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Abstract

Fine-tuning large language models (LLMs) to aggregate multiple preferences has
attracted considerable research attention. With aggregation algorithms advancing, a
potential economic scenario arises where fine-tuning services are provided to agents
with different preferences. In this context, agents may benefit from strategically
misreporting their preferences, which could affect the fine-tuned outcomes. This
paper addresses such incentive issues by framing it as a mechanism design problem:
an LLM provider determines the fine-tuning objective (training rule) and the pricing
scheme (payment rule) for agents. We primarily focus on a representative class
of training rules that maximize social welfare subject to certain regularizations,
referred to as SW-Max training rules. First, we show that under most circumstances,
truthful reporting is sub-optimal with simply a training rule, thereby highlighting
the necessity of payments. Second, we design affine maximizer payment rules that
implement SW-Max training rules in dominant-strategy incentive compatibility
(DSIC). Further, we characterize sufficient conditions for payment equivalence
properties. For a training rule that satisfies these conditions, we have found all the
payment rules that implement it in DSIC, as they only differ by a constant term
irrelevant to agents’ reports from each other.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF, Ouyang et al. [2022], Christiano et al.
[2017]) has emerged as a mainstream approach to align Large Language Models (LLMs) with human
values. However, the implementation of standard RLHF is often resource-intensive. Constraints such
as budget limitations and privacy concerns prevent individuals from obtaining fine-tuned models
aligned with their preferences. Consequently, integrating multiple preferences within a single
RLHF process becomes valuable but presents practical challenges. From an algorithmic perspective,
Multiple-Objective RLHF (MORLHF, Bai et al. [2022], Wu et al. [2024]) offers a promising solution.
Following MORLHF, there is further research focusing on improving the efficiency (Rame et al.
[2024], Shi et al. [2024], Jang et al. [2023]), accuracy (Eisenstein et al. [2023], Coste et al. [2023],
Zhang et al. [2024a], Ramé et al. [2024]), and fairness (Chakraborty et al. [2024]) of algorithms that
integrate multiple preferences.

As these techniques advance, it is natural to consider such a potential economic scenario: a platform
provides a fine-tuning service to aggregate preferences, and different groups report preferences to the
platform on behalf of their agents who share the same preference. We illustrate this by a simplified
RLHF scenario presented in Figure 1. As is shown in the figure, there are two groups reporting their
preferences, and the model is fine-tuned according to the training rule. Notably, although group 1’s
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Figure 1: Motivating example of the RLHF Game: Consider a basic training objective ψ in RLHF for
two groups, setting group sizes w1 = w2 = 1. When there is no payment rule and group 2’s report
r̃m2 is fixed, group 1 can gain a higher utility by strategically reporting r̃m′

1 ̸= rm1 than truthfully
reporting.

true preference is rm1, adopting a reporting strategy r̃m′
1 ̸= rm1 can get a more preferred model

than truthfully reporting. In practice, we have to account for the possibility that rational groups
will strategically report to maximize their utilities like that. If the mechanism is vulnerable to such
manipulation, the final model can be unpredictable, affecting the training outcome. Hence, from
the platform’s view, it is essential to consider not only the fine-tuning algorithm’s performance in
achieving specific objectives but also the incentive compatibility of preference reporting.

In this paper, we address the incentive issues for preference reporting within this scenario by framing
it scenario as a multi-parameter mechanism design problem and term it the RLHF Game. Based on
the RLHF Game, our findings show that many commonly used training objectives lead to profitable
misreporting strategies. However, we demonstrate that a simple charging scheme can incentivize
truthful reporting, and under certain conditions, this scheme is uniquely determined.

The rest of the paper is organized as follows: In Section 2, we introduce the formal RLHF Game
model. We analyze the incentives within the RLHF Game in Section 3. Further empirical study and
related work are provided in Appendix C and Appendix D, respectively.

2 Formulation of the RLHF Game

In this section, we present the formal description of the RLHF Game. In the RLHF Game, there is
one LLM provider and n groups of agents, denoted by [n] = {1, 2, · · · , n}. Let T ∗ := ∅ ∪ T ∪ T 2 ∪
· · · ∪ TK represent the set of all possible input sequences with lengths up to K. The provider has
an initial model LLMθinit with non-zero probability for all sequences, i.e., LLMθinit(x) > 0 for all
x ∈ T ∗.

Each group i has wi agents and a joint preference represented by a reward model rmi : T
∗ → R≥0.

We mainly consider two types of reward models: normalized by summation (
∑

x∈T∗ rm(x) = 1) and
normalized by maximum (maxx∈T∗ rm(x) = 1). Let R and W ⊆ N+ denote the domains for each
group’s reward model and group size, respectively. We assume an upper bound w̄ for W . The exact
reward model and the size are group i’s private information. For an agent in group i, the valuation it
receives from a model LLMθ is the expected reward on the sequences generated by LLMθ. Formally,
for all i ∈ [n], vi(θ; rm) = Ex∼LLMθ

rm(x) =
∑

x∈T∗ LLMθ(x)rm(x).

The provider first announces the mechanism, including a training rule ψ : Rn ×Wn ×Θ → Θ and a
payment rule p : Rn ×Wn ×Θ → Rn. Both rules take n reported reward models, n reported sizes,
and an initial model as input and output the objective fine-tuned model and each group’s payment,
respectively. Specifically, the training rule seeks the model that maximizes a specific objective
function OBJ. That is, ψ(−→rm, w⃗, θinit) ∈ argmaxθ∈Θ OBJ(θ;−→rm, w⃗, θinit) (We break the tie based on
the further ordering on the vi(θ; rmi)s).

After observing the announced mechanism (ψ, p), each group i reports a reward model, r̃mi, and its
group size w̃i. We assume all reported sizes are in W and therefore bounded by w̄. Based on the
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reported information, the provider fine-tunes the model and gets the final model with parameter θfinal =

ψ(
−→
r̃m, ⃗̃w, θinit). The provider then charges group i according to the payment rule, pi(

−→
r̃m, ⃗̃w, θinit).

All the members in the group have access to the fine-tuned model θfinal, so the valuation for group
i is wivi(θfinal; rmi). We assume all groups have quasi-linear utilities. Therefore, group i’s utility
is ui(

−→
r̃m, ⃗̃w;ψ, p, rmi, wi) = wivi(θfinal; rmi)− pi(

−→
r̃m, ⃗̃w, θinit). The groups may strategically report,

thus
−→
r̃m and ⃗̃w do not necessarily equal the true −→rm and w⃗.

The LLM provider’s goal is to achieve its training objective based on the group’s true preferences,
taking into account that misreporting may distort the training outcome. To this end, it is crucial to
incentivize all groups to report their information truthfully so that the provider is accessible to the
groups’ private information. We formally define these desiderata of a mechanism as follows.

• A mechanism (ψ, p) satisfies ϵ-dominant-strategy incentive compatibility (ϵ-DSIC) if ∀i,
rmi, wi, rm′

i, w
′
i,
−→rm−i, w⃗−i, θinit, we have

ui((rmi,
−→rm−i), (wi, w⃗−i); rmi, wi) + ϵ ≥ ui((rm′

i,
−→rm−i), (w

′
i, w⃗−i); rmi, wi). (1)

• A mechanism (ψ, p) satisfies ϵ-individually rationality (ϵ-IR) if ∀i, rmi, wi,
−→rm−i, w⃗−i, θinit,

we have
ui((rmi,

−→rm−i), (wi, w⃗−i); rmi, wi) + ϵ ≥ 0. (2)

In particular, DSIC and IR refer to 0-DSIC and 0-IR, respectively. When a mechanism (ψ, p) satisfies
DSIC, IR, or both DSIC and IR, we say that the payment rule p implements ψ in DSIC, IR or both
DSIC and IR. When we say the implementability of a training rule, we refer to the property of DSIC.

3 Incentives in the RLHF Game

This section explores incentive design within the RLHF Game framework. We primarily focus
on a representative set of training rules that maximize social welfare with regularization. Denote
Df (p||q) := Eq(x)f(p(x)/q(x)) the divergence between probability distributions p and q measured
by function f , the formal definition follows.
Definition 3.1 (SW-Max Training Rules). A Social Welfare-Maximizing training rule (SW-Max
training rule) fine-tunes the model to maximize the summation of the groups’ valuations subject to a
regularization measured by f -divergence (Ali and Silvey [1966], Csiszár [1967], Shi et al. [2024]).
Formally, the training objective is OBJ(θ;−→rm, w⃗, θinit) =

∑n
i=1 wivi(θ; rmi)−Df (LLMθ||LLMθinit),

where f is a convex function on R+ and f(1) = 0.

Here, we use ASW (θ;−→rm, w⃗, θinit) :=
∑n

i=1 wivi(θ; rmi) − Df (LLMθ||LLMθinit) to denote the
affine social welfare and denote ψ ∈ ΨSW that training rule ψ belongs to this set.

Necessity of Payment Rule. We start by showing that without payment rules, groups have incentives
to misreport their preferences under most circumstances. Our discussion focuses on strategies other
than simply inflating the group size wi. We assume that for ∀−→rm, w⃗, θinit, the fine-tuned model
θ = ψ(−→rm, w⃗, θinit) satisfies that LLMθ(x) > 0 for ∀x ∈ T ∗. This mainly excludes cases where the
outcomes remain largely unchanged regardless of input, which may make the analysis meaningless.
Based on this, we comprehensively analyze the relationship between optimal strategy and truthful
reporting. We start with two cases with strong intuition.
Theorem 3.2. In the RLHF Game with mechanism (ψ, p) that ψ ∈ ΨSW and p ≡ 0, for group i,
define si := |{r|r = rmi(x), x ∈ T ∗}| and rmi := minx∈T∗ rmi(x):

1. If si = 1, truthfully reporting is the optimal strategy regardless of other groups’ reports.

2. If si ≥ 2 and rmi > 0, there is a strategy that yields strictly higher utility than truthfully
reporting regardless of other groups’ reports.

si = 1 is an unusual case in which group i has the same preference values for all x, resulting
in the same valuation for any model θ. On the other hand, when si ≥ 2 and rmi > 0, group
i can report rm′

i that assigns a lower value to x1 = argminx∈T∗ rmi(x) (and a larger value to
x2 = argmaxx∈T∗ rmi(x) in summation normalization). By doing so, group i pretends to prefer x1
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less, thereby increasing the likelihood that the resulting fine-tuned model generates the outcomes
it prefers more. Further, we consider the case that si ≥ 2 and rmi = 0. The analysis in this case is
much more complex, and we refer to Theorem A.1.

Affine Maximizer Payment. After establishing the necessity of payment rules in this scenario,
we mainly address two questions in this part: (1) Given a training rule ψ, can we find a payment
rule p such that the mechanism (ψ, p) satisfies DSIC? This is the so-called implementability of a
training rule ψ. (2) For an implementable training rule ψ, can we identify the relationship between
the payment rules ps among all DSIC mechanisms (ψ, p).

For SW-Max training rules, we first define ASW−i(θ;
−→rm, w⃗, θinit) the affine social welfare except for

group i. That is, ASW−i(θ;
−→rm, w⃗, θinit) := ASW (θ;−→rm, w⃗, θinit) − wivi(θ; rmi). Then, we derive

the affine maximizer payment rule (Roberts [1979]) pAFF :

pAFF
i (−→rm, w⃗, θinit) = ASW−i(ψ(

−→rm−i, w⃗−i, θinit);
−→rm, w⃗, θinit)−ASW−i(ψ(

−→rm, w⃗, θinit);
−→rm, w⃗, θinit).

We show that pAFF implements SW-Max training rules in both DSIC and IR:
Theorem 3.3. For any ψ ∈ ΨSW , mechanism (ψ, pAFF ) satisfies DSIC and IR.

The second question is more general, so we primarily consider the concept of payment equiva-
lence ([Ashlagi et al., 2010]) defined as:
Definition 3.4 (Payment Equivalence). An implementable training rule ψ satisfies payment equiva-
lence if for any two mechanisms (ψ, p) and (ψ, p′) satisfying DSIC, there exists a function gi such
that for ∀−→rm, w⃗, θinit, we have p′i(

−→rm, w⃗, θinit) = pi(
−→rm, w⃗, θinit) + gi

(−→rm−i, w⃗−i, θinit
)
.

Payment equivalence indicates that the only way to modify a DSIC mechanism (ψ, p) to (ψ, p′) while
maintaining incentive compatibility is to add a term that is independent of i’s report to group i’s
payment function pi. Thus, the payment equivalence of ψ is sometimes interpreted as the uniqueness
of the payment rule p that implements it in DSIC.

In the context of the RLHF Game, the domain of the reward models and group sizes affects payment
equivalence. When w⃗ ≡ 1, groups only report reward models, with the domain R containing all
normalized reward models rm. Since this forms a connected set in Euclidean space, we can apply the
result from Nisan et al. [2007] to show that when w⃗ ≡ 1 is public information, and the agents only
report the reward models, all implementable training rules satisfy payment equivalence.

However, when the group size w⃗ is also a part of the private information for all groups, the domain of
the whole private information becomes R×W that is no longer a connected set because W ⊆ N+.
To address this problem, we introduce the following condition that illustrates the continuity of the
training rule.
Condition 3.5. For any ϵ > 0, there exists a δ > 0 such that for any θinit,

−→rm, −→rm′, w⃗ and w⃗′, if
maxx∈T∗ |

∑n
i=1(wirmi(x) - w′

irm
′
i(x))| ≤ δ, then maxx∈T∗ |LLMθ(x) - LLMθ′(x)| ≤ ϵ, where

θ := ψ(−→rm, w⃗, θinit) and θ′ := ψ(−→rm′, w⃗′, θinit).

We also validate this property for some widely used divergence function f in Proposition E.3. Based
on this property, we show sufficient conditions of payment equivalence for general training rules.
Theorem 3.6. An implementable training rule ψ satisfies payment equivalence if Condition 3.5 holds
and ∀i, −→rm−i, w⃗−i, θinit there exists rm∗

i and θ such that ψ((rm∗
i ,
−→rm−i), (wi, w⃗−i), θinit) ≡ θ for all

wi ∈ W . For maximum normalization, that rm∗
i must be 1.

Here, when fixing −→rm−i, w⃗−i, and θinit, if we can find a rm∗
i such that when group i reports rm∗

i then
the reported wi will not affect the training result, rm∗

i actually serves to connect different wi ∈ W .
This makes the domain of R × W be connected in another sense that can also induce payment
equivalence. For SW-Max training rules, we observe that the reward model rm that assigns the
same value for all xs, i.e., ∀x, rm(x) = 1 for maximum normalization, and rm(x) = 1/|T ∗| for
summation normalization, meets that criterion. Based on this, we obtain the following result:
Corollary 3.7. When Condition 3.5 holds, each training rule ψ ∈ ΨSW satisfies payment equiva-
lence.

With Theorem 3.3 and Corollary 3.7, we can conclude that all the payment rules that implement a
SW-Max training rule satisfies Condition 3.5 is essential an affine maximize payment rule.
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We consider the case that si ≥ 2 and rmi = 0. Since the minimum value is already 0, the strategy
demonstrated in Theorem 3.2 cannot be applied. We need to analyze in more detail how the training
results change when one group adjusts its reported preferences. Under certain smoothness conditions
of the function f , we derive a function t(x) to estimate the change in the valuation for group i when
the reported value rmi(x) is slightly adjusted from its truthful value. If t(x) ̸= 0 for some x, it is
always possible to find a suitable direction and magnitude to report rm′

i(x) ̸= rmi(x), allowing group
i to achieve higher utility. We summarize this in the following theorem, but due to the complicated
form of the function t, we provide the detailed explanation in the Theorem E.2.

Theorem A.1. In the RLHF Game with mechanism (ψ, p) that ψ ∈ ΨSW and p ≡ 0, when f
is strongly convex and C2-smooth, there exists a function t, when t(x,−→rm, w⃗, θinit) ̸= 0 for some
x ∈ T ∗, truthfully reporting is not the optimal strategy.

Combining Theorem 3.2 and Theorem A.1, we provide a comprehensive analysis that covers the
entire space of si and rmi. While the second theorem offers only a sufficient condition for the
suboptimality of truthful reporting, we demonstrate in the proof that this condition is highly likely to
occur, illustrating the failure of a mechanism without payments to incentivize truthfulness.

B Approximate Valuation Model

In this part, we discuss the influence of error generated in practice on the incentive property in the
RLHF Game. We abstract it as an approximate valuation problem (Chiesa et al. [2012]). Formally,
when group i reports its reward model rmi, the mechanism may not be accessible to rmi but rather a
noisy reward model r̂mi with a conditional distribution Fi(·|rmi), and then use it as the input. We use
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F (·|−→rm) to denote the joint distribution of these independent distributions. This abstraction can model
various errors that may occur in practical training. One example is that the calculation of valuation
defined in Section 2 requires sampling sequences from LLM, which may result in a deviation from
the true valuation.

In this model, we assume that groups are aware of the noise when feeding preferences into the
mechanism. Therefore, their utilities will take it into account and have a different form. We use the
capital letter Ui to represent agent i’s revised utility. Formally, for group i with reward model rmi

and group size wi, its utility for reporting (rm′
i, w

′
i) is given by

Ui((rm′
i,
−→rm−i), (w

′
i, w⃗−i);ψ, p, rmi, wi) =

E−→
r̂m∼F (·|(rm′

i,
−→rm−i))

ui(
−→
r̂m, (w′

i, w⃗−i);ψ, p, rmi, wi).

We consider the case when the noised input reward models to the mechanism and the reported reward
models are close:

Condition B.1. For any profile of reported reward models −→rm, the reward models
−→
r̂m that can be

generated from F (·|−→rm) with non-zero probability satisfies

max
x∈T∗

|r̂mi(x)− rmi(x)| ≤ ϵ ∀i ∈ [n].

We explore the influence of such errors on both the training objective and the incentive compatibility.
Firstly, we show that by directly applying mechanism in Section 3 to the noised input, the loss in the
social welfare is upper-bounded by 2ϵ

∑n
i=1 wi.

Lemma B.2. When Condition B.1 holds and the training rule ψ ∈ ΨSW , if all groups truthfully
report, the loss in social welfare is bounded by 2ϵ

∑n
i=1 wi.

For training rule ψ ∈ ΨSW , a group’s utility in the mechanism (ψ, pAFF ) consists of an affine social
welfare term ASW . Therefore, we can derive the following theorem based on Lemma B.2.
Theorem B.3. When Condition B.1 holds and the training rule ψ ∈ ΨSW , for group i and any rmi,
rm′

i,
−→rm−i, wi and w⃗i, we have

Ui((rmi,
−→rm−i), (wi, w⃗−i);ψ, p

AFF , rmi, wi) ≥
Ui((rm′

i,
−→rm−i), (wi, w⃗−i);ψ, p

AFF , rmi, wi)− 2wiϵ.

This theorem implies that when we do not consider the strategic report for w⃗, the mechanism
(ψ, pAFF ) satisfies maxi∈[n] 2wiϵ-DSIC. Since the maximum gain of misreporting for group i is
less than 2wiϵ regardless of the others’ reports, groups will tend to truthfully report in cases where
finding the optimal strategy is costlier than 2wiϵ.

C Empirical Study

In this section, we present an empirical evaluation of the mechanism, focusing on the DSIC property
and illustrating how payment rules incentivize truthful reporting in practical applications. The
experimental results demonstrate the effectiveness of our proposed mechanism in real-world training
scenarios.

C.1 Setup

Our experimental setup mainly follows the literature that studies MORLHF (Wu et al. [2024]) and
the improved method for multiple objectives training for LLMs, like Rewarded Soups (Rame et al.
[2024]), Rewards-in-Context (Yang et al. [2024]), and Multi-Objective Decoding (Shi et al. [2024]).
We consider two tasks: the Helpful Assistants task (Bai et al. [2022]) and the Reddit Summary
task (Stiennon et al. [2020]). And we use LLAMA2-7B (Touvron et al. [2023]) as the base model for
both tasks.

We get the initial model LLMθinit for the Helpful Assistants task by first supervised fine-tuning an
LLAMA2-7B model on the Anthropic-HH dataset (Bai et al. [2022]). Then, we use two reward
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models that measure harmlessness and humor for the RLHF process, respectively. For the Reddit
Summary task, the supervised fine-tuning is on the Summarize-from-Feedback dataset (Stiennon et al.
[2020]). We use two reward models for this task, measuring the summary’s quality and faithfulness.

We formulate these tasks as two RLHF games: a "Harmless vs. Humor" game for the Helpful
Assistants task and a "Faithful vs. Summary" game for the Reddit Summary task. In each game, the
reward models represent the true preferences of two distinct groups: for instance, in "Harmless v.s.
Humor," group 1 prioritizes harmlessness while group 2 values humor. We denote the reward models
for these preferences as rm1 (harmlessness) and rm2 (humor), with group size vectors (w1, w2)
selected from {(3, 7), (5, 5), (7, 3)}, varying across different settings.

C.2 Implementation Details

We implement the basic training rule described in Definition 3.1 and use KL-divergence as the
distance measure f . We first train models using single reward models and then combine them using
the technique of Rewarded Soups (Rame et al. [2024]) and Multi-Objective Decoding (Shi et al.
[2024]) to produce a set of hybrid models {θ1, θ2, · · · , θK}. These hybrid models form the set Θ in
Definition 3.1. As demonstrated in Rame et al. [2024], Shi et al. [2024], this method reduces training
costs while maintaining results comparable to full multi-objective fine-tuning.

Given the large space for potential misreporting, we consider two simple misreporting strategies,
(r̃mi, w̃i) for group i while keeping the other group’s report fixed:

1. r̃mi = rmi and w̃i = αwi,

2. r̃mi = βrmi + (1− β)rm−i and w̃i = wi.

Strategy (1) involves misreporting the group size, and strategy (2) leverages the other group’s
information to misreport preferences. Intuitively, by adopting a larger α or β, group i can gain more
influence in the training process and ultimately obtain a fine-tuned model it prefers more. Among
these, α = 1 and β = 1 represent truthfully reporting.

C.3 Result Analysis

Since the values output by different reward models have varying scales, we normalize all reward
values to [0, 1], ensuring that the maximum and minimum values are 1 and 0, respectively. We then
report the valuations, payments, and utilities of group i for different reporting strategies under the
mechanism, based on the normalized values, in Figure 2. Each column represents a specific group
size (w1, w2), with the first three columns corresponding to the "Harmless vs. Humor" task and the
last column to the "Faithful vs. Summary" task.

As illustrated in the figure, increasing the parameter α (or β) leads to a higher valuation for the group,
revealing the failure of non-payment mechanisms to incentivize truthful reporting. However, when
payments are computed according to pAFF , the payment increases alongside α or β, balancing the
group’s valuation and ensuring that truthful reporting (α = 1, β = 1) maximizes utility in all cases.

D Related Work

D.1 Primary Related Work

Several studies have investigated similar scenarios. Among them, Duetting et al. [2023], Soumalias
et al. [2024] and Park et al. [2024] are most related to ours. Duetting et al. [2023] examines the
problem of designing a mechanism to aggregate multiple agents’ preferences based on each agent’s
bids and determine their payments. However, they exclude the case where preferences can be
misreported, which is the primary concern in our study. The concurrent work of Soumalias et al.
[2024] and Park et al. [2024] also considers the mechanism design for strategic preference reporting
behavior. However, Soumalias et al. [2024] mainly focuses on the practical implementation of
SW-Max training rule with KL-divergence and the payment scheme. And Park et al. [2024] primarily
discusses the implementability of a training rule. In this work, we provide a more comprehensive
analysis of strategic reporting and are concerned with the theoretical properties of more general
mechanisms, including implementability and payment equivalence.
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Figure 2: The empirical result for the mechanism (ψ, pAFF ). We set the group number n = 2, and
the group size for each column is in the title. The first three columns are for the "Harmless v.s.
Humor" in the Helpful Assistants task, and the last column is for the "Faithful v.s. Summary" in the
Reddit Summary task. We report the valuation, the payment, and the utility for group 1 for different
reporting parameters α and β (defined in Appendix C). As is shown in the figure, truthfully report,
i.e., α = 1 and β = 1, brings the highest utility for all cases, showcasing the DSIC property of the
mechanism.

Additionally, there is a line of work studying other LLMs-related scenarios from the algorithmic
game theory perspective. Laufer et al. [2023] abstracts the fine-tuning process as a bargaining game
and characterizes the perfect sub-game equilibria. Dubey et al. [2024] proposes an auction where
bidders compete to place their content within a summary generated by an LLM. Conitzer et al. [2024]
considers incorporating social choice theory in LLM alignment. Feizi et al. [2023] explores the
potential for leveraging LLMs in online advertising systems.

Our work is also related to classic studies on auction design (Myerson [1979, 1981], Nisan and Ronen
[1999]) and facility location problems (Owen and Daskin [1998], Drezner and Hamacher [2004]). In
facility locations, agents can benefit by misreporting a more polarized preference. The idea of such a
strategy is similar to our model. However, the reporting strategies can be more complex due to the
complexity of the training rules that aim to catch the LLM fine-tuning scenarios and the normalization
constraints of the reward models. Further, combined with the agents’ discretized input spaces, most
of our results cannot be directly derived from existing literature.

D.2 RLHF with Multiple Reward Models

Research involving multiple reward models primarily focuses on developing algorithms to enhance
practical performance. Some studies design methods simultaneously satisfying multiple prefer-
ences (Ramé et al. [2024], Wu et al. [2024], Jang et al. [2023], Chakraborty et al. [2024], Shi et al.
[2024], Yang et al. [2024], Rame et al. [2024]). They develop more efficient algorithms to extend the
Pareto frontier among different objectives (Rame et al. [2024], Jang et al. [2023], Shi et al. [2024],
Yang et al. [2024]) and balance issues from various perspectives (Park et al. [2024], Chakraborty et al.
[2024], Ramé et al. [2024]).

Additionally, there is a body of work that trains multiple models for a single preference and then
ensembles them to improve the robustness of RLHF (Coste et al. [2023], Zhang et al. [2024a]),
mitigate the influence of incorrect and ambiguous preferences in the dataset (Wang et al. [2024]), and
reduce reward hacking (Eisenstein et al. [2023]). Unlike these approaches, our work considers how to
collect misaligned preferences truthfully from different agents. As we have mentioned, these works
are often assumed to be accessible to humans’ actual preferences, neglecting the incentive issue for
motivating rational agents to report truthfully.
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D.3 Multi-parameter Auctions

Several studies have explored the properties relevant to our paper in various multi-parameter auc-
tion scenarios, such as implementability (Rochet [1987], Miyake [1998], Conitzer and Sandholm
[2004], Saks and Yu [2005], Bikhchandani et al. [2006], Ashlagi et al. [2010]) and payment equiv-
alence (Ivanova-Stenzel and Salmon [2008], Heydenreich et al. [2009], Bergemann and Välimäki
[2010], Pavan et al. [2014]). Another central topic in auction theory is to design mechanisms that
satisfy DSIC and IR while maximizing the expected revenue for the auctioneer. Although the
single-parameter scenario has been resolved by Myerson [1981], the optimal auction design for
multi-parameter settings remains an open question. Therefore, there is a stream of research focusing
on a specific subset: affine maximizer auctions, which inherently satisfy DSIC and IR (Sandholm
and Likhodedov [2015], Roberts [1979], Likhodedov and Sandholm [2004], Briest et al. [2010],
Tang and Sandholm [2012], Jehiel et al. [2007]), and proposes optimizations to enhance empirical
performance (Curry et al. [2022], Duan et al. [2024a,b]). Compared to these works, we are the first
to discuss the property of payment equivalence and the revenue-maximizing solution for SW-Max
training rules in the scenario of fine-tuning LLMs.

D.4 Game Theory and LLMs

In addition to the work we review in the primarily related work, there are others that explored the
intersection of game theory and large language models from different perspectives. Some research has
proposed algorithms for training LLMs inspired by concepts in game theory, such as Nash learning
from human feedback (Munos et al. [2023]), consensus game (Jacob et al. [2023]), and direct Nash
optimization (Rosset et al. [2024]), and Gemp et al. [2024].

Furthermore, various studies assess LLMs from a game-theoretical perspective, examining aspects
such as rationality (Chen et al. [2023], Fan et al. [2023]), behavior in matrix games (Akata et al. [2023],
Gandhi et al. [2023], Lorè and Heydari [2023]), and performance in strategic games like auctions (Guo
et al. [2023, 2024a]), Werewolf (Xu et al. [2023a,b]), Avalon (Wang et al. [2023]), Diplomacy (Mukobi
et al. [2023], [FAIR]), card game (Feng et al. [2024]) and electronic game (Agashe et al. [2023],
Ma et al. [2023], Shao et al. [2024]). There are also comprehensive surveys (Zhang et al. [2024b],
Gallotta et al. [2024], Guo et al. [2024b]).

E Omitted proofs in Section 3

Theorem 3.2. In the RLHF Game with mechanism (ψ, p) that ψ ∈ ΨSW and p ≡ 0, for group i,
define si := |{r|r = rmi(x), x ∈ T ∗}| and rmi := minx∈T∗ rmi(x):

1. If si = 1, truthfully reporting is the optimal strategy regardless of other groups’ reports.

2. If si ≥ 2 and rmi > 0, there is a strategy that yields strictly higher utility than truthfully
reporting regardless of other groups’ reports.

Proof. If si = 1, the group gets the same utility from all training outcomes. Therefore, any strategy
is optimal. We then analyze the case si ≥ 2 and rmi > 0 in the following. First, the optimization of
ψ can be written as an equivalent constraint programming problem on the LLMθ:

argmax
LLMθ

n∑
i=1

wivi(θ; rmi)−
∑
x∈T∗

LLMθinit(x)f

(
LLMθ(x)

LLMθinit(x)

)
s.t.

∑
x∈T∗

LLMθ(x) = 1

LLMθ(x) ≥ 0 ∀x ∈ T ∗

Because of the assumption that the optimal policy satisfies LLMθ(x) > 0 for all x ∈ T ∗, we can
infer that the condition LLMθ(x) ≥ 0, ∀x ∈ T ∗ is not active for the optimal solution. Since the
convexity of the function f , by KKT condition, the necessary condition for the optimal θ∗ is that
there exists µ ∈ R (Luenberger et al. [1984]), such that

n∑
i=1

wi
∂vi

∂LLMθ(x)
− f ′

(
LLMθ(x)

LLMθinit(x)

)
= µ ∀x ∈ T ∗,

∑
x∈T∗

LLMθ(x) = 1.
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Under the definition of valuation function, ∂vi
∂LLMθ(x)

= rmi(x), so we have

n∑
i=1

wirmi(x)− f ′
(

LLMθ(x)

LLMθinit(x)

)
= µ ∀x ∈ T ∗. (OPT)

We mainly discuss the strategies other than simply over-reporting the group size w⃗. We omit the
notation w⃗ for simplicity.

Next, our primary technique is to construct a report reward model rm′
i ̸= rmi for group i such that

vi(ψ((rm′
i,
−→rm−i), θinit); rmi) > vi(ψ((rmi,

−→rm), θinit); rmi) holds for all −→rm−i and θinit.

The Summation Normalization Case.

We first discuss the case of the reward model being normalized by summation. We take the x1 ∈
argmaxx∈T∗ rmi(x),x2 ∈ argminx∈T∗ rmi(x). Since minx∈T∗ rmi(x) > 0, we have rmi(x1) <
1 and rmi(x2) > 0. Then we take a small ϵ < min{1− rmi(x1), rmi(x2)} and define rm′

i as:

rm′
i(x) =


rmi(x) + ϵ, x = x1,

rmi(x)− ϵ, x = x2

rmi(x), x ̸= x1,x ̸= x2.

Intuitively, by reporting rm′
i, group i pretends to value more for the most preferred x and less for the

least preferred x. Let θ = ψ((rmi,
−→rm−i), θinit) and θ′ = ψ((rm′

i,
−→rm−i)), θinit), we use µ and µ′ to

denote the variable in the necessary condition for LLMθ and LLMθ′ , and we can derive the following
results.

(a) LLMθ′(x1) > LLMθ(x1) and LLMθ′(x2) < LLMθ(x2). We prove the former by contradiction:
if LLMθ′(x1) ≤ LLMθ(x1), then by the convexity of f , we have

f ′
(

LLMθ′(x1)

LLMθinit(x)

)
≤ f ′

(
LLMθ(x1)

LLMθinit(x)

)
.

With rm′
i(x1) > rmi(x1), we can infer that µ′ > µ. However, since for all x ̸= x1, we have

rm′
i(x) ≤ rmi(x), to satisfy the optimal condition in (OPT), there must be for all x ̸= x1,

f ′
(

LLMθ′(x)

LLMθinit(x)

)
< f ′

(
LLMθ(x)

LLMθinit(x)

)
.

Which is equivalent to LLMθ′(x) < LLMθ(x), and hence results in
∑

x∈T∗ LLMθ′(x) <∑
x∈T∗ LLMθ(x) = 1. The latter, LLMθ′(x2) < LLMθ(x2), can be proved by totally same

method.

(b) The order of LLMθ(x) and LLMθ′(x) for all x /∈ {x1,x2} is consistent. Without loss of
generality, we assume there is x3 /∈ {x1,x2} such that LLMθ′(x3) ≥ LLMθ(x3). Then we have

f ′
(

LLMθ′(x3)

LLMθinit(x)

)
≥ f ′

(
LLMθ(x3)

LLMθinit(x)

)
.

Then, we can infer that µ′ ≤ µ. For all x /∈ {x1,x2}, to satisfy Equation (OPT), there must be

f ′
(

LLMθ′(x)

LLMθinit(x)

)
≥ f ′

(
LLMθ(x)

LLMθinit(x)

)
.

which is equivalent to LLMθ′(x) ≥ LLMθ(x). Similarly, if there is x3 /∈ {x1,x2} such that
LLMθ′(x3) ≤ LLMθ(x3), then for all x /∈ {x1,x2}, there is LLMθ′(x) ≤ LLMθ(x).
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Finally, with the results in (a) and (b), when LLMθ′(x) ≤ LLMθ(x) for all x /∈ {x1,x2}, the
change in the utility of group i can be calculated by∑

x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x)

=
∑

x̸=x1,x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x) + (LLMθ′(x1)− LLMθ(x1)) rmi(x1)

=−
∑

x ̸=x1,x∈T∗

(LLMθ(x)− LLMθ′(x)) rmi(x) + (LLMθ′(x1)− LLMθ(x1)) rmi(x1)

(2)

≥ −
∑

x ̸=x1,x∈T∗

(LLMθ(x)− LLMθ′(x)) rmi(x1) + (LLMθ′(x1)− LLMθ(x1)) rmi(x1)

=rmi(x1)

LLMθ′(x1)− LLMθ(x1)−
∑

x ̸=x1,x∈T∗

(LLMθ(x)− LLMθ′(x))


=rmi(x1)

∑
x∈T∗

(LLMθ′(x)− LLMθ(x)) = 0.

When LLMθ′(x) ≥ LLMθ(x) for all x ̸= x1,x2, the change in the utility of group i can be
calculated by∑

x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x)

=
∑

x̸=x2,x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x) + (LLMθ′(x2)− LLMθ(x2)) rmi(x2)

=
∑

x ̸=x2,x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x)− (LLMθ(x2)− LLMθ′(x2)) rmi(x2)

(3)

≥
∑

x ̸=x2,x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x2)− (LLMθ(x2)− LLMθ′(x2)) rmi(x2)

=rmi(x2)

 ∑
x̸=x2,x∈T∗

(LLMθ′(x)− LLMθ(x))− (LLMθ(x2)− LLMθ′(x2))


=rmi(x2)

∑
x∈T∗

(LLMθ′(x)− LLMθ(x)) = 0.

Note that both (2) and (3) are because of rmi(x1) ≥ rmi(x2). And unless rmi(x1) = rmi(x2),
which is excluded by si ≥ 2, the “>”s are hold.

The Maximum Normalization Case.

The case of the reward model being normalized by maximum is similar. We take the x1 ∈
argminx∈T∗ rmi(x). Since minx∈T∗ rmi(x) > 0, we have rmi(x1) > 0. Then we take a small
ϵ < rmi(x1) and define rm′

i as:

rm′
i(x) =

{
rmi(x)− ϵ, x = x1,

rmi(x), x ̸= x1.

With the same technique, we first show that LLMθ′(x1) < LLMθ(x1) and LLMθ′(x) > LLMθ(x)
for all x ̸= x1. After that, it is easy to derive that when si ≥ 2, the change in the utility of group i
satisfies ∑

x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x) > 0.

Lemma E.1. When the training rule ψ ∈ ΨSW , and the divergence function f is α-strongly convex
and C2-smooth, then ψ satisfies Condition 3.5.
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Proof. As is shown in the proof of Theorem 3.2, we have two Lagrangian variables µ and µ′ for
(−→rm, w⃗) and (−→rm, w⃗), respectively. We have the following equations:

n∑
i=1

wirmi(x)− f ′
(

LLMθ(x)

LLMθinit(x)

)
= µ, ∀x ∈ T ∗.

n∑
i=1

w′
irm

′
i(x)− f ′

(
LLMθ′(x)

LLMθinit(x)

)
= µ′, ∀x ∈ T ∗.

Firstly, we have |µ′ − µ| ≤ maxx∈T∗ |
∑n

i=1 wirmi(x)−
∑n

i=1 w
′
irm

′
i(x)|. Otherwise, without loss

of generality, assume that µ′ − µ > maxx∈T∗ |
∑n

i=1 wirmi(x) −
∑n

i=1 w
′
irm

′
i(x)|, then we can

derive that ∀x ∈ T ∗,

f ′
(

LLMθ(x)

LLMθinit(x)

)
< f ′

(
LLMθ′(x)

LLMθinit(x)

)
.

This means that LLMθ(x) < LLMθ′(x) for all x, which leads the contradiction. Therefore, we have
for all x ∈ T ∗∣∣∣∣f ′( LLMθ(x)

LLMθinit(x)

)
− f ′

(
LLMθ′(x)

LLMθinit(x)

)∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

wirmi(x)−
n∑

i=1

w′
irm

′
i(x) + µ′ − µ

∣∣∣∣∣
≤ 2

∣∣∣∣∣
n∑

i=1

wirmi(x)−
n∑

i=1

w′
irm

′
i(x)

∣∣∣∣∣ .
By C2-smoothness of f and the α-strongly convexity, we have for all x ∈ T ∗

|LLMθ(x)− LLMθ′(x)| ≤ LLMθinit(x)

α

∣∣∣∣f ′( LLMθ(x)

LLMθinit(x)

)
− f ′

(
LLMθ′(x)

LLMθinit(x)

)∣∣∣∣
≤ 2LLMθinit(x)

α

∣∣∣∣∣
n∑

i=1

wirmi(x)−
n∑

i=1

w′
irm

′
i(x)

∣∣∣∣∣ .
Therefore, for any ϵ > 0, if |

∑n
i=1 wirmi(x)−

∑n
i=1 w

′
irm

′
i(x)| < αϵ

2 , then
|LLMθ(x)− LLMθ′(x)| ≤ ϵ.

Theorem E.2 (Detailed version of Theorem A.1). In the RLHF Game with mechanism (ψ, p) that
ψ ∈ ΨSW and p ≡ 0, when f is α-strongly convex and C2-smooth, suppose group i has preference
rmi and group size wi, other groups report (−→rm−i, w⃗−i) and the initial model θinit, we define

t(z) :=
∑
x∈T∗

(rmi(z)− rmi(x))LLMθinit(x)

f ′′
(

LLMθ(x)
LLMθinit (x)

) ,

in which θ = ψ(−→rm, w⃗, θinit). When si ≥ 2 and rmi = 0:

1. For the maximum normalization case, if there exist x1 ∈ T ∗, t(x1) ̸= 0 and 0 < rmi(x1) <
1, truthful reporting is not the optimal strategy.

2. For the summation normalization case, if there exist x1 ∈ T ∗, t(x1) < 0 and 0 <
rmi(x1) < 1, truthful reporting is not the optimal strategy.

3. For the summation normalization case, if there exist x1 ∈ T ∗, t(x1) > 0 and we can also

find x2 ∈ T ∗, such that 1 > rmi(x1) ≥ rmi(x2) > 0 and 1
LLMθinit (x1)

f ′′
(

LLMθ(x1)
LLMθinit (x1)

)
<

1
LLMθinit (x2)

f ′′
(

LLMθ(x2)
LLMθinit (x2)

)
, truthful reporting is not the optimal strategy.

Proof. As is shown in the proof of Theorem 3.2, the necessary condition for the solution θ is that
there exists a µ ∈ R such that

n∑
i=1

wirmi(x)− f ′
(

LLMθ(x)

LLMθinit(x)

)
= µ ∀x ∈ T ∗,

∑
x∈T∗

LLMθ(x) = 1.
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And by Lemma E.1, we can also use the condition Condition 3.5.

The Maximum Normalization Case (1).

Without loss of generality, we assume that there exists x1 such that t(x1) > 0, we take 0 < ϵ <
1− rmi(x1) to construct a report rm′

i

rm′
i(x) =

{
rmi(x) + ϵ, x = x1,

rmi(x), x ̸= x1.

Suppose that µ′ is the Lagrangian variable for the optimal solution θ′ when reporting rm′
i, we can

derive that

µ′ − µ = wiϵIx=x1
−
(
f ′
(

LLMθ′(x)

LLMθinit(x)

)
− f ′

(
LLMθ(x)

LLMθinit(x)

))
∀x ∈ T ∗.

With a similar analyze in the proof of Theorem 3.2, we can induce that µ′ > µ and LLMθ′(x) <
LLMθ(x) for all x ̸= x1. By the C2-smoothness of f , for each x ̸= x1, there exits a LLMθ′(x) ≤
z ≤ LLMθ(x) such that

µ′ − µ = −f ′′( z

LLMθinit(x)
)

(
LLMθ′(x)− LLMθ(x)

LLMθinit(x)

)
.

For convenience, we let LLMθ′′(x) refer to the corresponding z for x, note that LLMθ′′ is not
necessarily a distribution. We then compute the change in the group i’s utility:∑

x∈T∗

rmi(x)(LLMθ′(x)− LLMθ(x))

=rmi(x1)(LLMθ′(x1)− LLMθ(x1)) +
∑
x ̸=x1

rmi(x)(LLMθ′(x)− LLMθ(x))

=rmi(x1)
∑
x̸=x1

(LLMθ(x)− LLMθ′(x))−
∑
x ̸=x1

rmi(x)(LLMθ(x)− LLMθ′(x))

=
∑
x̸=x1

(µ′ − µ)(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

)
.

Then, we show that the above term is positive when the ϵ we choose is sufficiently small. We define
the lower bound:

δ1 := min
x∈T∗

f ′′(
LLMθ(x)

LLMθinit(x)
).

Since function f is α-strongly convex, δ1 ≥ α > 0. By the C2-smoothness of the f , there exists an
δ2 > 0, such that for each θ, θ′ satisfying maxx |LLMθ(x)− LLMθ′(x)| < δ2, we have

max
x∈T∗

∣∣∣∣f ′′( LLMθ(x)

LLMθinit(x)
)− f ′′(

LLMθ′(x)

LLMθinit(x)
)

∣∣∣∣ ≤ min{δ1
2
,
δ21t(x1)

4|T ∗|
}.

Besides, because of the Condition 3.5, there exists δ3, such that for each (w⃗,−→rm) and (w⃗′,−→rm′) satisfy-
ing maxx∈T∗ |

∑n
i=1 wirmi(x)−

∑n
i=1 w

′
irm

′
i(x)| ≤ δ3, we have maxx |LLMθ(x)−LLMθ′(x)| <

δ2.

Combining these, we set ϵ < δ3
wi

, then it is suffice to show that∣∣∣∣∣∣
∑
x̸=x1

(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

)
−
∑
x̸=x1

(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ(x)
LLMθinit (x)

)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
x̸=x1

(rmi(x1)− rmi(x))
(
f ′′( LLMθ(x)

LLMθinit (x)
)− f ′′( LLMθ′′ (x)

LLMθinit (x)
)
)

LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

) · f ′′( LLMθ(x)
LLMθinit (x)

)
)

∣∣∣∣∣∣
≤
∑
x̸=x1

|rmi(x1)− rmi(x)|
∣∣∣f ′′( LLMθ(x)

LLMθinit (x)
)− f ′′( LLMθ′′ (x)

LLMθinit (x)
)
∣∣∣LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

) · f ′′( LLMθ(x)
LLMθinit (x)

)
)

<|T ∗| · δ
2
1t(x1)

4|T ∗|
· 2

δ1 · δ1
=
t(x1)

2
.
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This means that∑
x ̸=x1

(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

)
>
∑
x ̸=x1

(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ(x)
LLMθinit (x)

)
− t(x1)

2
= t(x1)−

t(x1)

2
=
t(x1)

2
> 0.

Combined with µ′ > µ, the proof concludes.

The Summation Normalization Case (2).

Assume that there exists x1 such that t(x1) < 0, we select x2 := argmaxx∈T∗ rmi(x) and take
0 < ϵ < min{rmi(x1), 1− rmi(x2)} to construct a report rm′

i

rm′
i(x) =


rmi(x)− ϵ, x = x1,

rmi(x) + ϵ, x = x2,

rmi(x), x /∈ {x1,x2}.
Still, we use µ′ to denote the Lagrangian variable for the optimal solution θ′ when reporting rm′

i.
Then, there are two possibilities for the relationship between µ and µ′. If µ ≤ µ′, by the optimal
condition OPT, for all x ̸= x2, we have LLMθ(x) ≥ LLMθ′(x). Since x2 has the highest reward
value, such change in the training outcome must be more preferred by the group i. Therefore, we only
have to consider the case that µ > µ′. Similarly, in this case, for all x ̸= x1, we have LLMθ(x) <
LLMθ′(x). By the C2-smoothness of f , for each x ̸= x1, there exits a LLMθ(x) ≤ z ≤ LLMθ′(x)
such that

µ′ − µ = wiϵIx=x2
− f ′′(

z

LLMθinit(x)
)(

LLMθ′(x)− LLMθ(x)

LLMθinit(x)
).

Let LLMθ′′(x) refer to the corresponding z for x, we then compute the change in the group i’s
utility:∑

x∈T∗

rmi(x)(LLMθ′(x)− LLMθ(x))

=rmi(x1)(LLMθ′(x1)− LLMθ(x1)) +
∑
x ̸=x1

rmi(x)(LLMθ′(x)− LLMθ(x))

=rmi(x1)
∑
x ̸=x1

(LLMθ(x)− LLMθ′(x))−
∑
x ̸=x1

rmi(x)(LLMθ(x)− LLMθ′(x))

=
∑
x̸=x1

(µ′ − µ)(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

)
− wiϵ

(rmi(x1)− rmi(x2))LLMθinit(x2)

f ′′( LLMθ′′ (x2)
LLMθinit (x2)

)

≥
∑
x ̸=x1

(µ′ − µ)(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

)
.

With the same technique we used in the maximum normalized case (1), we can show that with
sufficient small ϵ > 0, the above term

∑
x ̸=x1

(rmi(x1)−rmi(x))LLMθinit (x)

f ′′(
LLM

θ′′ (x)

LLMθinit
(x)

)
< t(x1)

2 < 0. Combined

with µ′ < µ, the proof concludes.

The Summation Normalization Case (3).

Assume that there exists x1 such that t(x1) > 0,and x2, rmi(x1) ≥ rmi(x2) > 0, we take
0 < ϵ < min{rmi(x2), 1− rmi(x1)} to construct a report rm′

i

rm′
i(x) =


rmi(x) + ϵ, x = x1,

rmi(x)− ϵ, x = x2,

rmi(x), x /∈ {x1,x2}.
Still, we use µ′ to denote the Lagrangian variable for the optimal solution θ′ when reporting rm′

i.
Since we know for sure that LLMθ(x1) < LLMθ′(x1) and LLMθ(x2) > LLMθ′(x2), by the
C2-smoothness of f , LLMθ′(x2) ≤ LLMθ′′(x2) ≤ LLMθ(x2) and LLMθ(x1) ≤ LLMθ′′(x1) ≤
LLMθ′(x1) such that

µ′ − µ = wiϵ− f ′′(
LLMθ′′(x1)

LLMθinit(x1)
)

LLMθ′(x1)− LLMθ(x1)

LLMθinit(x1)
,

µ′ − µ = −wiϵ− f ′′(
LLMθ′′(x2)

LLMθinit(x2)
)

LLMθ′(x2)− LLMθ(x2)

LLMθinit(x2)
.

(3)
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Let δ1 := minx LLMθinit(x), by the C2-smoothness of the f , there exists an δ2 > 0, such that for
each θ, θ′ satisfying maxx |wirmi(x)− w′

irm
′
i(x)| < δ2, we have

max
x∈T∗

∣∣∣∣f ′′( LLMθ(x)

LLMθinit(x)
)− f ′′(

LLMθ′(x)

LLMθinit(x)
)

∣∣∣∣ ≤ δ1
LLMθinit (x2)

f ′′
(

LLMθ(x2)
LLMθinit (x2)

)
− δ1

LLMθinit (x1)
f ′′
(

LLMθ(x1)
LLMθinit (x1)

)
3

.

(4)

We take ϵ < δ2
wi

and first prove that when taking such ϵ, there is µ ≤ µ′. By contradiction, if
µ′ < µ, then by condition Equation (OPT), for all x /∈ {x1,x2}, there is LLMθ′(x) > LLMθ(x).
Therefore, LLMθ′(x1) − LLMθ(x1) =

∑
x/∈{x1,x2}(LLMθ(x) − LLMθ′(x)) + LLMθ(x2) −

LLMθ′(x2) < LLMθ(x2)− LLMθ′(x2). However, by Equation (3), if µ′ < µ, we get

f ′′
(

LLMθ′′(x1)

LLMθinit(x1)

)
LLMθ′(x1)− LLMθ(x1)

LLMθinit(x1)
> f ′′

(
LLMθ′′(x2)

LLMθinit(x2)

)
LLMθ(x2)− LLMθ′(x2)

LLMθinit(x2)

By Equation (4), we can derive that

f ′′
(

LLMθ′′(x1)

LLMθinit(x1)

)
1

LLMθinit(x1)
< f ′′

(
LLMθ′′(x2)

LLMθinit(x2)

)
1

LLMθinit(x2)
,

and thus, we get
LLMθ′(x1)− LLMθ(x1) > LLMθ(x2)− LLMθ′(x2),

, which brings the contradiction.

After proving that µ ≤ µ′, we know that for all x /∈ {x1,x2}, LLMθ(x) ≥ LLMθ′(x). Then, by
the C2-smoothness of f , for each x ̸= x1, there exits a LLMθ′(x) ≤ z ≤ LLMθ(x) such that

µ′ − µ = −wiϵIx=x2 − f ′′(
z

LLMθinit(x)
)(

LLMθ′(x)− LLMθ(x)

LLMθinit(x)
).

Let LLMθ′′(x) refer to the corresponding z for x, we then compute the change in the group i’s
utility:∑

x∈T∗

rmi(x)(LLMθ′(x)− LLMθ(x))

=rmi(x1)(LLMθ′(x1)− LLMθ(x1)) +
∑
x ̸=x1

rmi(x)(LLMθ′(x)− LLMθ(x))

=rmi(x1)
∑
x ̸=x1

(LLMθ(x)− LLMθ′(x))−
∑
x ̸=x1

rmi(x)(LLMθ(x)− LLMθ′(x))

=
∑
x̸=x1

(µ′ − µ)(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

)
+ wiϵ

(rmi(x1)− rmi(x2))LLMθinit(x2)

f ′′( LLMθ′′ (x2)
LLMθinit (x2)

)

≥
∑
x ̸=x1

(µ′ − µ)(rmi(x1)− rmi(x))LLMθinit(x)

f ′′( LLMθ′′ (x)
LLMθinit (x)

)
.

With the same technique we used in the maximum normalized case (1), we can show that with
sufficient small ϵ > 0, the above term

∑
x ̸=x1

(rmi(x1)−rmi(x))LLMθinit (x)

f ′′(
LLM

θ′′ (x)

LLMθinit
(x)

)
> t(x1)

2 > 0. Combined

with µ′ < µ, the proof concludes.

Theorem 3.3. For any ψ ∈ ΨSW , mechanism (ψ, pAFF ) satisfies DSIC and IR.

Proof. We assume that for group i, the true reward model is rmi, and the agent number is wi. The
reports of other groups are (−→rm−i, w⃗−i) and the initial model is θinit.

(1) (ψ, pAFF ) satisfies DSIC.

We compare the utility between reporting (rmi, wi) and any other (rm′
i, w

′
i). For convenience, we

first simplify the notations by letting

θ = ψ((rmi,
−→rm−i), (wi, w⃗−i)), θinit),

θ′ = ψ((rm′
i,
−→rm−i), (w

′
i, w⃗−i)), θinit).
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The valuation of group i is the valuation for each agent multiply the real agent number:

vi = wivi(θ; rmi),

v′i = wivi(θ
′; rmi).

According to the payment rule pAFF , the payment pi for (rmi, wi) and p′i for (rm′
i, w

′
i) is

pi = ASW−i(ψ(
−→rm−i, w⃗−i, θinit);

−→rm−i, w⃗−i, θinit)−ASW−i(θ;
−→rm−i, w⃗−i, θinit)

p′i = ASW−i(ψ(
−→rm−i, w⃗−i, θinit);

−→rm−i, w⃗−i, θinit)−ASW−i(θ
′;−→rm−i, w⃗−i, θinit)

Therefore, we can calculate the change in the utility:

u′i − ui =(v′i − p′i)− (vi − pi)

=
(
wivi(θ

′; rmi) +ASW−i(θ
′;−→rm−i, w⃗−i, θinit)

)
−
(
wivi(θ; rmi) +ASW−i(θ;

−→rm−i, w⃗−i, θinit)
)

=ASW (θ′; (rmi,
−→rm−i), (wi, w⃗−i)), θinit)−ASW (θ; (rmi,

−→rm−i), (wi, w⃗−i)), θinit)

≤0.

The last inequality holds by the definition of θ

θ = ψ((rmi,
−→rm−i), (wi, w⃗−i)), θinit) = argmax

θ̂∈Θ
ASW (θ̂; (rmi,

−→rm−i), (wi, w⃗−i)), θinit).

Therefore, we can conclude that, for all −→rm, w⃗, rm′
i, w

′
i, we have

ui((
−→rm, w⃗);ψ, pAFF , rmi, wi) ≥ ui((rm′

i,
−→rm−i), (w

′
i, w⃗−i));ψ, p

AFF , rmi, wi).

(2) (ψ, pAFF ) satisfies IR.

We reuse the notations above and denote θ−i to be the optimal parameter for groups except for i, i.e.
θ−i = ψ(−→rm−i, w⃗−i, θinit). When group i truthfully report its reward model rmi and agent number
wi, the utility can be written as:

ui = vi − pi

= wivi(θ; rmi)−ASW−i(θ−i;
−→rm−i, w⃗−i, θinit) +ASW−i(θ;

−→rm−i, w⃗−i, θinit)

= wivi(θ; rmi) +ASW−i(θ;
−→rm−i, w⃗−i, θinit)−ASW−i(θ−i;

−→rm−i, w⃗−i, θinit)

= ASW (θ;−→rm, w⃗, θinit)−ASW−i(θ−i;
−→rm−i, w⃗−i, θinit)

≥ ASW (θ−i;
−→rm, w⃗, θinit)−ASW−i(θ−i;

−→rm−i, w⃗−i, θinit)

= wivi(θ−i; rmi) +ASW−i(θ−i;
−→rm, w⃗, θinit)−ASW−i(θ−i;

−→rm−i, w⃗−i, θinit)

= wivi(θ−i; rmi) ≥ 0.

Therefore, we can conclude that, for all −→rm, w⃗, we have

ui((
−→rm, w⃗);ψ, pAFF , rmi, wi) ≥ 0.

Proposition E.3. Condition 3.5 holds for SW-Max training rules with regularizations KL-divergence,
fKL(x) = λx log x, and χ2 divergence, f2(x) = λ(x − 1)2 (λ > 0 is a constant, we need λ is
relatively large for f2). For fKL(x), δ = min{λ

2 log 1
1−ϵ , λ

2 log(1 + ϵ)}. For f2(x), δ = λϵ.

Proof. (1) For fKL(x) = λx log x (KL-divergence), since T ∗ is a finite set, we can rewrite the training
rule ψ as an optimization problem as follows:

argmax
LLMθ

∑
x∈T∗

(
LLMθ(x)

n∑
i=1

wirmi(x)− λLLMθ(x) log
LLMθ(x)

LLMθinit(x)

)
s.t.

∑
x∈T∗

LLMθ(x) = 1

LLMθ(x) ≥ 0 ∀x ∈ T ∗.
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Since for KL divergence, the optimal model LLMθ must satisfy that LLMθ(x) > 0, for all x ∈ T ∗.
The necessary condition for an optimal θ is that there exists µ ∈ R, such that

n∑
i=1

wirmi(x)− λ log
LLMθ(x)

LLMθinit(x)
− λ = µ ∀x ∈ T ∗,

∑
x∈T∗

LLMθ(x) = 1.

Similarly, for the input (−→rm′, w⃗′), there exists µ′ ∈ R, such that the optimal θ′ satisfies
n∑

i=1

w′
irm

′
i(x)− λ log

LLMθ′(x)

LLMθinit(x)
− λ = µ′ ∀x ∈ T ∗,

∑
x∈T∗

LLMθ′(x) = 1.

For convenience, we define ∆(x) =
∑n

i=1 w
′
irm

′
i(x) −

∑n
i=1 wirmi(x). Then the relationship

between LLMθ(x) and LLMθ′(x) is given by

LLMθ′(x) = LLMθ(x)e
1
λ (∆(x)+µ−µ′).

Note that we also have the condition∑
x∈T∗

LLMθ′(x) =
∑
x∈T∗

LLMθ(x)e
1
λ (∆(x)+µ−µ′) = 1.

Since
∑

x∈T∗ LLMθ(x)e
1
λ (∆(x)+µ−µ′) = e

1
λ (µ−µ′)

∑
x∈T∗ LLMθ(x)e

1
λ∆(x), we can infer that

1 = e
1
λ (µ−µ′)

∑
x∈T∗

LLMθ(x)e
1
λ∆(x) ≤ e

1
λ (µ−µ′) max

x∈T∗
e

1
λ∆(x),

1 = e
1
λ (µ−µ′)

∑
x∈T∗

LLMθ(x)e
1
λ∆(x) ≥ e

1
λ (µ−µ′) min

x∈T∗
e

1
λ∆(x).

This is equivalent to

min
x∈T∗

∆(x) ≤ µ′ − µ ≤ max
x∈T∗

∆(x).

Thus, the difference for LLMθ(x) and LLMθ′(x) can be bounded by

|LLMθ′(x)− LLMθ(x)| =
∣∣∣1− e

1
λ (∆(x)+µ−µ′)

∣∣∣LLMθ(x)

≤
∣∣∣1− e

1
λ (∆(x)+µ−µ′)

∣∣∣
≤ max{max

x∈T∗
e

2∆(x)
λ − 1, max

x∈T∗
1− e

2∆(x)
λ }.

For any δ > 0, when we set maxx∈T∗ |∆(x)| ≤ min{λ
2 log 1

1−δ ,
λ
2 log(1 + δ)}, we have

|LLMθ′(x)− LLMθ(x)| ≤ max{max
x∈T∗

e
2∆(x)

λ − 1, max
x∈T∗

1− e
2∆(x)

λ } ≤ δ.

(2) For f2(x) = λ(x− 1)2 (χ2 divergence), since T ∗ is a finite set, we can rewrite the training rule ψ
as an optimization problem as follows:

argmax
LLMθ

∑
x∈T∗

(
LLMθ(x)

n∑
i=1

wirmi(x)− λ
(LLMθ(x)− LLMθinit(x))

2

LLMθinit(x)

)
s.t.

∑
x∈T∗

LLMθ(x) = 1

LLMθ(x) ≥ 0 ∀x ∈ T ∗.

Since we have assumed a relatively large λ so that the optimal model LLMθ satisfies that LLMθ(x) >
0, for all x ∈ T ∗. The necessary condition for an optimal θ is that there exists µ ∈ R, such that

n∑
i=1

wirmi(x)− 2λ
LLMθ(x)− LLMθinit(x)

LLMθinit(x)
= µ ∀x ∈ T ∗,

∑
x∈T∗

LLMθ(x) = 1.
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Similarly, for the input (−→rm′, w⃗′), there exists µ′ ∈ R, such that the optimal θ′ satisfies
n∑

i=1

w′
irm

′
i(x)− 2λ

LLMθ′(x)− LLMθinit(x)

LLMθinit(x)
= µ′ ∀x ∈ T ∗,

∑
x∈T∗

LLMθ′(x) = 1.

For convenience, we define ∆(x) =
∑n

i=1 w
′
irm

′
i(x)−

∑n
i=1 wirmi(x) Then the relationship between

LLMθ(x) and LLMθ′(x) is given by

LLMθ′(x) = LLMθ(x) +
LLMθinit(x)

2λ
(∆(x) + µ− µ′).

Note that we also have the condition∑
x∈T∗

LLMθ′(x) =
∑
x∈T∗

LLMθ(x) +
LLMθinit(x)

2λ
(∆(x) + µ− µ′) = 1.

Since
∑

x∈T∗ LLMθ(x) = 1, we can infer that∑
x∈T∗

LLMθinit(x)

2λ
(∆(x) + µ− µ′) = 0.

This is equivalent to

µ′ − µ =
∑
x∈T∗

LLMθinit(x)∆(x).

Thus, the difference for LLMθ(x) and LLMθ′(x) can be bounded by

|LLMθ′(x)− LLMθ(x)| =
∣∣∣∣LLMθinit(x)

2λ
(∆(x) + µ− µ′)

∣∣∣∣ ≤ 1

λ
max
x∈T∗

|∆(x)|

For any δ > 0, when we set maxx∈T∗ |∆(x)| ≤ λδ, we have

|LLMθ′(x)− LLMθ(x)| ≤
1

λ
max
x∈T∗

|∆(x)| ≤ δ.

Theorem 3.6. An implementable training rule ψ satisfies payment equivalence if Condition 3.5 holds
and ∀i, −→rm−i, w⃗−i, θinit there exists rm∗

i and θ such that ψ((rm∗
i ,
−→rm−i), (wi, w⃗−i), θinit) ≡ θ for all

wi ∈ W . For maximum normalization, that rm∗
i must be 1.

Proof. We prove the equivalent version of payment equivalence: For any group i, when fixing
other groups reports (−→rm−i, w⃗−i) and θinit, any two payment rules p, p′ that implement ψ in DSIC
must satisfy that there exists a constant c, such that pi(rmi, wi)− p′i(rmi, wi) = c for any rmi and
wi. Therefore, in the rest of the proof, we suppose fixed (−→rm−i, w⃗−i) and θinit and will omit these
notations.

Firstly, we introduce a new notation ti to represent the combination (rmi, wi), whose domain is
R × W . Without specially claim, ti is used to represented for the rmi and wi with the same
superscript and subscript, for example, tki = (rmk

i , w
k
i ). Then, we define the functions l(·, ·) and

V (·, ·) as follows. l(t′i, ti) is the change in valuation from misreporting type t′i to reporting type ti
truthfully. In formal,

l(t′i, ti) := wivi(ψ(ti); rmi)− wivi(ψ(t
′
i); rmi).

And V (t′i, ti) refers to the smallest values of l on a finite and distinct path from t′i to ti

V (t′i, ti) := inf
A finite and distinct sequence
[t0i :=t′i,t

1
i ,··· ,t

k
i ,t

k+1
i :=ti]

k∑
j=0

l(tji , t
j+1
i ).

We prove the following lemma, which is a special case in Heydenreich et al. [2009],
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Lemma E.4 (Heydenreich et al. [2009]). In the RLHF Game, an implemented training rule ψ satisfies
payment equivalence if for any agent i, and any types ti, t′i, we have

V (ti, t
′
i) = −V (t′i, ti).

Proof. Assume there is a mechanism (ψ, p) satisfies DSIC. For any two types ti, t′i and a finite and
distinct sequence [t′i, t

1
i , · · · , tki , ti], let t0i = t′i and tk+1

i = ti, we have that

wj+1
i vi(ψ(t

j+1
i ), rmj+1

i )− pi(t
j+1
i ) ≥ wj+1

i vi(ψ(t
j
i ), rm

j+1
i )− pi(t

j
i ) ∀0 ≤ j ≤ k.

This can be rewritten as

wj+1
i vi(ψ(t

j+1
i ), rmj+1

i )− wj+1
i vi(ψ(t

j
i ), rm

j+1
i ) ≥ pi(t

j+1
i )− pi(t

j
i ) ∀0 ≤ j ≤ k.

Sum over j, we get the following inequality

k∑
j=0

l(tji , t
j+1
i ) =

k∑
j=0

wj+1
i vi(ψ(t

j+1
i ), rmj+1

i )− wj+1
i vi(ψ(t

j
i ), rm

j+1
i )

≥
k∑

j=0

pi(t
j+1
i )− pi(t

j
i ) = p(ti)− p(t′i).

Since this holds for arbitrary finite and distinct sequences, we can infer that V (t′i, ti) ≥ p(ti)− p(t′i).
Similarly, there is V (ti, t

′
i) ≥ p(t′i) − p(ti). Combining these results with V (ti, t

′
i) = −V (t′i, ti),

there is
V (ti, t

′
i) = −V (t′i, ti) ≤ p(t′i)− p(ti) ≤ V (ti, t

′
i),

which means that p(t′i) − p(ti) = V (ti, t
′
i). Note that this holds for arbitrary ti and t′i. Therefore,

when for some ti, the payment p(ti) is determined, then the payment for all other t′is is determined.
For example, if there are any two payment rules p and p′ both implement ψ in DSIC, and we set the
payment when i reports preference rm defined in Equation (6) and wi = 1 as p∗ and p′∗ respectively,
then ∀ti

pi(ti)− p′i(ti)

= (pi(ti)− p∗)− (p′i(ti)− p′∗) + p∗ − p′∗

=V ((rm, 1), ti)− V ((rm, 1), ti) + p∗ − p′∗

=p∗ − p′∗.

Note that p∗ and p′∗ are not influenced by i’s report, but they may vary for different −→rm−i, w⃗−i and
θinit, which means that we can consider the term p∗ − p′∗ as a function f on (−→rm−i, θinit).

Then, we show that the training rule satisfying the conditions in Theorem 3.6 is sufficient for the
condition stated in Lemma E.4. Firstly, we show that for any ti, t′i, we have V (ti, t

′
i) + V (t′i, ti) ≥ 0.

By definition of the function V (·, ·), V (ti, t
′
i) and V (t′i, ti) correspond to the shortest path from ti

to t′i and from t′i to ti respectively, which means that V (ti, t
′
i) + V (t′i, ti) is the shortest weight for

a cycle that goes through ti and t′i. Since the SW-Max training rule is implementable, we know
that the weight for any cycle is non-negative by cycle monotonicity (Rochet [1987]). Therefore,
V (ti, t

′
i) + V (t′i, ti) ≥ 0 must be satisfied.

Then we show that for any ti, t′i and ϵ > 0, V (ti, t
′
i) + V (t′i, ti) ≤ ϵ. We prove this by constructing a

finite and distinct sequence [ti, t
1
i , · · · , tki , t′i] such that

k∑
j=0

l(tji , t
j+1
i ) +

k∑
j=0

l(tj+1
i , tji ) ≤ ϵ. (5)

This suffices for proving V (ti, t
′
i) + V (t′i, ti) ≤ ϵ since V (ti, t

′
i) and V (t′i, ti) are the lower bound

for
∑k

j=0 l(t
j
i , t

j+1
i ) and

∑k
j=0 l(t

j+1
i , tji ) respectively.
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Initially, we rewrite the LHS of Equation (5) by using the definition of the function l(·, ·).

k∑
j=0

l(tji , t
j+1
i ) +

k∑
j=0

l(tj+1
i , tji )

=

k∑
j=1

(
wj+1

i vi(ψ(t
j+1
i ), rmj+1

i )− wj+1
i vi(ψ(t

j
i ), rm

j+1
i )

)
+

k∑
j=0

(
wj

i vi(ψ(t
j
i ), rm

j
i )− wj

i vi(ψ(t
j+1
i ), rmj

i )
)

=

k∑
j=0

wj+1
i (LLMθj+1 − LLMθj ) · rmj+1

i +

k∑
j=0

wj
i (LLMθj − LLMθj+1) · rmj

i

=

k∑
j=0

(LLMθj+1 − LLMθj ) · (wj+1
i rmj+1

i − wj
i rmj

i )

=

k∑
j=0

∑
x∈T∗

(LLMθj+1(x)− LLMθj (x))(wj+1
i rmj+1

i (x)− wj
i rmj

i (x)).

In the above equations, θj = ψ(tji ) for 0 ≤ j ≤ k refers to the fine-tuned model when group i reports
tji .

By the condition, when −→rm−i, w⃗−i and θinit are fixed, there exits δ > 0 such that if
maxx∈T∗ |wirmi(x) − w′

irm
′
i(x)| ≤ δ, then maxx∈T∗ |LLMθ(x) − LLMθ′(x)| ≤ ϵ

4w̄ (in max-
imum normalization case, we take ϵ

4w̄|T∗| ), where θ := ψ((rmi,
−→rm−i), (wi, w⃗−i); θinit) and

θ′ := ψ((rm′
i,
−→rm−i), (w

′
i, w⃗−i); θinit).

We construct the sequence P as follows: we set k = 2n, n ≥ w̄
δ + 1 and let t0i = ti, t

k+1
i = t′i. For

each 0 ≤ j ≤ n,

wj
i = wi, rmj

i = rm + j(
rm∗

i − rm
n

).

And for each n+ 1 ≤ j ≤ 2n+ 1,

wj
i = w′

i, rmj
i = rm∗

i + (j − n− 1)(
rm′ − rm∗

i

n
).

Note that the rm∗
i is given by the condition in Theorem 3.6. In this construction, any rmj

i is either an
weighted average of rm and rm∗

i or rm′ and rm∗
i . This ensures that all reward models in the sequence

are valid (normalized by summation or maximum and non-negative). We can then divide the above
equation into three parts, making the wi the same in the first and the last parts.

k∑
j=0

∑
x∈T∗

(LLMθj+1(x)− LLMθj (x))(wj+1
i rmj+1

i (x)− wj
i rmj

i (x))

=

n−1∑
j=0

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))(rmj+1
i (x)− rmj

i (x)) (a)

+
∑
x∈T∗

(LLMθn+1(x)− LLMθn(x))(w′
irm

n+1
i (x)− wirmn

i (x)) (b)

+

2n∑
j=n+1

∑
x∈T∗

w′
i(LLMθj+1(x)− LLMθj (x))(rmj+1

i (x)− rmj
i (x)) (c)

We first claim that (b) equals to 0. This is because of the property of rmn
i = rmn+1

i = rm∗
i , which

can induces LLMθn = LLMθn+1 .

Then we turn to (a). By the construction, for any x ∈ T ∗ and 0 ≤ j ≤ n − 1, |wj
i rmj

i (x) −
wj

i rmj+1
i (x)| ≤ w̄

n ≤ δ, so that |LLMθj (x) − LLMθj+1(x)| ≤ ϵ
4w̄ holds for all x. Then we can
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derive that:
n−1∑
j=0

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))(rmj+1
i (x)− rmj

i (x))

=

n−1∑
j=0

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))
rm∗

i (x)− rmi(x)

n

≤
n−1∑
j=0

∑
x∈T∗

wi
ϵ

4w̄

|rm∗
i (x)− rmi(x)|

n

≤
∑
x∈T∗

ϵ

4
|rm∗

i (x)− rmi(x)|

≤
∑
x∈T∗

ϵ

4
(rm∗

i (x) + rmi(x)) ≤
ϵ

2
.

The case is similar to (c). By the construction, for any x ∈ T ∗ and n+ 1 ≤ j ≤ 2n, |wj
i rmj

i (x)−
wj

i rmj+1
i (x)| ≤ w̄

n ≤ δ, so that |LLMθj (x) − LLMθj+1(x)| ≤ ϵ
4w̄ holds for all x. Then we can

derive that:
2n∑

j=n+1

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))(rmj+1
i (x)− rmj

i (x))

=

2n∑
j=n+1

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))
rm′

i(x)− rm∗
i (x)

n

≤
2n∑

j=n+1

∑
x∈T∗

wi
ϵ

4w̄

|rm′
i(x)− rm∗

i (x)|
n

≤
∑
x∈T∗

ϵ

4
|rm′

i(x)− rm∗
i (x)|

≤
∑
x∈T∗

ϵ

4
(rm′

i(x) + rm∗
i (x)) ≤

ϵ

2
.

Combining the results from (a), (b), and (c), we have that under this construction,
k∑

j=0

l(tji , t
j+1
i ) +

k∑
j=0

l(tj+1
i , tji ) ≤

ϵ

2
+
ϵ

2
= ϵ.

By the arbitrariness of ϵ > 0, this is suffice to demonstrate that V (ti, t
′
i) + V (ti, t

′
i) ≤ 0.

Therefore, it is proven that
V (ti, t

′
i) + V (ti, t

′
i) = 0.

which means that V (ti, t
′
i) = −V (t′i, ti). By Lemma E.4, this is a sufficient condition for the

payment equivalence of ψ.

Corollary 3.7. When Condition 3.5 holds, each training rule ψ ∈ ΨSW satisfies payment equiva-
lence.

Proof. We construct the reward model as follows and show that this satisfies the condition in
Corollary 3.7 when the mechanism uses SW-Max training rules.

rm∗(x) =


1

|T ∗|
Summation Normalization Case,

1 Maximum Normalization Case.
(6)

We prove this by contradiction. Assuming that there exist i, −→rm−i, w⃗−i, θinit, wi, w′
i such that

θ := ψ((rm∗
i ,
−→rm−i), (wi, w⃗−i), θinit) ̸= ψ((rm∗

i ,
−→rm−i), (w

′
i, w⃗−i), θinit) =: θ′
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We denote the further tie-breaking rule as ≻−→rm. Then, considering the optimality of θ, we have one of
the following satisfied.

ASW (θ; (rm∗
i ,
−→rm−i), (wi, w⃗−i), θinit) > ASW (θ′; (rm∗

i ,
−→rm−i), (wi, w⃗−i), θinit),

or

ASW (θ; (rm∗
i ,
−→rm−i), (wi, w⃗−i), θinit) = ASW (θ′; (rm∗

i ,
−→rm−i), (wi, w⃗−i), θinit), and LLMθ ≻−→rm LLMθ′ .

Note that vi(θ; rm∗
i ) = vi(θ

′; rm∗
i ), andASW (θ; (rm∗

i ,
−→rm−i), (wi, w⃗−i), θinit) = (w′

i−wi)vi(θ; rm∗
i )

+ ASW (θ; (rm∗
i ,
−→rm−i), (w

′
i, w⃗−i), θinit), we have

ASW (θ; (rm∗
i ,
−→rm−i), (w

′
i, w⃗−i), θinit) > ASW (θ′; (rm∗

i ,
−→rm−i), (w

′
i, w⃗−i), θinit)

or

ASW (θ; (rm∗
i ,
−→rm−i), (w

′
i, w⃗−i), θinit) = ASW (θ′; (rm∗

i ,
−→rm−i), (w

′
i, w⃗−i), θinit), and LLMθ ≻−→rm LLMθ′ .

Both cases contradicted the optimality of θ′.

F Omitted proofs in Section B

Lemma F.1. For any rm, rm′, if maxx∈T∗ |rm(x)− rm′(x)| = ϵ, then for any model θ, we have

|v(θ; rm)− v(θ; rm′)| ≤ ϵ

Proof. We can derive that

|v(θ; rm)− v(θ; rm′)| = |
∑
x∈T∗

LLMθ(x)(rm(x)− rm′(x))| ≤
∑
x∈T∗

LLMθ(x)|rm(x)− rm′(x))|

≤
∑
x∈T∗

LLMθ(x)ϵ = ϵ.

Lemma B.2. When Condition B.1 holds and the training rule ψ ∈ ΨSW , if all groups truthfully
report, the loss in social welfare is bounded by 2ϵ

∑n
i=1 wi.

Proof. Let θ̂ = ψ(
−→
r̂m, w⃗, θinit) and θ = ψ(−→rm, w⃗, θinit). θ̂ is the optimal parameter for biased input,

and θ is the optimal parameter for the true input.

ASW (θ̂;−→rm, w⃗, θinit) =

n∑
i=1

wivi(θ̂; rmi)−Df (LLMθ̂||LLMθinit)

(1)

≥
n∑

i=1

wi

(
vi(θ̂; r̂mi)− ϵ

)
−Df (LLMθ̂||LLMθinit)

= ASW (θ̂;
−→
r̂m, w⃗, θinit)−

n∑
i=1

wiϵ

(2)

≥ ASW (θ;
−→
r̂m, w⃗, θinit)−

n∑
i=1

wiϵ

=

n∑
i=1

wivi(θ; r̂mi)−Df (LLMθ||LLMθinit)−
n∑

i=1

wiϵ

(3)

≥
n∑

i=1

wi (vi(θ; rmi)− ϵ)−Df (LLMθ||LLMθinit)−
n∑

i=1

wiϵ

= ASW (θ;−→rm, w⃗, θinit)− 2

n∑
i=1

wiϵ.
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(1) and (3) can be directly induced by Lemma F.1, and (2) holds by the definition of θ̂.

θ̂ = ψ(
−→
r̂m, w⃗, θinit) = argmax

θ∈Θ
ASW (θ;

−→
r̂m, w⃗, θinit).

Theorem B.3. When Condition B.1 holds and the training rule ψ ∈ ΨSW , for group i and any rmi,
rm′

i,
−→rm−i, wi and w⃗i, we have

Ui((rmi,
−→rm−i), (wi, w⃗−i);ψ, p

AFF , rmi, wi) ≥
Ui((rm′

i,
−→rm−i), (wi, w⃗−i);ψ, p

AFF , rmi, wi)− 2wiϵ.

Proof. Recall that the calculation of payment in pAFF is

pAFF
i (−→rm, w⃗, θinit) = ASW−i(ψ(

−→rm−i, w⃗−i, θinit);
−→rm, w⃗, θinit)−ASW−i(ψ(

−→rm, w⃗, θinit);
−→rm, w⃗, θinit).

Let w⃗ = (wi, w⃗−i), the utility function can be written as:

ui((rm′
i,
−→rm−i), w⃗;ψ, p, rmi, wi) = wivi(θ; rmi)− pAFF

i ((rm′
i,
−→rm−i), w⃗, θinit)

= wivi(θ; rmi)−ASW−i(θ−i;
−→rm, w⃗, θinit) +ASW−i(θ;

−→rm, w⃗, θinit)

= ASW (θ;−→rm, w⃗, θinit)−ASW−i(θ−i;
−→rm, w⃗, θinit),

where we define θ = ψ((rm′
i,
−→rm−i), w⃗, θinit), and θ−i = ψ(−→rm−i, w⃗−i, θinit). Note that the term

ASW−i(θ−i;
−→rm, w⃗, θinit) is not influenced by the change of rmi or wi.

Therefore, we can derive that for any −→rm−i, w⃗, let θ−i = ψ(−→rm−i, w⃗−i, θinit):

Er̂mi∼Fi(·|rmi)

[
ui((r̂mi,

−→rm−i), w⃗;ψ, p, rmi, wi) +ASW−i(θ−i;
−→rm, w⃗, θinit)

]
=Er̂mi∼Fi(·|rmi)

[
ASW (θ̂;−→rm, w⃗, θinit)

]
=Er̂mi∼Fi(·|rmi)

wivi(θ̂; rmi) +
∑
j ̸=i

wjvj(θ̂; rmj)−Df (LLMθ̂||LLMθinit)


(1)

≥Er̂mi∼Fi(·|rmi)

wivi(θ̂; r̂mi) +
∑
j ̸=i

wjvj(θ̂; rmj)−Df (LLMθ̂||LLMθinit)

− wiϵ

(2)

≥Er̂mi∼Fi(·|rmi)

wivi(θ; r̂mi) +
∑
j ̸=i

wjvj(θ; rmj)−Df (LLMθ||LLMθinit)

− wiϵ

(3)

≥Er̂mi∼Fi(·|rmi)

wivi(θ; rmi) +
∑
j ̸=i

wjvj(θ; rmj)−Df (LLMθ||LLMθinit)

− 2wiϵ

(4)
=Er̂mi∼Fi(·|rm′

i)

wivi(θ; rmi) +
∑
j ̸=i

wjvj(θ; rmj)−Df (LLMθ||LLMθinit)

− 2wiϵ

(5)

≥Er̂mi∼Fi(·|rm′
i)

wivi(θ̂; rmi) +
∑
j ̸=i

wjvj(θ̂; rmj)−Df (LLMθ̂||LLMθinit)

− 2wiϵ

=Er̂mi∼Fi(·|rm′
i)

[
ASW (θ̂;−→rm, w⃗, θinit)

]
− 2wiϵ

=Er̂mi∼Fi(·|rm′
i)

[
ui((r̂mi,

−→rm−i), w⃗;ψ, p, rmi, wi) +ASW−i(θ−i;
−→rm, w⃗, θinit)

]
− 2wiϵ

All the θ̂ in the above inequalities refers to the optimal parameter for input (r̂mi,
−→rm−i), w⃗, θinit,

i.e. θ̂ = ψ((r̂mi,
−→rm−i), w⃗, θinit). Specifically, (1) and (3) come from the bounded distance be-

tween rmi and r̂mi (Lemma F.1). (2) and (5) hold by the definitions: θ̂ = ψ((r̂mi,
−→rm−i), w⃗, θinit)
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= argmaxθ′∈ΘASW (θ′; (r̂mi,
−→rm−i), w⃗, θinit) and θ = ψ((rmi,

−→rm−i), w⃗, θinit) = argmaxθ′∈Θ

ASW (θ′; (rmi,
−→rm−i), w⃗, θinit). And (4) holds since the inner term is irrelevant to r̂mi.

Therefore, we get

Ui((rmi,
−→rm−i), w⃗;ψ, p, rmi, wi)

=E−̂→rm∼F(·|(rmi,
−→rm−i))

[
ui(

−̂→rm, w⃗;ψ, p, rmi, wi)
]

=Er̂mi∼Fi(·|rmi)E−̂→rm−i∼F−i(·|−→rm−i)

[
ui((r̂mi,

−̂→rm−i), w⃗;ψ, p, rmi, wi)
]

≥Er̂mi∼Fi(·|rm′
i)
E−̂→rm−i∼F−i(·|−→rm−i)

[
ui((r̂mi,

−̂→rm−i), w⃗;ψ, p, rmi, wi)− 2wiϵ
]

=E−̂→rm∼F(·|(rm′
i,
−→rm−i))

[
ui(

−̂→rm, w⃗;ψ, p, rmi, wi)− 2wiϵ
]

=Ui((rm′
i,
−→rm−i), w⃗;ψ, p, rmi, wi)− 2wiϵ..
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