Sumudu Neural Operator for ODEs and PDEs

Ben Zelenskiy Saibilila Abudukelimu
Algoverse Al Research, USA Algoverse Al Research, USA
ben.zelenskiy @ gmail.com saibi.kerim @ gmail.com
George Flint* Kevin Zhu*
University of California, Berkeley, USA Algoverse Al Research, USA
georgeflint@berkeley.edu kevin@algoverseacademy.com

Sunishchal Dev*
Algoverse Al Research, USA
dev@algoverseairesearch.org

Abstract

We introduce the Sumudu Neural Operator (SNO), a neural operator rooted in
the properties of the Sumudu Transform. We leverage the relationship between
the polynomial expansions of transform pairs to decompose the input space as
coefficients, which are then transformed into the Sumudu Space, where the neural
operator is parameterized. We evaluate the operator in ODEs (Duffing Oscillator,
Lorenz System, and Driven Pendulum) and PDEs (Euler-Bernoulli Beam, Burger’s
Equation, Diffusion, Diffusion-Reaction, and Brusselator). SNO achieves superior
performance to FNO on PDEs and demonstrates competitive accuracy with LNO
on several PDE tasks, including the lowest error on the Euler-Bernoulli Beam
and Diffusion Equation. Additionally, we apply zero-shot super-resolution to the
PDE tasks to observe the model’s capability of obtaining higher quality data from
low-quality samples. These preliminary findings suggest promise for the Sumudu
Transform as a neural operator design, particularly for certain classes of PDEs.
Code: https://github.com/Lapuleu/SNO

1 Introduction

[6]] introduces transform based neural operators, machines that learn maps between function spaces
of infinite-dimensions. [10] discusses this completely new branch of neural architecture, explaining
how they often utilize integral transforms to approximate operators, thereby enabling the learning of
complex function mappings. They are particularly useful for solving differential equations compared
to standard mathematical solvers, which are time and resource-intensive. Neural operators are not
strictly as accurate as mathematical solvers, due to them estimating instead of solving, but they can
be significantly more efficient. Two notable neural operators are the Fourier Neural Operator (FNO)
and the Laplace Neural Operator (LNO). [7]] introduce the Fourier neural operator (FNO), which
decomposes the input space using a Fourier transform using the Fast Fourier Transform algorithm [3],
yielding accurate PDE solutions more efficiently than previous analytical methods. [1] introduces the
Laplace neural operator (LNO), which leverages the pole-residue formulation of a function in Laplace
Space to decompose the input space—building upon FNO by using a more general integral transform
than the Fourier Transform, as well as adding more sophistication (in the form of the pole-residue
formulation) in the signal processing step.

*Senior authors.

1st Workshop on Differentiable Systems and Scientific Machine Learning @ EurIPS 2025.

1.1 Neural Operators

Neural operators are neural networks that learn mappings between functional spaces, enabling more
generalization than traditional neural networks. The goal of any neural operator is to learn the
nonlinear map Py : X —) where ¢ is the network parameters. In recent years, neural operators
have gained popularity in the realm of differential equations, originally inspired by the universal
approximation theorem of operators proposed by [2]. A significant motivator for the development of
neural operators is their property of variable discretization, which means that the output discretization
can be increased without retraining the model, allowing for high versatility as well as the possibility
of zero-shot super-resolution.

The first functional neural network, DeepONet [9], functionally was the sum of two or more deep
neural networks (DNNs) where the output(s) would have a trunk neural network and the input(s)
would have branch neural networks. The DNNs had general architectures, meaning the architectures
could alter the behavior of the neural network [8]]. In 2020, the groundbreaking Fourier Neural
Operator showed the capabilities of neural operators, demonstrating both zero-shot super-resolution
as well as high performance on a myriad of PDE tasks [7]]. A similar architecture is demonstrated in
the Laplace Neural Operator (LNO); however, LNO leverages the Laplace Transform as well as a
pole-residue formulation of the Laplace Space, which allowed them to solve the issue of transient
responses and no damping conditions that FNO struggled with. We propose to again replace the
Fourier transform in FNO with the Sumudu transform, a related integral transform that is far less
studied than either the Laplace or Fourier transforms. We are motivated by some key properties of the
Sumudu transform that allow us to define it in terms of a polynomial approximation, which has both
computation efficiency benefits and proposed higher accuracy on zero-shot super resolution tasks for
time-dependent ODEs/PDEs.

Transient Responses and Dampening A transient response is the initial behavior of a signal. The
more underdamped a signal, the more oscillitations it takes to reach steady-state. A steady-state
is an equilibrium at which transients no longer matter and the signal goes on infinitely. The most
fundamental example is a pure sinusoidal wave. Capturing transient responses has been a challenge
for certain neural operator architectures but was significantly improved on by [[1]].

2 Methods

To achieve the proposed SNO, we first raise the input function to a higher-dimensional representation
using a lifting function, L. We realize this through a shallow linear neural network. We then apply
a standard neural net operation in which we sum a Sumudu layer, acting as a weight, and a bias
function, W.

Task. We assess the SNO on problems previously used in Fourier and Laplace Neural Operators,
which include ordinary differential equations (ODEs) and partial differential equations (PDEs). We
run our benchmark on Burgers’ equation, Duffing oscillators, the Driven Pendulum equation, and
the Lorenz system. We utilize the same training and testing datasets as those used in prior work. All
input data are first normalized before being input into the system:

Training. We perform training with the Adam optimizer [3] using a learning rate of 1 x 10~2 and a
batch size of 20, for 1000 epochs(Pendulum used 1200 epochs and batch size 50). We use the relative
L? error between the predicted solution and the ground-truth solution as our loss function, as in [7].

Evaluation. Model accuracy is measured by relative Lo error between predicted and ground-truth
solutions on out-of-distribution functions. Performance of the SNO is compared to that of the LNO
and FNO on each task. We also compare run-time efficiencies between FNO, LNO, and SNO, using
torch synchronization. The times are not wholly representative of actual efficiencies due to differences
in code and optimization.

ODE Pointwise Prediction Errors

Truth SNO FNO LNO
03 04
- 02 03 010 004
g
14 < w z 0z 005 002
L E o
2 5 000
g & o
o 01 w
o = o1 o005 .
02
c 02
= -010 “00a
L; 03 o3
=]
08
06 0075 006
P 0050 004
n 04
2 E o4 - wozs
Mg E 002
ST 02 T 02 0000
2 5 000
S o0 E —0.025
g “ooe 002
£ 5 ~0.050
—02 —0.075 -0.0a
04
25
* 10 20 010
E 15
o ? £ os 005
1% : .
g 00 000
57 5 os
= N 05 00 -0.05
E -10 o5 -0.10
9
3 100 R so s
75
= 5 25 6
50
E — 00 4
v
o 3 E o e ,
T 2 00 E
g
< s 50 0
= . s -
R -100 "
10 10 04 0100
0075
= 02
05 05
£ z 0050
v
2 o T oo 0o 0025
= 5
o E
[T} = E 02 0.000
b B s o5
= —0.025
. 04
10 10 —0.050
F]
El 025 020 004
-] 020 004
c 015
g g ox 002 003
3 0w £ 002
2 oos 5 o005 000 001
£ £
0§ o S oo 000
Z o0s 002
i —o0s 001
—010
o0 -0.02
B) T n B 0 g £l g T £l 0 5 o 5 »
Time (s) Time (s) Time (s) Time (s)

Figure 1: ODE ground truths and pointwise prediction errors between FNO, LNO, and SNO.

Ground Truth

Beam
Location (meters)
58 8 5 o

1]
&

Burger's
Location (meters)
3¢5 885 o

)

1 10 20 30 a0

50 75

100 125

S o
D _
S Zw
[
<z
S &,
2

e

©

i

o

Diffusion
Location (meters)
58 8 5 o

zm

o 10

20 30
Time (seconds)

Figure 2: PDE ground truths and pointwise prediction errors between FNO, LNO, and SNO

PDE Pointwise Prediction Errors

SNO

00 25 50 75 100 125 150 175

20 30
Time (seconds)

0,004

FNO

0002
0000
—-0.002 o

—~0.004

Bt
Time (seconds)

w“

20

|

10

g

K

20
Time (seconds)

&

[fooz
001
000

-0.01

004

0.00

—025

-0.50

-075

-1.00

0.005

0.000

—~0.005

Table 1: Average pointwise prediction errors on function types between FNO, LNO, and SNO models.

Function Type SNO FNO LNO
Duffing Oscillator (¢ = 0) 0.9125 0.8761 0.2777
Duffing Oscillator (¢ = 0.5) 0.7147 0.3343 0.1372
ODEs Pendulum (¢ = 0) 0.9100 0.5150 0.1961
Pendulum (¢ = 0.5) 0.7386 0.1893 0.1332
Lorenz System (p = 10) 0.5565 0.4129 0.3024
Lorenz System (p = 5) 0.1025 0.06110 0.008700
Euler-Bernoulli Beam 0.002100 1.518 0.007900
Burger 0.3331 3.389 0.05310
2D PDEs Diffusion 0.0006779 1246 0.001300
Diffusion Reaction 0.1185 7.76775652 0.1123
3D PDE Brusselator 0.1093 0.1283 0.1834
3 Results

SNO achieves the lowest average error among all three operators on the Euler-Bernoulli Beam (0.0021)
and Diffusion equation (0.00068), outperforming even LNO by factors of 3.8x and 1.9x respectively.
On Burger’s equation, SNO (0.3331) significantly outperforms FNO (3.389) while remaining within
an order of magnitude of LNO (0.0531). However, SNO exhibits weaker performance on ODE tasks,
particularly for the Duffing Oscillator with ¢ = 0.5 (0.7147 vs LNO’s 0.1372)(T).

We can see that SNO achieves lower error on PDEs compared to ODEs, and furthermore, does better
on dampened systems than undampened, visible in the errors.

4 Discussion

SNO demonstrates competitive and sometimes superior performance compared to established neural
operators, particularly on PDE tasks. The strong performance on beam mechanics and diffusion
problems suggests that the Sumudu transform’s polynomial representation may be especially well-
suited for problems with smooth solution manifolds.

The performance gap on ODE tasks (Duffing, Pendulum, Lorenz) indicates that SNO, like FNO, is
not built for handling signals that are either undamped or have a transient part or bot This was
expected as SNO lacks the pole-residue formulation of LNO, but the performance of SNO on damped
tasks surprisingly does not lag to far behind LNO.

5 Conclusion

We introduce the Sumudu Neural Operator (SNO), a novel operator architecture that leverages the
Sumudu transform and its connection to polynomial expansions to learn solution operators for ODEs
and PDEs more efficiently. Our trials demonstrate that SNO can achieve better performance on
most PDEs than both FNO and LNO, despite lagging behind on ODEs. SNO exhibits promise
as an alternative neural operator framework, especially on certain PDE types, where it performs
significantly better than other models, as well as dampened and steady-state signals. This suggests
the need for further testing on these PDE types to understand the benefits SNO provides over other
neural operators. Observed limitations in accuracy and behavior highlight the need for further work,
including increasing the complexity of the current architecture, more accurate and efficient methods
of polynomial regression, and more nuanced time-efficiency analyses.

The method of interpolating the polynomial through polynomial regression means sacrificing initial accuracy
for general accuracy. In prior experimentation, substituting this with a taylor series approximation centered at
any point of importance in the input signal resulted in significantly higher accuracy near that point.

References

[1] Qianying Cao, Somdatta Goswami, and George Em Karniadakis. Lno: Laplace neural operator
for solving differential equations. arXiv preprint arXiv:2303.10528, 2023.

[2] Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems. /[EEE
Transactions on Neural Networks, 6(4):911-917, 1995.

[3] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19(90):297-301, 1965.

[4] Adam Work Glen Atlas, John K.-J. Li. A tutorial to approximately invert the sumudu transform.
Applied Mathematics, 2019.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR), 2015.

[6] Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces. CoRR, abs/2108.08481, 2021.

[7] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
tial equations. arXiv preprint arXiv:2010.08895, 2021.

[8] Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators.
arXiv.org, Apr 2020.

[9] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218-229, March 2021.

[10] Alex Townsend Nicolas Boulle. Chapter 3 - a mathematical guide to operator learning. In
Siddhartha Mishra and Alex Townsend, editors, Numerical Analysis Meets Machine Learning,
volume 25 of Handbook of Numerical Analysis, pages 83—125. Elsevier, 2024.

A Appendix

A.1 A: Operator Details

The Sumudu Neural Operator To build our neural operator we first start with a general structure
for a neural operator,

u(t) = (W + (K(E(t):) (@));x € D ()

Where w(t) is the high dimensional analogue of the output 2(¢) which is in domain D, o is a nonlinear
activation function, W is a weight achieved through a linear transformation, /C is a kernel integral
transformation:

IC:/ kg (t, 7, £(t),£(7); p)v(T)dT,)
D

and ¢ is the network parameters. We now replace IC with the Sumudu Transform which is defined as,

S{F(1)} (u) = / " flutye d. 3)

In the next section, we construct a method of calculating the Sumudu transform through a fitted
polynomial. We will also describe the time efficiencies this offers.

—® =~

> \ p ™
1®) —L—{v(t) e R?) [+)—P—n/w(t)\\
g e . J

L—»{ V(u)@K(u) ~‘—J

Viu) = S{v(t)} = S{iﬂ n!cnt”} = > nle,t"

K(u) = 5{x(t)}

Figure 3: Diagram of the Sumudu Neural Operator (SNO) architecture. Given an input function f(t),
wel lift the input function to a higher dimension using a shallow, linear neural network, L, (2) we
apply a Sumudu transform, and parametrize weights in the Sumudu space, while applying a local
linear transform W as a bias, (3) we normalize results, add our activation function, and project back
into the original dimension through a second neural network, P, to get our output.

Calculating the Sumudu Transform with Polynomials The Sumudu Transform has a unique
property regarding the polynomial expansion of an input signal and its corresponding transformed
signal. Specifically, the polynomial regression allows S{f(¢)} to approximate the polynomial
expansion of f(¢) up to a factorial scaling factor as shown by [4]:

o

S{ft)}(u) = Z nlept”)

n=0

Where ¢,, is the nth coefficient of the polynomial expansion of f(¢). This property suggests
computational benefits for SNO, particularly for efficient forward and inverse transforms. This can
be easily computed using a time complexity comparison; the Cooley-Tukey FFT algorithm has a time
complexity of O(nlogn), and polynomial regression has a time complexity of O(d?n)-for degree
d. Because linear regression with the least-squares method becomes numerically unstable for high
degrees, the degree parameter becomes negligible when 7 is sufficiently high and the degree is low,
resulting in complexity scaling as O(n). This demonstrates superior theoretical efficiency relative to
FNO and LNO for sufficiently large n. Then, a neural operator using the Sumudu transform can be
implemented using a similar approach to [1]].

We build the polynomial by decomposing the input via polynomial regression with a Vandermonde
matrix:

d—1 d
1 i)) T ag Yo
d—1 d
1 T) T ay Y1
: : : =1 ®)
1 21 ... x‘f;ll zd | |an—1 Yn-1
1 In Ce ,’Eg_l :C% an Yn

Where d is the degree of the regression and n is the number of data points. This is then solved by
minimizing the squared error. This is calculated using the Moore-Penrose inverse matrix. This can be
done in O(nd?) time complexity or simply said, it scales with O(n) time complexity. This beats the
FFT Cooley-Tukey algorithm which has time complexity of O(nlog(n)) [3]]. This theoretical limit is
tested in the results section 2] using a runtime analysis in which the programs are run simultaneously
to avoid externalities.

A.2 B: Zero-Shot Super Resolution

We also evaluate SNO’s zero-shot super resolution. Using the model weights from the end of training,
we evaluate SNO on the test data and plot it against the ground truth and the base resolutions. For the

ODEs, we interpolate the ground truth and base resolution to compare against the super resolution. In
contrast, for the PDEs, we compare everything at the base resolution to better maintain accuracy. We
find that SNO performs better in dampened tasks than in undamped ones, with only slight differences
across resolutions.

Duffing Oscillator(C=0)

Ground Truth (Sample #0)

m 0.04
- 0.02
- 0.00
- —0.02
 —-0.04
Base Upscaled Prediction
1.0 m 0.04
0.8 L 0.02
0.6 - 0.00
0.4
- —0.02
0.2
0.0 —0.04
Super-Resolution Prediction
1.0 T 0.04
08 L 0.02
0.6 -0.00
0.4
- —0.02
0.2
0.0 I —0.04
0.0 0.2 0.4 0.6 0.8 1.0

Time (t)

Figure 4: Heatmap comparison of baseline and super-resolved predictions on the Duffing system
zero forcing.

with

Duffing Oscillator(C=0.5)

Ground Truth (Sample #0)

- 0.50

-0.25

- 0.00

- —0.25
10 Base Upscaled Prediction)

- 0.50

-0.25

- 0.00

- —0.25
- Super-Resolution Prediction)
0.8 - 0.50
0.6 -0.25
0.4 - 0.00
0.2 - —0.25
0.0

0.0 0.2 0.4 0.6 0.8 1.0

Time (t)

Figure 5: Heatmap comparison of baseline and super-resolved predictions on the Duffing system

with

moderate forcing.

Lorenz (rho=b)

Ground Truth (Sample #0)

1.0

1o Base Upscaled Prediction

Super-Resolution Prediction

1.0
0.8
0.6
0.4
0.2
0.0

Time (t)

Figure 6: Heatmap comparison of baseline and super-resolved predictions on the Lorenz system with
standard parameters.

Lorenz (rho=10)

Ground Truth (Sample #0)

1.0 M
-8
-6
-4
-2

Base Upscaled Prediction

-8
-6
-4
-2

10 Super-Resolution Prediction

’ L8

0.8

0.6 -6

0.4 -4

0.2 -

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Time (t)

Figure 7: Heatmap comparison of baseline and super-resolved predictions on the Lorenz system with
increased chaotic behavior.

10

Pendulum (C=0)

Ground Truth (Sample #0)

1.0
0
-2
-4
-6
-8
10 Base Upscaled Prediction
0
-2
-4
-6
-8
10 Super-Resolution Prediction
0.8 0
06 -
0.4 -4
0.2 -6
0.0 -8
0.0 0.2 0.4 0.6 0.8 1.0

Time (t)

Figure 8: Heatmap comparison of baseline and super-resolved predictions on the pendulum system
without external forcing.

11

1o Ground Truth (Sample #0)

0.8
0.6
0.4
0.2
0.0

r0.02

- 0.00

10 Base Upscaled Prediction

0.8
0.6

- 0.02

0.4
0.2
0.0

- 0.00

Super-Resolution Prediction

1.0
0.8
0.6
0.4
0.2
0.0

- 0.02

-0.00

10 |Error|] Heatmap (Base vs Super)

0.8
0.6
0.4
0.2
0.0

- 0.02

- 0.01

- 0.00

Time (t)

Figure 9: Heatmap comparison of baseline and super-resolved predictions on the pendulum system
with moderate external forcing.

12

Beam

Ground Truth Base Prediction

Super-Resolution Prediction

50
1.0
40
0.5
E30 g
< K]
>
.’f:; 00 3
320 &
-0.5
10
-1.0
0
20 30 50
Time(s) Time(s) Time(s)
s Base Error Super-Resolution Error
0.025
40
0.020
B s
30 I3
£ 0.015 &
2 2
2 5
g 20 2
0.010 £
10 0.005
0 0.000
0 10 20 30 40 50 o 20 30 40 50
Time(s) Time(s)

Figure 10: 2D heatmap comparison for the elastic beam problem under zero-shot super-resolution.

13

Burger

Ground Truth Base Prediction Super-Resolution Prediction

50 0.15
0.10
40
0.05
€30 g
= 000 2
s s
s k-]
g20 -0.05 2
-0.10
10
-0.15

0.0 12.8 25.6 38.4 51.2 64.0 0.0 12.8 25.6 38.4 51.2 64.0 0.0 12.8 25.6 38.4 51.2 64.0
Time(s) Time(s) Time(s)

Base Error Super-Resolution Error

50

0.08
= s
E£30 0.06 &
S]
2 El
Iv] o
g20f 0.04 8

0.00
0.0 12.8 25.6 38.4 51.2 64.0 0.0 12.8 25.6 38.4 51.2 64.0
Time(s) Time(s)

Figure 11: 2D heatmap comparison for the Burgers’ equation under zero-shot super-resolution.

14

Diffusion

s Ground Truth Base Prediction Super-Resolution Prediction
4
40
| 2
E30]
s 0 S
® o
820 £
-2
10
-4
. _
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Time(s) Time(s) Time(s)
Base Error Super-Resolution Error
50 0.08
0.07
40
0.06
= 0.05 &
% 30 T
2 0042
S)
3
520 0032
0.02
10
0.01
0 0.00
0 10 20 30 40 50 0 10 20 30 40 50

Time(s) Time(s)

Figure 12: 2D heatmap comparison for the diffusion process under zero-shot super-resolution.

15

Ground Truth Base Prediction Super-Resolution Prediction

20 20 20
08 08 08
16 06 16 06 16 06
04 04 04
12 02 § EI2 02 % E12 02 %
z s ¢ s ¢ 3
g 00 5 £ 00 5 2 00 o
3 —02° 2 02+ 3 -02 "
—-0.4 -0.4 —0.4
-0.6 -0.6 -0.6
-0.8 -0.8 -0.8

16 24 40 0 16 24 32 40 16 24 40
Time(s) Time(s) Time(s)
Base Error Super-Resolution Error

Location(m)
"
]
Location(m)

®

Absolute Error
Absolute Error

20 20
0.200 0.200
16 0.175 16 0.175
0.150 0.150
0.125 12 0.125
0.100 0.100

8
0.075 0.075
0.050 0.050

4

0.025 0.025
0 0.000 0.000

0 8 16 24 32 40 [16 24 40
Time(s) Time(s)

Figure 13: 2D heatmap comparison for the reaction—diffusion system under zero-shot super-
resolution.

16

A.3 C: Runtime Analysis

17

Table 2: Runtime comparisons between FNO, LNO, and SNO (seconds).

Problem Type FNO LNO SNO
Duffing Oscillator (¢ = 0) 46.33 2193.89 191345
Duffing Oscillator (c = 0.5) 49.27 3244.41 2291.55
Diffusion 31.47 3099.65 261.03
Diffusion Reaction 30.84 2532.03 84.21
Brusselator 562.41 805.80 2241.85

Runtime analysis reveals trade-offs: SNO achieves 11.9 times speedup over LNO on Diffusion
and 30 times speedup on Diffusion-Reaction, though it lags on Brusselator. These results indicate
that computational efficiency is problem-dependent and nuanced and warrants deeper analysis of
the relationship between problem structure and transform choice. SNO, in general, achieves better
runtime efficiencies compared to LNO on most applications. Confounding the experimental runtimes
further, the implementations of LNO, SNO, and FNO, vary in actual efficiency. FNO, as a relatively
simple implementation, and due to wide research into Fourier Transform, is very fast. LNO has little
optimization in its code and is thus not very experimentally efficient. SNO has been optimized, but is
still not as efficient as FNO, due to limitations in computation and architecture.

A.4 D: Loss Curves

18

Duffing (c=0) Validation & Training Error

—— SNO Train
---= SNO Validation

—— FNO Train
---- FNO Validation
—— LNO Train
---- LNO Validation

Ll T e e S e R R Y L e e e
A A

Relative L2 Error

b [P ¥ o i
R e B B S L

1 hi g 1
B :.ll i i
i ’ | i i
TR i 1 ! .
I [l lI g8
Tl iR
v 1
it
i
0 200 400 600 800 1000
Epochs

Figure 14: Loss comparison for the Duffing oscillator with damping coefficient ¢ = 0

19

Relative L2 Error

Duffing (c=0.5) Validation & Training Error

—— SNO Train
---- SNO Validation -
—— FNO Train
---- FNO Validation =
—— LNO Train
---- LNO Validation -

0"

o

Ly U ¥ e

M..\AL#,F

<

<

-
z:—

0 200 400 600 800 1000
Epochs

Figure 15: Loss comparison for the Duffing oscillator with damping coefficient ¢ = 0.5

20

Relative L2 Error

Beam Validation & Training Error

102 —— SNO Train i
---- SNO Validation -

~—— FNO Train :

---- FNO Validation

—— LNO Train

---- LNO Validation _

107 Moo —h
Het! e R e
1 I N
| i“' I r_l 1
| i |
P i
i Tl g A
1072 — | b - RN £ s
il i
[
: H
"
e .t
1073
0 200 400 600 800 1000
Epochs

Figure 16: Loss comparison for the beam equation

21

Brusselator Validation & Training Error

10117 7T oATR[aY

T
- 1
L Bt T —
Py = =
ESERES s
IESESES
cooo0O0O — —
ZEZZZZE
Rz R =p= £
' | 1 — H
1RRRRE =3
— = .RIW.!
[— 2
o _ —
— =
L EEE = IIIW
===
1 =
- I ..n.lwl.l
=== =
.HWH
P ——
=T =
R
_— >
B =T
B)
T 7
= =
— —

150 200 250 300

Epochs

100

Figure 17: Loss comparison for the Brusselator system

22

Relative L2 Error

Diffusion Validation & Training Error

) —— SNO Train
10 ---- SNO Validation |
—— FNO Train
-~~~ FNO Validation
—— LNO Train
---- LNO Validation .
|
1y |] 1 I [
T 1 | | L)
i T I II
i {
TS L ;
T S IR S O IPEL PO N N GO B
107t
|
: I
Iy, i
10_2 il i ‘I= ul 1
Tall 1
i) A
R !
LI [} !
! i) Tt 2 'fljliyf“ Ih
’ " ! 1 ..5.. ; ’!ﬁl a4 1 MJ\JN\M
1hheh : Lo LT v
{ e
10~ :
i T T
0 200 400 600 800 1000
Epochs

Figure 18: Loss comparison for the diffusion equation

23

Relative L2 Error

Lorenz (p=>5) Validation & Training Error

10° —— SNO Train
---- SNO Validation -
~— FNO Train)
---- FNO Validation
—— LNO Train]
---- LNO Validation

A
101 M"’\’ [G SRR C YRR My oMo st s

] .
I [e [T L B T &

107 %@.‘ﬁ""‘?‘*‘ﬂﬁﬂo.w.r&- FPRT X I T P AT o
i
P —— qi
e
0 200 400 600 800 1000
Epochs

Figure 19: Loss comparison for the Lorenz system with p = 5

24

10) Validation & Training Error

Lorenz (p

—— SNO Train

---- SNO Validation
~—— FNO Train

FNO Validation
—— LNO Train

---- LNO Validation -

s Rl

L il

#\L"‘\M‘ Heae

Ty

h

1
1

.w;,

o

0"

10117 7T oATR[aY

107!

1000

800

600

400

200

Epochs

Figure 20: Loss comparison for the Lorenz system with p = 10

25

Relative L2 Error

Pendulum (c=0) Validation & Training Error

—— SNO Train

---- SNO Validation
—— FNO Train
---- FNO Validation
—— LNO Train
---- LNO Validation

¥
3

{8 AT T A

| i (il
\-"""-\._J« LR N Y
i
RN |
I:i
II i
!] ; j..] . I EI Ml . !
' IR i
! il k. g 1
i i H il Il
i b ikl ! é
| 1 i Lp -
[] " 1
! i .i!" R TR ! i " Siki B
IR AR RS LI
i I ;I
200 400 600 800 1000 1200
Epochs

Figure 21: Loss comparison for the pendulum with no damping

26

Relative L2 Error

Pendulum (c=0.5) Validation & Training Error

— SNOTrain
---- SNO Validation
~ FNO Train
---- FNO Validation
—— LNO Train
---- LNO Validation
i
]
10° T i
i P TR Y N "
.
[}
ooy
L !
(l
: 1
i_ ! H '
.i :I ‘ 1y EI 1 ! i
'I Iﬁ"%;;% ‘L!‘i il i l] Il I |
N EUE h i i ¢ i l:]| T T
T i:.: : BT R T
: Bt bt s o R vers
M | ' J
| H #| | wi MA_
"
hake. | "V IREEEN
AL 41.1'.., n
0 200 400 600 800 1000 1200
Epochs

Figure 22: Loss comparison for the pendulum with damping coefficient 0.5

27

Relative L2 Error

Reaction diffusion Validation & Training Error

— SNOTrain
N ---- SNO Validation
10 ; —— FNOTrain]
: -~~~ FNO Validation -
! —— LNO Train)
| ---- LNO Validation -
i iy
ol 1.
i % St .]
LU . el
10t I
1
L ol
T
l Il I \ |
LU R WA T ATl e T T T W T T T R L] —
10°
by
107! \
AW T
LA™Y VL.
1
Mg \
"""“\"ﬂ-«-ﬂ'\
0 200 400 600 800 1000
Epochs

Figure 23: Loss comparison for the reaction—diffusion system

28

Relative L2 Error

Burger Validation & Training Error

SNO Train

SNO Validation
FNO Train

ENO Validation
LNO Train

LNO Validation

10!

0"

107!

e
i
P

200 400 600
Epochs

Figure 24: Loss comparison for Burgers’ equation

29

800

1000

	Introduction
	Neural Operators

	Methods
	Results
	Discussion
	Conclusion
	Appendix
	A: Operator Details
	B: Zero-Shot Super Resolution
	C: Runtime Analysis
	D: Loss Curves

