significantly decreases, indi-
cating excessive reliance on training data size for voxel value-wise
mappings with large MLP Backbone. More retrieval and classifica-
tion results are provided in Appendix B.3.

5.4 Ablations and visualization
We assess the effectiveness of different modules within Lite-Mind to
investigate the lightweight and efficient performance in this session.
All experiments below are for Subject 1 on the NSD dataset.

Architectural Analysis. We trained multiple DFT Backbone
models with different depths to evaluate the impact of the number of
layers of fMRI Spectrum Compression on retrieval efficiency(Table
3). As the Filter Block layers gradually deepen, the number of model
parameters increases, the image retrieval accuracy gradually im-
proves, and the improvement speed tends to be gradual. We inter-
estingly found that the accuracy of brain retrieval tends to converge

faster than the image retrieval and only 6 layers of Filter Blocks
are needed to approach the highest value. We have also conducted
more ablation experiments on hyper-parameters to demonstrate
the robustness of Lite-Mind. Refer to Appendix B.4 for it.

Depth FLOPs(G) Parameters Image Retrieval Brain Retrieval

MindEye 5.66 996M 88.8% 84.9%
1 0.05 0.7M 83.5% 94.0%
6 0.22 3.4M 90.6% 97.2%
12 0.43 6.6M 91.0% 97.2%
21 0.80 12.5M 94.6% 97.4%

Table 3: Ablation experiments on fMRI Spectrum Compres-
sion revealed a positive correlation between the depth of the
Filter Blocks and enhanced forward retrieval accuracy.

Module Analysis. We conducted ablation experiments on two
main modules of DFT Backbone in Table 4. We completely removed
the Filter blocks and aligned tokens directly to the image embed-
dings with frequency projector, achieving a forward retrieval ac-
curacy of 65.8%, indicating the importance of frequency domain
filtering for denoising and compression. Then we replaced FreMLP
with the FC layer in the real domain, where tokens are flattened
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into a tensor for alignment, similar to the last layer of the MLP
backbone of MindEye. The model performance rapidly declined,
indicating that tokens processed by DFT Backbone have better
mapping performance with FreMLP in the frequency domain.

Module Image Retrieval Brain Retrieval

DFT Backbone 94.6% 97.4%
w/o Filter Blocks 65.8% 74.7%
w/o FreMLP 43.4% 47.8%

Table 4: Ablation experiments on modules of DFT Backbone.

Embedding Dimension.We conducted additional experiments
to verify the impact of embedding dimensions on retrieval accuracy,
as shown in Table 5. Among them, two different CLIP models (i.e.,
CLIP ViT/B-32 and CLIP ViT/L-14) were used to extract image
embeddings, with a total of four embedding dimensions, by CLS
embeddings and the last hidden layer, respectively. From the results,
it can be seen that the retrieval accuracy of Lite-Mind is higher
when the embedding dimensions of the image are longer and the
representation of the image is richer. The results verify that the
fine-grained alignment we mentioned above comes from the rich
representation of the image, rather than the fMRI voxel value fully
connected heavy MLP Backbone.

Embeddings Dimension Parameters Retrieval
Image↑ Brain↑

ViT-B/32 CLS 512 6.7M 57.5% 61.8%
ViT-L/14 CLS 768 6.7M 60.3% 64.2%

ViT-B/32 Hidden 50×512 10.4M 91.1% 96.5%
ViT-L/14 Hidden 257×768 12.5M 94.6% 97.4%
Table 5: Retrieval performance with different CLIP embed-
dings for Subject 1 on the NSD dataset.

Cerebral cortex. To explore the impact of different cortical re-
gions on retrieval accuracy, we used Takagi’s [37] method to extract
the stream ROI on the NSD dataset, covering the visual cortex of
nsdgenal, and trained the individual retrieval DFT Backbones for vi-
sual cortices (early, lateral, parietal, ventral). As shown in Table 6, it
can be observed that the early visual cortex has the greatest impact
on retrieval accuracy. Although with a voxel length of 5917, Lite-
Mind can still achieve retrieval accuracy of 85.0% and 93.4%, which
is consistent with Takagi’s research. They demonstrated that visual
stimuli are almost dominated by the early visual cortex and indicate
that nsdgenal still has a low signal-to-noise ratio, proving that fully
connected MLP Backbones are unnecessary. Interestingly, for other
cortical regions, both lateral and ventral have some impacts on
retrieval accuracy, while parietal shows little.

Visualization.We visualize the CLS embeddings for LAION-5B
using T-SNE in Figure 5. The figure shows that the diffusion pro-
jector successfully transformed the voxel CLS embeddings learned
from contrastive learning into the image CLS embeddings, and
the two kinds of embeddings are well fused for image-to-image
retrieval on the LAION-5B dataset. We have also visualized the
alignment process of voxel embeddings by contrastive learning on
the NSD dataset in Appendix C.3 and learned filters of Filter Blocks
in fMRI Spectrum Compression in Appendix C.5.

Figure 5: T-SNE of embeddings of 982 test fMRI by diffusion
projector on LAION-5B retrieval for Subject 1. In the fig-
ure, image-clip represents image-clip CLS embeddings, while
voxel-fft and voxel-diffusion represent voxel CLS embed-
dings by DFT Backbone or Diffusion Projector. The diffusion
projector plays a role in bringing vectors closer, enabling
image-to-image retrieval on the LAION-5B dataset.

Region Voxel Length Parameters Retrieval
Image↑ Brain↑

early 5917 12.4M 85.0% 93.4%
lateral 7799 12.4M 26.9% 29.0%
parietal 3548 12.3M 9.6% 11.2%
ventral 7604 12.3M 18.1% 22.4%

Table 6: Retrieval performance with different cerebral cortex
for Subject 1 on the NSD dataset.

6 LIMITATIONS AND FUTUREWORK
Due to inherent differences between Subjects, Lite-Mind still needs
to train Subject-specific models. Although our exploratory experi-
ments have shown that a common model can achieve comparable
retrieval accuracy on four Subjects, it’s still necessary to ensure
sufficient training data. Further design beyond the model level is
still needed for cross-Subject models, to achieve Subject-specific
few-shot or even zero-shot. In addition, Lite-Mind performs worse
on Subjects with shorter voxel lengths than on Subjects with longer,
consistent with previous research, which lacks relevant neuro-
science theoretical evidence. This provides a promising avenue
for the interpretability of deep learning in neuroscience.

7 CONCLUSION
In this work, we propose Lite-Mind, an extremely lightweight brain
representation learning paradigm based on Fourier Transform for
cross-modal fMRI-to-image retrieval. Our DFT Backbone is an ef-
ficient means of obtaining fine-grained representation alignment
between fMRI signals and visual stimuli. With high retrieval accu-
racy, Lite-Mind can transform many downstream fMRI tasks into
retrieval-based tasks, such as zero-shot classification. Meanwhile,
Lite-Mind’s dependence on dataset size and voxel length is less than
larger models, demonstrating excellent robustness across different
fMRI datasets.
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