
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRACTICAL AND RIGOROUS EXTREMAL BOUNDS FOR
GAUSSIAN PROCESS REGRESSION VIA CHAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Gaussian process regression (GPR) is a popular nonparametric regression method
based on Bayesian principles that, unlike most machine learning techniques, pro-
vides uncertainty estimates for its predictions. Recent GPR research has focused
on enhancing robustness to model misspecification but has often neglected im-
provements to the underlying methods for computing bounds. In addition, current
GPR methods rely heavily on scaling posterior standard deviations and assume
well-specified models, both of which reduce GPR’s adaptability and accuracy. To
address these limitations, we draw inspiration from the chaining method (Tala-
grand, 2014), and derive chaining bounds for the prediction intervals of GPR, of-
fering a more flexible and accurate approach to handling model uncertainty. Our
experimental results validate our theoretical findings, and demonstrate that our
method outperforms existing approaches on synthetic and real-world datasets.

1 INTRODUCTION

For many applications, especially those requiring safety assurances, obtaining reliable uncertainty
estimates is crucial. In this regard, Gaussian process regression (GPR), a flexible non-parametric
Bayesian method, is becoming increasingly popular in machine learning fields such as learning-
based control methods. GPR assumes that the observed data is generated by a Gaussian process
(GP) with independently and identically distributed Gaussian noise. The GP can be fitted to training
data and be used to generate predictions along with their associated uncertainty estimates.

Bounds are a way to measure uncertainty in GPR, and both rigorous and practical bounds are the
goals of existing research. Wu & Schaback (1993) use the classic method of Fourier transforms to
achieve such bounds. By exploiting the properties of reproducing kernel Hilbert spaces (RKHS),
Schaback (1999) derives uniform error bounds with faster convergence rates. Relying on an upper
bound of the maximum information gain, Srinivas et al. (2009; 2012) and Chowdhury & Gopalan
(2017) successively improve methods for frequentist uncertainty bounds.

Given the severe consequences of incorrect hyperparameter specification, recent research has shifted
focus to improving robustness. Lederer et al. (2019) introduce probabilistic Lipschitz constants to
reduce reliance on prior knowledge. Fiedler et al. (2021) include an error term to modify an objective
bound function and improve its resilience to noise. Capone et al. (2022) improve robustness by
calculating error bounds based on a given range of hyperparameters. Recently, Papadopoulos (2024)
utilizes conformal prediction to calibrate prediction intervals for robustness.

However, this recent line of GPR methods primarily focuses on enhancing robustness but remains
constrained by their reliance on scaling the posterior standard deviation, without fundamentally
improving their approach to deriving GPR bounds. These approaches also often assume a well-
specified model and heavily depend on hyperparameters, which limits their adaptability to new
domains and can result in inaccurate error estimates. To address these limitations, we draw inspi-
ration from chain-based techniques (Talagrand, 2014), and propose a chaining-based method. By
decomposing the problem into smaller, more refined stages, our method enables more effective error
control and improved robustness, especially in complex domains.

In our work, we introduce not only general bounds but also tailored, rigorous bounds for commonly
used covariance functions in GPR, such as the Radial Basis Function (RBF) and Matérn kernels.
These bounds deepen the theoretical understanding of the kernels’ behaviors and enhance their ver-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

satility and practicality. Our numerical experiments support our theoretical results and demonstrate
the superior performance of our method on both synthetic and real-world datasets.

2 BACKGROUND

2.1 GAUSSIAN PROCESS REGRESSION

Gaussian process regression (GPR) serves as a robust, non-parametric Bayesian approach to regres-
sion (Williams & Rasmussen, 2006). A Gaussian process (GP) defined over an index set or input set
T is characterized by a collection of random variables, such that any finite subset has a multivariate
normal distribution. In practice, a GP is used to define a distribution over a family of functions
{f} that could describe the data, and we write f(x) ∼ GP(m(x),K(x, x′)) to indicate that the
function f(x) is sampled from its corresponding GP. A GP is fully specified by its mean function
m(x) (which represents the average value of the functions in the family at each point x) and its
covariance function K(x, x′) (which reflects the extent to which the values of the functions in the
family vary together at the points x and x′). Popular covariance functions include the radial basis
function Kernel (RBF) kernel and Matérn kernel. For simplicity, it is often assumed without loss of
generality that m(x) ≡ 0.

2.2 CHAINING

Chaining is a mathematical technique consisting of a succession of steps that provide successive
approximations of an index space (T, d), where T is an index set or input set, and d is a metric on
T . Its fundamental idea is to group variables Xt that are nearly identical and approximate them at
successive levels of granularity (Talagrand, 2014). By doing this, we achieve more effective bounds,
especially in cases where many variables are similar (Asadi & Abbe, 2020). This approach mitigates
the risk of large errors that can arise from such correlations.

To illustrate, consider a stochastic process (Xt)t∈T , and the difference between Xt and Xt0 is ex-
pressed as Xt − Xt0 =

∑
n≥1 (Xt −Xt−1). When many variables Xt in T are nearly identical,

strong correlations between them can obscure the true variation in the process. Grouping similar
variables together helps reduce this redundancy by allowing us to approximate these highly corre-
lated variables with a representative value, thereby simplifying the analysis and making the process
easier to interpret and work with. A more detailed explanation can be found in Appendix A.

For n ≥ 0, we select a subset Tn, and for each t ∈ T , we choose an approximation πn(t) from Tn.
Using these πn(t) points, we obtain the corresponding Xπn(t) variables, which serve as successive
approximations of Xt. We start by assuming that T0 contains only one element t0, and thus π0(t) =
t0 for all t ∈ T . The core relation is:

Xt −Xt0 =
∑
n=1

(
Xπn(t) −Xπn−1(t)

)
.

This equality holds because, for sufficiently large n, πn(t) equals t, meaning that beyond a certain
point, the approximation stops, and the series becomes a finite sum. Specifically, as n increases, the
sets Tn become progressively finer, eventually covering all points in T . Once Tn contains t, we have
πn(t) = t, so no new information is added by further terms in the series. As a result, the infinite
series truncates to a finite sum. This ensures convergence in practical settings where the process Xt

is fully captured after a finite number of terms.

The efficacy of this approach is rooted in the fact that for each approximation πi(t), the variables
Xt − Xπi(t) are smaller than Xt − Xt0 , making their supremum easier to handle. This stepwise
refinement converts the intractable global bound estimation into manageable local problems, simpli-
fying the overall calculation. Exponential decay is employed to tighten the bounds through gradual
decomposition and layer-by-layer control, thus avoiding the complexity and error accumulation typ-
ically associated with global estimation. A more detailed explanation is provided in Appendix A.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 RELATED WORK

The concept of bounds in Gaussian process regression (GPR) originates from the confidence inter-
vals intrinsic to Gaussian processes. This concept is later extended by the bandit literature (Srinivas
et al., 2009) to include frequentist uncertainty bounds, which utilize the principle of maximum in-
formation gain. Building on this, Srinivas et al. (2012) introduce the use of the reproducing kernel
Hilbert space (RKHS) norm for computing bounds in the bandit setting. Thereafter, Chowdhury
& Gopalan (2017) significantly advance this line of research, but their work continued to rely on
upper bounds given by maximum information gain. To address computational costs, Bartels et al.
(2023) propose probabilistic bounds with minimal computational overhead by leveraging interme-
diate computations performed by the Cholesky decomposition.

Another closely related concept is error bounds, which refer to the absolute gap between the pre-
dicted and ground-truth values. In this case, the predicted value plus and minus the error bounds can
be regarded as upper and lower bounds respectively. Since the regression produced by radial basis
function (RBF) interpolation is equivalent to the GP posterior mean with noiseless training data,
classical methods use Fourier transform techniques to derive such error bounds for functions in the
reproducing kernel Hilbert space (RKHS) associated with the interpolation kernel (Wu & Schaback,
1993). By further exploiting RKHS properties, uniform error bounds with faster convergence rates
are derived by Schaback (1999).

The aforementioned methods assume the accurate specification of the GPR model, using empirical
or heuristic approaches to determine its appropriate hyperparameters. However, the misspecification
of model hyperparameters can have serious consequences. As a result, recent research has focused
on improving the robustness of GPR. Lederer et al. (2019) introduce probabilistic Lipschitz con-
stants to reduce prior knowledge, estimating errors on a finite grid and extending them to the entire
input space. Fiedler et al. (2021) modify their bound function by introducing an error term based on
the work of Chowdhury & Gopalan (2017). Capone et al. (2022) address hyperparameter misspec-
ification by proposing a method to calculate error bounds based on a given hyperparameter range.
More recently, Papadopoulos (2024) uses conformal prediction to calibrate prediction intervals using
a nonconformity measure to evaluate the degree to which a candidate is unusual or nonconforming.

However, these methods focus solely on robustness to model misspecification and noise, while their
underlying approach remains limited to scaling the posterior standard deviation for each instance,
without introducing new computational strategies for their bounds. Additionally, existing methods
are limited by their reliance on the assumption that the model is well-specified in terms of parameters
(e.g., the length scale) and hyperparameters (e.g., noise parameters (Fiedler et al., 2021) and the
hyperparameter space (Capone et al., 2022)). This reliance reduces adaptability and often leads to
an over- or under-estimation of the bounds. Unlike these methods, our chaining technique mitigates
GPR’s reliance on the global posterior mean and hyperparameter tuning.

The method proposed by Capone et al. (2022) primarily addresses errors resulting from model mis-
specification, but it may be less effective when dealing with datasets that have been subjected to
added noise. While Fiedler et al. (2021) considers such errors, their approach relies heavily on
the selection of the noise-level hyperparameter and is still constrained by the underlying concept
of scaling the posterior error. This means that even if the posterior error estimation is accurate, a
significant bias in the posterior mean could prevent an adequate coverage of the prediction intervals.
(We provide examples and more detailed explanations of these issues in Appendix B.2.) In contrast,
our chaining technique ameliorates these issues.

In highly concentrated datasets, such as those involving temporally or spatially continuous data
(e.g., temperature time-series), adjacent data points tend to exhibit strong correlations. Traditional
methods typically rely on global kernel functions to compute the mean across data points, which
makes it difficult to effectively capture such localized correlations. In contrast, chaining methods
gather highly correlated data points by defining different layers of approximation, allowing for a
layer-by-layer refinement that better controls errors. Additionally, in high-dimensional and complex
datasets, where distances between points vary significantly, chaining methods are more adept at
capturing local variations, thereby preventing error accumulation and yielding tighter bounds. (We
provide examples and more detailed explanations in the Appendix B.3.) In contrast to traditional
methods, our technique inherits the aforementioned benefits of chaining to mitigate such problems.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Chain-based methods in machine learning have recently started to gain attention, with Chaining
Mutual Information (CMI; (Asadi et al., 2018)) being an example. CMI is a technique that uses
mutual information to quantify the shared information between two random variables.This approach
has been applied to derive bounds on the expected generalization error of supervised learning al-
gorithms, based on the regularity of the loss function (Clerico et al., 2022). Additionally, CMI has
been employed in the context of hierarchical coverings of neural networks to establish risk bounds
for neural networks (Asadi & Abbe, 2020). While all these methods apply chaining to the principle
of mutual information, in the specific domain of GPR, the covariance function is a more appropri-
ate tool for measuring dependency because it directly defines the structure of the Gaussian process.
Therefore, in our work, we apply chaining directly to the covariance functions.

4 UPPER AND LOWER BOUNDS

We now present our primary technical contributions. A key observation is that existing methods for
uncertainty bounds in Gaussian processes remain largely focused on posterior-based approaches,
while chaining techniques have yet to be fully explored in this context. Chaining systematically
approximates the upper bound through hierarchical refinements, leveraging incremental estimates
between data points. This approach offers greater flexibility and robustness without relying on prior
assumptions, especially in high-dimensional spaces. Additionally, chaining excels at capturing lo-
cal variations in non-smooth processes by refining estimates at each layer. We shall demonstrate
that chaining provides rigorous upper bounds through the use of increment and metric entropy tech-
niques, guaranteeing uniform convergence even under noisy conditions and complex metric spaces.

The following theorem, which is a modified version of (Talagrand, 2014), is fundamental for the rest
of the paper. In the theorem, we consider a Gaussian process (Xt)t∈T where each Xt is normally
distributed with mean zero and variance σ2, and T is an index set. (T could also be regarded as
an n-dimensional input set, e.g., T ⊆ Rn.) For any two points s, t ∈ T , the increment Xs − Xt

is given by E[(Xs − Xt)
2] = d(s, t)2, where d(s, t) is a distance metric on T . We also make use

of the property of a Gaussian distribution that the probability that the absolute increment exceeds a
threshold u is bounded by P (|Xs −Xt| ≥ u) ≤ 2 exp

(
− u2

2d(s,t)2

)
.

Theorem 1. (Talagrand, 2014) Let T be an index set, t0 ∈ T be an initial index, Tn ⊆ T for n ≥ 0,
and T0 = {t0}. For each t ∈ T , let πn(t) ∈ Tn for each n ≥ 0, where each πn(t) represents a
successive approximation of t, and let πn(t) = t for sufficiently large n. Then

P

(
sup
t∈T
|Xt −Xt0 | > uS

)
≤ L exp

(
−u2

2

)
, (1)

where L is a universal constant, u ∈ R ∪ {0}, d :T×T→R is a distance metric on T , and

S := sup
t∈T

∑
n≥1

2n/2d(πn(t), πn−1(t)). (2)

It is important to highlight that Theorem 1 is purely theoretical, lacking practical implementation
details. For instance, the constant L is introduced without explicit calculation, and no method is
provided for determining S, {Tn}n≥0, {πn(t)}n≥0, and t0. We address some of these deficiencies
below and give a general bound for kernel functions that applies to all kernels.
Theorem 2. (General Bound) Theorem 1, combined with the formula E [Y ] =

∫∞
0

P (Y ≥ u) du,
which expresses the expectation, leads to the derivation of the following upper bound for GPR:

E sup
t∈T

Xt ≤ Xt0 + E
[
sup
t∈T
|Xt −Xt0 |

]
≤ Xt0 + (1 +

√
2)

√
π

2
L sup

t∈T

∑
n≥0

2n/2d(t, Tn), (3)

where d(t, Tn)) = infs∈Tn

√
K(t, t) +K(s, s)− 2K(t, s) and t0 is chosen such that Xt0 is close

to zero due to the zero-mean property and the symmetry of the covariance function.

We provide proofs of Theorem 1 and Theorem 2 in Appendix C.1.

In subsequent sections, we will address these gaps by offering practical implementations with pseu-
docode. The following subsections apply the general bounds to compute tighter bounds for specific
kernels by deriving more precise estimates of E [supt∈T |Xt −Xt0 |]. We will first introduce the
RBF and Matérn kernels, and then provide detailed proofs for their respective tighter bounds.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 KERNELS

In Gaussian process regression (GPR), the distance between two input points is typically measured
using a kernel function, also commonly known as the covariance function. This function quantifies
the similarity between input points in the feature space and plays a pivotal role in defining the
Gaussian process structure by influencing the model’s smoothness and generalization ability.

One of the most commonly used kernels is the radial basis function (RBF) kernel, also known as the
Gaussian kernel. It is favored for its ability to produce smooth and continuous estimates, often in
conjunction with a constant kernel to account for signal variance. It is defined as:

K(s, t) = σ2 exp

(
−∥s− t∥2

2l2

)
,

where ∥s− t∥ is the Euclidean distance between the (multi-dimensional) input points s and t, the σ2

term represents the constant kernel, and l is the length-scale parameter that controls the smoothness
of the function.

The Matérn kernel function, another widely used covariance function in Gaussian processes (GPs),
provides a flexible way to model the smoothness of the function being learned. It is defined as:

K(s, t) =
21−ν

Γ(ν)

(√
2ν∥s− t∥

l

)ν

Bν

(√
2ν∥s− t∥

l

)
,

where l > 0 is the length scale parameter, ∥s− t∥ denotes the Euclidean distance between the input
vectors s and t, Γ(·) is the Gamma function, Bν(·) is the modified Bessel function of the second
kind, and ν > 0 is a parameter that controls the smoothness of sampled functions.

As ν increases, the functions sampled from the GP become smoother. The Matérn covari-
ance function becomes simpler when ν is half-integer: ν = p + 1/2, where p is a non-
negative integer (Seeger, 2004). When this happens, the covariance function becomes a
product of an exponential and a polynomial of order p, with the general expression being:

K(s, t) = exp
(
−

√
2ν∥s−t∥

l

)
Γ(p+1)
Γ(2p+1)

∑p
i=0

(p+i)!
i!(p−i)!

(√
8ν∥s−t∥

l

)p−i

. In machine learning, one of
the most commonly used values for the kernel is ν = 3/2, for which:

K(s, t) =

(
1 +

√
3∥s− t∥

l

)
exp

(
−
√
3∥s− t∥

l

)
. (4)

The distance between two points s and t in the context of GPs is defined as
d(s, t) =

√
E[(Xs −Xt)2], where Xs and Xt are the values at points s and t respectively. This

distance metric is derived from the covariance function K(s, t), which describes the covariance
between the random variables Xs and Xt. Specifically, it can be expanded as:

d(s, t)2 = E[(Xs −Xt)
2] = E[X2

s ] + E[X2
t ]− 2E[XsXt] = K(s, s) +K(t, t)− 2K(s, t). (5)

It is worth noting that s and t can each represent a vector describing a (multi-dimensional) input in
a feature space, with Xs and Xt corresponding to the outputs evaluated at those input vectors. In
this case, the covariance function K(s, t) reflects how similar the outputs are given their respective
input vectors s and t.

4.2 TIGHTER BOUNDS FOR RADIAL BASIS FUNCTION (RBF) KERNEL

We will now discuss how to modify the previous bounds in a targeted manner to obtain tighter and
more practical upper and lower bounds on Gaussian processes using RBF kernels. This is made
precise in the following result. Its detailed proof is provided in Appendix C.4.
Theorem 3. (Tighter RBF Bound) Consider a Gaussian process (Xt)t∈T with a radial basis func-

tion (RBF) kernel K(s, t) = σ2 exp
(
−∥s−t∥2

2l2

)
, where T is an input/index set, ∥s − t∥ is the

Euclidean distance between input points s ∈ T and t ∈ T , the term σ2 represents the constant
kernel, and l represents the length-scale parameter. Let t0 ∈ T be an initial point, and (Tn)n≥0

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

be a sequence such that Tn ⊆ T . In addition, for each t ∈ T , let {πn(t) ∈ Tn}n≥0 represent a
chain of successive approximations of t such that Xt−Xt0 =

∑
n≥1

(
Xπn(t) −Xπn−1(t)

)
with the

condition that πn(t) = t for sufficiently large n and π0(t) = t0. Then

E sup
t∈T
|Xt −Xt0 | ≤ (1 +

√
2)

√
π

2
L sup

t∈T

∑
n≥0

2n/2d′(t, Tn), (6)

where d′(t, Tn) = infs∈Tn

√
K(t, t) +K(s, s)− 2σK

1
2 (t, s).

Proof. The following inequality holds for s, t, u ∈ T :

∥s− t∥2 + ∥t− u∥2 ≥ (∥s− t∥+ ∥t− u∥)2

2
≥ ∥s− u∥2

2
.

The first inequality above follows from the Cauchy-Schwarz inequality applied to the special case
of two dimensions, while the second inequality follows from the triangle inequality.

Let x1 = −∥s−t∥2

l2 and x2 = −∥t−u∥2

l2 , so that the distance d(s, u)2 ≤ 2σ2 (1− exp (a+ b)).
Using the Taylor series expansion exp(x) = 1 + x+ x2

2! +
x3

3! + · · ·, we get:

exp(x1) + exp(x2)− 1 = 1 + (x1 + x2) +
x2
1 + x2

2

2!
+

x3
1 + x3

2

3!
+ · · ·

≤ 1 + (x1 + x2) +
(x1 + x2)

2

2!
+

(x1 + x2)
3

3!
+ · · · = exp(x1 + x2).

Using exp(x1) + exp(x2)− 1 ≤ exp(x1 + x2) in the second inequality below, we obtain:

d(s, u)2 ≤ 2σ2 (1− exp (x1 + x2)) ≤ 2σ2 + 2σ2(1− exp (x1)− exp (x2))

= 4σ2 − 2σK
1
2 (s, t)− 2σK

1
2 (t, u) = d′(s, t)2 + d′(t, u)2,

where d′(s, t)2 = K(s, s) +K(t, t)− 2σK
1
2 (s, t).

Since πn(t) approximates t, it is natural to let:
d(t, πn(t)) = d(t, Tn) := inf

s∈Tn

d(t, s). (7)

With a change of variable n→ n+ 1, we get:

S = sup
t∈T

∑
n≥1

2n/2d′(πn(t), πn−1(t)) ≤ (1 +
√
2) sup

t∈T

∑
n≥0

2n/2d′(t, Tn).

By applying Theorem 1 and Equation 2 , the proof is established. A more detailed proof is given in
Appendix C.4.

4.3 TIGHTER BOUNDS FOR MATÉRN KERNEL

While the RBF kernel is the most widely used, other kernels, such as the Matérn kernel, are better
suited for specific applications. In the following, we provide and prove the upper and lower chaining
bounds for the Matérn kernel with its parameter ν = 3/2.
Theorem 4. (Tighter Matérn Bound) Consider a Gaussian process (Xt)t∈T with a Matérn kernel

K(s, t) =
(
1 +

√
3∥s−t∥

l

)
exp

(
−

√
3∥s−t∥

l

)
where T is an input/index set, ∥s− t∥ is the Euclidean

distance between input points s ∈ T and t ∈ T , and l is the length-scale parameter. Let t0 ∈ T
be an initial point, and (Tn)n≥0 be a sequence such that Tn ⊆ T . In addition, for each t ∈ T ,
let {πn(t) ∈ Tn}n≥0 represent a chain of successive approximations of t such that Xt − Xt0 =∑

n≥1

(
Xπn(t) −Xπn−1(t)

)
with the condition that πn(t) = t for sufficiently large n and π0(t) =

t0. Then

E sup
t∈T
|Xt −Xt0 | ≤ (1 +

√
2)

√
π

2
L sup

t∈T

∑
n≥0

2n/2[d′(t, Tn) +
√
2− 2], (8)

where d′(t, Tn)) = infs∈Tn

√
K(t, t) +K(s, s)− 2K ′(t, s), and

K ′(s, t) =
(
1 +

√
3∥s−t∥

l

) [
exp

(
−

√
3∥s−t∥

l

)
− 1

2

]
.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Proof. From K(s, t) =
(
1 +

√
3∥s−t∥

l

)
exp

(
−

√
3∥s−t∥

l

)
, we get K(s, s) = K(t, t) = 1. By

substituting K(s, s) = K(t, t) = 1 and the kernel function K(s, t) into Equation 5, we obtain:
d(s, t)2 = 2− 2

(
1 +

√
3∥s−t∥

l

)
exp

(
−

√
3∥s−t∥

l

)
.

Using x1 =
√
3∥s−t∥

l and x2 =
√
3∥t−u∥

l , the Chebyshev’s sum inequality for n = 2 becomes:

(1 + x1) exp(−x1) + (1 + x2) exp(−x2) ≤
(1 + x1 + 1 + x2)[exp(−x1) + exp(−x2)]

2
. (9)

Since ∥s − t∥ ≥ 0 and ∥t − u∥ ≥ 0, we have: exp(−xi) ≤ 1. Using the observation that (1 −
exp(−x1))(1 − exp(−x2)) > 0, we get: (2+x1+x2)

2 [exp(−x1) + exp(−x2)] ≤ (2+x1+x2)
2 [1 +

exp(−x1 − x2)]. Negating (2+x1+x2)
2 and combining with Eq. 9, we get:

(1 + x1)[exp(−x1)−
1

2
] + (1 + x2)[exp(−x2)−

1

2
] ≤ (1 + x1 + x2) exp(−x1 − x2).

For the function f(x) = (1+ x) exp(−x), the derivative of f(x) with respect to x, calculated using
the product rule, is f ′(x) = d

dx [(1 + x) exp(−x)] = −x exp(−x). Since
√
3∥x−x′∥

l ≥ 0, we have
f ′(x) ≤ 0 (i.e., f(x) is monotonically decreasing) when x ≥ 0. Using these facts together with the
triangle inequality ∥s− t∥+ ∥t− u∥ ≥ ∥s− u∥, we get:

K(s, u) ≥ (1 + x1)[exp(−x1)−
1

2
] + (1 + x2)[exp(−x2)−

1

2
] = K ′(s, t) +K ′(t, u).

We can then calculate the distance as:

d(s, u)2 ≤ 2− 2[K ′(s, t) +K ′(t, u)] = d′(s, t)2 + d′(t, u)2 − 2.

With a change of variable n← n+ 1), we get:

S ≤ sup
t∈T

∑
n≥1

2n/2
√
d′2(t, Tn) + d′2(t, Tn−1)− 2 ≤ (1 +

√
2) sup

t∈T

∑
n≥0

2n/2(d′(t, Tn)−
√
2

1 +
√
2
).

By applying Theorem 1 and Equation 2, the proof is established. A more detailed proof is given in
Appendix C.5.

By using the bounds from Theorems 3 and 4, we ensure that Gaussian processes have appropriate
chaining-based upper bounds. We significantly broaden the applicability of the chaining method,
and thus enhance its generalization capacity. The ability to adaptively compute bounds for different
kernels, such as the RBF and Matérn kernels, improves the robustness of our approach, making it
more versatile in various practical scenarios, especially in high-dimensional and complex domains
(as demonstrated by our experimental results in Section 5).

4.4 ALGORITHM OF OUR CHAINING METHOD

In this work, we convert theoretical constructs into a practical chaining method for calculating the
upper and lower bounds of Gaussian process regression (GPR) with different kernel functions. The
full procedure is detailed in Algorithm 1.

First, we preprocess the data by dividing it into training and test sets. Then, we calculate the average
of the output values (labels), and center the training set by subtracting the average from the output
values of each example (now their mean is 0). Similarly, we subtract the average value from the test
set. Next, we fit a Gaussian process (GP) to the training data via maximum likelihood estimation
to learn the parameters of the GP’s kernel function and ensure that the kernel effectively models the
underlying data distribution.

Subsequently, we apply the chaining method to the training set by first constructing the set T con-
taining the features of the training set’s examples. As explained in Section 2.2, our objective is to
construct a sequence of subsets Tn, such that for each t ∈ T , an approximation πn(t) is selected
from Tn. To obtain more accurate approximations, we iteratively build Tn from the previous subsets
{Ti}n−1

i=1 , ensuring that supt∈T d(t, Tn) is minimized . Specifically, the method iteratively adds the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

points farthest from Tn to progressively reduce supt∈T d(t, Tn). Thus as the iterations proceed, the
approximations become better.

We control the size of the set Tn by using the condition |Tn| ≤ Nn, where N0 = 1 and Nn = 22
n

for n ≥ 1. This assumption leverages the approximation
√
logNn ≈ 2n/2, which is a critical

component in our analysis, and is related to the term exp(−x2), which governs the tails of a Gaus-
sian distribution. Furthermore, the inequality N2

n ≤ Nn+1 demonstrates the effectiveness of this
sequence in controlling the size of the sets Tn (Talagrand, 2014).

Next, we compute the distances between the test data and Tn, applying Equations 2
and 6 from Theorem 3 or Equation 8 from Theorem 4 to calculate the upper bound
E supt∈T Xt = Xt0 + E supt∈T |Xt −Xt0 |. Due to the zero-mean property of the GP and the
symmetry of the covariance function, we derive two conclusions: (i) t0 should ideally be cho-
sen such that Xt0 is close to zero; otherwise, E supt∈T |Xt − Xt0 | would be overestimated;
(ii) the infimum can be taken as the negative of the supremum, leading to the lower bound of
E inft∈T Xt = Xt0 − E supt∈T |Xt −Xt0 |.
We derive an explicit value for the constant L in Equations 6 and 8 as follows (the derivation is in
Appendix C.1):

L =
∑
n≥1

2 · 22
n+1

exp
(
−2n+1

)
=
∑
n≥1

2

(
2

e

)2n+1

.

Algorithm 1: Chaining Bounds Method

Input : Kernel function K(s, t) and dataset D := {(t,Xt)}, where t ∈ Rd is a d-dimensional
input/index vector, and Xt ∈ R is its associated output value.

Output: B, a set containing the upper and lower bounds for each test example.
Split D into a training set Dtrain and a test set Dtest.
Fit a Gaussian process using the kernel function K(s, t) to the training data Dtrain.
t0 ← argmint:(t,Xt)∈Dtrain |Xt|
T0 ← {t0}
T ← {t : (t, ·) ∈ Dtrain} (T is the set of input/index vectors in Dtrain.)
nmax ← ⌊log2(log2(|T |))⌋ (nmax is the largest integer such that 22

nmax
< |T |.)

for n← 1 to nmax do
Tn ← Tn−1

while |Tn| < 22
n

do
Tn ← Tn ∪ {argmaxti∈T d(ti, Tn)} (d(ti, Tn) is computed using Equation 7.)

B ← ∅
foreach (t,Xt) ∈ Dtest do

Compute E supt |Xt −Xt0 | using the set {Tn}nmax
n=0 with Equation 6 from Theorem 3 (RBF

kernel) or Equation 8 from Theorem 4 (Matérn kernel).
B ← B ∪ {(Xt0 + E supt |Xt −Xt0 |, Xt0 − E supt |Xt −Xt0 |)}

return B

5 EXPERIMENT

5.1 DATASETS

• Synthetic Data. This dataset is generated by producing 50 random functions from a Reproducing
Kernel Hilbert Space (RKHS) over the domain D = [−1, 1], evaluated at 1000 evenly spaced
points. Each function is constructed by combining kernel functions centered at randomly selected
points. For each function, we sample 50 input values and add Gaussian noise with a standard
deviation of 0.5.

• Boston House Price (Cournapeau et al., 2007). This dataset contains the median house prices for
506 areas in Boston, MA, USA. Each area is described by 13 input features (e.g., crime rates and
pollution), with the median house price for that area as the target variable.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

• NOAA Weather (NOAA, 2020). This dataset provides daily weather summaries from various
locations, featuring multiple variables such as wind speed, humidity, and precipitation. The ob-
jective is to predict temperature.

• Sarcos (Schaal, 2009). This dataset contains recordings from a seven-degree-of-freedom robotic
arm, with 21 input features representing joint positions, velocities, and accelerations. The goal is
to predict the required torque for each of the seven joints.

5.2 EVALUATION METRICS

The performance of our proposed approach is evaluated using standard metrics for prediction inter-
vals, as described by (Khosravi et al., 2010).

• Prediction Interval Coverage Probability (PICP). This metric evaluates the percentage of test
observations that lie within the bounds of the prediction intervals (PIs) . It is calculated as
PICP = 1

n

∑n
i=1 ci, where ci = 1 if the output at point i lies within the bounds [L(Xi), U(Xi)],

and ci = 0 otherwise. Here, L(Xi) and U(Xi) denote the lower and upper bounds of the ith PI.
• Normalized Mean Prediction Interval Width (NMPIW). PIs that are too wide provide little

useful information, so the NMPIW metric quantifies the width of the PIs as:

NMPIW =
1
n

∑n
i=1(U(Xi)− L(Xi))

R
,

where R is the range of the target variable. NMPIW expresses the average PI width as a percentage
of the target range.

• Coverage Width-Based Criterion (CWC). This is the primary evaluation metric because it bal-
ances the conflicting goals of achieving narrow PIs (low NMPIW) and high coverage (high PICP).
(Note that a good PICP score can be trivially achieved at the expense of NMPIW (by using overly
wide PIs) and vice versa (by using overly narrow PIs). Hence either PICP or NMPIW alone is
insufficient to completely reflect the goodness of bounds.) CWC is defined as:

CWC = NMPIW
(
1 + γ(PICP)e−η(PICP−µ)

)
,

where γ and η are hyperparameters, and µ represents the nominal confidence level (µ = 1 for
extremal bounds). When PICP ≥ µ, γ = 0; otherwise, γ = 1.

5.3 BASELINES

We compare our chaining method to the following three state-of-the-art baselines that are described
in Section 3: (i) Lederer19 (Lederer et al., 2019), which introduces probabilistic Lipschitz con-
stants to reduce the reliance on prior knowledge, estimates errors on a finite grid, and extends
them to the input space; (ii) Fiedler21 (Fiedler et al., 2021), which modifies its objective bound
function by introducing an error term based on the work of (Chowdhury & Gopalan, 2017); and
(iii) Capone22 (Capone et al., 2022), which tackles hyperparameter misspecification by proposing
a method to calculate error bounds across a given range of hyperparameters.

5.4 RESULTS

Table 1 compares the performances of our method and the baselines. Achieving high PICP is impor-
tant for ensuring that the predicted intervals capture the true outcomes. In terms of this metric, both
our method and Fiedler21 consistently deliver strong performance. Our method achieves perfect
coverage across all datasets, while Fiedler21 attains near-perfect results (it slightly underperforms
under the higher noise condition of the synthetic data).

While narrower PIs are desirable for improving NMPIW, excessively tight intervals can compromise
coverage and thus PICP. Lederer19 and Capone22 frequently produce narrower intervals (NMPIW)
but often at the cost of inadequate coverage (PICP).

Note that CWC is the primary metric of evaluation because it combines and effectively balances
the competing demands of the other two. In terms of CWC, our method consistently performs the

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

best by achieving the lowest CWC. This indicates that our method has superior coverage while
maintaining compact intervals. The baselines often struggle to balance coverage and interval width,
particularly on the synthetic dataset where noise results in under-coverage and lower PICP.

Synthetic Data Boston House Prices
PICP(↑) NMPIW(↓) CWC(↓) PICP(↑) NMPIW(↓) CWC(↓)

RBF(Ours) 1.00 2.53 2.53 1.00 2.12 2.12
Matérn(Ours) 1.00 3.67 3.67 1.00 2.78 2.78

Capone22 0.54 0.58 5.69e+09 0.49 0.09 7.92e+09
Fiedler21 0.99 1.53 3.48 1.00 3.46 3.46
Lederer19 0.94 0.78 16.48 0.80 0.55 7.67e+03

Sarcos NOAA Weather
PICP(↑) NMPIW(↓) CWC(↓) PICP(↑) NMPIW(↓) CWC(↓)

RBF(Ours) 1.00 0.75 0.75 1.00 3.67 3.67
Matérn(Ours) 1.00 1.14 1.14 1.00 6.52 6.52

Capone22 0.60 0.04 1.40e+07 1.00 8.80 8.80
Fiedler21 1.00 1.42 1.42 1.00 9.31 9.31
Lederer19 0.93 0.12 4.10 0.94 0.21 5.23

Table 1: Comparison of Our Method against Baselines on Synthetic and Real-world Datasets.

(a) Synthetic Data (b) Boston House Price (c) Sarcos

Figure 1: Comparison of Our Method with Baselines. The training set is in green, the test set in
black, Lederer19 in orange, Fiedler21 in blue, Capone22 in purple, and our method in red.

Figure 1 illustrates Table 1. In all plots, our method achieves 100% coverage (all black test points
are within our bounds) with narrower bounds on average, demonstrating its superior performance
over all baselines. The next best system, Fiedler21, have upper and lower bounds (blue lines) that
perform moderately well overall but occasionally under- or over-estimate compared to our method.
For example, in Figure 1(a), one test point remains uncovered. In Figure 1(b) and Figure 1(c),
observe that Lederer19 and Capone22 do not cover all the black test points, while Fiedler21 and our
method do. However, our method does so with tighter bounds than Fiedler21. (Bigger and clearer
plots, and more empirical results are provided in Appendix B.)

6 CONCLUSION

Our work addresses the limitations of existing Gaussian Process Regression methods by introducing
a novel chain-based approach that improves error control and robustness. By leveraging Talagrand’s
techniques (Talagrand, 2014) and developing rigorous bounds for commonly used kernels, such as
RBF and Matérn, we advance both the theoretical foundations and practical application of these
models. The superior performance of our method, empirically demonstrated across both synthetic
and real-world datasets, underscores its effectiveness in enhancing prediction accuracy and uncer-
tainty quantification in GPR. As future work, we would like to extend our approach to more kernels
and to optimizing regret in multi-arm bandit problems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Amir Asadi, Emmanuel Abbe, and Sergio Verdú. Chaining mutual information and tightening gen-
eralization bounds. Advances in Neural Information Processing Systems, 31, 2018.

Amir R Asadi and Emmanuel Abbe. Chaining meets chain rule: Multilevel entropic regularization
and training of neural networks. Journal of Machine Learning Research, 21(139):1–32, 2020.

Simon Bartels, Kristoffer Stensbo-Smidt, Pablo Moreno-Muñoz, Wouter Boomsma, Jes Frellsen,
and Soren Hauberg. Adaptive cholesky gaussian processes. In International Conference on Arti-
ficial Intelligence and Statistics, pp. 408–452. PMLR, 2023.

Alexandre Capone, Armin Lederer, and Sandra Hirche. Gaussian process uniform error bounds
with unknown hyperparameters for safety-critical applications. In International Conference on
Machine Learning, pp. 2609–2624. PMLR, 2022.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International
Conference on Machine Learning, pp. 844–853. PMLR, 2017.

Eugenio Clerico, Amitis Shidani, George Deligiannidis, and Arnaud Doucet. Chained generalisation
bounds. In Conference on Learning Theory, pp. 4212–4257. PMLR, 2022.

David Cournapeau, M Brucher, M Perrot, and E Duchesnay. Scikit-learn: Machine learning in
python. JMLR, 12:2825–2830, 2007.

Christian Fiedler, Carsten W Scherer, and Sebastian Trimpe. Practical and rigorous uncertainty
bounds for gaussian process regression. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 7439–7447, 2021.

Abbas Khosravi, Saeid Nahavandi, Doug Creighton, and Amir F Atiya. Lower upper bound estima-
tion method for construction of neural network-based prediction intervals. IEEE transactions on
neural networks, 22(3):337–346, 2010.

Armin Lederer, Jonas Umlauft, and Sandra Hirche. Uniform error bounds for gaussian process
regression with application to safe control. Advances in Neural Information Processing Systems,
32, 2019.

NOAA. Noaa/ncei: National centers for environmental information. https://www.ncdc.
noaa.gov/, 2020.

Harris Papadopoulos. Guaranteed coverage prediction intervals with gaussian process regression.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Stefan Schaal. The sl simulation and real-time control software package. Technical report, Citeseer,
2009.

Robert Schaback. Improved error bounds for scattered data interpolation by radial basis functions.
Mathematics of Computation, pp. 201–216, 1999.

Matthias Seeger. Gaussian processes for machine learning. International journal of neural systems,
14(02):69–106, 2004.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias W Seeger. Information-theoretic
regret bounds for gaussian process optimization in the bandit setting. IEEE transactions on infor-
mation theory, 58(5):3250–3265, 2012.

Michel Talagrand. Upper and lower bounds for stochastic processes, volume 60. Springer, 2014.
pp. 28–32.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Zong-min Wu and Robert Schaback. Local error estimates for radial basis function interpolation of
scattered data. IMA journal of Numerical Analysis, 13(1):13–27, 1993.

11

https://www.ncdc.noaa.gov/
https://www.ncdc.noaa.gov/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A REVIEW OF CHAINING

Next we review at a high level the scheme of the chaining bound method.

The goal is to bound EY where Y = supt(Xt − Xt0). We introduce a “ood set” Ωu for a given
parameter u ≥ 0, which excludes undesirable events. As u becomes large, P (Ωc

u) becomes small.
When Ωu occurs, we bound Y , say Y ≤ f(u), where f is an increasing function on R+.

EY =

∫ ∞

0

P (Y ≥ u)du ≤ f(0) +

∫ ∞

0

P (Y ≥ f(u))du,

EY = f(0) +

∫ ∞

0

f ′(u)P (Y ≥ f(u))du,

where we have used a change of variables in the last equality. Now, since Y ≤ f(u) on Ωu, we
have:

P (Y ≥ f(u)) ≤ P (Ωc
u),

and finally:

EY ≤ f(0) +

∫ ∞

0

f ′(u)P (Ωc
u)du.

In practice, we will always have P (Ωc
u) ≤ L exp(−u/L) and f(u) = A+uαB, yielding the bound:

EY ≤ A+K(α)B.

At the heart of this example is the introduction of a “good set” Ωu, which confines undesirable events
to a small probability. As the parameter u increases, the probability of bad events Ωc

u decreases
exponentially. This allows for effective error control within the “good set,” avoiding the coarse
global error estimates typically used in traditional methods.

Furthermore, by controlling tail probabilities and utilizing exponential decay bounds, such as
P (Ωc

u) ≤ L exp(−u/L), along with the function f(u) = A + uαB, the chaining method en-
sures that the final error remains well-controlled. This level of probabilistic precision, achieved by
breaking the problem into layers and managing each incremental error independently, prevents the
overestimation of total error that is common in traditional approaches.

B MORE EXPERIMENTAL RESULTS AND ANALYSIS

B.1 COMPUTATIONAL COST AND SCALABILITY

The proposed method has three primary computational steps: fitting the Gaussian process, construct-
ing the sets {Tn}, and computing bounds for the test points. Fitting the Gaussian process involves
matrix factorization with a complexity of O(|Dtrain|3). Constructing {Tn} requires O(|Dtrain|2 ·
log log |Dtrain|), dominated by kernel distance computations. Finally, computing bounds for |Dtest|
test points has a complexity of O(|Dtest| · |Dtrain| · log log |Dtrain|). The total computational com-
plexity depends on the relative sizes of the training and test sets. Since the sizes of the training and
test sets can vary, the overall complexity is determined by the more computationally intensive step.
Thus, the total time complexity is: O(max(|Dtrain|2 · log log |Dtrain|, |Dtest| · |Dtrain| · log log |Dtrain|)).
We also evaluated computational cost and scalability, with the table detailing data size and runtime
for each method. All numerical experiments in this section were conducted on a Linux system
with kernel version 5.15.0-112-generic (#122-Ubuntu SMP Thu May 23 07:48:21 UTC 2024). The
machine configuration includes an x86 64 processor with 16 CPU cores and 125.49 GB of RAM.

Synthetic Data Boston House Price NOAA Weather Sarcos
Train Data Size 50 250 255 250
Test Data Size 50 254 110 4000

Table 2: Size of Datasets.

For computational cost, our methods (RBF and Matérn) perform competitively across various
datasets. On smaller datasets like Synthetic Data and NOAA Weather, RBF and Matérn achieve

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Time(s) Synthetic Data Boston House Price NOAA Weather Sarcos
RBF(Ours) 0.05 0.52 1.95 1.74

Matérn(Ours) 0.04 0.77 0.40 1.75
Capone22 30.68 149.63 5.83 343.54
Fiedler21 0.07 0.75 1.34 1.18
Lederer19 0.56 2.31 1.92 2.86

Table 3: Computational Cost and Scalability of Our Method with Baselinesin Synthetic Data.

notably lower runtimes than other methods; RBF, for instance, requires only 0.0524 seconds on
Synthetic Data and 1.9504 seconds on NOAA Weather, while Matérn achieves the lowest runtime
on NOAA Weather at 0.4038 seconds. However, on larger datasets such as Boston House Price
and Sarcos, Fiedler21 demonstrates a computational advantage, with a runtime of 1.1845 seconds
on Sarcos, outperforming both RBF (1.7396 seconds) and Matérn (1.7545 seconds). Thus, while
methods perform optimally at different dataset scales, RBF and Matérn are particularly effective for
small to medium datasets, while Fiedler21 shows greater efficiency with large datasets.

Scalability was assessed by examining performance across increasingly large datasets. RBF and
Matérn exhibit robust scalability, maintaining controlled runtime growth even with substantial
dataset increases, especially on the Sarcos dataset. This stable performance underscores their adapt-
ability to larger datasets with minimal efficiency loss. Fiedler21 also scales well, with competitive
runtime on large datasets (1.1845 seconds on Sarcos), making it suitable for large-scale applications.
In contrast, Capone22’s runtime increases sharply with data size, indicating limited scalability and
reduced practicality for very large datasets. Lederer19 demonstrates moderate scalability, perform-
ing well on medium to large datasets but showing some limitations as data size expands.

B.2 SYNTHETIC DATA

Figure 2: Comparison of Our Method with Baselinesin Synthetic Data. The training set is in green,
the test set in black, Lederer19 in orange, Fiedler21 in blue, Capone22 in purple, and our method in
red.

We compare the advantages of our method to prior approaches using an example from the exper-
imental dataset in Figure 2, which includes significant noise at a level of 0.5. We focus on a key
point with a true value of 1.458, which all other methods failed to capture within their prediction
intervals.

Capone22 predicts −0.79 ± 0.57, underestimating the true value, likely due to an inadequate treat-
ment of the dataset’s noise. This can be attributed to Capone22’s focus on model misspecification

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

errors rather than noise impact on the prediction bounds, leading to poor performance in this in-
stance.

The Lederer19 method provides bounds of [-1.30, 1.18], which are insufficient, and while Fiedler21
performs better, it still does not fully encompass the true value. The Fiedler21 method predicts
−0.69 ± 2.12, with the posterior variance increased due to the noise level being correctly set at
0.5—something we know because this is a generated dataset. This hyperparameter significantly
impacts error magnitude, and while we use the correct noise level here, incorrect tuning would lead
to even worse predictions in other cases. However, the posterior mean is still too low, causing a
slight underestimation of the true value. Although the model accounts for significant uncertainty, its
reliance on the posterior mean skews the prediction bounds.

In contrast, our chain method does not rely on fixed noise parameters. Instead, it progressively
refines the posterior estimate by breaking the process down into layers, with each layer capturing
different local variations in the data. This multi-scale approach reduces the noise’s impact on the
posterior mean by spreading the uncertainty across multiple levels. As a result, the chain method
produces a prediction interval that is not only more accurate but also successfully encompasses the
true value. The broader uncertainty range reflects a more realistic variance estimation, avoiding
the overly tight bounds seen in other methods, which tend to shrink the variance too much and
underestimate the true uncertainty.

B.3 REAL-WORLD DATA

(a) Boston House Price (b) Sarcos

Figure 3: KDE of Boston House Price Data and Sarcos Data.

Figure 4: Comparison of Our Method with Baselines in Boston House Price Data. The training set
is in green, the test set in black, Lederer19 in orange, Fiedler21 in blue, Capone22 in purple, and
our method in red.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 5: Comparison of Our Method with Baselines in Sarcos Data. The training set is in green,
the test set in black, Lederer19 in orange, Fiedler21 in blue, Capone22 in purple, and our method in
red.

Figure 6: Comparison of Our Method with Baselines in NOAA Weather Data. The training set is
in green, and test set in black, Lederer19 in orange, Fiedler21 in blue, Capone22 in purple, and our
method in red. Observe that Lederer19’s bounds do not cover all the test data points whereas our
method and other baselines do. Also note that compared to the other baselines that cover all test
points (Fiedler21 and Capone 22), our method has the tightest bounds.

We also consider two real-world datasets, viz. Boston House Price and Sarcos, both of which exhibit
highly concentrated, high-dimensional, and complex characteristics. As shown in Figure 3, the
kernel density estimation (KDE) plots for these datasets display sharp peaks, indicating the highly
correlated nature of the data and their complexity across multiple dimensions.

Traditional methods typically rely on the entire kernel function to compute the mean of the data
points, which makes it difficult to handle such strong local correlations effectively. In contrast, the
chaining method groups data in highly correlated regions together by defining successive approxi-
mation layers, refining the approximation step by step, and thus controlling the error. Additionally,
in high-dimensional, complex data, where distances between points can vary significantly and in
more complex ways, the chaining method captures local variations more effectively, preventing the
accumulation of errors and resulting in tighter bounds.

Figures 4 and Figure 5 illustrate this point. In these datasets, the bounds obtained by Fiedler21
are notably wider compared to those produced by our chaining method (Fiedler21 is the next best
technique compared to our method in Table 1). This demonstrates how the chaining method excels

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

in controlling error and achieving more precise bounds in the context of highly concentrated data,
where traditional methods like Fiedler21 struggle to maintain accuracy.

B.4 STATISTICAL SIGNIFICANCE

To evaluate the statistical significance of our method compared to the baseline models (Fiedler21,
Capone22, and Lederer19), we performed paired t-tests on the CWC metric. For each dataset
(Boston House Price, NOAA Weather, and Sarcos), the training and testing sets were randomly
sampled 100 times. In each trial, the models were trained on the training set and evaluated on the
testing set, resulting in 100 independent CWC values for each model.

The paired t-tests were then applied to these CWC values to compare our method with the baselines.
This approach ensures that the comparisons account for the variability introduced by the random
splits while maintaining the dependency between paired observations. Since lower CWC values
indicate better performance, negative t-statistics demonstrate that our method consistently outper-
formed the baselines. We used p < 0.01 to denote high statistical significance and p < 0.05 for
moderate significance.

Model Comparison t-Statistic p-Value Statistical Significance
Our Method vs Fiedler21 -16.39 <0.001 **
Our Method vs Capone22 -45.48 <0.001 **
Our Method vs Lederer19 -10.61 <0.001 **

Table 4: Paired t-Test Comparisons of Our Method against Baselines on the Boston House Price
Data. (** indicates p < 0.01; * indicates p < 0.05; negative t-statistics indicate that our model
performs better than the compared model, as lower CWC values are preferable.)

Model Comparison t-Statistic p-Value Statistical Significance
Our Method vs Fiedler21 -89.87 <0.001 **
Our Method vs Capone22 -63.54 <0.001 **
Our Method vs Lederer19 -32.39 <0.001 **

Table 5: Paired t-Test Comparisons of Our Method against Baselines on the NOAA Weather Data.
(** indicates p < 0.01;* indicates p < 0.05; negative t-statistics indicate that our model performs
better than the compared model, as lower CWC values are preferable.)

Model Comparison t-Statistic p-Value Statistical Significance
Our Method vs Fiedler21 -3.64 <0.001 **
Our Method vs Capone22 -177.71 <0.001 **
Our Method vs Lederer19 -15.88 <0.001 **

Table 6: Paired t-Test Comparisons of Our Method against Baselines on the Sarcos Data. (**
indicates p < 0.01; * indicates p < 0.05; negative t-statistics indicate that our model performs
better than the compared model, as lower CWC values are preferable.)

The paired t-test results, detailed in Tables 4, 5, and 6, demonstrate significant differences between
our method and the baselines. For the Boston House Price dataset, our method outperformed all
baselines with high statistical significance (p < 0.01), supported by negative t-statistics, as lower
CWC values indicate better performance. On the NOAA Weather dataset, significant differences
were consistently observed (p < 0.01 for all comparisons). Similarly, for the Sarcos dataset, our
method showed statistically significant improvements (p < 0.01) across all baselines. These results
strongly emphasize the statistical significance of our method’s performance advantages.

B.5 INTERPOLATION (AKA INFILL)

Theoretically, our method relies solely on the kernel to compute distances, making it applicable
to both extrapolation and interpolation tasks. This is because the kernel function quantifies the
similarity between data points based on their relative positions, independent of whether the points

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

lie within or outside the observed range. As a result, the method naturally generalizes to scenarios
where test points are interpolated within the training set.

To empirically validate this, we conducted an interpolation experiment using NOAA data. The hor-
izontal axis represents time, with the middle 70% of the data used as the test set (black points) and
the leftmost and rightmost 30% as the training set (green points). The red lines represent the com-
puted bounds. As shown in the figure, the bounds successfully encompass all test points, achieving
a PICP of 1.0. The NMPIW is 1.6545 and the CWC is also 1.6545, highlighting that our method is
well-suited for interpolation tasks, providing tight and reliable bounds while maintaining theoretical
consistency with its kernel-based design.

Figure 7: Interpolation experiment on NOAA Weather Data. The training set is shown in green, the
test set in black, and the bounds predicted by our method in red.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C PROOF OF THEOREMS

C.1 PROOF OF THEOREM 1

This theorem and its proof are due to (Talagrand, 2014). We provide a modified, more compact
version to aid in exposition and intuition building. For the complete proof, please refer to (Talagrand,
2014).

Assume that (Xt)t∈T is a Gaussian process, where each Xt is normally distributed with mean zero.
For any two points s, t ∈ T , the increment Xs −Xt is given by:

E[(Xs −Xt)
2] = d(s, t)2,

where d(s, t) is a distance metric on T .

Given a normally distributed random variable Z with mean zero and variance σ2, the probability
that |Z| exceeds a threshold u is bounded by: P (|Z| ≥ u) ≤ 2 exp

(
− u2

2σ2

)
. Applying this result to

the increment Xs −Xt, we substitute σ2 with d(s, t)2 and get:

P (|Xs −Xt| ≥ u) ≤ 2 exp

(
− u2

2d(s, t)2

)
.

This implies the expresion below when u = u2n/2d(πn(t), πn−1(t))):
P(|Xπn(t) −Xπn−1(t)| ≥ u2n/2d(πn(t), πn−1(t))) ≤ 2 exp

(
−u22n−1

)
The number of possible pairs (πn(t), πn−1(t)) is bounded by:

|Tn| · |Tn−1| ≤ NnNn−1 ≤ Nn+1 = 22
n+1

.

We define the (favorable) event Ωu,n by

∀t, |Xπn(t) −Xπn−1(t)| ≤ u2n/2d(πn(t), πn−1(t)),

and we define Ωu =
⋂

n≥1 Ωu,n. Then

p(u) := P (Ωc
u) ≤

∑
n≥1

P (Ωc
u,n) ≤

∑
n≥1

2 · 22
n+1

exp(−u22n−1).

Here again, at the crucial step, we have used the union bound P (Ωc
u) ≤

∑
n≥1 P (Ωc

u,n). When Ωu

occurs, it yields

|Xt −Xt0 | ≤ u
∑
n≥1

2n/2d(πn(t), πn−1(t)),

so that
sup
t∈T
|Xt −Xt0 | ≤ uS,

where
S := sup

t∈T

∑
n≥1

2n/2d(πn(t), πn−1(t)).

Thus,

P

(
sup
t∈T
|Xt −Xt0 | > uS

)
≤ p(u).

Given n ≥ 1 and u ≥ 3, the series can be bounded by

u22n−1 ≥ u2

2
+ u22n−2 ≥ u2

2
+ 2n+1.

For

p(u) ≤ L exp

(
−u2

2

)
,

we observe that since p(u) ≤ 1, the inequality holds not only for u ≥ 3 but also for u > 0, because
1 ≤ exp( 92 ) exp

(
−u2

2 − 2n+1
)

for u ≤ 3. Hence,

P

(
sup
t∈T
|Xt −Xt0 | ≥ uS

)
≤ L exp

(
−u2

2

)
where L is an constant term. □

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.2 DERIVATION OF THE VALUE FOR L

From the proof of Theorem 1, we have:

p(u) ≤
∑
n≥1

2 · 22
n+1

exp

(
−u2

2
− 2n+1

)
.

Thus,

L =
∑
n≥1

2 · 22
n+1

exp
(
−2n+1

)
=
∑
n≥1

2

(
2

e

)2n+1

. □

C.3 PROOF OF THEOREM 2

Given any t0 in T , the centering hypothesis implies

E sup
t∈T

Xt = E sup
t∈T

(Xt −Xt0).

The latter form has the advantage that we now seek estimates for the expectation of the nonnegative
random variable Y = supt∈T (Xt −Xt0). For such a variable, we have the formula

EY =

∫ ∞

0

P (Y ≥ u) du.

Using Theorem 1:

P

(
sup
t∈T
|Xt −Xt0 | ≥ uS

)
≤ L exp

(
−u2

2

)
From it, to perform the integration, we introduce a new variable v. Let v = u

S , then du = Sdv.
Thus,

E
[
sup
t∈T
|Xt −Xt0 |

]
≤ L ·

∫ ∞

0

exp

(
−v2

2

)
Sdv.

Simplifying, we get:

E
[
sup
t∈T
|Xt −Xt0 |

]
≤ LS

∫ ∞

0

exp

(
−v2

2

)
dv,

where

S := sup
t∈T

∑
n≥1

2n/2d(πn(t), πn−1(t)).

This integral is a standard Gaussian integral, and the result is:∫ ∞

0

exp

(
−v2

2

)
dv =

√
π

2
.

Since πn(t) approximates t, it is natural to assume that:

d(t, πn(t)) = d(t, Tn) := inf
s∈Tn

d(t, s).

The triangle inequality yields:

d(πn(t), πn−1(t)) ≤ d(t, πn(t)) + d(t, πn−1(t)) = d(t, Tn) + d(t, Tn−1),

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

so that (making the change of variable Making the change of variable n← n+ 1 in the second sum
below, we obtain:

S = sup
t∈T

∑
n≥1

2n/2d(πn(t), πn−1(t))

≤ sup
t∈T

∑
n≥1

2n/2d(t, Tn) + sup
t∈T

∑
n≥1

2n/2d(t, Tn−1)

= sup
t∈T

∑
n≥0

2n/2d′(t, Tn) +
√
2 sup

t∈T

∑
n≥1

2(n−1)/2d(t, Tn−1)

= sup
t∈T

∑
n≥0

2n/2d′(t, Tn) +
√
2 sup

t∈T

∑
n≥0

2n/2d(t, Tn)

≤ (1 +
√
2) sup

t∈T

∑
n≥0

2n/2d(t, Tn).

Thus, the result is:

E
[
sup
t∈T
|Xt −Xt0 |

]
≤ (1 +

√
2)

√
π

2
L sup

t∈T

∑
n≥0

2n/2d(t, Tn).

Since

E sup
t∈T

Xt ≤ E [Xt0 ] + E
[
sup
t∈T
|Xt −Xt0 |

]
= Xt0 + E

[
sup
t∈T
|Xt −Xt0 |

]
so that

E sup
t∈T

Xt ≤ Xt0 + E
[
sup
t∈T
|Xt −Xt0 |

]
≤ Xt0 + (1 +

√
2)

√
π

2
L sup

t∈T

∑
n≥0

2n/2d(t, Tn). (10)

where d(t, Tn)) = infs∈Tn

√
K(t, t) +K(s, s)− 2K(t, s) □ .

C.4 PROOF OF THEOREM 3

A common kernel used in GPR is the radial basis function (RBF) kernel, also known as the Gaussian
kernel. In this context, we consider a composite kernel that combines a constant kernel with an RBF
kernel. The constant kernel σ2 adds a constant variance to the covariance matrix, helping to control
the overall amplitude of the process. The combined kernel function is expressed as:

K(s, t) = σ2 exp

(
−∥s− t∥2

2l2

)
.

By substituting K(s, s) = K(t, t) = 1 and the kernel function K(s, t) into the distance formula, we
obtain:

d(s, t)2 = 2σ2(1− exp

(
−∥s− t∥2

2l2

)
).

Using the Cauchy-Schwarz inequality In two-dimensional space, we get:

∥s− t∥2 + ∥t− u∥2

2
≥
(
∥s− t∥+ ∥t− u∥

2

)2

.

Combined with the triangle inequality ∥s− t∥+ ∥t− u∥ ≥ ∥s− u∥, we then obtain:

∥s− t∥2 + ∥t− u∥2 ≥ ∥s− u∥2

2
.

Thus the distance is:

d(s, u)2 ≤ 2σ2

(
1− exp

(
−∥s− t∥2 + ∥t− u∥2

l2

))
.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Recall that the Taylor series expansion of exp(x) is:

exp(x) = 1 + x+
x2

2!
+

x3

3!
+ · · · .

Let x1 = −∥s−t∥2

l2 and x2 = −∥t−u∥2

l2 . We then get:

exp(x1) + exp(x2)− 1 = 1 + (x1 + x2) +
x2
1 + x2

2

2!
+

x3
1 + x3

2

3!
+ · · ·

≤ 1 + (x1 + x2) +
(x1 + x2)

2

2!
+

(x1 + x2)
3

3!
+ · · · = exp(x1 + x2).

For this inequality, we provide another simpler proof: Given that x1, x2 ≥ 0, it follows that
exp(x1) ≥ 1 and exp(x2) ≥ 1. Therefore, (1 − exp(x1))(1 − exp(x2)) ≥ 0, i.e., 1 − exp(x1) −
exp(x2) + exp(x1 + x2) ≥ 0.

By using this, we have:

d(s, u)2 = 2σ2 (1− exp (x1 + x2))

≤ 2σ2 + 2σ2(1− exp (x1)− exp (x2))

= 2σ2(2− exp
1
2

(
−∥s− t∥2

2l2

)
− exp

1
2

(
−∥t− u∥2

l2

)
)

= 4σ2 − 2σK
1
2 (s, t)− 2σK

1
2 (t, u)

= 2σ2 − 2σK
1
2 (s, t) + 2σ2 − 2σK

1
2 (t, u)

= d′(s, t)2 + d′(t, u)2.

where d′(s, t)2 = K(s, s) +K(t, t)− 2σK
1
2 (s, t).

Since πn(t) approximates t, it is natural to assume that:

d(t, πn(t)) = d(t, Tn) := inf
s∈Tn

d(t, s).

For an RBF kernel, we have:

d(s, u)2 ≤ d′2(s, t) + d′2(t, u),

where d′(s, t)2 = K(s, s) +K(t, t)− 2σK
1
2 (s, t).

Making the change of variable n← n+ 1 in the second sum below, we obtain:

S = sup
t∈T

∑
n≥1

2n/2d(πn(t), πn−1(t))

≤ sup
t∈T

∑
n≥1

2n/2d′(t, Tn) + sup
t∈T

∑
n≥1

2n/2d′(t, Tn−1)

= sup
t∈T

∑
n≥0

2n/2d′(t, Tn) +
√
2 sup

t∈T

∑
n≥1

2(n−1)/2d′(t, Tn−1)

= sup
t∈T

∑
n≥0

2n/2d′(t, Tn) +
√
2 sup

t∈T

∑
n≥0

2n/2d′(t, Tn)

≤ (1 +
√
2) sup

t∈T

∑
n≥0

2n/2d′(t, Tn).

Using Equation 2, we obtain the fundamental bound:

E sup
t∈T
|Xt −Xt0 | ≤ (1 +

√
2)

√
π

2
L sup

t∈T

∑
n≥0

2n/2d′(t, Tn),

where

d′(t, Tn)) = inf
s∈Tn

√
K(t, t) +K(s, s)− 2σK

1
2 (t, s). □

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.5 PROOF OF THEOREM 4

Since K(s, t) =
(
1 +

√
3∥s−t∥

l

)
exp

(
−

√
3∥s−t∥

l

)
, we have K(s, s) = K(t, t) = 1.

By substituting K(s, s) = K(t, t) = 1 and the kernel function K(s, t) into the distance formula, we
obtain:

d(s, t)2 = 2− 2

(
1 +

√
3∥s− t∥

l

)
exp

(
−
√
3∥s− t∥

l

)
.

The Chebyshev’s sum inequality is a fundamental result in the theory of inequalities. It states that
if a1, a2 and b1, b2 are two sequences of real numbers that are sorted in opposite orders (one in
increasing and the other in decreasing order), then the following inequality holds:

1

n

n∑
i=1

aibi ≤

(
1

n

n∑
i=1

ai

)(
1

n

n∑
i=1

bi

)
.

Specifically, for ai = 1 + xi and bi = exp(−xi), which are oppositely sorted, let x1 =
√
3∥s−t∥

l

and x2 =
√
3∥t−u∥

l . Then the inequality for n = 2 becomes:

(1 + x1) exp(−x1) + (1 + x2) exp(−x2) ≤
(1 + x1 + 1 + x2)[exp(−x1) + exp(−x2)]

2
.

Since ∥s − t∥ ≥ 0 and ∥t − u∥ ≥ 0, we have exp(−xi) ≤ 1. Oberve that
(1− exp(−x1))(1− exp(−x2)) > 0. Rearranging terms, we obtain:

exp(−x1) + exp(−x2) < 1 + exp(−x1) exp(−x2) = 1 + exp(−x1 − x2).

Using this, we get:

(1 + x1) exp(−x1) + (1 + x2) exp(−x2) ≤
(2 + x1 + x2)

2
[exp(−x1) + exp(−x2)]

≤ (2 + x1 + x2)

2
[1 + exp(−x1 − x2)].

After negating (2+x1+x2)
2 , we get:

(1 + x1)[exp(−x1)−
1

2
] + (1 + x2)[exp(−x2)−

1

2
] ≤ (1 + x1 + x2) exp(−x1 − x2).

Given the function f(x) = (1 + x) exp(−x), the derivative of f(x) with respect to x is calculated
using the product rule as:

f ′(x) =
d

dx
[(1 + x) exp(−x)] = −x exp(−x).

Since
√
3∥s−t∥

l ≥ 0, we know that f ′(x) ≤ 0 when x ≥ 0. Thus f(x)is monotonically decreasing
when n ≥ 0.

With the triangle inequality ∥s−t∥+∥t−u∥ ≥ ∥s−u∥, and since f(x) is monotonically decreasing,
we get:

K(s, u) =

(
1 +

√
3∥s− u∥

l

)
exp

(
−
√
3∥s− u∥

l

)
≥ (1 + x1 + x2) exp(−x1 − x2)

≥ (1 + x1)[exp(−x1)−
1

2
] + (1 + x2)[exp(−x2)−

1

2
]

= K ′(s, t) +K ′(t, u),

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

where K ′(s, t) =
(
1 +

√
3∥s−t∥

l

)
[exp

(
−

√
3∥s−t∥

l

)
− 1

2 ].

We can then calculate the distance:

d(s, u)2 = K(s, s) +K(u, u)− 2K(s, u)

≤ 2− 2[K ′(s, t) +K ′(t, u)] = 2− 2K ′(s, t) + 2− 2K ′(t, u)− 2

= d′(s, t)2 + d′(t, u)2 − 2.

For the Matérn kernel (with v = 3
2 ), we have proven that:

d(s, u)2 ≤ d′(s, t)2 + d′(t, u)2 − 2,

where d′(s, t)2 = K(s, s) +K(t, t)− 2K ′(s, t).

Making the change of variable n← n+ 1 in the second sum below, we get:

S ≤ sup
t∈T

∑
n≥1

2n/2
√
d′2(t, Tn) + d′2(t, Tn−1)− 2

≤ sup
t∈T

∑
n≥1

2n/2d′(t, Tn) +
√
2 sup

t∈T

∑
n≥0

2n/2d′(t, Tn)−
∑
n≥0

2n/2
√
2

≤ (1 +
√
2) sup

t∈T

∑
n≥0

2n/2(d′(t, Tn)−
√
2

1 +
√
2
).

Using Equation 2, we have the bound:

E sup
t∈T
|Xt −Xt0 | ≤ (1 +

√
2)

√
π

2
L sup

t∈T

∑
n≥0

2n/2[d′(t, Tn) +
√
2− 2],

where d′(t, Tn)) = infs∈Tn

√
K(t, t) +K(s, s)− 2K ′(t, s), and

K ′(s, t) =
(
1 +

√
3∥s−t∥

l

) [
exp

(
−

√
3∥s−t∥

l

)
− 1

2

]
. □

23


	Introduction
	Background
	Gaussian Process Regression
	Chaining

	Related Work
	Upper and Lower Bounds
	Kernels
	Tighter Bounds for Radial Basis Function (RBF) Kernel
	Tighter Bounds for Matérn Kernel
	Algorithm of Our Chaining Method

	Experiment
	Datasets
	Evaluation Metrics
	Baselines
	Results

	Conclusion
	Review of Chaining
	More Experimental Results and Analysis
	Computational Cost and Scalability
	Synthetic Data 
	Real-World Data
	Statistical Significance
	Interpolation (aka infill)

	Proof of Theorems
	Proof of Theorem 1
	Derivation of the value for L
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4


