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ABSTRACT

Photoplethysmography (PPG) is the leading non-invasive technique for monitor-
ing biosignals and cardiovascular health, with widespread adoption in both clin-
ical settings and consumer wearable devices. While machine learning models
trained on PPG signals have shown promise, they tend to be task-specific and
struggle with generalization. Current research is limited by the use of single-
device datasets, insufficient exploration of out-of-domain generalization, and a
lack of publicly available models, which hampers reproducibility. To address
these limitations, we present PAPAGEI, the first open foundation model for PPG
signals. The model is pre-trained on over 57,000 hours of data, comprising 20
million unlabeled PPG segments from publicly available datasets. We introduce a
novel representation learning approach that leverages domain knowledge of PPG
signal morphology across individuals, enabling the capture of richer representa-
tions compared to traditional contrastive learning methods. We evaluate PAPAGEI
against state-of-the-art time-series foundation models and self-supervised learn-
ing benchmarks across 20 tasks from 10 diverse datasets, spanning cardiovascular
health, sleep disorders, pregnancy monitoring, and wellbeing assessment. Our
model demonstrates superior performance, improving classification and regres-
sion metrics by 6.3% and 2.9% respectively in at least 14 tasks. Notably, PAPAGEI
achieves these results while being more data- and parameter-efficient, outperform-
ing models that are 70× larger. Beyond accuracy, we examine model robustness
across different skin tones, establishing a benchmark for bias evaluation in future
models. PAPAGEI can serve as both a feature extractor and an encoder for multi-
modal models, opening up new opportunities for multimodal health monitoring1.

1 INTRODUCTION

Photoplethysmography (PPG), a non-invasive optical sensing technique, is widely used to monitor
cardiovascular health and physiological signals in both clinical and consumer health applications
(Charlton et al., 2023). From hospital pulse oximeters to smartwatches, PPG enables continuous
health monitoring in various settings, bridging acute medical care and long-term health manage-
ment. PPG signals help in tracking a diverse range of health indicators, including cardiovascular
health, blood pressure, mood, and sleep disorders (Sadad et al., 2022; Ave et al., 2015; Reiss et al.,
2019; Liang et al., 2018a; Haddad et al., 2021; Schrumpf et al., 2021). Despite its widespread adop-
tion, PPG poses substantial challenges for machine learning applications. A primary obstacle is the
high cost of data annotation, which requires specialized domain expertise. This challenge is partic-
ularly pronounced in consumer health applications, where varying sensing conditions and diverse
user populations create additional complexity. PPG signals are susceptible to noise and motion arti-
facts (Afandizadeh Zargari et al., 2023), as well as inherent variability due to factors like skin tone
and body composition (Bent et al., 2020). These complicate the development of generalizable ML
models for PPG. Consequently, existing PPG datasets are often small, task-specific, and limited in
their generalizability, posing a major obstacle to the development of robust and widely applicable
models that could fully leverage the potential of PPG technology.

∗Work has been done during the author’s internship at Nokia Bell Labs.
1Models, data, and code are available at: github.com/nokia-bell-labs/papagei-foundation-model

1

https://github.com/nokia-bell-labs/papagei-foundation-model


Published as a conference paper at ICLR 2025

Figure 1: PAPAGEI Overview. We curate public datasets of diverse PPG signals, and train a founda-
tion model leveraging a novel morphology-aware contrastive learning approach. To evaluate its ef-
fectiveness, we apply the embeddings generated by PAPAGEI to 20 tasks from 10 different datasets.

The PPG domain, unlike language or vision domains, lacks general-purpose foundation models
(FMs), with most current works focused on single-dataset task-specific models. Although PPG can
detect vital signs like heart rate variability and blood oxygen saturation, the absence of generalizable
pre-trained models limits progress (Abbaspourazad et al., 2023). Despite the ongoing challenges of
acquiring large-scale, high-quality data, recent expansions in diverse PPG datasets have created new
opportunities (Johnson et al., 2016; Zhang et al., 2018; Lee et al., 2022). To address these challenges,
we introduce PAPAGEI, a set of robust, pre-trained models capable of serving as a backbone for
various PPG-related tasks, capturing rich PPG representations through large-scale pre-training.

The key contributions of PAPAGEI are:

(1) Large-scale pre-training for PPG signals: To our knowledge, PAPAGEI is the first open foun-
dation model pre-trained on PPG signals, using 57,000 hours of data from 20 million signals sourced
entirely from public datasets. This establishes a new benchmark for large-scale model development
in wearable and clinical health monitoring.

(2) PPG-aware self-supervised learning (SSL) framework: We introduce a novel SSL framework
with a unique PPG signal morphology augmentation module. Our approach optimizes agreement
between PPG signals with similar blood volume changes while pointing the model to pay attention
to the changes around the systolic peak and dicrotic notch (key PPG markers).

(3) Comprehensive evaluation across diverse out-of-domain health tasks: We evaluate PAPAGEI
across 20 tasks, including cardiovascular health, sleep disorders, pregnancy monitoring, and overall
well-being. Our results show that the model embeddings contain rich and predictive information
applicable to various health conditions, outperforming existing benchmarks.

(4) Extensive robustness studies: We conduct ablation studies to assess the impact of key compo-
nents, including signal morphology augmentation, comparisons with established contrastive learning
approaches, model size, data efficiency, and the effect of skin tone.

2 RELATED WORK

Self-supervised learning has become a prominent paradigm for learning general representations from
unlabeled datasets, with applications in physiological signal analysis including health, fitness, and
brain signals (Tonekaboni et al., 2021; Zhang et al., 2022; Chen et al., 2021; Yèche et al., 2021;
Spathis et al., 2021; Cheng et al., 2020; Kiyasseh et al., 2021; Sarkar & Etemad, 2020). Despite its
popularity, there are no widely used models for PPG signals pre-trained through SSL. Recently, Ab-
baspourazad et al. (2023) demonstrated that embeddings derived from PPG signals can predict over
45 diverse downstream health-related tasks using proprietary Apple Watch data. Their approach
uses an SSL framework based on patient-level positive pair contrastive learning. Similarly, (Yun
et al., 2024) showed that embedding PPG signals can improve genetic discovery and risk prediction
outcomes using the UK Biobank dataset. Other works (Weng et al., 2024; Ding et al., 2024; Zhou
et al., 2024) explored PPG embeddings for various applications. However, these studies often used
proprietary datasets, did not explore out-of-domain generalization, or did not release their models,
highlighting the need for openly available, pre-trained PPG FMs (Table 17). For example, in contrast
to (Abbaspourazad et al., 2023), our work exclusively uses public datasets for large-scale PPG train-
ing and introduces a novel SSL framework to incorporate PPG morphology. While Abbaspourazad
et al. (2023) evaluate a single proprietary dataset, we validate on 10 diverse downstream datasets,
showcasing greater generalizability and robustness across varied real-world scenarios.
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Figure 2: Overview of PAPAGEI-S. The process begins by computing three morphology metrics
(IPA, SVRI, and SQI) for each PPG segment. The raw PPG signals are then processed through an
encoder (E) to generate embeddings (H). These same embeddings feed into three specialized heads:
a projection head (P ) that contrasts PPG signals based on sVRI values, and two mixture-of-expert
heads (M1 and M2) that refine the embeddings by predicting IPA and SQI values.

Generic time-series FMs, like Chronos (Ansari et al., 2024) and Moment (Goswami et al., 2024),
lack physiological data representation. There is growing interest in modality-specific FMs tailored
to physiological signals (Song et al., 2024; Lai et al., 2023) and human activity (Yuan et al., 2024a).
Knowledge transfer from time-series FMs might benefit PPG tasks, but their performance is limited
compared to PPG-specific FMs. Adapting other domain-specific models, like ECG (McKeen et al.,
2024; Song et al., 2024) or EEG (Yuan et al., 2024b), is challenging due to distinct signal character-
istics. We specifically design FMs for PPG signals, contributing to the growing movement toward
foundation models tailored to individual modalities. See Appendix §H for an extended discussion.

3 METHODS

Given a dataset D = {p1,p2, · · · ,pS} representing diverse PPG signals from S participants, a
PPG signal ps ∈ Rn is defined as a time-series that captures variations in light intensity caused
by arterial blood flow. To model granular changes in PPG signal of each subject s, we segment ps

without overlap to obtain Xs = {xs
1,x

s
2, · · ·xs

N}. Here, the number of segments N depends on
the sampling frequency (f ) and the desired length of time window. To train our foundation models,
PAPAGEI-P employs a patient contrastive SSL approach that maximizes agreement between signals
from the same subject. Importantly, we propose PAPAGEI-S, a morphology-aware self-supervised
approach that maximizes agreement between PPG segments with similar morphology.

3.1 PARTICIPANT-AWARE OBJECTIVE: PAPAGEI-P
In PAPAGEI-P, we train an SSL model to maximize agreement between the embeddings of PPG
signals from the same subject. While previous studies have demonstrated the effectiveness of this
strategy for physiological signals (Kiyasseh et al., 2021; Abbaspourazad et al., 2023), our work
represents the first attempt to train and evaluate a foundation model using publicly available PPG
datasets.

Training. We define a positive pair as any two distinct segments of PPG signals from the same
subject, denoted as {(xs

i ,x
s
j)|i ̸= j}. Next, we apply a series of time-series augmentations such

as random cropping, adding Gaussian noise, time flipping, negation, and magnitude scaling (Tang
et al., 2020), each applied with a predefined probability during training. Each augmentation in-
cludes hyper-parameters that control the intensity of the data transformation. During training, the
augmented version of a randomly sampled positive pair (xs

i ,x
s
j) is passed through the encoder E,

and subsequently projection P , to obtain an embeddings pair denoted by (zsi , z
s
j). Given a batch

of embeddings from N positive pairs of the form (zi, zj), the model optimizes the normalized
temperature-scaled cross entropy (NT-Xent) loss (Sohn, 2016; Oord et al., 2018; Chen et al., 2020)
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given by: Lp = 1
2 (ℓp(i, j)+ℓp(j, i)), where ℓp(i, j) = − 1

N

∑N
u=1 log

exp(sim(zu
i ,z

u
j )/τ)∑2N

v=1 1[v ̸=u] exp(sim(zu
i ,z

v
j )/τ)

and sim(·, ·) is the cosine similarity. In contrast, vanilla SimCLR (Chen et al., 2020) would use pos-
itive pairs as augmented versions of randomly sampled PPG segments.

3.2 MORPHOLOGY-AWARE OBJECTIVE: PAPAGEI-S

In PAPAGEI-S, we leverage the PPG signal morphology to train a SSL model that maximizes agree-
ment between similar physiological features of PPG signals across participants.

PPG Morphology. Total peripheral resistance (TPR)—the force exerted by the body’s blood vessels
on circulating blood—varies under certain medical conditions, such as hypertension and diabetes
(Trammel & Sapra, 2020). Variations in TPR are reflected in PPG signals, presenting as distinct
regions within the waveform. To capture these variations, we introduce a morphology augmentation
module before training, which computes three key PPG metrics (Figure 2, left): (1) stress-induced
Vascular Response Index (sVRI) (Lyu et al., 2015; Zhang et al., 2019): the ratio of mean PPG sig-
nal between post- to pre-systolic phases, (2) Inflection Point Area ratio (IPA) (Wang et al., 2009):
the ratio of systolic to diastolic areas defined by the dicrotic notch, and (3) Signal Quality Index
(SQI): skewness of the signal as an indicator of quality (Elgendi, 2016). Prior studies have shown
that incorporating the PPG signal quality during training yields positive results (Ding et al., 2024).
We selected these metrics for their complementary nature: sVRI captures variations in amplitude,
while IPA measures signal width. To address scenarios where computing IPA is challenging because
of noisy signals or different morphology, we incorporate SQI. In particular, we empirically find that
SQI is significantly larger (p < 0.05) in signals with a dicrotic notch (Appendix §D.5).

sV RI(x) =
sys

∑n
i=sys xi

(n− sys)
∑sys

i=1 xi
, IPA(x) =

∫ n̂

0
x dn∫ n

n̂
x dn

, and SQI(x) =
1

W

∑
w

m3

m
3/2
2

, (1)

where x ∈ RN is the PPG segment, sys is the systolic peak, n is the length of time series, and n̂ is
the dicrotic notch. For SQI , we divide x into 5 second windows (w; total windows W ) and compute
the skewness mi =

1
5×f

∑5×f
j=1 (x[j]− µx[j])

i, which gives the best signal quality discrimination.

Training. Before training, the morphology augmentation module takes an augmented input, by
applying Gaussian noise and cropping to time series x, and outputs y = {ysvri, yipa, ysqi} ∈ R3

(Figure 2 middle). Next, we discretize ysvri into a predefined set of b = 8 bins to denote pos-
itive pairs, where ysvri ∈ {1, . . . , b}. We define positive pairs based on the sVRI labels as
{(xi,xj)|ysvrii = ysvrij , i ̸= j}. Note that positive pairs are not defined based on participants.

ℓs(i, j) = − log
exp (sim(zi, zj)/τ)∑2N

k=1 1[k ̸= i] exp (sim(zi, zk)/τ)
(2)

Lsvri =
1

2N

N∑
k=1

[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)] (3)

Lipa =
1

N

N∑
i=1

∣∣∣yipai − ŷipai

∣∣∣ Lsqi =
1

N

N∑
i=1

∣∣∣ysqii − ŷsqii

∣∣∣ (4)

Ls = αLsvri + (1− α) (Lipa + Lsqi) ,where α ∈ [0, 1] (5)

Given a batch of N PPG signals and their morphology, we optimize three heads using the encoder
(E) embeddings H = {h1,h2, · · · ,hN}. First, we extract the embeddings Z = {z1, z2, · · · , zN}
from the projection (P ), and compute the contrastive loss for sVRI (equation 3). Next, we use the
embeddings H to predict the IPA (ŷipa ∈ RN ) and SQI (ŷsqi ∈ RN ) using the mixture of expert
(MoE) heads M1 and M2. Each MoE head is composed of three fully connected neural networks
(FCNNs), with the head’s output calculated as a weighted sum of the FCNNs, using softmax to
determine the weights. These heads are optimized using the mean absolute error (equation 4). The
morphology indices encapsulate various PPG characteristics. Our rationale for utilizing MoE is that
each expert can specialize in learning distinct properties that contribute to the overall index. Finally,
the overall PAPAGEI-S training objective is given in equation 5.
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4 EXPERIMENTS

4.1 PRE-TRAINING

Datasets. We pre-train PAPAGEI on three datasets: (1) VitalDB (Lee et al., 2022), which includes
PPG signals collected during surgery from the patient’s finger (f=500Hz), (2) the MIMIC-III wave-
form database matched subset (Johnson et al., 2016), where finger-tip PPG data is collected from
an ICU monitor (f= 125Hz), and (3) the Multi-Ethnic Study of Atherosclerosis (MESA) sleep sub-
study (Zhang et al., 2018; Chen et al., 2015), which provides PPG data obtained through finger-tip
polysomnography (f= 256Hz). In total, we have 13.5K participants with 20M segments (Table 1).

Table 1: PAPAGEI’s pre-training datasets.

Dataset #Participants #Segments Hours
VitalDB 5,866 6,248,100 17,355
MIMIC-III 5,596 7,196,401 19,990
MESA 2,055 7,306,705 20,296

Total 13,517 20,751,206 57,641

Pre-processing. To curate single-channel PPG sig-
nals across all datasets, we perform the following
steps: (1) Apply a 4th-order Chebyshev bandpass fil-
ter with low and high pass cut-offs set at 0.5Hz and
12Hz, respectively (Lapitan et al., 2024; Liang et al.,
2018c); (2) Segment the signal into 10-second win-
dows ((Orphanidou, 2018; Koteska et al., 2022) use
10s windows whereas larger studies use 30s (Ding
et al., 2024) and 60s Abbaspourazad et al. (2023));
(3) Detect flatline segments and remove any seg-
ment where more than 25% of the data is flat (BioBSS Documentation, 2023); (4) Nor-
malize the segments using Z-score (Temko, 2017; Zhou et al., 2017); and (5) Resample
the segments to 125Hz (the lowest sampling rate of our pre-training datasets, MIMIC-III).

Table 2: PAPAGEI’s evaluation datasets. Gray lines are unseen
during training (out-of-domain). For those used for pre-training,
we keep a held-out test-sets and use labels. Task Types are:
B=binary, R=regression, M-#classes= muticlass classification.

#ID Dataset Task (Task Type) #Subj.(#Samp.)
T1 VitalDB (Lee et al., 2022) ICU admission (B) 5866
T2 Operation Type (M-9) 5866
T3 MIMIC-III (Moody et al., 2020) Mortality (B) 5596
T4 MESA (Zhang et al., 2018) Smoker (B) 2055
T5 AHI > 3% Oxygen Desat. (R) 2055
T6 AHI > 4% Oxygen Desat. (R) 2055
T7 nuMom2B (Facco et al., 2015) Pregnancy stage (B) 3163 (5337)
T8 Gestation Age (R) 3163 (5337)
T9 VV (Skin Tone) (Toye, 2023) Systolic BP* (R) 231
T10 Diastolic BP* (R) 231
T11 PPG-BP (Liang et al., 2018a) Systolic BP (R) 219
T12 Diastolic BP (R) 219
T13 Average Heart Rate (R) 219
T14 Hypertension (B) 219
T15 SDB (Garde et al., 2014) Sleep Disordered Breathing (B) 146
T16 ECSMP (Gao et al., 2021) Mood Disturbance (B) 89
T17 WESAD (Schmidt et al., 2018) Valence (B) 15 (4497)
T18 Arousal (B) 15 (4497)
T19 PPG-DaLiA (Reiss et al., 2019) Heart Rate (R) 15 (64697)
T20 Activity (M-9) 15 (64697)

Implementation. We adopt
a ResNet-style CNN encoder,
following (Ding et al., 2024).
Abbaspourazad et al. (2023)
also utilize an EfficientNet-style
CNN. Our model has 18 convo-
lutional blocks, starting with a
filter size of 32, which doubles
every 4 blocks. The projection
layer is a single FC layer, gener-
ating a 512-d embedding. In the
PAPAGEI-S variant, the expert
block (M1 & M2) uses three
parallel FCNNs, each with two
FC layers, resulting in a 128-
d embedding. For augmenta-
tions, PAPAGEI-P uses cropping
(0.50), negation (0.20), flipping
(0.20), and scaling (0.40). PA-
PAGEI-S uses cropping (0.25)
and Gaussian noise (0.25). PA-
PAGEI-S avoids augmentations
that alter PPG’s morphology.
We set α = 0.6 and train on eight V100 GPUs for 15,000 steps (lr= 10−4), with PAPAGEI-P
and PAPAGEI-S having 5M and 5.7M parameters, respectively, while previous works use model
sizes of 3.3M (Abbaspourazad et al., 2023) (we study scaling in Section 5.2).

4.2 DOWNSTREAM TASKS

To evaluate the effectiveness of PAPAGEI, we benchmark it against a diverse set of datasets, tasks,
and baselines, chosen for their large size and clinical relevance (where applicable)2. A description of
the tasks with their corresponding #ID is provided in Table 2, with further details in Appendix §B.
As a motivation, identifying patient risk factors is crucial for hospitals to allocate resources ef-
fectively. To address this, we evaluate several indicators, including ICU admission (T1), type of
operation (T2), mortality (T3), and smoking status (T4). For sleep apnea diagnosis, the American

2https://peterhcharlton.github.io/post/ppg_datasets/
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Figure 3: Radar charts of downstream tasks. (Top) Classification performance in AUROC (larger
area is better). (Bottom) Regression performance in MAE (smaller area is better). Pre-trained
models in purple: REGLE, Chronos, & Moment. Statistical feature baseline in gray. SSL methods
in green: SimCLR, BYOL, & TF-C. PAPAGEI (ours), in pink. Details are in Tables 3 & 4.

Academy of Sleep Medicine recommends using the Apnea/Hypopnea Index (AHI) with at least 3%
or 4% oxygen desaturation as a key metric (Ruehland et al., 2009). Thus, we predict AHI at 3% and
4% desaturation thresholds (T5 & T6) and classify sleep-disordered breathing (T15). For pregnancy
outcomes, changes in gestational age and pregnancy stage are linked to risks like hypertensive dis-
orders and small-for-gestational-age delivery (Bouariu et al., 2022; Wu et al., 2020; Crump et al.,
2023), enabling us to classify pregnancy stage (T7) and predict gestational age (T8). In cardiovascu-
lar health, we estimate systolic (T9 & T11) and diastolic (T10 & T12) blood pressure (BP) using two
datasets. While PPG-BP (T11 & T12) provides high-frequency, short PPG signals, the VV dataset
helps explore skin tone’s influence on BP estimation. We also assess hypertension classification
(T14), average seated heart rate (T13), and continuous heart rate during activities (T19), along with
activity classification (T20). In the emotion domain, we classify PPG signals into mood disturbance
levels (T16), valence (T17), and arousal (T18).

4.3 BASELINES

We benchmark PAPAGEI’s performance against competitive baselines. As open-source founda-
tion models designed for physiological signals, PAPAGEI is compared to recent time-series FMs:
Chronos (Ansari et al., 2024) and MOMENT (Goswami et al., 2024). To evaluate the merits of
our SSL framework, we also compare PAPAGEI with common SSL methods (trained from scratch)
such as SimCLR (Chen et al., 2020), BYOL (Grill et al., 2020), and TF-C (Zhang et al., 2022).
In addition, to assess model generalizability on PPG signals, we compare against REGLE, a model
pre-trained on UK Biobank’s PPG signals (Yun et al., 2024). As a simple baseline, we employ a ran-
dom forest trained on statistical features extracted from the PPG signal, including mean, median,
maximum, minimum, and the 25th, 50th, and 75th percentiles (”Stat. Features”). This task-specific
approach serves as a benchmark for comparison with more advanced techniques.
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Table 3: Downstream comparison against pre-trained models. Feature extraction parameters are
indicated next to each name. 95% CIs are reported in square brackets and the best value is bolded.

REGLE (0.07M) Chronos (200M) Moment (385M) PAPAGEI-P (5M) PAPAGEI-S (5M)

Classification - AUROC (↑) (Yun et al., 2024) (Ansari et al., 2024) (Goswami et al., 2024)

ICU Admission 0.57 [0.52-0.62] 0.73 [0.68-0.80] 0.72 [0.70-0.80] 0.73 [0.67-0.78] 0.79 [0.75-0.82]

Mortality 0.55 [0.52-0.59] 0.68 [0.65-0.71] 0.67 [0.63-0.71] 0.67 [0.63-0.71] 0.67 [0.63-0.70]

Smoker 0.54 [0.47-0.59] 0.62 [0.57-0.67] 0.62 [0.56-0.67] 0.64 [0.58-0.69] 0.61 [0.56-0.66]

Pregnancy stage 0.64 [0.57-0.63] 0.81 [0.79-0.82] 0.76 [0.74-0.78] 0.74 [0.72-0.76] 0.78 [0.75-0.80]

Hypertension 0.47 [0.34-0.58] 0.57 [0.43-0.71] 0.75 [0.64-0.85] 0.74 [0.55-0.90] 0.77 [0.68-0.87]

Sleep Disordered Breathing 0.45 [0.30-0.61] 0.58 [0.35-0.82] 0.45 [0.23-0.66] 0.54 [0.23-0.66] 0.70 [0.57-0.84]

Mood Disturbance 0.41 [0.16-0.66] 0.43 [0.21-0.68] 0.55 [0.33-0.78] 0.53 [0.27-0.78] 0.56 [0.33-0.77]

Valence 0.55 [0.52-0.57] 0.56 [0.53-0.59] 0.57 [0.54-0.59] 0.53 [0.51-0.56] 0.56 [0.54-0.59]

Arousal 0.51 [0.52-0.58] 0.57 [0.54-0.60] 0.56 [0.53-0.58] 0.58 [0.55-0.61] 0.55 [0.52-0.57]

Average 0.52 ± 0.06 0.62 ± 0.10 0.63 ± 0.09 0.63 ± 0.08 0.67 ± 0.09
Regression - MAE (↓)

Apnea/Hypopnea Index > 3% 15.54 [14.20-16.69] 14.06 [13.05-15.16] 14.23 [13.04-15.42] 13.85 [12.43-15.49] 12.97 [11.87-14.05]

Apnea/Hypopnea Index > 4% 12.64 [11.47-13.78] 11.57 [10.51-12.72] 11.80 [10.79-12.93] 11.24 [9.71-12.87] 10.56 [9.59-11.62]

Gestation Age 7.28 [7.16-7.39] 5.69 [5.54-5.85] 6.24 [6.10-6.37] 6.40 [6.21-6.59] 6.05 [5.91-6.17]

Systolic BP (VV) 15.88 [13.67-18.36] 17.24 [14.57-20.13] 14.71 [12.38-17.29] 19.11 [16.26-22.23] 14.65 [12.50-16.78]

Diastolic BP (VV) 8.65 [7.16-10.27] 10.53 [8.91-12.19] 10.53 [8.91-12.19] 10.87 [9.10-12.98] 8.29 [6.61-10.22]

Systolic BP (PPG-BP) 16.32 [13.87-19.13] 16.91 [13.31-19.34] 14.50 [11.98-17.31] 13.60 [10.65-16.51] 14.39 [12.53-16.45]

Diastolic BP (PPG-BP) 9.30 [7.94-10.87] 10.26 [8.13-12.57] 9.53 [8.28-10.96] 8.88 [7.33-10.76] 8.71 [7.18-10.01]

Average HR 6.88 [5.81-8.12] 8.51 [7.05-10.07] 4.41 [3.48-5.48] 3.47 [2.74-4.32] 4.00 [3.34-4.67]

HR 16.35 [16.20-16.50] 9.65 [9.50-9.79] 8.82 [8.68-8.96] 10.92 [10.80-11.04] 11.53 [11.40-11.66]

Average MAE (sMAPE) 12.09 ± 3.83 (15.23%) 11.60 ± 3.60 (14.20%) 10.43 ± 3.46 (13.82%) 10.92 ± 4.25 (14.09%) 10.12 ± 3.47 (13.34%)

4.4 LINEAR EVALUATION

We initially split the in-domain and out-of-domain datasets into training, validation, and test sets us-
ing 80/10/10 and 60/20/20 ratios at the participant-level, respectively. Hyperparameter optimization
is performed on the training set using nested cross-validation, thus the validation and test sets are
merged for evaluation. Models are evaluated by extracting feature representations from resampled
data (125Hz) and applying linear probing for each task. For binary classification, we use logistic
regression, measuring performance with AUROC. Regression tasks are evaluated using ridge regres-
sion and mean absolute error (MAE), with aggregated results reported via symmetric mean absolute
percentage error (sMAPE). Multi-class classification tasks are trained using a random forest model,
with accuracy as the evaluation metric. To ensure robustness, we compute 95% confidence intervals
through bootstrapping (500 sampling runs with replacement). Additional details in Appendix §A.

5 RESULTS

5.1 OVERALL PERFORMANCE

In general, from Figure 3, we observe that PAPAGEI is more accurate across many tasks indicated
by the larger AUROC area and smaller MAE area. Table 3 presents a more detailed comparison
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C
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M
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Figure 4: Downstream data-efficiency analysis.
Results are averaged over all binary classification
(left) and regression tasks (right). PAPAGEI-S
performs better with increased label availability.

between PAPAGEI and other pre-trained models.
For classification tasks, PaPaGei-S achieves the
highest average AUROC of 0.67, outperforming
other models across several tasks, particularly
in ICU Admission (0.79), Hypertension (0.77),
and Sleep Disordered Breathing (0.70). In re-
gression tasks, PaPaGei-S again demonstrates
strong performance, achieving the lowest aver-
age MAE (10.12), particularly in tasks related to
Apnea/Hypopnea Index and BP measurements.
REGLE, a small model trained on a large PPG
dataset, generally underperforms compared to
other models, suggesting its compact size may
limit learning complex patterns. Chronos obtains good performance in predicting mortality, preg-
nancy stage, and smoking, likely due to their slower rate of change and reduced reliance on granular
PPG-specific features. General-purpose models suffice for these high-level outcomes. However,
tasks requiring finer PPG-specific granularity, such as heart rate prediction, blood pressure estima-
tion, or sleep apnea, benefit from PAPAGEI’s specialized feature extraction. Notably, PAPAGEI-S
consistently outperforms PAPAGEI-P, highlighting the advantages of signal morphology objectives
in enhancing predictive accuracy.
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Table 4: Downstream comparison against baseline and SSL methods. Feature extraction param-
eters are indicated next to each name. 95% CIs are reported in square brackets and the best value is
bolded. Implementation details are in Appendix §A.

Stat. Features SimCLR (5M) BYOL (5M) TF-C (10M) PAPAGEI-P (5M) PAPAGEI-S (5M)
Classification - AUROC (↑) (Chen et al., 2020) (Grill et al., 2020) (Zhang et al., 2022)

ICU Admission 0.71 [0.65-0.78] 0.75 [0.72-0.79] 0.78 [0.73-0.81] 0.71 [0.67-0.75] 0.73 [0.67-0.78] 0.79 [0.75-0.82]

Mortality 0.57 [0.54-0.61] 0.67 [0.63-0.70] 0.67 [0.64-0.71] 0.67 [0.63-0.70] 0.67 [0.63-0.71] 0.67 [0.63-0.70]

Smoker 0.63 [0.58-0.67] 0.62 [0.57-0.68] 0.62 [0.57-0.68] 0.61 [0.56-0.67] 0.64 [0.58-0.69] 0.61 [0.56-0.66]

Pregnancy stage 0.64 [0.62-0.67] 0.74 [0.72-0.75] 0.62 [0.57-0.68] 0.74 [0.72-0.76] 0.74 [0.72-0.76] 0.78 [0.75-0.80]

Hypertension 0.66 [0.47-0.83] 0.75 [0.64-0.86] 0.74 [0.64-0.84] 0.76 [0.63-0.86] 0.74 [0.55-0.90] 0.77 [0.68-0.87]

SDB 0.32 [0.14-0.55] 0.61 [0.46-0.76] 0.59 [0.42-0.74] 0.58 [0.44-0.73] 0.54 [0.23-0.66] 0.70 [0.57-0.84]

Mood Disturbance 0.54 [0.31-0.77] 0.32 [0.12-0.55] 0.46 [0.21-0.71] 0.59 [0.33-0.84] 0.53 [0.27-0.78] 0.56 [0.33-0.77]

Valence 0.52 [0.49-0.55] 0.52 [0.49-0.55] 0.53 [0.50-0.56] 0.57 [0.54-0.59] 0.53 [0.51-0.56] 0.56 [0.54-0.59]

Arousal 0.55 [0.53-0.58] 0.55 [0.52-0.58] 0.54 [0.30-0.78] 0.55 [0.52-0.58] 0.58 [0.55-0.61] 0.55 [0.52-0.57]

Average 0.57 ± 0.11 0.61 ± 0.13 0.62 ± 0.10 0.64 ± 0.07 0.63 ± 0.08 0.67 ± 0.09
Regression - MAE (↓)

Apnea/Hypopnea Index > 3% 15.31 [13.63-17.14] 14.17 [13.04-15.38] 14.26 [13.10-15.57] 15.10 [13.84-16.40] 13.85 [12.43-15.49] 12.97 [11.87-14.05]

Apnea/Hypopnea Index > 4% 12.52 [10.92-14.14] 11.76 [10.65-12.89] 11.88 [10.71-13.05] 12.41 [11.33-13.49] 11.24 [9.71-12.87] 10.56 [9.59-11.62]

Gestation Age 7.15 [6.99-7.34] 6.28 [6.21-6.49] 6.24 [6.09-6.38] 6.35 [6.21-6.49] 6.40 [6.21-6.59] 6.05 [5.91-6.17]

Systolic BP (VV) 15.76 [13.67-18.36] 16.18 [13.73-18.85] 15.01 [12.32-17.80] 15.70 [13.23-18.13] 19.11 [16.26-22.23] 14.65 [12.50-16.78]

Diastolic BP (VV) 9.75 [7.16-11.27] 9.15 [7.65-10.65] 8.91 [7.48-10.43] 9.15 [7.65-10.65] 10.87 [9.10-12.98] 8.29 [6.61-10.22]

Systolic BP (PPG-BP) 15.50 [11.68-20.25] 14.38 [11.80-16.88] 14.99 [13.03-17.38] 14.45 [12.20-17.00] 13.60 [10.65-16.51] 14.39 [12.53-16.45]

Diastolic BP (PPG-BP) 9.35 [7.44-11.66] 9.01 [7.90-10.60] 9.16 [8.00-10.50] 9.20 [7.90-10.60] 8.88 [7.33-10.76] 8.71 [7.18-10.01]

Average HR 7.01 [5.48-8.89] 4.65 [3.99-5.39] 4.78 [3.88-5.93] 3.58 [2.90-4.21] 3.47 [2.74-4.32] 4.00 [3.34-4.67]

HR 13.07 [12.90-13.23] 11.59 [11.46-11.72] 12.80 [12.66-12.94] 9.99 [9.86-10.12] 10.92 [10.80-11.04] 11.53 [11.40-11.66]

Average MAE (sMAPE) 11.60 ± 3.41 (15.12%) 10.79 ± 3.63 (13.91%) 10.89 ± 3.58 (14.05%) 10.65 ± 3.88 (14.07%) 10.92 ± 4.25 (14.09%) 10.12 ± 3.47 (13.34%)

Table 4 presents a comparison against three SSL methods and a baseline model trained on statistical
features. In classification tasks, PaPaGei-S again shows the highest average AUROC, outperforming
all others. SimCLR, BYOL, and TF-C generally outperform the statistical feature baseline but fall
short of PaPaGei-S’s performance. TF-C shows competitive results in some tasks, achieving the
highest AUROC for Mood Disturbance and Valence. For regression tasks, PaPaGei-S again achieves
the lowest average MAE. SimCLR, BYOL, and TF-C show mixed results, as each excels in different
tasks. SimCLR comes second in estimating Avg HR, while BYOL does so in Systolic BP (VV). The
statistical feature baseline generally underperforms compared to the advanced methods across most
tasks. PaPaGei-P, while not consistently outperforming PaPaGei-S, shows strong results that are
often competitive with or better than other contrastive learning methods. Overall, both PaPaGei
variants offer robust performance across a wide range of tasks.

5.2 ABLATION STUDIES

Pre-training data ablation. We evaluate PAPAGEI-S using different pre-training data
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Figure 5: Ablation on pre-training data. Average perfor-
mance across tasks for models trained on: V (VitalDB), M
(MESA), and M-III (MIMIC-III). The mean value is dis-
played above the plots. The Wilcoxon signed rank test is
applied to evaluate significance between the All dataset and
the rest (∗∗ : p < 0.05 and ∗ : 0.05 ≤ p < 0.10).

combinations. As shown in Fig-
ure 5, performance on downstream
tasks improves with more upstream
data, with the best results achieved
when using all three datasets. No-
tably, MESA outperforms the oth-
ers despite having the fewest par-
ticipants but the highest number of
segments. This supports findings
from language models (Dubey et al.,
2024) and wearable sensing research
(Narayanswamy et al., 2024), indi-
cating that the volume of segments
or hours contributes more to perfor-
mance than the number of users.

PAPAGEI-S component ablation. We assess the impact of PAPAGEI-S components. Figure 6
shows that the full model (0.67, 10.12) consistently outperforms individual components in both
mean and median metrics. On average, sVRI (0.64, 10.35) outperforms the combinations of sVRI +
SQI (0.62, 10.80) and sVRI + IPA (0.64, 10.73). Our results indicate that combining SQI and IPA
yields greater benefits compared to their individual contributions.

Downstream data-efficiency analysis. For limited-data scenarios, we assess the performance of
downstream linear probing across varying levels of labeled data availability. We compare to the sec-
ond best-performing baselines from Tables 3 & 4, namely TF-C and Moment. As shown in Figure
4, the classification performance of PAPAGEI-S steadily improves as more labeled data becomes
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available. While TF-C and Moment also show performance gains between 25% and 100% labeled
data, their improvements are less consistent and smaller than PAPAGEI-S. In regression tasks, PA-
PAGEI-S achieves the lowest MAE at both 25% and 100% data availability, consistently reducing
errors. At the middle breakpoints, the results are mixed with TF-C and Moment being competitive.

sVRI sVRI + SQI sVRI + IPA Full
PaPaGei Components

0.4

0.5

0.6

0.7

AU
RO

C

0.64 0.62 0.64 0.67
**

**
*

(a)

sVRI sVRI + SQI sVRI + IPA Full
PaPaGei Components

0

5

10

15

20

M
AE

10.35 10.80 10.73 10.12
**

**
**

**

(b)

IC
U

M
or

ta
lit

y
Sm

ok
er

Pr
eg

na
nc

y
Hy

pe
rte

ns
io

n
SD

B
M

oo
d

Va
le

nc
e

Ar
ou

sa
l

AH
I >

 3
%

AH
I >

 4
%

Ge
st

at
io

n
Sy

s. 
BP

*
Di

a.
 B

P*
Sy

s. 
BP

Di
a.

 B
P

Av
g.

 H
R HR

PaPaGei-S-5M

PaPaGei-S-35M

PaPaGei-S-139M

Rank 1
Rank 2
Rank 3

(c)

Figure 6: PAPAGEI-S component ablation study (a, b) and scaling analysis (c). (Left) The boxplot
shows the performance of PAPAGEI-S components across all tasks. The Wilcoxon signed rank test
is applied to evaluate pair-wise significance (∗∗ : p < 0.05 and ∗ : 0.05 ≤ p < 0.10). (Right)
Heatmap ranks of PAPAGEI-S models with 5M, 35M, and 139M parameters (rank 1 denotes the
best performance). Detailed results in Table 13.

Model size and scaling analysis. We investigated the impact of model size on performance by
training PAPAGEI-S-35M and PAPAGEI-S-139M with 35M and 139M parameters, respectively.
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Figure 7: Pair-wise inter-participant embed-
ding distances for SDB.

Both models share the same number of layers, but
the 35M model uses a 32-filter size while the 139M
model uses 64. As shown in 6c, the smallest model
(5M parameters) consistently outperformed larger
models on all but one task. This suggests the 5M
model is better suited for our pre-training datasets,
aligning with prior findings on the proportionality
between data and model size (Narayanswamy et al.,
2024). While the 139M model surpassed the 35M, it
still lagged behind the 5M, indicating that wider mod-
els may improve performance in classification tasks,
likely due to the contrastive learning objective. Nevertheless, our scaling analysis shows a non-
monotonic trend, indicating other factors strongly influence performance.

Effect of Demographics. We evaluate the effect of demographics (age, sex) and PPG-specific fea-
tures (sVRI, IPA, SQI) in Appendix §E. In demographics prediction (Table 16), PAPAGEI-S achieves
7.78 MAE in age regression, 0.85 accuracy in age classification, and 0.79 accuracy in sex classifi-
cation. While our results trail larger closed studies (Abbaspourazad et al., 2023) by 2.18, 0.05,
and 0.13 for segment-level SSL, and by 5.59, 0.12, and 0.25 for patient-level SSL, they mark an ad-
vancement in open-source efforts. These findings indicate that patient-level positive pair selection in
SSL better captures demographic-related features for downstream prediction. Moreover, the reduced
performance of PAPAGEI-S can be attributed to evaluations conducted on diverse device setups, as
opposed to a single device configuration. Our ablation study (Table 15) shows that PAPAGEI-S out-
performs the demo + PPG in 14 out of 18 tasks, particularly in tasks with real-time dependence such
as heart rate estimation. Importantly, including demographics in addition to PAPAGEI-S creates a
stronger model. These findings emphasize that demographic features complement rather than
compete with PAPAGEI-S, showcasing the potential of integrating PAPAGEI’s advanced feature
extraction capabilities with demographic context to improve task outcomes.

5.3 CASE STUDIES

Inter-participant embeddings. Figure 7 shows the distribution of pair-wise embedding distances
across participants in the SDB dataset (Kiyasseh et al., 2021). SimCLR and BYOL exhibit sharper
peaks at lower distances, indicating that participants are more closely clustered within the embed-
ding space. This could be interpreted as a mild form of mode collapse, where the model does not
fully capture the individual differences between participants. TF-C demonstrates a more balanced
distribution, with both large and small peaks, suggesting it captures both similarities and some vari-
ation between participants. In contrast, PAPAGEI-S provides the widest dispersion of embeddings,
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Figure 8: Regression plots and prediction distribution of different models compared to ground truth
for AHI > 3%. R2 is the coefficient of determination and m is the correlation slope.

highlighting its ability to capture a broader range of features that may be valuable for distinguishing
between participants’ medical conditions.

Regression predictions. From Figure 8, compared to the pre-trained and SSL baseline, PAPAGEI-
S demonstrates steeper slopes (m) and higher R2 values, reflecting a stronger alignment between
predictions and true values. Additionally, the prediction distribution for AHI indicates that SimCLR
and Chronos tend to regress more toward the mean, while PAPAGEI-S achieves a wider distribution
base, highlighting its capacity to capture left tail better. Additional plots are shown in Appendix §F.

Skin tone analysis. We examine BP estimation performance across skin tones because it is crucial
for practical use (Bent et al., 2020). As shown in Figure 9 (More details in Figure 26), PAPAGEI-S
achieves the best BP estimation across light tones. Across dark tones, we notice that BYOL and
REGLE obtain the lowest MAE for Systolic BP and Diastolic BP. However, identifying a single
model that performs best across all skin tones remains challenging. While PAPAGEI-S obtains the
best overall performance, additional work is necessary to improve robustness on darker skin tones.

6 DISCUSSION & CONCLUSION
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Figure 9: Skin tone analysis for Blood
Pressure estimation (VV dataset)

.

Our results show that PAPAGEI outperforms baselines
in at least 14 tasks, with classification and regression
improvements of 4.7%-6.3% and 2.9%-4.9%, respec-
tively. PAPAGEI-S excelled in cardiovascular tasks like
BP, Hypertension, and HR, which can be attributed to
the sVRI and IPA objectives, and PAPAGEI-P outper-
formed baselines like Moment, excelling in tasks such as
Smoking and Arousal. Ablation studies confirmed that
the model with all three SSL objectives performs best,
with sVRI highlighted as a key component and IPA and
SQI providing positive knowledge transfer in multi-task
setups. To assess performance under class imbalance,
we examined the F1-score. PaPaGei achieves the high-
est F1 in 6 out of 9 classification tasks, demonstrating
its effectiveness in handling data imbalance. For regres-
sion, PaPaGei-S achieves the highest R2 in 7 tasks (Ap-
pendix §D), reflecting better alignment with the true dis-
tribution. These results highlight the robustness and ver-
satility of PaPaGei-S across classification and regression
tasks. PAPAGEI is both data- and size-efficient (5M),
making it ideal for medical applications where large models (200M+) are impractical due to on-
device limitations or data privacy concerns with cloud model inference. While combining PAPAGEI-
P and PAPAGEI-S objectives into one model might seem intuitive, it is impractical because it would
constrain positive pairs on both sVRI and the number of participants, resulting in too many unique
labels with limited samples per label. Our case studies also showed that PAPAGEI-S captured per-
sonal medical information due to well-dispersed embeddings, compared to baselines. Future work
should focus on diversifying training data, investigating sampling rate effects, and exploring multi-
modal approaches or alternative architectures. Additionally, as extracting PPG features for different
morphologies is non-trivial, future work benefit from systematic evaluation of PPG features and
modeling. In conclusion, PAPAGEI represents a significant advancement in foundation models for
analyzing PPG signals in resource-constrained medical environments, with its open-source nature
encouraging further research and development in healthcare applications.
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REPRODUCIBILITY STATEMENT

Models, data, and code are publicly available for reproducibility and future research.We exclusively
utilize publicly accessible datasets, which can be requested or downloaded from the respective study
group websites, allowing others to easily obtain the data for their own analyses. In §4 and Ap-
pendix §B, we provide comprehensive descriptions of the datasets, ground-truth annotations, and
data pre-processing methods used in our experiments, ensuring transparency in our data handling
procedures. The code to run our model is published with user-friendly examples. We have provided
a detailed overview of the model architecture and its hyperparameters in §3, §4.1, and Appendix §A.
Thus, our work is designed to be reproducible, enabling future research to build upon our findings.

ETHICS STATEMENT

Our research on PAPAGEI, utilizing publicly available PPG datasets, adheres to data privacy regu-
lations and promotes transparency through open-source releases. We acknowledge potential biases
in the training data and have evaluated performance across diverse datasets, particularly regarding
skin tone variations. While PaPaGei offers significant potential for improving non-invasive health
monitoring, we recognize the need to address potential misuse (Perez-Pozuelo et al., 2021). Exam-
ples of misuse could include unauthorized health monitoring, discriminatory practices in insurance
or employment, unfair credit scoring, or exploiting personal health data for targeted marketing. We
strongly advocate responsible use solely for beneficial healthcare applications. Our study followed
established research ethics guidelines, and we declare no conflicts of interest. We encourage on-
going interdisciplinary dialogue to address potential risks and ensure responsible development and
deployment of such technologies, recognizing the broader societal impacts of AI in healthcare. We
remain committed to ethical AI advancement and welcome further discussion on the critical issues,
including the development of governance frameworks to prevent misuse and protect data privacy.
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Hugo Yèche, Gideon Dresdner, Francesco Locatello, Matthias Hüser, and Gunnar Rätsch. Neigh-
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APPENDIX

A TRAINING AND INFERENCE DETAILS

Architecture & Pre-training. The architecture of our ResNet 18-block encoder is described in
Tables 5, 6, and 7. Each 1D convolution layer is configured with a kernel size of 3 and a stride
of 2, while the max-pooling layer utilizes a kernel size of 3 with a stride of 1. We start with a
filter size of 32, which doubles every 4 blocks to capture progressively more complex features.
Dropout is applied with a probability of 0.5 to prevent overfitting. This backbone architecture is
used across different methods in our experiments to ensure consistency and make for a fair com-
parison during evaluation. Additionally, our SSL baselines use the same batch size, learning rate,
input sampling frequency, and training steps as PAPAGEI. We use the same augmentation types and
intensity for BYOL (Grill et al., 2020), SimCLR Chen et al. (2020), and PAPAGEI-P. Furthermore,
we investigated 0.07 and 0.5 temperatures as MoCo (He et al., 2020) and SimCLR (Chen et al.,
2020), respectively. In contrast to a smaller embedding size of 256 adopted by (Abbaspourazad
et al., 2023), we project the learned representations to a 512-dimensional embedding after the con-
volutional block (we investigated larger embedding sizes of 768 and 1024 and found no signifi-
cant performance changes). This embedding is then passed through two Mixture of Experts (MoE)
blocks, each containing three experts. Each expert block consists of two sequential linear layers,
with sizes 256 and 1, which are used for IPA and SQI prediction tasks. It is noteworthy that both
BYOL and TF-C require multiple encoders and different projection heads, resulting in variations in
model sizes. For these methods, we use existing implementations available online34, but apply our
encoder as the backbone to ensure consistency. Our models are pre-trained for 15,000 steps using
the Adam optimizer, with a learning rate of 10−4. We use a batch size of 128 for training since
after various trials we did not observe significant differences in performance with batch sizes of 64
and 256. We performed five iterations of pre-training and selected the best-performing model for
each downstream task. For SimCLR and PAPAGEI-P, a single model consistently achieves the best
performance across all tasks. For BYOL, we select two models that perform best across all tasks.
Similarly, for TF-C and PAPAGEI-S, we choose three models with the highest performance. We use
this approach as some models excel in certain task groups while others perform better in the rest.
Note that a more robust approach would involve broader hyperparameter tuning with k-fold vali-
dation to obtain the optimal model. However, this requires substantial computational resources for
pre-training. Additionally, we did not perform an exhaustive evaluation of different augmentation
settings but instead used transformations and values based on prior research (Abbaspourazad et al.,
2023; Tang et al., 2020). For model training, we primarily used PyTorch (Paszke et al., 2019). The
NTXentLoss implementation was sourced from the PyTorch Metric Learning package5.

Table 5: ResNet-style CNN encoder architec-
ture used in PAPAGEI.

Layer Output Shape
Conv1 [32, 32, 1250]
Batch Norm [32, 32, 1250]
ReLU [32, 32, 1250]
Basic Block Type 1 [32, 32, 1250]
(Basic Block Type 2) × 3 [32, 32, 313]
(Basic Block Type 2) × 4 [32, 64, 79]
(Basic Block Type 2) × 4 [32, 128, 20]
(Basic Block Type 2) × 4 [32, 256, 5]
(Basic Block Type 2) × 2 [32, 512, 3]
BatchNorm [32, 512, 3]
ReLU [32, 512, 3]
Linear [32, 512]

Table 6: Basic Block
Type 1

Layer
Conv1D
BatchNorm
ReLU
Dropout
Conv1D

Table 7: Basic Block
Type 2

Layer
BatchNorm
ReLU
Dropout
Conv1D
BatchNorm
ReLU
Dropout
Conv1D
Maxpool

3https://github.com/chengding0713/SiamQuality
4https://github.com/mims-harvard/TFC-pretraining
5https://github.com/KevinMusgrave/pytorch-metric-learning
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Parameters: Training and Inference. This section outlines the training and inference parameters
used in our methods. Inference parameters are those utilized for feature extraction.

• PAPAGEI-P (5M) and SimCLR (5M): Both training and inference involve 5M parameters.
For SimCLR, it is worth noting that we use the projection features during inference instead
of using the encoder only.

• BYOL (5M): During training, the online and target encoders each have 5M parameters, and
the projector is 800K. At inference, only the online encoder is used for feature extraction,
totaling 5M parameters.

• TF-C (10M): The time and frequency encoders each have 5M parameters, followed by a
smaller projector (< 100K). Since both encoders and projectors are required for inference,
the total parameter count is 10M.

• PAPAGEI-S (5M): The encoder consists of 5M parameters, while the expert heads con-
tribute approximately 400K each. As the expert heads are not used for feature extraction,
the inference parameter total remains 5M.

Feature Extraction & Linear Evaluation We extracted the projected embedding for linear eval-
uation. For Moment and Chronos, we extract the default embedding size, which is 1024 and 768,
respectively. We use cross-validated grid search to identify the best parameters for our linear probes.
The hyperparameters chosen for each model are as follows: (1) Logistic Regression: {’penalty’:
[’l1’, ’l2’], ’C’: [0.01, 0.1, 1, 10, 100], ’solver’: [’lbfgs’], ’max iter’: [100, 200]}. (2) Linear Re-
gression: {’alpha’: [0.1, 1.0, 10.0, 100.0], ’solver’: [’auto’, ’cholesky’, ’sparse cg’]}. (3) Random
Forest: {’n estimators’: [100, 200], ’max features’: [’sqrt’, ’log2’], ’max depth’: [10, 20, 30],
’min samples split’: [2, 5], ’min samples leaf’: [1, 2]}

B DATASETS AND TASKS

Table 8: The task evaluation benchmark of PAPAGEI. Datasets highlighted in gray are unseen during
training, thus, the corresponding tasks are out-of-domain. The rest were used for pre-training but
their test sets and labels are held out. For task type, B/M/R refer to Binary classification, Multi-class
classification (#classes), and Regression, respectively.

#ID Dataset SR (Hz) Collected by Task Task Type #Participants (#Samples)
T1 VitalDB (Lee et al., 2022) 500 ICU monitor ICU admission (Yes/No) B 5866
T2 Operation Type M (11) 5866
T3 MIMIC-III (Moody et al., 2020) 125 ICU Monitor Mortality B 5596
T4 MESA (Zhang et al., 2018) 256 Polysomnography finger Smoker B 2055
T5 AHI > 3% Oxygen Desat. R 2055
T6 AHI > 4% Oxygen Desat. R 2055
T7 nuMom2B (Facco et al., 2015) 75 Polysomnography finger Pregnancy stage (early/late) B 3163 (5337)
T8 Gestation Age R 3163 (5337)
T9 VV (Skin Tone) (Toye, 2023) 60 Finger Systolic BP R 231
T10 Diastolic BP R 231
T11 PPG-BP (Liang et al., 2018a) 1000 Finger Pulse Ox Systolic BP R 219
T12 Diastolic BP R 219
T13 Average Heart Rate R 219
T14 Hypertension B 219
T15 SDB (Garde et al., 2014) 62.5 Finger Pulse Ox Sleep Disordered Breathing B 146
T16 ECSMP (Gao et al., 2021) 64 Wrist Mood Disturbance B 89
T17 WESAD (Schmidt et al., 2018) 64 Wrist Valence B 15 (4497)
T18 Arousal B 15 (4497)
T19 PPG-DaLiA (Reiss et al., 2019) 64 Wrist Heart Rate R 15 (64697)
T20 Activity M (9) 15 (64697)

VitalDB. The VitalDB dataset provides comprehensive monitoring of vital signs and physiological
parameters from 6,388 surgical cases. This high-resolution dataset includes a wide range of intraop-
erative monitoring variables such as heart rate, blood pressure, oxygen saturation, and other critical
physiological signals, collected at frequent intervals throughout surgery. The surgical operation be-
longs to one of the eleven categories: colorectal, biliary/pancreas, stomach, major resection, minor
resection, breast, transplantation, thyroid, hepatic, vascular, and others. After the data cleaning pro-
cess, we narrowed the dataset down to 5,866 participants with complete and usable information. As
depicted in Figure 10, we observe that the gender distribution is relatively balanced, with nearly
equal representation of male and female patients. Additionally, the majority of the participants fall
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within the age range of 50 to 70, with a significant proportion being around 60 years old. The ICU
label corresponds to whether the person was admitted to the ICU or not.
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Figure 10: VitalDB dataset descriptive statistics.

MIMIC-III. In our analysis, we utilize the MIMIC-III waveform database matched subset, which
comprises data from 10,282 ICU patients. From this dataset, we focus specifically on extracting
photoplethysmogram (PPG) data, provided it is available for each patient. To ensure the quality of
the data, we set a criterion of at least 1 minute of usable PPG signal that must be present. After
performing a thorough data cleaning process, we end up with a cohort of 5,596 participants with
reliable PPG data. As illustrated in Figure 11, the dataset shows a gender imbalance, with a higher
proportion of male patients compared to female patients. Additionally, the majority of participants
are aged 60 years or older, reflecting a typical ICU population that often includes elderly patients
with critical health conditions.

MESA. The Multi-Ethnic Study of Atherosclerosis (MESA) sleep sub-study gathered data from
2,237 participants through overnight, unattended polysomnography to assess various sleep parame-
ters. After the data cleaning process, we retained 2,055 participants for analysis. As shown in Figure
12, the dataset shows a slightly larger proportion of female participants. The age distribution reveals
that most participants are between 60 and 80 years old, reflecting an older adult population, which
is commonly studied concerning sleep disorders and cardiovascular risks.

In this study, we use the Apnea-Hypopnea Index (AHI) with at least 3% and 4% oxygen desaturation
as the primary measure for diagnosing sleep apnea, as recommended by the American Academy of
Sleep Medicine (Ruehland et al., 2009). These thresholds indicate the severity of sleep apnea, with
oxygen desaturation during apneas/hypopneas being a critical factor. We predict these AHI values
directly in our regression models. Additionally, we classify participants with any history of smoking
as smokers. This approach allows us to account for both current and former smokers, capturing a
broader range of smoking-related health risks within our analysis.

NuMoM2B. Changes in gestational age and pregnancy stage are risk factors associated with adverse
pregnancy outcomes such as hypertensive disorders and small-for-gestational-age delivery (Bouariu
et al., 2022; Parikh et al., 2021; Wu et al., 2020; Crump et al., 2023). These diseases affect heart
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Figure 11: MIMIC-III dataset descriptive statistics.
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Figure 12: MESA dataset descriptive statistics.
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Figure 13: NuMoM2B dataset descriptive statistics.

function that can be measured using the PPG sensor (Feli et al., 2024). The Nulliparous Pregnancy
Outcomes Study: monitoring mothers-to-be (nuMoM2B) sub-study examines the relationship be-
tween adverse pregnancy outcomes and sleep disorders. In particular, an overnight polysomnograph
that collects PPG data is administered to the women at their homes during 6-15 weeks (early) and
22-31 weeks (late) of pregnancy. Therefore, our tasks are to classify between early and late-stage
pregnancy as well as predict the gestation age of the fetus. In Figure 13, we observe that maternal
age peaks around 28 years. The gestational age distribution is bimodal, which we use as a predictor
in our regression task. For pregnancy stage, we classify visit 1 as early and visit 3 as late.

VitalVideos (VV) (Skin Tone). The Vital Videos study is an ongoing project that collects data
on vital signs, videos, and blood pressure across a variety of conditions, including variations in
lighting, background, and skin tone. For our analysis, we used data from two groups, totalling 231
participants, from Europe and Sub-Saharan Africa. As shown in Figure 14, most participants have a
Fitzpatrick skin tone of 5 or 6, indicating darker skin. The dataset is primarily composed of female
participants, with an age range between 40 and 60 years. Additionally, the majority of participants
had a systolic blood pressure of around 125 and a diastolic pressure of around 80, suggesting that
most individuals in the study were relatively healthy.

PPG-BP. The PPG-BP consists of short PPG recordings from 219 participants collected at 1000Hz.
For each subject, there are three 2.1s recordings. For our analysis, we zero pad them to 10s. In
Figure 15, the age distribution shows that most participants are between 40 and 80 years old, with
fewer participants under 40. Furthermore, the majority of individuals have hypertension. In terms
of gender, the dataset has slightly more females than males. The distribution of systolic blood
pressure is centered around 120-140, indicating a population with normal to moderately elevated
blood pressure, while diastolic blood pressure predominantly falls between 70 and 90. Lastly, the
average heart rate for most participants ranges between 70 and 90 beats per minute.
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Figure 14: Vital Videos dataset descriptive statistics.
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Figure 15: PPG-BP dataset descriptive statistics.
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Figure 16: SDB dataset descriptive
statistics.

SDB. The sleep-disordered breathing dataset includes
data from 146 children, collected through polysomnog-
raphy with finger recordings lasting over three hours.
Ground truth labels are provided as Apnea-Hypopnea In-
dex (AHI) values, categorized into four levels: 0 (nor-
mal), 1 (mild, AHI between 5 and 15), 2 (moderate, AHI
between 15 and 30), and 3 (severe, AHI over 30) as shown
in Figure 16. For our classification task, we group AHI 0
as indicating no sleep breathing disorder, while AHI lev-
els 1 through 3 are classified as the presence of a sleep
breathing disorder.
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ECSMP. The ECSMP dataset was gathered to study the relationship between emotion, cognition,
and sleep in 89 participants. As shown in Figure 17, the majority of the participants are young
adult females, with an average age of around 25 years. Mood disturbances were measured using
the Profile of Mood States (POMS) scale, which captures various aspects of emotional states. To
classify participants into high versus low mood disturbance categories, we binarized the Total Mood
Disturbance (TMD) values by using the median as the cutoff point.
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Figure 17: ECSMP dataset descriptive statistics.

WESAD. The wearable stress and affect detection dataset is a multi-modal dataset collected from
15 participants using various sensor modalities. In this study, participants were exposed to videos
designed to elicit different affective states, such as amusement, meditation, stress, and baseline
conditions. Following each session, participants completed the Self-Assessment Manikins (SAM)
questionnaire (Bradley & Lang, 1994), which provided the ground-truth values for valence and
arousal. In our analysis, we binarized these values by categorizing valence and arousal as low (1)
when less than 5 and high (0) otherwise. Then, we perform regression at the segment level. As
shown in Figure 18, arousal levels are generally low, while valence tends to be high in most cases.
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Figure 18: WESAD dataset descriptive statistics.

PPG-DaLiA. This dataset collects PPG signals from 15 participants for heart rate estimation while
performing various daily activities. These activities include sitting, ascending/descending stairs,
table soccer, cycling, driving, lunch break, walking, and working. As a result, the dataset captures a
wide range of heart rates, varying from 60 to 150 beats per minute, depending on the specific activity
being performed. To align the PPG signal with the activity labels, we use a 8s window with 6s and
2s overlap and shift, respectively. After this, we resample and pad the signal to facilitate modeling.
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Figure 19: PPG-DaLiA dataset descriptive statistics.
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C REPRESENTATIVE SIGNALS FROM PRE-TRAINING DATASETS
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Figure 20: Representative 10-second raw PPG segments from VitalDB, MESA, and MIMIC-III. We
observe that each signal’s amplitude (y-axis) and sampling rate differ.
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Figure 21: Normalized and resampled 10-second pre-processed PPG segments from VitalDB,
MESA, and MIMIC-III. These signals represent the final form before being fed to our models.
We observe that the signal characteristics across datasets are more consistent.
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D ADDITIONAL RESULTS

D.1 MULTI-CLASS CLASSIFICATION

Table 9: Multi-class classification comparison against pre-trained models. Feature extraction
parameters are indicated next to each name.. 95% CIs are reported in square brackets and the best
value is bolded.

REGLE (0.07M) Chronos (200M) Moment (385M) PAPAGEI-P (5M) PAPAGEI-S (5M)

Classification - ACC (↑) (Yun et al., 2024) (Ansari et al., 2024) (Goswami et al., 2024)

Operation Type 0.21 [0.18-0.23] 0.25 [0.22-0.29] 0.27 [0.23-0.31] 0.30 [0.26-0.33] 0.30 [0.27-0.32]

Activity 0.29 [0.28-0.29] 0.41 [0.40-0.42] 0.41 [0.40-0.42] 0.38 [0.37-0.39] 0.37 [0.36-0.37]

Average 0.25 ± 0.04 0.33 ± 0.08 0.34 ± 0.07 0.34 ± 0.04 0.33 ± 0.03

Table 10: Multi-class classification comparison against CL methods. Feature extraction parame-
ters are indicated next to each name.. 95% CIs are reported in square brackets and the best value is
bolded.

Stat. Features SimCLR (5M) BYOL (5M) TF-C (10M) PAPAGEI-P (5M) PAPAGEI-S (5M)

Classification - ACC (↑) (Chen et al., 2020) (Grill et al., 2020) (Zhang et al., 2022)

Operation Type 0.27 [0.24-0.32] 0.27 [0.24-0.29] 0.31 0.27-0.34 0.27 [0.27-0.29] 0.30 [0.26-0.33] 0.30 [0.27-0.32]

Activity 0.37 [0.36-0.38] 0.36 [0.35-0.37] 0.34 [0.33-0.35] 0.37 [0.36-0.38] 0.38 [0.37-0.39] 0.37 [0.36-0.37]

Average 0.32 ± 0.05 0.31 ± 0.04 0.32 ± 0.01 0.32 ± 0.05 0.34 ± 0.04 0.33 ± 0.03

D.2 F1-SCORE AND R2 EVALUATION METRICS.

Table 11: Downstream comparison against pre-trained models (additional metrics: F1-score
and R2). Feature extraction parameters are indicated next to each name. 95% CIs are reported in
square brackets and the best value is bolded.

REGLE (0.07M) Chronos (200M) Moment (385M) PAPAGEI-P (5M) PAPAGEI-S (5M)

Classification - F1-Score (↑) (Yun et al., 2024) (Ansari et al., 2024) (Goswami et al., 2024)

ICU Admission 0.00 [0.00-0.00] 0.20 [0.11-0.30] 0.12 [0.04-0.20] 0.12 [0.04-0.20] 0.26 [0.18-0.33]

Mortality 0.00 [0.00-0.00] 0.14 [0.09-0.19] 0.16 [0.11-0.21] 0.22 [0.16-0.27] 0.17 [0.13-0.22]

Smoker 0.16 [0.10-0.23] 0.51 [0.44-0.58] 0.40 [0.33-0.47] 0.45 [0.38-0.51] 0.45 [0.37-0.50]

Pregnancy stage 0.49 [0.47-0.52] 0.69 [0.67-0.71] 0.63 [0.60-0.65] 0.62 [0.59-0.64] 0.65 [0.62-0.67]

Hypertension 0.77 [0.70-0.84] 0.68 [0.58-0.77] 0.75 [0.66-0.84] 0.84 [0.72-0.92] 0.78 [0.70-0.86]

Sleep Disordered Breathing 0.00 [0.00-0.00] 0.33 [0.00-0.60] 0.22 [0.00-0.47] 0.32 [0.00-0.60] 0.47 [0.23-0.67]

Mood Disturbance 0.00 [0.00-0.00] 0.36 [0.10-0.59] 0.23 [0.00-0.47] 0.37 [0.00-0.66] 0.32 [0.00-0.58]

Valence 0.00 [0.00-0.00] 0.10 [0.07-0.14] 0.12 [0.09-0.16] 0.17 [0.13-0.21] 0.03 [0.01-0.04]

Arousal 0.83 [0.81-0.84] 0.82 [0.80-0.83] 0.81 [0.79-0.82] 0.81 [0.79-0.82] 0.83 [0.81-0.84]

Average 0.25 ± 0.33 0.42 ± 0.24 0.38 ± 0.26 0.43 ± 0.25 0.44 ± 0.25

Regression - R2 (↑)

Apnea/Hypopnea Index > 3% 0.02 [0.00-0.03] 0.18 [0.08-0.26] 0.14 [0.06-0.22] 0.15 [0.05-0.24] 0.29 [0.22-0.36]

Apnea/Hypopnea Index > 4% 0.01 [0.00-0.03] 0.16 [0.08-0.22] 0.13 [0.05-0.20] 0.12 [0.03-0.22] 0.28 [0.20-0.34]

Gestation Age 0.04 [0.02-0.06] 0.28 [0.24-0.31] 0.20 [0.17-0.23] 0.18 [0.14-0.22] 0.22 [0.19-0.25]

Systolic BP (VV) -0.03 [-0.18-0.01] -0.24 [-0.72-0.03] 0.06 [-0.25-0.28] -0.41 [-0.77-(-0.15)] 0.15 [-0.09-0.30]

Diastolic BP (VV) 0.01 [-0.09-0.06] -0.29 [-0.87-(-0.01)] 0.01 [-0.25-0.14] -0.48 [-1.02-(-0.20)] 0.10 [-0.11-0.23]

Systolic BP (PPG-BP) -0.07 [-0.21-0.04] -0.13 [-0.36-0.06] 0.07 [-0.31 -0.31] 0.36 [0.16-0.49] 0.20 [0.02-0.31]

Diastolic BP (PPG-BP) 0.01 [-0.05-0.02] -0.10 [-0.45-0.07] -0.03 [-0.31-0.13] 0.22 [-0.13-0.40] 0.08 [-0.07-0.17]

Average HR 0.37 [0.17-0.51] 0.02 [-0.16-0.17] 0.68 [0.45-0.80] 0.79 [0.57-0.90] 0.78 [0.69-0.83]

HR 0.00 [0.00-0.01] 0.57 [0.56-0.59] 0.63 [0.61-0.64] 0.52 [0.51-0.53] 0.48 [0.42-0.46]

Average 0.04 ± 0.12 0.05 ± 0.25 0.21 ± 0.24 0.16 ± 0.38 0.28 ± 0.20

D.3 ABLATION RESULTS

In this section, we provide the numeric results for the scaling analysis (Table 13) and PAPAGEI-S
component analysis (Table 14).
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Table 12: Downstream comparison against CL models (additional metrics: F1-score and R2).
Feature extraction parameters are indicated next to each name. 95% CIs are reported in square
brackets and the best value is bolded.

Stat. Features SimCLR (5M) BYOL (5M) TF-C (10M) PAPAGEI-P (5M) PAPAGEI-S (5M)

Classification - F1-Score (↑)

ICU Admission 0.30 [0.18-0.40] 0.19 [0.12-0.26] 0.17 [0.11-0.22] 0.10 [0.05-0.16] 0.12 [0.04-0.20] 0.26 [0.18-0.33]

Mortality 0.03 [0.01-0.06] 0.15 [0.10-0.20] 0.13 [0.08-0.17] 0.15 [0.10-0.20] 0.22 [0.16-0.27] 0.17 [0.13-0.22]

Smoker 0.47 [0.40-0.53] 0.43 [0.35-0.49] 0.49 [0.42-0.56] 0.37 [0.30-0.44] 0.45 [0.38-0.51] 0.45 [0.37-0.50]

Pregnancy stage 0.43 [0.41-0.47] 0.60 [0.57-0.63] 0.60 [0.57-0.63] 0.59 [0.56-0.62] 0.62 [0.59-0.64] 0.65 [0.62-0.67]

Hypertension 0.73 [0.58-0.85] 0.82 [0.73-0.89] 0.81 [0.73-0.88] 0.81 [0.72-0.89] 0.84 [0.72-0.92] 0.78 [0.70-0.86]

Sleep Disordered Breathing 0.00 [0.00-0.00] 0.46 [0.21-0.64] 0.45 [0.23-0.62] 0.19 [0.00-0.36] 0.32 [0.00-0.60] 0.47 [0.23-0.67]

Mood Disturbance 0.21 [0.00-0.47] 0.21 [0.00-0.44] 0.37 [0.00-0.67] 0.56 [0.27-0.80] 0.37 [0.00-0.66] 0.32 [0.00-0.58]

Valence 0.04 [0.02-0.07] 0.09 [0.06-0.12] 0.01 [0.00-0.03] 0.07 [0.04-0.09] 0.17 [0.13-0.21] 0.03 [0.01-0.04]

Arousal 0.82 [0.81-0.83] 0.81 [0.79-0.82] 0.83 [0.81-0.84] 0.81 [0.80-0.83] 0.81 [0.79-0.82] 0.83 [0.81-0.84]

Average 0.33 ± 0.28 0.42 ± 0.26 0.43 ± 0.27 0.40 ± 0.27 0.43 ± 0.25 0.44 ± 0.25

Regression - R2 (↑)

Apnea/Hypopnea Index > 3% -0.00 [-0.06-0.03] 0.16 [0.07-0.23] 0.16 [0.08-0.22] 0.06 [-0.00-0.13] 0.15 [0.05-0.24] 0.29 [0.22-0.36]

Apnea/Hypopnea Index > 4% -0.01 [-0.07-0.03] 0.13 [0.06-0.21] 0.13 [0.05-0.19] 0.13 [-0.06-0.26] 0.12 [0.03-0.22] 0.28 [0.20-0.34]

Gestation Age 0.07 [0.04-0.10] 0.19 [0.15-0.21] 0.19 [0.15-0.22] 0.18 [0.15-0.21] 0.18 [0.14-0.22] 0.22 [0.19-0.25]

Systolic BP (VV) -0.10 [-0.51-0.10] -0.05 [-0.44-0.21] -0.03 [-0.37-0.18] -0.05 [-0.36-0.12] -0.41 [-0.77-(-0.15)] 0.15 [-0.09-0.30]

Diastolic BP (VV) -0.15 [-0.31-0.11] -0.14 [-0.29-0.08] -0.01 [-0.40-0.20] -0.09 [-0.45-0.16] -0.48 [-1.02-(-0.20)] 0.10 [-0.11-0.23]

Systolic BP (PPG-BP) 0.12 [-0.04-0.21] 0.09 [-0.20-0.31] 0.10 [-0.16-0.30] 0.13 [-0.06-0.26] 0.36 [0.16-0.49] 0.20 [0.02-0.31]

Diastolic BP (PPG-BP) 0.01 [-0.18-0.14] 0.00 [-0.20-0.18] 0.05 [-0.11-0.17] 0.02 [-0.15-0.12] 0.22 [-0.13-0.40] 0.08 [-0.07-0.17]

Average HR 0.15 [-0.10-0.33] 0.74 [0.64-0.80] 0.65 [0.50-0.77] 0.82 [0.73-0.88] 0.79 [0.57-0.90] 0.78 [0.69-0.83]

HR 0.34 [0.32-0.36] 0.45 [0.44-0.47] 0.36 [0.35-0.37] 0.54 [0.53-0.55] 0.52 [0.51-0.53] 0.48 [0.42-0.46]

Average 0.05 ± 0.14 0.17 ± 0.25 0.18 ± 0.20 0.19 ± 0.28 0.16 ± 0.38 0.28 ± 0.20

Table 13: Scaling: Downstream comparison for different PAPAGEI-S models. 95% CIs are
reported in square brackets and the best value is bolded.

PAPAGEI-S-5M PAPAGEI-S-35M PAPAGEI-S-139M
Classification - AUROC (↑)

ICU Admission 0.79 [0.75-0.82] 0.72 [0.68-0.75] 0.77 [0.73-0.80]

Mortality 0.67 [0.63-0.70] 0.66 [0.63-0.70] 0.66 [0.63-0.69]

Smoker 0.61 [0.56-0.66] 0.58 [0.52-0.64] 0.59 [0.54-0.65]

Pregnancy stage 0.78 [0.75-0.80] 0.77 [0.75-0.79] 0.76 [0.74-0.78]

Hypertension 0.77 [0.68-0.87] 0.75 [0.64-0.85] 0.77 [0.65-0.87]

Sleep Disordered Breathing 0.70 [0.57-0.84] 0.59 [0.44-0.74] 0.62 [0.46-0.78]

Mood Disturbance 0.56 [0.33-0.77] 0.53 [0.30-0.73] 0.54 [0.29-0.78]

Valence 0.56 [0.54-0.59] 0.53 [0.50-0.56] 0.54 [0.51-0.56]

Arousal 0.55 [0.52-0.57] 0.52 [0.49-0.55] 0.55 [0.52-0.58]

Average 0.67 ± 0.09 0.63 ± 0.09 0.63 ± 0.10

Regression - MAE (↓)

Apnea/Hypopnea Index > 3% 12.97 [11.87-14.05] 13.07 [11.92-14.25] 12.86 [11.79-13.94]

Apnea/Hypopnea Index > 4% 10.56 [9.59-11.62] 10.79 [9.85-11.83] 10.65 [9.62-11.68]

Gestation Age 6.05 [5.91-6.17] 6.10 [5.94-6.24] 6.17 [6.02-6.30]

Systolic BP (VV) 14.65 [12.50-16.78] 15.10 [13.10-17.21] 14.95 [12.87-17.01]

Diastolic BP (VV) 8.29 [6.61-10.22] 9.20 [6.93-11.12] 8.95 [6.72-10.95]

Systolic BP (PPG-BP) 14.39 [12.53-16.45] 16.70 [14.25-19.38] 16.20 [13.73-18.85]

Diastolic BP (PPG-BP) 8.71 [7.18-10.01] 9.48 [8.24-10.90] 9.32 [7.90-10.69]

Average HR 4.00 [3.34-4.67] 4.76 [3.94-5.86] 4.71 [3.86-5.60]

HR 11.53 [11.40-11.66] 12.86 [12.73-12.99] 12.20 [12.07-12.34]

Average 10.12 ± 3.47 10.89 ± 3.73 10.76 ± 3.57

D.4 STATISTICAL SIGNIFICANCE OF MODEL COMPARISON

In addition to confidence intervals, we perform the following steps to evaluate the significance across
models on a per task basis (Tables 3 & 4). First, we ran the Friedmann Chi Square test, and identified
statistically significant differences across PAPAGEI and the baseline models at p < 0.05. Next,
we created critical difference (CD) diagrams to rank the best performing models, as suggested by
the literature to compare models over multiple datasets6 (Demšar, 2006). The CDs indicate that
PAPAGEI performs the best across both classification and regression tasks. Furthermore, it has a
statistically significant average rank as indicated by the lack of horizontal line.

6https://scikit-posthocs.readthedocs.io/en/latest/tutorial.html#
critical-difference-diagrams
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Table 14: PAPAGEI component ablation study results.

sVRI sVRI + SQI sVRI + IPA Full
Classification - AUROC (↑)

ICU Admission 0.79 0.75 0.78 0.79
Mortality 0.67 0.65 0.67 0.67
Smoker 0.59 0.61 0.60 0.61
Pregnancy stage 0.78 0.73 0.72 0.78
Hypertension 0.77 0.72 0.75 0.77
Sleep Disordered Breathing 0.62 0.53 0.64 0.70
Mood Disturbance 0.53 0.56 0.55 0.56
Valence 0.54 0.55 0.53 0.56
Arousal 0.44 0.51 0.49 0.55
Regression - MAE (↓)

Apnea/Hypopnea Index > 3% 13.36 13.74 13.42 12.97
Apnea/Hypopnea Index > 4% 11.01 11.43 11.29 10.56
Gestation Age 6.18 6.32 6.15 6.05
Systolic BP (VV) 14.62 15.97 15.33 14.65
Diastolic BP (VV) 8.32 8.76 9.04 8.29
Systolic BP (PPG-BP) 15.03 14.39 16.15 14.39
Diastolic BP (PPG-BP) 9.12 8.76 9.06 8.71
Average HR 4.00 5.88 4.26 4.00
HR 11.51 11.97 11.88 11.53
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(0.65) Moment
(0.62) TF-C

Classification: Critical difference diagram of average score ranks

Figure 22: Critical Difference Diagram for Classification Tasks. The axis represents the average
rank of the model. The horizontal connector lines indicate no significant differences between the
models.

From the critical difference diagrams we observe that PAPAGEI is significantly better across clas-
sification (Figure 22) and regression (Figure 23) tasks. This arises because PAPAGEI is the highest
ranking model across most tasks. Furthermore, we observe Moment is a strong model across both
classification and regression tasks. Whereas Chronos and TF-C perform well for classification tasks
only.

We conduct additional statistical significance comparisons using a structured approach. First, we
randomly sample a score from within the confidence intervals for each task across all models. Next,

0.2 0.3 0.4 0.5 0.6 0.7 0.8
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SimCLR (0.48)
Moment (0.5)

BYOL (0.53)
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(0.81) Regle
(0.65) Chronos
(0.53) TF-C

Regression: Critical difference diagram of average score ranks

Figure 23: Critical Difference Diagram for Regression Tasks. The axis represents the average
rank of the model. The horizontal connector lines indicate no significant differences between the
models.
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we apply the CD ranking procedure to the sampled scores. This process is repeated 1,000 times, and
the ranks are averaged. The entire experiment is conducted five times for Tables 3 and 4, with the
results presented in Figure 24. The colored cells indicate that PAPAGEI is statistically significant
compared to the respective model at p < 0.05. Our findings show that PaPaGei consistently achieves
the best average rank, ranging between 0.82-0.90 for AUROC and 0.19-0.25 for MAE. Across 35
comparisons (PaPaGei vs. the other models, repeated five times), PaPaGei demonstrates significant
improvements in 30 out of 35 AUROC comparisons and 32 out of 35 MAE comparisons. Among
the baseline models, we acknowledge that Chronos and TF-C are strong competitors capable of
performing comparably to PAPAGEI.
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Figure 24: Bootstrap ranking repeated for five experiments: AUROC (left) and MAE (right). Col-
ored cells indicate that PAPAGEI is significant to the baseline at p < 0.05.

D.5 STATISTICAL ASSESSMENT BETWEEN IPA AND SQI

Recall that we incorporate SQI to handle situations where the dicrotic notch cannot be computed
due to poor-signal quality or different morphologies. We performed a permutation test (Rice, 2008)
to statistically evaluate PPG segments where IPA is unavailable. By splitting SQI values into no
IPA and IPA groups and testing significance over 1000 permutations, we observed statistically sig-
nificant differences (p < 0.05) in both mean (+0.18) and median (+0.32) SQI values, with the IPA
group having larger SQI. These findings empirically motivate SQI’s ability to handle limited PPG
morphology.

E ADDITIONAL BASELINES: DEMOGRAPHICS & PPG MORPHOLOGY
FEATURES

In this section, we evaluate the effectiveness of demographics (Demo: age, sex) and PPG mor-
phology (sVRI, IPA, SQI) to predict both regression (ridge) and classification (logistic regression)
tasks: (1) Ablation Study: We compared PaPaGei with three baselines—demographics alone, PPG
features alone, and demographics + PPG features. Our results show that while demographics is a
stronger baseline than statistical features, PaPaGei outperforms the demographics + PPG baseline
in 14 out of 18 tasks. (2) Effect of Demographics: We trained a model combining PaPaGei-S with
demographics. The results indicate that incorporating demographic features with PaPaGei-S creates
a stronger model than using PaPaGei-S alone.

From Table 15, we observe the following classification performance (Positive is better): ICU
(+0.13), Mortality (+0.01), Smoker (-0.02), Pregnancy Stage (+0.22), Hypertension (0.00), SDB
(no demographics), Mood Disturbance (-0.08), Valence (-0.01), Arousal (+0.04). Regression Tasks
(Negative is better): AHI > 3% (-1.43), AHI > 4% (-1.61), gestation age (-1.54), SBP-VV (-0.31),
DBP-VV (-0.46), SBP (-0.11) , DBP (-0.65), Avg. HR (-4.07), HR (-2.93). PaPaGei-S performs
better for real-time sleep and cardiovascular outcomes such as sleep apnea, heart rate and blood
pressure, respectively. In particular, we notice that outcomes such as heart rate benefit substantially
from PPG rather than demographics. Demographics are useful in tasks without real-time depen-
dence such as smoking, which is established to be associated with age and sex (Chung et al., 2020).
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Table 15: Demographics & PPG Morphology Baseline Results.

Stat. Features Demo PPG Demo + PPG PAPAGEI-S or -P PAPAGEI-S + Demo
Classification - AUROC (↑)

ICU Admission 0.71 [0.65-0.78] 0.64 [0.60-0.68] 0.59 [0.54-0.64] 0.66 [0.61-0.70] 0.79 [0.75-0.82] 0.77 [0.74-0.81]

Mortality 0.57 [0.54-0.61] 0.66 [0.61-0.69] 0.57 [0.53-0.61] 0.66 [0.61-0.69] 0.67 [0.63-0.70] 0.70 [0.67-0.74]
Smoker 0.63 [0.58-0.67] 0.64 [0.59-0.70] 0.56 [0.52-0.62] 0.66 [0.61-0.71] 0.64 [0.58-0.69] 0.62 [0.56-0.68]

Pregnancy stage 0.64 [0.62-0.67] 0.52 [0.50-0.55] 0.55 [0.53-0.57] 0.56 [0.53-0.58] 0.78 [0.75-0.80] 0.78 [0.76-0.80]
Hypertension 0.66 [0.47-0.83] 0.77 [0.65-0.88] 0.53 [0.40-0.68] 0.77 [0.65-0.88] 0.77 [0.68-0.87] 0.80 [0.70-0.89]
SDB 0.32 [0.14-0.55] – 0.46 [0.31-0.62] – 0.70 [0.57-0.84] –
Mood Disturbance 0.54 [0.31-0.77] 0.54 [0.30-0.80] 0.64 [0.42-0.85] 0.63 [0.36-0.87] 0.56 [0.33-0.77] 0.52 [0.25-0.78]

Valence 0.52 [0.49-0.55] 0.57 [0.54-0.60] 0.44 [0.41-0.47] 0.57 [0.54-0.60] 0.56 [0.54-0.59] 0.55 [0.53-0.58]

Arousal 0.55 [0.53-0.58] 0.54 [0.52-0.58] 0.51 [0.48-0.54] 0.54 [0.52-0.58] 0.58 [0.55-0.61] 0.58 [0.54-0.59]

Regression - MAE (↓)

Apnea/Hypopnea Index > 3% 15.31 [13.63-17.14] 14.53 [13.29-15.84] 15.09 [14.01-16.54] 14.40 [13.12-15.61] 12.97 [11.87-14.05] 12.35 [11.27-13.46]
Apnea/Hypopnea Index > 4% 12.52 [10.92-14.14] 12.28 [11.19-13.39] 12.65 [11.57-13.83] 12.17 [11.10-13.39] 10.56 [9.59-11.62] 10.47 [9.53-11.50]
Gestation Age 7.15 [6.99-7.34] 7.69 [7.61-7.77] 7.61 [7.51-7.70] 7.59 [7.51-7.68] 6.05 [5.91-6.17] 6.02 [5.88-6.17]
Systolic BP (VV) 15.76 [13.67-18.36] 14.96 [13.21-17.35] 15.82 [13.48-18.31] 15.01 [13.30-17.86] 14.65 [12.50-16.78] 14.27 [11.92-16.44]
Diastolic BP (VV) 9.75 [7.16-11.27] 8.75 [6.48-9.77] 9.20 [7.21-10.71] 8.78 [7.10-10.25] 8.29 [6.61-10.22] 8.26 [6.64-10.16]
Systolic BP (PPG-BP) 15.50 [11.68-20.25] 13.71 [11.33-15.95] 15.76 [13.36-18.30] 13.74 [11.37-16.09] 13.60 [10.65-16.51] 13.20 [11.47-15.66]
Diastolic BP (PPG-BP) 9.35 [7.44-11.66] 9.26 [7.89-10.68] 9.36 [7.95-10.92] 9.28 [8.00-10.56] 8.71 [7.18-10.01] 8.61 [7.34-9.88]
Average HR 7.01 [5.48-8.89] 9.12 [7.86-10.61] 8.07 [6.60-9.71] 8.23 [6.82-9.78] 3.47 [2.74-4.32] 4.00 [3.35-4.73]

HR 13.07 [12.90-13.23] 15.18 [15.03-15.33] 16.75 [16.60-16.90] 14.46 [14.32-14.62] 10.92 [10.80-11.04] 12.38 [11.90-12.96]

Importantly, demographics do not add much to already homogeneous populations. For example,
consider the NuMoM2B dataset which has women within a specific age range. Here, we observe
that PaPaGei obtains much higher AUROC and MAE than the supervised baselines.

Furthermore, We observe that adding demographics to PaPaGei-S embeddings improves over Pa-
PaGei in the following tasks: Mortality (+0.03), Hypertension (+0.03), AHI > 3% (-0.62), AHI >
4% (-0.09), gestation age (-0.03), SBP VV (-0.38), DBP VV (-0.03), SBP (0.40), DBP (0.10). Based
on these results, PaPaGei-S + Demo is a stronger model in many cases. Importantly, these results
indicate that PaPaGei-S embeddings learn features that are complementary to demographics are not
simply proxies for age or sex. However, it is important to note that while demographic features can
be valuable for personalization, they may not always be readily available, and in reality, we cannot
use them in isolation to predict real-time outcomes such as blood pressure or heart rate. Therefore,
our PaPaGei models are designed to function effectively with real-time sensor data alone, ensuring
their applicability in situations where complete demographic information is not accessible.

These findings underscore an important point: demographic features are not competing with Pa-
PaGei but rather complement it, as previously established in studies including demographics with
sensor data (Spathis et al., 2022). This highlights the synergistic potential of combining PaPaGei’s
advanced feature extraction with demographic context for improved task performance.

Predicting Demographics Targets. Using the PAPAGEI features, we predict downstream demo-
graphics such as age and sex (Table 16). PAPAGEI-S achieves 7.78 MAE in age regression, 0.85
accuracy in age classification, and 0.79 accuracy in sex classification. Although our results trail
larger closed studies (Abbaspourazad et al., 2023) by 2.18, 0.05, and 0.13 for segment-level SSL,
and by 5.59, 0.12, and 0.25 for patient-level SSL, they mark an advancement in open-source ef-
forts. The superior performance of Abbaspourazad et al. (2023) can be attributed to two primary
factors. First, the patient-level positive pair strategy achieves the best performance across all tasks.
This approach encourages the model to form distinct clusters for each patient, effectively captur-
ing demographic factors such as age and sex. In contrast, a segment-level approach pushes the
model to cluster similar segments across individuals with varying demographics, potentially mixing
demographic-specific information. Second, the single-device setup with a larger dataset is useful
for effective model training (Table 17). Conversely, our evaluation, which spans three devices and
utilizes smaller datasets, must handle greater data heterogeneity, thus making it more challenging.

F ADDITIONAL PREDICTION PLOTS

The regression plots to evaluate the agreement between true and predicted values in shown in Figure
25. From the Figure, we observe that PAPAGEI’s predictions are more aligned to the true values for
AHI > 3% (R2 = 0.28), Avg. HR (R2 = 0.79), gestation age (R2 = 0.28), SBP (R2 = 0.36),
and DBP (R2 = 0.22). Moreover, from the distribution plots in Figure 25, we notice that PAPAGEI
has stronger overlap for AHI > 4%, Avg. HR and DBP, indicating its ability to capture the tails for
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Table 16: Predicting personal characteristics with embeddings. Downstream prediction on age
regression, age classification, and sex classification in our pre-training datasets (VitalDB, MESA,
MIMIC-III). The regression and classification tasks are reported using MAE and AUROC, respec-
tively. Note: training and testing are conducted with completely different cohorts in the two studies,
hence comparisons are difficult.

Study Age Regression (↓) Age Classification (↑) Sex Classification (↑)

Abbaspourazad et al. (2023)(Patient) 3.19 0.97 0.99
Abbaspourazad et al. (2023)(Segment) 6.60 0.90 0.87
PAPAGEI-S (Ours) 8.78 [8.47-8.09] 0.85 [0.83-0.87] 0.74 [0.72-0.76]

Table 17: Comparison of large-scale PPG studies. * indicates partial availability. The participants
and hours indicate pre-training data.

Study #Participants (#Hours) #Devices (Types) Open Data Open Weights Open Code #Tasks (#Datasets)

Abbaspourazad et al. (2023) 141,207 (333K) 1 (Smartwatch) ✗ ✗ ✗ >46 (1)
Ding et al. (2024) 28,539 (300K) 5-6 (ICU, Smartwatch) ✗* ✗ ✓ 4 (7)
Yun et al. (2024) 170,714 (Varying)7 1 (Finger) ✗ ✓ ✓* 2 (4)

PAPAGEI (Ours) 13,517 (57K) 7 (ICU, Smartwatch,
Finger, ”Phone Ox.”) ✓ ✓ ✓ 20 (10)

these tasks. Interestingly, we notice that all models are unable to capture the bi-modal nature of the
gestation age measurements. Here, Chronos performs better than other methods to capture readings
from the first visit.

G EFFECT OF SKIN TONE

We present the skin tone analysis in a more granular way in Figure 26. Here, PAPAGEI-S clearly
performs better than PAPAGEI-P in most cases. Overall, we notice that PAPAGEI-S is good for
lighter skin tones in the 1-2 range for SBP and 2-3 range for DBP. While PAPAGEI-S does not
perform the best for darker skin tones, it’s performance is comparable to other models for skin tone
ratings of 4 and 5. Overall, these results indicate that PAPAGEI-S is relatively robust to skin tone
variations, and that additional future work is needed to make it better darker skin tones.

H EXTENDED RELATED WORK

Self-supervised learning (SSL) is the most prominent paradigm for learning general representations
from large unlabeled datasets, including methods like SimCLR (Chen et al., 2020), BYOL (Grill
et al., 2020), and masked autoencoders (MAE) (He et al., 2022). Timeseries-specific objectives like
TNC and TF-C have also shown promise (Tonekaboni et al., 2021; Zhang et al., 2022). SSL has
gained traction in the domain of physiological signal analysis, with applications to health records
(Chen et al., 2021; Yèche et al., 2021), fitness and personalization (Spathis et al., 2021), as well as
brain (Cheng et al., 2020) and heart signals (Kiyasseh et al., 2021; Sarkar & Etemad, 2020).

However, despite the popularity of SSL, there are no widely used FMs for PPG data. While (Ab-
baspourazad et al., 2023) showcased the potential of foundation models for physiological signals,
it was based on a single proprietary dataset and device (Apple Watch) while the models were not
released, limiting its practical use in the research community. Similarly, REGLE’s work (Yun et al.,
2024) on the UK Biobank dataset showed that embedding PPG signals can improve genetic discov-
ery and risk prediction outcomes. Although parts of that model and pipeline are public, the dataset is
not openly accessible, and the primary goal was not to create a foundation model for PPG but rather
to focus on genetics. Another work on the same data showed that PPG embeddings are promising
for cardiovascular risk prediction (Weng et al., 2024). SiamQuality (Ding et al., 2024) also trained
an unreleased model on 36 million PPG signals using proprietary data. Importantly, most of these
works pre-trained on a single-device dataset and did not explore out-of-domain datasets or conduct
transfer learning experiments, which are crucial for assessing the true generalizability of foundation

7https://biobank.ndph.ox.ac.uk/crystal/field.cgi?id=4205
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Figure 25: Regression plots and prediction distribution of different models compared to ground
truth for (a) Apnea/Hypopnea Index > 4%, (b) Average Heart Rate, (c) Gestation Age, (d) Systolic
BP (PPG-BP), and (e) Diastolic BP (PPG-BP). R2 is the coefficient of determination and m is the
correlation slope.
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Figure 26: Detailed skin tone analysis for Blood Pressure estimation (VV dataset).

models. These studies highlight the potential of PPG-based foundation models but also underscore
the need for openly available, pre-trained models that can be widely used and adapted by the research
community.

On the other hand, generic time series foundation models have begun to gain popularity, mirroring
the trend seen in Large Language Models (LLMs). These models are pre-trained on massive corpora
of diverse time series data, aiming to learn universal representations that can be applied across
various domains. For instance, Chronos (Ansari et al., 2024) was trained on an impressive 84 billion
observations (analogous to tokens in NLP) from 28 distinct datasets. However, it’s notable that
this diverse collection does not include physiological data. Similarly, Moment (Goswami et al.,
2024) was trained on billions of observations from a wide-ranging dataset that includes weather,
traffic, energy, and other domains. While Moment does incorporate a small amount of ECG data, it
comprises only a tiny percentage of the overall data pool.

In contrast to these generic approaches, our work takes a domain-specific focus. We curate a large
pre-training and evaluation benchmark dedicated exclusively to PPG data. While knowledge gained
from generic time series foundation models may transfer to domain-specific tasks like PPG, we
expect the performance to be limited compared to a model trained specifically on PPG data. Fur-
thermore, foundation models for ECG (McKeen et al., 2024; Song et al., 2024) or EEG (Yuan et al.,
2024b) have shown promise but transferring from one domain-specific model (e.g., ECG) to another
(PPG) is likely to be even more challenging, as the underlying signal characteristics can be quite
different. For instance, Lai et al. (2023) trained a large-scale 12-lead ECG model for detecting 60
diagnostic terms, while McKeen et al. (2024) developed an open-source ECG FM using 1.6 mil-
lion 12-lead signals. In brain signal analysis, Yuan et al. (2024b) introduced Brant-2, an EEG and
SEEG model supporting tasks like sleep staging and seizure detection. Building on this progress,
we adopt a domain-specific approach focused on photoplethysmography (PPG) signals. Building on
the increasing interest in modality-specific foundation models, our specialized approach allows us
to capture nuances and complexities specific to PPG signals.

An increasingly popular approach involves feeding timeseries data and prompts directly to Large
Language Models (LLMs) (Gruver et al., 2024). However, despite promising results, LLMs strug-
gle with high-dimensional signals due to their text-based processing (Spathis & Kawsar, 2024). A
modality-specific encoder like PAPAGEI addresses this limitation by providing representations of
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raw signals (Belyaeva et al., 2023), which can be combined with text and fed into more powerful
multimodal foundation models, such as AnyMAL (Moon et al., 2023). This approach offers several
advantages: computational efficiency through a fixed LLM, flexibility due to the modular design
of encoder, adapter, and LLM components, and interoperability with other high-performing models
(e.g., a state-of-the-art IMU encoder (Yuan et al., 2024a)). Crucially, this encoder-LLM approach
does not require paired data with other modalities to train a single multimodal model. However, it
may introduce complexity by limiting end-to-end gradient propagation and reduce interpretability
in encoder-LLM communication compared to natural language prompts. Despite these trade-offs,
PAPAGEI serves dual purposes: as a generic feature extractor for various PPG signals and applica-
tions, and as a modality encoder in next-generation frontier models. This versatility positions it as a
valuable tool for advancing multimodal sensory AI systems.

I EXTENDED DISCUSSION

In §5.1, we observed that PAPAGEI outperforms baselines in at least 14 out of 20 tasks, with average
classification and regression improvements of 4.7%-6.3% and 2.9%-4.9%, respectively. PAPAGEI-
S performed best for cardiovascular parameters like BP, Hypertension, and Avg. HR, which are
closely linked to metrics such as sVRI and IPA (Liang et al., 2018b). Additionally, PAPAGEI-P
surpassed baselines FMs like Moment and is well-suited for tasks such as Smoking and Arousal.

By ablating different components of PAPAGEI-S (Section 5.2), we found that the full model per-
forms best, with sVRI contributing the most. Adding IPA or SQI separately did not improve per-
formance, suggesting that (a) IPA and SQI positively transfer in a multi-task setup, and (b) our
design choice to include both to compensate for situations where IPA cannot be computed is effec-
tive (Section 3.2). While combining PAPAGEI-P and PAPAGEI-S may seem intuitive, constraining
positive pairs on both sVRI and participants leads to too many unique labels with limited samples. In
our scalability analysis, we observed that the smallest model (5M parameters) outperformed others,
aligning with other studies using CNNs with 3.3M parameters for biosignals (Abbaspourazad et al.,
2023), likely due to the size of PPG datasets. Larger models like Chronos or Moment are impractical
for wearables due to their size and privacy concerns with cloud-based inference for health data. Ad-
ditionally, PAPAGEI-S is more data-efficient for linear probing, showing greater performance gains
with increased data availability, making it a promising backbone for small studies in future research.

Our studies in Section 5.3 reveal that PAPAGEI-S embeddings are more dispersed across partici-
pants, enhancing performance, while regression predictions more accurately reflect the true distribu-
tion. We attribute this to our positive pair selection, which chooses positive pairs across individuals
based on sVRI. Moreover, our skin tone analysis shows that the method performs better on lighter
skin tones, likely due to the model being trained predominantly on such data. For darker skin tones,
performance was similar across models for diastolic BP, with REGLE and BYOL performing best,
highlighting the need for future work creating more robust models for diverse skin tones.

To provide future direction regarding the use of PAPAGEI, we provide some suggestions. For in-
stance, let’s consider the nuMoM2B dataset which consists of pregnant women. PAPAGEI-S obtains
an AUROC of 0.78 in pregnancy stage classification and 6.05 is gestation age classification. Com-
pared to the pre-training population with diverse age and gender, the nuMoM2B consists of women
generally aged between 20-35. Furthermore, the gestation age readings are collected approximately
around the first and third trimester. Given these factors, the target nuMoM2B dataset has many vari-
ables contributing toward distribution shift. Therefore, PaPaGei-S can be fine-tuned to address the
shift in the following ways: (1) We can align the pre-trained embeddings to the nuMoM2B embed-
ding using unsupervised or semi-supervised domain adaptation. (2) Domain Generalization is also
an option during the training phase to improve generalization robustness. (3) Newer methods such
as LoRA can provide another way to quickly fine-tune. (4) Importantly, given that more women are
present in the first visit compared to the third visit, we can optimize different metrics to improve
accuracy under the imbalance. For example, AUPRC can be optimized instead of AUROC. Fairness
of classification across genders can also be considered during training. Exploring these avenues to
further enhance the performance and applicability of PaPaGei is a promising direction for future
studies. Moreover, future work may benefit from exploring PPG specific augmentations such as
GAN-based approaches (Kiyasseh et al., 2020); and systematically evaluating different augmenta-
tions to provide insights into useful PPG augmentations.
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