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Abstract
Agent-based models (ABMs) are a valuable tool for simulating complex systems.
However, ABMs have limitations such as manual rule specification, lack of adapta-
tion, intractability, and computational cost, limiting wide scale adoption. Recently,
ADAGE was introduced to address the first two issues with a bi-level optimisa-
tion framework. However, this framework exacerbates the latter two issues. To
help remedy these concerns, in this work, the bi-level framework is integrated with
a differentiable simulator, resulting in tractable parameter updates and improved
computational efficiency. The applicability of the framework is demonstrated for
automated policy design, showing how taxation policies can be learnt to maximise
fairness in a canonical multi-agent market entrance game with adaptive agents.

1 Introduction
While successful in a variety of domains (1; 2), agent-based models (ABMs) have been criticised due
to the manual definition of behavioural rules (3; 4), lack of adaptation (the Lucas critique) (5), their
intractability (6) and the computational cost of the models. The first two limitations can be addressed
by integrating machine learning techniques such as reinforcement learning for the behavioural rules
(7) combined with a bi-level optimisation for adaptation (8; 9). However, in existing implementations
(such as (8)), the nested-level (inner layer) still features a general agent-based simulator, exacerbating
criticisms of intractability and computational costs, particularly when learning is involved, limiting the
scalability of such approaches. Utilising a differentiable inner layer promises to be a worthy direction
to address this, allowing large-scale simulations (10) for real-world applications,

Differentiable agent-based models (dABM) have been a growing area in recent years (11; 12; 13; 14),
driven by the availability of various new tools (15; 16). For example, during COVID, differentiable
epidemiology (17; 18) became a key focus behind the modelling efforts for various countries due to the
scalability of execution, calibration (6) and validation (19) of these models.

However, thus far, these dABMs have yet to be well integrated with learning-based frameworks, e.g.,
for work on automated policy design with adaptive agent behaviour. The closest works on policy
design with dABMs are (17; 19). However, (17) only considers policy evaluation. (19) looks at
epidemiological policy design but directly modifies the agent behavioural rules, rather than letting
behaviour adapt through optimisation. In contrast, (8) adapts behavioural rules automatically but is
costly to compute as the underlying simulator is not differentiable.

This leaves open an important gap combining differentiable simulators with adaptive learning frame-
works for true automated policy design, which we look to address in this work. Specifically we,

1) Introduce a novel differentiable market entrance environment
2) Integrate this environment with a bi-level framework for gradient-based behavioural learning
3) Demonstrate how the framework can be used for automated policy design
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Figure 1: ADAGE bi-level framework.

ADAGE (9) is a generic two-layer framework for adap-
tive agent-based simulation (Fig. 1). The framework
formalises adaptive ABM as a Stackleberg game M in
an environment Ω between an outer layer L (leader) con-
figuring the environment, and an inner agent-based sim-
ulation layer with follower agents F learning behavioural
rules. Thus far, Ω has been assumed to be a general
ABM; however, in this work, we exploit the case when Ω
is differentiable to demonstrate efficient automated policy
design with a differentiable adaptive simulator.

2.1 Optimisation

M is a Partially Observable Markov Game with N + 1 agents (20), N = |F| of these agents form the
simulation layer, and one agent is reserved as the leader L. The game can be represented as a tuple:
(S,A, T, r, O, γ) where S is the state space, A = (A0, A1, . . . , AN ) the action space, T : S ×A → S
the transition function, r : S×A → RN the reward functions, O = (O0, O1, . . . , ON ) the observation
spaces, and γ the discount factor. The outer layer learns a strategy πL, and the inner layer agents learn
individual strategies πi ∈ πF, to take reward maximising actions a ∼ π.

L operates first, and F follow. At time step t each active agent i takes an action ai,t ∼ πi(Oi,t) based
on their private observation Oi,t, receiving utility Ui,t from the environment Ω. Each agent in the game
is attempting to find a strategy πi to maximise their expected return in Ω:

Ri = E
[∑

t

γtUi(st, ai,t, a−i,t)

]
. (1)

where a−i,t is the actions of the other agents. The task is to find a Stackelberg equilibrium, i.e. a
solution (π∗

L,π
∗
F) at which no agent i can further improve Ri holding π−i fixed. Due to the “gradient

domination” condition satisfied by Eq. (1), every stationary point is globally optimal (21), therefore to
find (π∗

L,π
∗
F) it suffices to solve the following coupled system of N + 1 non-linear equations. Each

equation i states that the policy πi is a first-order stationary point for agent i given that every other
agent j ̸= i follows policy πj : {

∇π∗
i
Ri = 0, ∀i ∈ F,

∇π∗
L
RL = 0, for the outer layer.

(2)

The approach we take in this work for solving these coupled equations is alternating gradient descent
(A-GD), i.e., maintain πt,i as an estimate of π∗

i and iteratively update πt,i for every agent i in the
direction of ∇πt,iRi, where ∇πt,iRi is computed with π−i fixed to their latest iterates:

πt+1,L = πt,L + αt,L · ∇πt,L
RL given{πt,j}j∈F.

πt+1,i = πt,i + αt,i · ∇πt,iRi given{πt,j}j ̸=i, ∀i ∈ F.
(3)

When Ri exhibits strong structure such as strong convexity, convergence of A-GD to (π∗
L,π

∗
F) is

guaranteed under proper choices of learning rates αt,L, αt,F (22; 23). In general, we need to choose
αt,L ≫ αt,F to approximate a nested-loop algorithm which runs multiple πF updates per πL update.

3 Environment: Market Entrance

For demonstration of agent adaptation and automated policy learning, we focus on a well established
canonical agent-based environment, the market entrance game (24; 25). The entrance game represents
various real-world problems, such as resource allocation, traffic management, and market profitability.

In the entrance game Ω, agents i ∈ F decide ai ∈ {0, 1} whether to enter a market at each time t. The
utility depends on the entrance decisions of the other agents and a market capacity 1 ≤ C ≤ N 2:

2let c = C
N

.
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Ui =

{
v, ai = 0.

v + 2 · (C −m) ai = 1.
(4)

where ai is the individual attendance decision, and m =
∑N

j aj is the total attendance. The payoff
for staying out is fixed to v ≥ 0. Agents are rewarded (penalised) for entering an underpopulated
(overpopulated) market. There are many equilibria for this game, however, the unique symmetric mixed
strategy equilibrium is all agents attending with probability pi = p∗ = C−1

N−1 (26).

3.1 Differentiable

There are various challenges converting ABMs into continuous differentiable versions (27). In this
section, we detail the changes required to convert Ω to a differentiable version Ω′. The three main
challenges here are the discrete A, the piece-wise utility (Eq. (4)), and the discrete attendance m.

Rather than agents deciding binarily whether to attend, agents in Ω′ instead learn the probability of
attendance 0 ≤ ai ≤ 1 (so ai = pi), converting ai to a continuous action rather than a discrete one.
This permits rewriting Ui in terms of the expected payoff based on this attendance probability as:

Ui =
[
ai · (v + 2 · (C −m))

]
+
[
(1− ai) · v

]
. (5)

which recovers Eq. (4) in the case of ai = 0 or ai = 1, but is importantly no longer piece-wise. The
updated attendance calculation m =

∑
j aj is then the (continuous) expected attendance likelihood.

4 Experiments

4.1 Simulation Layer
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Figure 2: Learnt behaviour of F with c = 0.6
(Extended c in Figs. 7 and 8).
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Figure 3: Learnt behaviour with distinct groups
G1, G2 with c = 0.6.

To validate the learnt behaviour of the inner layer πF, experiments are run on Ω′ in isolation (i.e.,
without any outer layer). Agents learn strategies resulting in equilibrium attendance rates p∗ (Fig. 2a).
Each agent independently converges to the approximate mixed-strategy equilibrium (of ai ≈ p∗, ∀i)
maximising their individual Ri, as displayed by the distribution of ai in Fig. 2b (across c in Fig. 8).

4.1.1 Fairness

Section 4.1 assumes ∀i ∈ F begin participating in the market at iteration 0, enabling convergence
to fair outcomes as the agents are simultaneously updating their behaviour in response to the other
agents. However, interesting short-run dynamics arise on the path to a new equilibrium if we assume
two groups G1 ⊂ F, G2 ⊂ F, G1 ∩ G2 = ∅ of agents: G1 = Early participants, and G2 = Late
participants. For example, G1 could represent first movers, and G2 those who only participate later.

We split F into these two subgroups: G1 = {0, 1, . . . N
2 }, G2 = {N

2 + 1, N
2 + 2, . . . N}, and assign

different optimisation entries for these groups ιG1
, ιG2

, with ιG2
≫ ιG1

to represent late participation,
and rerun the optimisation process (Appendix A.2). The results are shown in Fig. 3 for c = 0.6. While
m converges towards an equilibrium (confirmed by the long-range dynamics in Fig. 13), Ω′ remains in
an unfair state (28) in the shorter run dynamics (on the path to convergence), where i ∈ G1 continue to
attend with much higher frequency than j ∈ G2, essentially blocking G2 out of the market temporarily.
This separation can be seen by the two distinct distributions in Fig. 3b, with pG1

≫ pG2
(which holds

across initialisations and thresholds Fig. 10). In the following section, we consider remedies to speed

3



up the convergence towards the fair equilibrium (ai = p∗ for all i ∈ F), demonstrating efficient policy
design with the bi-level framework.

4.2 Policy Design

0 20 40 60 80 100
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

At
te

nd
an

ce
 E

vo
lu

tio
n

G2 entrance

Capacity

Overall
i∈G1

j∈G2

(a) Convergence

0.0 0.2 0.4 0.6 0.8 1.0
Individual attendance probabilities

0

2

4

6

8

10

12

14

De
ns

ity

Group
G2

G1

(b) Attendance probabilities

0 20 40 60 80 100
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ta
xe

s p
ai

d

G2 entrance
Overall
G1

G2

(c) Paid Taxes

Figure 4: Learnt behaviour with L. The outer layer learns to increase τ after G2 start participating in
the market (a.). The taxes are suitably directed at G1 (c.) As the agents begin to converge, the taxes

paid reduce (a.), resulting in more equal attendance distributions (b.)

An outer layer L is used to design taxation policies to maximise fairness in Ω′:

UL = −0.5 ·
∑
i∈F

∑
j∈F

|Ri −Rj |
R̄

. (6)

representing the negative Gini coefficient of agent returns (shifted by min Ri), where R̄ =
∑

i∈F Ri/N
is the mean (shifted) return across agents. Specifically, this achieved through the introduction of
penalties τ ≥ 0 to Eq. (4) based on the overuse of resources:

Uτ
i = Ui − (ai · τ · max(ai −m, 0)). (7)

where τ serves as a tax or entrance fee for entering the market, penalising agents for over-attendance
(compared to m), i.e., higher tax for more usage, causing agents to adapt their behaviour based on τ
(Fig. 6c). The action aL for L is to choose a taxation rate 0 ≤ τ ≤ 0.1 to maximise Eq. (6).
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Figure 5: Resulting fairness curves (mean ±
std) across 100 runs.

The attendances a and resulting fairness when
introducing the outer layer are presented in Figs. 4b
and 5 respectively. The outer layer successfully learns
appropriate taxation policies (visualised in Fig. 4c)
that minimise the attendance difference between
the two groups (Fig. 4b vs Fig. 3b). This fairness
is further verified by looking at the resulting curve
in Fig. 5, where the outer layer learns appropriate
taxation rates τ to penalise "greedy" utilisation,
resulting in significantly fairer outcomes and speeding
up convergence towards this fairer equilibrium,
demonstrating efficient policy design.

5 Discussions and Conclusion

This work has shown how a differentiable agent-based simulator can be used as part of a bi-level
optimisation process for automated policy design in a system with adaptive agents, demonstrated
through taxation of over-utilisation of a shared resource. While previous work has considered adaptive
behaviour (29), or differentiable design (19), this work integrates both adaptation and differentiability
to overcome limitations of existing approaches for automated policy design.

The continued progress in differentiable agent-based simulators, paired with modern optimisation
techniques (30), promises to expand the applications of agent-based modelling, helping to successfully
address persisting questions surrounding tractability, cost, and adaptation.
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Disclaimer

This paper was prepared for informational purposes by the Artificial Intelligence Research group of
JPMorgan Chase & Co. and its affiliates ("JP Morgan”) and is not a product of the Research Department
of JP Morgan. JP Morgan makes no representation and warranty whatsoever and disclaims all liability,
for the completeness, accuracy or reliability of the information contained herein. This document is not
intended as investment research or investment advice, or a recommendation, offer or solicitation for the
purchase or sale of any security, financial instrument, financial product or service, or to be used in any
way for evaluating the merits of participating in any transaction, and shall not constitute a solicitation
under any jurisdiction or to any person, if such solicitation under such jurisdiction or to such person
would be unlawful.

© 2024 JPMorgan Chase & Co. All rights reserved.
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A Optimisation details

Experiments are performed with I = N · 10 iterations of A-GD (Eq. (3)). Each iteration, i ∈ F
performs one update step. Every other iteration, L also performs an update step. We use αt,F = 0.001,
and αt,L = 0.04. Sensitivity analysis is performed on these parameters in Appendix C.

A.1 Gradient updates
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Figure 6: Example gradient updates across different starting strategies (shades, per legend).

Example gradient update steps are visualised in Fig. 6. The gradient update for the outer layer is
non-linear in the Gini coefficient. The update step for the inner layer is linear based on the mean
attendance rate of the other participants (Fig. 6b), and a non-linearity is introduced when taxation
penalties are present (e.g. as shown in Fig. 6c).

A.2 Late participants

To model late participants, we set ιG1
= 0, and ιG2

= I
2 . For iterations 0, . . . ιG2

, only G1 is learning
(αt,j = 0 for all j ∈ G2). At iteration ιG2

, G2 enter the market and begin learning as well, so from
iterations ιG2

, . . . , I all agents learn simultaneously, i.e., αt,j > 0 for all i ∈ F.

B Penalised utilities

The penalised utility function is:
Uτ
i =

[
ai · (v + 2 · (C −m))

]
+

[
(1− ai) · v

]
−

[
ai · τ · max(ai −m, 0)

]
. (8)

Eq. (8) is not differentiable everywhere, specifically at or outside the boundaries of max (with 0
gradient). However, in practice, this still works well with Ω′, as the cases we care about here are the
over-attendees, where the derivative is defined. Agents with pi < m will not be penalised and, thus, do
not require this gradient update.

C Sensitivity analysis

C.1 Capacity c

Following convention, we focus primarily on the c = 0.6 case (31), but provide results across c in
Figs. 7 and 8. In each case, we see convergence to the mixed strategy equilibrium, confirming the
results are independent of the exact c used.
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Figure 7: Convergence paths across capacities c
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Figure 8: Attendance probability distributions across capacaties c.

C.2 Participants N

0 20 40 60 80 100
Training iterations

0.0

0.2

0.4

0.6

0.8

1.0

At
te

nd
an

ce Capacity

(a) N = 10
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(b) N = 100
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(c) N = 1000

Figure 9: Convergence paths across N

We use N = 10 for analysis, but show N ∈ {10, 100, 1000} (for c = 0.6) in Fig. 9. Note that since
the mixed strategy equilibrium is p∗ = C−1

N−1 , in each case, the mixed strategy equilibrium is learnt, and
as N increases this more closely approximates m = c. The consistency of results across N confirms
the conclusions are independent of specific N .

C.3 Strategy Initialisation
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Figure 10: Resulting attendance distributions under uniform strategy initialisations c = 0.6, N = 10.

To confirm (un)fairness is not trivially a result of the initial strategy initialisation πF = 0, we analyse
across uniform random initialisation for πt+1,i ∼ U(0, 1),∀i ∈ F Fig. 10. We see the resulting
attendance distributions still significantly differ, indicating the unfairness remains even after (50)
learning iterations have taken place.
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C.4 Optimisation parameters

In this section we check the sensitivity to the learning rates of the two layers.

C.4.1 Inner layer learning rate α
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(a) αt,F = 0.001
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(b) αt,F = 0.002
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(c) αt,F = 0.01

Figure 11: Convergence paths across αt,F with no tax.

Altering the learning rate of the inner layer alters the convergence speed, but in each case still converges
to the equilibrium (Fig. 11). The default case is αt,F = 0.001.

C.4.2 Outer layer learning rate αt,L
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(a) αt,L = 0.02
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(b) αt,L = 0.04
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Figure 12: Convergence paths across αt,L with late participants (and αt,F = 0.01).

Adjusting the outer layer learning rate has relatively little effect on the resulting convergence Fig. 12,
indicating stability around exact learning rates. The default case is αt,L = 0.04.

D Long range dynamics
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Figure 13: Long range convergence dynamics with c = 0.6, N = 10 (over extended iterations).

To show convergence given a long enough timescale, we present the long range dynamics in Fig. 13.
We see the two groups eventually converge after a period of learning.
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