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ABSTRACT

Recently, time series forecasting, which predicts future signals, and time series
anomaly detection, which identifies abnormal signals in given data, have achieved
impressive success. However, in the real world, merely forecasting future signals
or detecting anomalies in existing signals is not sufficiently informative to prevent
potential system breakdowns, which lead to huge costs and require intensive
human labor. In this work, we tackle a challenging and under-explored problem
of time series anomaly prediction. In this scenario, the models are required to
forecast the upcoming signals while considering anomaly points to detect them.
To resolve this challenging task, we propose a simple yet effective framework,
Anomaly to Prompt (A2P), which is jointly trained via the forecasting and anomaly
detection objectives while sharing the feature extractor for better representation.
On top of that, A2P leverages Anomaly-Aware Forecasting (AAF), which derives
the anomaly probability by random anomaly injection to forecast abnormal time
points. Furthermore, we propose Synthetic Anomaly Prompting (SAP) for more
robust anomaly detection by enhancing the diversity of abnormal input signals for
training anomaly detection model. As a result, our model achieves state-of-the-
art performances on seven real-world datasets, proving the effectiveness of our
proposed framework A2P for a new time series anomaly prediction task.

1 INTRODUCTION

Figure 1: Comparison among different scenarios
of existing time series anomaly detection, forecast-
ing, and a newly proposed anomaly prediction.

Recently, time series analyses have been broadly ex-
plored because they are crucial in real-world applica-
tions. Major tasks in time series analysis can be di-
vided into three folds: time series forecasting (Zhang
& Yan, 2022; Shen et al., 2020; Zhou et al., 2023;
Liu et al., 2024; Nie et al., 2023; Wang et al., 2022a;
Zhou et al., 2022; 2021), time series anomaly detec-
tion (Audibert et al., 2020; Xu et al., 2022; Su et al.,
2019a; Yang et al., 2023), and time series classifica-
tion (Lu et al., 2022; Early et al., 2023; Xiao et al.,
2022). Among them, time series forecasting is essen-
tial for predicting future trends and patterns, aiding in
effective decision-making across various fields. Time
series anomaly detection is also critical for identify-
ing unusual patterns or events within data, enabling
timely intervention and mitigation of potential risks or issues. Both time series forecasting and
anomaly detection are important in terms of practicality, e.g., risk mitigation, proactive management,
and cost savings of a system.

However, merely forecasting future signals or detecting anomalies in already elapsed time signals has
limited applicability in crucial real-world scenarios. For example, medical doctors need to predict
potential abnormal accidents in patients’ biometric data to make decisions about their health in
advance. However, existing forecasting or anomaly detection methods alone give limited informative
messages to the doctors in this scenario. With only predicted future signals, the doctor cannot use it
for decision making directly unless the doctor scrutinizes the signal, consuming considerable time
and effort. With only the result of anomaly detection of signals from already elapsed time, the doctor

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

has no choice but to guess about the status of future. Another example case can be the maintenance
of industrial systems, where a prediction of future abnormal events is crucial because companies or
users can minimize costs from abrupt system failure. Despite the significance of the above scenarios,
how to predict when abnormal events will happen in the future is under-explored. Moreover, we aim
to predict at what time points the anomalies can happen, which is much more challenging than simply
detecting anomalies from the given signal.

Figure 2: Comparison of F1-
scores for existing time series
anomaly detection task (AD) and
our proposed Anomaly Prediction
task (AP) in MBA dataset.

In this paper, to address the above issue, we first propose a new sce-
nario called Anomaly Prediction (AP), which forecasts and detects
the anomaly points in the future signal. To fulfill the proposed AP
task, the model needs to foresight the time steps on which abnormal
events are possible to happen for a given signal. Existing anomaly
detection methods detect abnormal time points from the given signal,
and forecasting methods merely predict how future signals will look
like. In contrast, in AP, the model should be able to detect anomalies
in the predicted signal as shown in Figure 2. Most of the existing
state-of-the-art time series anomaly detection approaches have a lim-
itation in that they adopt a point adjustment technique proposed in
Audibert et al. (2020) which only assesses the detection of anomaly
segments, not the accurate abnormal time points. Thus, they cannot
appropriately evaluate whether the model locates the positions of
anomalies correctly or not. However, in the proposed AP, it is crucial
to predict the exact time steps of anomalies as possible in order to
save costs for maintenance systems of industrial devices or medical
treatments, etc., where proactive management is necessary.

The comparison between the average performances of the existing anomaly detection (AD) scenario
which detects anomalies from already arrived signals, and our proposed AP scenario, where the
model detects anomalies from predicted future signals is conducted in Figure 2. As shown in Figure
2, we empirically found that a naïve combination of the time series forecasting model and time series
anomaly detection model fails at predicting future anomalies, where the anomaly detection model
detects anomalies from predicted signals that are the outputs of the forecasting model. The reason
for the failure is quite intuitive: existing forecasting models are trained on only normal signals and
predict them, thereby overlooking the prominence of abnormality in abnormal time points when
predicting future signals. As a result, anomaly detection models fail at detecting anomalies because
the forecasting models rather reduce the degree of abnormality of anomaly time points, which makes
it difficult to detect them for anomaly detection models.

To effectively resolve the novel scenario, we propose a simple yet effective framework, Anomaly to
Prompt (A2P), which is composed of Anomaly-Aware Forecasting (AAF) and Synthetic Anomaly
Prompting (SAP). AAF aims to consider the existence of anomalies in real world into the training
process of forecasting. To achieve this, we utilize Anomaly-Aware Forecasting Network (AAFN)
which is pre-trained before the main training to learn the probabilities of being an anomaly in a signal.
Along with the method to enhance the capability to forecast anomalous time steps, we introduce
a novel Synthetic Anomaly Prompting method with Anomaly Prompt Pool (APP) to improve the
robustness of anomaly detection so that it can cope with more diverse signals. Anomaly prompts,
which are learnable parameters, are utilized to intensify the diversity of signals used for reconstruction
in the anomaly detection model. They are based on signal-adaptive prompt tuning to guide signals
in mimicking abnormal features, leveraging an anomaly prompt pool that contains instructions
for transforming normal signals into anomalous ones. Furthermore, we adopt a shared backbone
architecture that can learn a unified representation for performing forecasting and anomaly detection
at once.

Our main contributions can be summarized as follows:

• For the first time, we propose a new scenario called Anomaly Prediction (AP), which aims
to point out at what time points the abnormal events are likely to occur in the future given
the arrived signals. This is more challenging than existing time series anomaly detection
since existing forecasting and anomaly detection models are only trained to grasp features
of normal signals. To tackle AP effectively, we propose a new framework, coined Anomaly
to Prompt (A2P).
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• We propose an unprecedented method for forecasting time points with anomalies. To
achieve this, we introduce an Anomaly-Aware Forecasting (AAF) mechanism to enhance
the forecasting ability of future signals containing anomalies.

• We propose a novel Synthetic Anomaly Prompting (SAP) method to simulate anomalies.
Moreover, we introduce two novel loss objectives, Intra-Signal Anomaly Discrepancy loss
and Inter-Signal Anomaly Divergence loss, to learn anomaly prompt pool. These objectives
enable our model to effectively capture the characteristics of anomalies from the training
data via pre-training of anomaly prompts.

• We conducted comprehensive experiments on various real-world datasets to show the
effectiveness of our proposed methods and demonstrate that our method outperforms the
state-of-the-art methods.

2 RELATED WORK

Time Series Forecasting. Time series anomaly detection, which is the task of forecasting future
signals based on historical observations, is important in terms of practicality, such as network monitor-
ing, weather forecasting, economics and finance, and electricity forecasting. Previous works on time
series have achieved strong prediction performance by leveraging advances in sequence modeling
machine learning methods and deep neural networks such as RNN (Hochreiter & Schmidhuber,
1997; Tokgöz & Ünal, 2018; Abdel-Nasser & Mahmoud, 2019), GNN (Jiang & Luo, 2022; Wang
et al., 2022b; Panagopoulos et al., 2021), and CNN (Bai et al., 2018; Livieris et al., 2020) to capture
temporal dependencies. Recently, Transformer (Vaswani et al., 2017) have begun to be actively used
for time series forecasting since it has become very prominent in natural language processing (Zhou
et al., 2021; 2022; Wu et al., 2021; Liu et al., 2021; Cirstea et al., 2022; Zhang & Yan, 2022; Nie
et al., 2023; Zhou et al., 2023). However, existing forecasting models are trained with only normal
signals, excluding the possibility of abnormal events in the signals. Therefore, even though they can
effectively learn the features of normal signals, they fail to predict anomalous signals appropriately.
Moreover, the forecasting model alone cannot give useful information for any decision-making
directly because a human being should investigate the inherited meanings of predicted signals to
make use of them, which is time-consuming and labor intensive. Therefore, in this paper, we address
this issue by introducing a new task that a model should forecast from given signals and detect
anomalies in them.

Time Series Anomaly Detection. Multivariate time series anomaly detection is a crucial problem for
many applications and has been widely studied. Most of the previous studies are mainly performed
in an unsupervised manner considering the restriction on access to abnormal data. Traditional
approaches include the density-estimation and clustering-based methods. However, since they cannot
consider the complex temporal dynamics most of the recent works focus on deep learning-based
approaches. Among them, reconstruction-based approaches (Shen et al., 2021; 2020; Li et al.,
2019; Su et al., 2019c; Zhou et al., 2019; Yang et al., 2023) find latent representations of normal
time series data for reconstruction. Recently, Xu et al. (2022) proposes a new association-based
method, which applies the learnable Gaussian kernel to introduce the adjacent-concentration bias
for better reconstruction. Another recent reconstruction-based model DCdetector (Yang et al., 2023)
achieves a similar goal in a much more general and concise way with a dual-attention self-supervised
contrastive-type structure. The existing anomaly detection models focus on detecting the time points
of anomalies in already elapsed time, which has limited application in real-world. In this paper, we
address a more practical and challenging scenario, Anomaly Prediction to predict the anomalies in
future signals which have not arrived yet.

Synthetic Anomalies for Time Series. The intuitive approach to overcome the absence of abnormal
data at training time is to artificially generate them during training time. However, synthetic anomalies
and their associated data augmentation techniques have not been widely studied in time series anomaly
detection field. Zhang et al. (2022) proposes a data augmentation module to increase the robustness
of the network by generating various sequence anomalies. However, it does not consider the specific
abnormal time points of augmented signal at training time although it is crucial to distinguish specific
abnormal time points at test time. Another approach for synthetic anomaly is introduced in Carmona
et al. (2021), which injects synthetic abnormal points into a portion of normal signal. Then it trains
the contrastive classifier to create embeddings where the part of the signal without injected anomalies
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is distant from the entire signal with anomalies. However, it operates only at the embedding level,
making it difficult to precisely identify the exact abnormal points, whereas ours considers both
specific anomaly time points and their embedding outputs. Recently, Goswami et al. (2023) injects 9
types of anomalies to select the most accurate model for a given dataset without labels. However, all
the methods above can only simulate limited forms of anomalies without considering the inherent
features of the input signal. In this paper, we design a simple yet effective Synthetic Anomaly Pool
method to infuse signal-adaptive learnable anomalies, considering the abnormality of specific time
points. Moreover, we propose an energy score-based loss function, Intra-Signal Anomaly Discrepancy
loss, and Inter-Signal Anomaly Divergence loss for imitation to enable the synthesized signal to
effectively imitate abnormal characteristics.

3 METHOD

In this section, we introduce a new scenario called Anomaly Prediction, to foresight potential
anomalies in future signals. We first define our proposed task in detail in section 3.1. Then, we
explain the architecture of A2P, a unified shared backbone network to perform both forecasting and
anomaly detection at once in section 3.2. To tackle our challenging scenario effectively, in section 3.3,
we introduce a new approach called Anomaly-Aware Forecasting (AAF) for more precise forecasting
of abnormal time points. Furthermore, we propose a novel method coined Synthetic Anomaly
Prompting (SAP) which trains a newly proposed Anomaly Prompt Pool (APP) from randomly
injected anomaly in section 3.4. Finally, we summarize the total objective function in section 3.5.

3.1 SCENARIO DESCRIPTION: TIME SERIES ANOMALY PREDICTION

Time series anomaly prediction is a novel scenario that aims to pinpoint the exact time steps of
anomaly points in the upcoming signals. Specifically, for a given input signal Xin ∈ RLin×C ,
the final goal is to obtain the binary results of anomaly detection O ∈ RLout from the predicted
signal X̂out ∈ RLout×C , where Lin and Lout are the lengths of the input and predicted signals,
respectively, and C is the number of channels in the signal. To perform anomaly prediction, we
need a network for time series forecasting denoted as ΘF , and a network for time series anomaly
detection denoted as ΘAD. Therefore, O can be written as O = ΘAD ◦ ΘF (Xin) = ΘAD(X̂out),
where X̂out = ΘF (Xin). For the evaluation of anomaly prediction performance, the F1-score is
used as existing time series anomaly detection methods do. The difference in the measurement from
the existing methods is that the Point Adjustment (PA) proposed in Audibert et al. (2020) cannot be
adopted in original way, since in anomaly prediction, it is important to identify specific time points
rather than to identify the existence of anomaly segments. Therefore, we alleviate PA for our metric,
which is explained in section 4.

3.2 UNIFIED ARCHITECTURE FOR ANOMALY PREDICTION

Existing time series forecasting models such as Nie et al. (2023); Wang et al. (2022a); Zhou et al.
(2023); Wu et al. (2021); Zhou et al. (2021; 2022); Liu et al. (2021) and anomaly detection models
like Xu et al. (2022); Yang et al. (2023) consider the train set comprised of only normal signals.
Accordingly, although the target task of each model is different, both networks for time series
forecasting and anomaly detection attempt to capture the characteristics of normal time series data in
common. Inspired by this point, we adopt a shared backbone to establish a unified architecture to
learn the representations of normal signals for both the forecasting and anomaly detection models, as
shown in Figure 4.

Specifically, in our framework, several base layers of transformer blocks denoted as θ are shared,
while other specific parts, the embedding layers (eF and eAD) and output layers (oF and oAD) to
construct ΘF and ΘAD, exist separately, i.e., ΘF = {eF , oF , θ} and ΘAD = {eAD, oAD, θ}. By
sharing the backbone network, our model can accumulate general knowledge for both time series
forecasting and anomaly detection effectively, resulting in rich representations and performance
improvements. We analyze the effectiveness of our unified framework in Section 4.3 with details.

3.3 ANOMALY-AWARE FORECASTING
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Figure 3: Training scheme of Anomaly-Aware
Forecasting Network (AAFN). Input signal Xin

and its corresponding future signal Xout are ran-
domly injected to be in charge of abnormal signal
since labeled anomaly is scarce to be used in train
time in the real world. Then, each of the signals is
fed into cross-attention in AAFN, followed by an
activation function.

In this work, we propose a novel method called
Anomaly-Aware Forecasting (AAF), which enhances
the accuracy of future signal prediction by explic-
itly accounting for anomalies in prior signals. Un-
like traditional forecasting models that treat all past
data equally, our approach incorporates an additional
module to improve robustness in dynamic and unpre-
dictable environments. The core of this method is
the Anomaly-Aware Forecasting Network (AAFN),
which is pre-trained to learn the complex relation-
ships between prior signal anomalies and future
trends. This pre-training step enables the network
to anticipate how past anomalies might influence up-
coming signals, thereby providing a more informed
and accurate forecast during the main training phase.

The main purpose of AAF is to learn the relation
between abnormal features inherent in a prior signal
and its following future signal. To this end, we exploit
AAFN which is composed of embedding layers, an
attention layer, and an activation layer as shown in
figure 3. The inputs of AFFN are Xz

out and Xz
in, which are the results of random anomaly injection

among seasonal, global, trend, contextual, shapelet anomaly type from Xout and Xin, respectively,
following the algorithm used in (Darban et al., 2025). The query for attention in ATTN is eout(Xz

out),
which is the target that we want to know about, while key and value are ein(X

z
in), the ground for

assessing the abnormality of Xz
out when eout and ein refers to the embedding layers for Xz

out and
xz
in. The output of AAFN is trained to indicate the probability of being anomaly for each time step.

This output is compared to ground truth label yzout of Xz
out, and mean squared error is used for the

loss term. As a result, the final loss term for training AAFN in advance of the main training is as
follows:

LAAFN = MSE(σ(Attn(eout(X
z
out), ein(X

z
in))), y

z
out), (1)

where σ is the activation function, sigmoid function, and Attn is the cross attention layer.

3.4 SYNTHETIC ANOMALY PROMPTING

Signal-Adaptive Anomaly Prompting. To accurately predict anomaly points, forecasting the future
signal from a prior signal while considering the existence of anomaly points is crucial. To tackle this
challenge, we propose a novel approach, named Synthetic Anomaly Prompting (SAP), which utilizes
synthetic anomaly prompts for our model to predict future abnormal signals effectively. For SAP, we
integrate a new Anomaly Prompt Pool (APP) into our unified architecture, as shown in Figure 4. The
purpose of APP, which is a set of additional trainable parameters P , is to guide an input signal to
behave like an abnormal signal, by infusing the anomaly prompts in the pool into the original signal.

In detail, APP is defined as P = {(k1, Z1) , (k2, Z2) , · · · , (kM , ZM )}, where Zm ∈ RLz×D and
km ∈ RD denote the m-th anomaly prompt and its corresponding key, respectively, Lz and D are
the token length of single anomaly prompt and the embedding dimension, and M is the number of
anomaly prompts. Moreover, to select the number of N best-matched prompts with the input signal
Xin in the pool, we introduce a feature extractor fftr(·), which is a simple three-layer transformer
architecture with a [CLS] token, as a query function, i.e., q(Xin) = fftr([CLS;Xin]).

The process of our proposed anomaly synthesis method using APP is displayed in figure 4. First, we
pre-train the feature extractor fftr(·) with the train set, which will be used to select the most relevant
anomaly prompt from APP. After the training of fftr(·), it is frozen and used only for the retrieval of
features from normal signals in stage 1 and stage 2. Second, we train Anomaly Prompt Pool with
input data which is converted into anomaly, using naive random anomaly injection. We injected
anomaly in the same way that was used in Darban et al. (2025), as well. The input signal passes
through the feature extractor to obtain the query q(Xin). This query is then matched against the keys
in the Anomaly Prompt Pool, and the prompts corresponding to the top-N closest keys are attached
to the embedded input X̃in ∈ RLin×D, where X̃in = eAD(Xin). Note that the synthesis of anomaly
is executed at the embedding level, not the raw input level, which enables more diverse prompting in
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Figure 4: Overview of model architecture and training strategies. Our model first pre-trains Anomaly Prompt
Pool (APP) in the first stage, by injecting random anomaly to train data. After pre-training APP before the
main training phase, it is frozen in the main training phase since it already holds the knowledge of real-world
anomalies. Otherwise, when there are no abnormal time steps in train set, the first stage is skipped, and the
model trains APP jointly with ΘF and ΘAD . Note that abnormal signals are only used in the first stage.

high dimensions. Finally, the simulated embedding of anomaly X̃z
in is defined as follows:

X̃z
in = [Zs1 ; · · · ;ZsN ; X̃in], si ∈ S, (2)

S = argmax
{si}N

i=1⊆[1,M ]

N∑
i=1

γ (q(Xin), ksi) , (3)

where the score function γ is cosine similarity, which is for calculating how each anomaly prompt
is related to each normal signal. [·; ·] denotes the concatenation. The selected prompt tokens are
attached to the input tokens of X̃in, after passing through the embedding layer eAD before the first
layer of θ, to transform the original normal signal into an abnormal signal. The output anomaly
prompts are then removed before the final projection of each oF and oAD, to match the dimension of
each of them.

Intra-Signal Anomaly Discrepancy Loss for Synthetic Anomaly Prompting. To effectively train
the proposed APP, we design a new loss function called Intra-Signal Anomaly Discrepancy loss
(LIntra). The role of Intra-Signal Anomaly Discrepancy loss is to spur the anomaly prompts in
APP to catalyze X̃in to behave like anomalies. Based on the fact that abnormal points tend to be
more associated with adjacent time points (Xu et al., 2022), we assume that the distribution of the
attention map of a plausible abnormal point is uneven whereas that of normal signal is distributed
evenly. Encouraged by this assumption, we introduce the energy score (Liu et al., 2020) to force the
distribution of attention map at abnormal points in the initial layer to have a lower score compared to
that of the normal signal.

Subsequently, we regulate the energy scores within that signal, such that the portions corresponding to
normal points have reduced energy scores (becoming more uniform), while the portions corresponding
to abnormal points have increased energy scores (becoming more uneven), as depicted in Figure 4.
Here, we randomly select portions within the entire signal to become abnormal points when training
with only normal signals in main training phase. Along with a term to make abnormal signals, we
add an additional term to pull the selected keys closer to the corresponding features of normal signals
as follows:

LIntra =
E (Al

N (X̃z
in))

E (Al
AN (X̃z

in))
− λk γ (fftr(Xin), km) , (4)

where λk is a scalar to weight the loss and E is the energy scoring function Al
AN and Al

N refer to the
portions of the output attention map of the last layer Al where l is the number of layers, from input
embedding w, which correspond to abnormal points and normal points within the synthetic abnormal
signal, respectively.
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In addition, we employ an additional loss term that aims to reconstruct X̃z
in back to its original normal

form X , along with the existing reconstruction loss for anomaly detection as follows:

LR =
1

2

(∥∥Xin −Xz
in

′∥∥2 + ∥Xin −X ′
in∥

2
)
, (5)

where Xz
in

′ = oAD(θ(X̃z
in)) is the reconstruction output of synthesized abnormal input embedding

and X ′
in = ΘAD(Xin) is that of original normal input signal. Note that the SAP with the Intra-Signal

Anomaly Discrepancy loss can be used even when there is no anomaly available in train set, since the
SAP works in a self-supervised way. Along with LR, we adopt the existing forecasting loss LF for
forecasting the future signals, defined as follows:

LF =
∥∥∥X̂in −Xin

∥∥∥2 . (6)

In main training stage, a pre-trained Anomaly-Aware Forecasting Network as explained in section
3.3 is used to output anomaly probability. Therefore, in main training, the final loss term regarding
forecasting is as follows:

LAF =
∥∥∥X̂in −Xin

∥∥∥2 ⊙AAFN(Xin, X̂out), (7)

where X̂in is ΘF (Xin), AAFN is Anomaly-Aware Forecasting Network, and ⊙ is element-wise
multiplication. By considering the errors in anomaly time steps more than other time steps, the
network can be trained to focus on abnormal areas.

Inter-Signal Anomaly Divergence Loss for Pre-training of Anomaly Prompt Pool. To make the
model be prepared for detecting more diverse anomalies, we pre-train the Anomaly Prompt Pool
which holds the knowledge of characteristics of anomalies, using only abnormal signals injected
randomly while training jointly with ΘF and ΘAD. The pre-trained Anomaly Prompt Pool can then
be used to infuse plausible anomalies into the model in the later main training phase. For the efficient
pre-training of Anomaly Prompt Pool, we introduce a novel Inter-Signal Anomaly Divergence loss
(LInter) to guide the anomaly prompts in the Anomaly Prompt Pool to prompt the signals to imitate
actual abnormal signals as follows:

LInter = −KL(Al(X̃
′z
in), Al(X̃

′
in)). (8)

Here, we obtain the reconstruction output X ′
in which plays a role of pseudo-normal signal corre-

sponding to anomaly signal Xin. Then, the model attaches anomaly prompts from Anomaly Prompt
Pool to pseudo-normal embedding X̃ ′

in to simulate anomaly, which results in X̃ ′z
in. Since we aim to

train APP to add abnormalities into the signal, the features of synthetic anomaly and pseudo-normal
input features are trained to be distinct with LInter, which serves to intensify the gap between the
features of pseudo-normal signal and synthetic anomaly signal.

3.5 TOTAL OBJECTIVE FUNCTION

The total objective function of our proposed framework is summarized as follows:

LTotal =


LAAFN , for pre-training of AAFN,
λR LR + λF LF + λIntra LIntra + λInter LInter, for pre-training of APP,
λR LR + λAF LAF , for main training.

(9)

The objectives for the pre-training of APP and main training phases are the same except for the
Inter-Signal Anomaly Divergence loss and Intra-Signal Anomaly Discrepancy loss, where λ =
{λR, λF , λIntra, λInter} is a set of coefficients for weighting each loss term. We used all four
coefficients of 1 as default values for experiments. Note that only abnormal signals are used for
training during APT, whereas only normal signals are used in the main training phase. After the
pre-training phase, the proposed APP is frozen during the main training phase.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset Configurations. We evaluated our method on six real-world multivariate datasets and one
real-world univariate dataset: Both 1) MSL (Mars Science Laboratory rover) and 2) SMAP (Soil

7
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Moisture Active Passive satellite) (Hundman et al., 2018) were published by NASA with 55 and
25 dimensions, respectively, which contained the telemetry anomaly data derived from the Incident
Surprise Anomaly (ISA) reports of spacecraft monitoring systems. 3) PSM (Pooled Server Metrics)
(Abdulaal et al., 2021) was collected internally from multiple application server nodes at eBay with
25 dimensions. 4) SMD (Server Machine Dataset) (Su et al., 2019b) was a 5-week-long dataset that
was collected from a large Internet company with 38 dimensions. 5) SWaT (Secure Water Treatment)
(Mathur & Tippenhauer, 2016) was obtained from 51 sensors of the critical infrastructure system
under continuous operations. 6) WADI (Water Distribution) (Ahmed et al., 2017) was an extension of
SWaT and a distribution system comprising a larger number of water distribution pipelines with 123
dimensions. 7) MBA (MIT-BIH Supraventricular Arrhythmia Database) (Moody & Mark, 2001) is a
set of electrocardiogram recordings from four patients, composed of two distinct types of irregularities
(supraventricular contractions or premature heartbeats). The datasets were divided into a training set,
and a test set. Abnormal data exists only in the test set.

Baselines and Evaluation Metrics. We compared our model with various combinations of existing
forecasting models and anomaly detection models, considering them as our baselines. For forecasting
models, we adopted state-of-the-art models, PatchTST (Nie et al., 2023), MICN (Wang et al., 2022a),
GPT2 (Zhou et al., 2023), and iTransformer (Liu et al., 2024). Regarding anomaly detection models,
we adopted reconstruction-based methods, AnomalyTransformer (Xu et al., 2022) and DCDetector
(Yang et al., 2023). We used F1-score (F1) as the main evaluation metric. If not mentioned, the
scores reported in the tables indicate F1-scores. In addition, F1-score was calculated without point
adjustment introduced in Audibert et al. (2020). Instead, we used F1-score with tolerance t, which
denotes the time steps to tolerate the error in anomaly detection. For example, when a model predicts
that a time step i is anomaly, the real ground-truth anomaly time points from [i − t, i + t] are
considered to be correctly detected before the calculation of F1-Score. We also validated the results
on various tolerance t on MSL dataset in Table 8.

Hyperparameters. The hyperparameters used are mentioned in Appendix A, and the sensitivity
results on various parameter values are shown in Appendix C.

4.2 ANOMALY PREDICTION RESULTS

The results of the Anomaly Prediction experiments are demonstrated in Tables 1 and 2. For the
F1-score, our model consistently outperforms the baselines, showing the effectiveness of our proposed
Anomaly-Aware Forecasting and Synthetic Anomaly Prompting.

Model Lout Avg. F1
F AD 100 200 400

P-TST AT 49.10±0.03 43.94±0.09 31.09±0.08 41.38±0.07
DC 47.17±0.06 49.17±0.03 42.82±0.02 46.39±0.04

MICN AT 50.18±0.06 49.75±0.02 42.80±0.02 47.58±0.03
DC 53.73±0.04 48.46±0.07 41.33±0.05 47.84±0.05

GPT2 AT 41.85±0.05 46.07±0.06 33.64±0.02 40.52±0.04
DC 52.98±0.06 47.86±0.04 41.94±0.06 47.59±0.05

iTransformer AT 47.54±0.06 48.27±0.07 39.37±0.02 45.06±0.50
DC 51.21±0.04 45.43±0.10 37.80±0.06 44.81±0.07

A2P (Ours) 58.66±0.01 50.59±0.07 48.11±0.14 52.45±0.07

Table 2: Anomaly Prediction results on univariate MBA dataset. The
best results are in bold and the second bests are underlined. All experi-
ments were conducted with 3 random seeds.

Note that ours were effec-
tive in datasets from vari-
ous domains, which implies
that our methods are robust
to the various statistics of
datasets. Especially, even
when the length of output
signal was longer, the gaps
between comparing meth-
ods and ours became large.
It indicates that our meth-
ods are robustly advanta-
geous in more challenging
scenarios where it is essen-
tial to examine the status of
the distant future to prevent
possible hazards in the fu-
ture. Furthermore, we evaluated the effectiveness of our proposed A2P on univariate time series, the
MBA dataset which is a bio-medical data, in Table 2. It demonstrates that A2P can be generalized to
the univariate case as well.
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Lout

Model Dataset Avg. F1
F AD MSL PSM SMAP SWAT SMD WADI

100

P-TST AT 41.91±1.28 14.51±1.03 15.11±0.61 12.19±1.02 33.84±0.39 58.02±0.04 29.26±0.73
DC 25.23±3.49 10.45±4.85 9.66±0.47 11.36±4.50 15.77±4.39 18.50±13.99 15.16±5.28

MICN AT 42.61±0.01 13.17±0.00 15.23±0.10 10.97±0.33 29.88±1.09 58.88±0.04 28.46±0.26
DC 42.40±0.68 14.04±0.41 11.33±4.20 11.41±2.24 30.97±0.39 24.14±9.48 22.38±2.90

GPT2 AT 41.39±3.82 13.33±0.00 15.32±0.57 11.25±0.28 32.66±1.03 54.26±0.04 28.03±0.96
DC 4.56±6.45 4.75±6.72 5.00±3.58 9.37±0.07 11.17±13.89 16.35±2.89 8.53±5.60

iTransformer AT 42.19±0.34 14.06±0.74 15.19±0.40 11.25±0.25 32.71±0.96 59.20±0.05 29.10±0.46
DC 40.86±1.85 12.77±1.09 6.66±3.22 13.99±8.12 7.81±10.43 17.32±1.08 16.57±4.30

A2P (Ours) 45.04±0.00 14.77±0.00 16.06±0.00 15.00±0.01 35.73±0.00 61.71±0.02 31.39±0.01

200

P-TST AT 38.20±0.32 14.79±0.41 14.89±0.24 11.48±0.57 32.79±0.74 54.49±0.04 27.77±0.39
DC 24.43±5.40 5.70±5.49 8.81±1.54 9.76±5.05 14.35±9.75 24.75±5.38 14.63±5.43

MICN AT 42.64±0.01 13.41±0.00 15.59±0.45 11.41±0.34 32.38±1.41 49.79±0.01 27.54±0.37
DC 41.05±0.55 2.38±3.37 14.88±1.17 10.26±6.36 31.88±2.64 48.79±3.69 24.87±2.96

GPT2 AT 42.25±0.54 14.69±0.82 14.76±1.03 10.93±0.79 33.62±0.85 52.13±0.02 28.06±0.67
DC 7.44±10.52 8.44±6.16 6.56±4.96 11.70±0.00 15.48±14.01 26.52±14.00 12.69±8.28

iTransformer AT 42.95±2.27 14.03±0.55 15.15±0.44 11.58±0.47 33.70±0.46 51.34±0.04 28.12±0.71
DC 38.46±3.42 10.47±2.59 7.25±4.79 12.84±4.94 8.69±9.21 25.70±10.25 17.23±5.87

A2P (Ours) 48.75±0.06 20.69±0.02 20.28±0.01 15.85±0.00 38.15±0.01 58.70±0.08 33.74±0.03

400

P-TST AT 40.53±0.87 14.74±0.25 15.03±0.28 11.20±0.26 34.05±0.72 44.76±0.05 26.72±0.40
DC 26.23±3.95 9.83±4.72 7.50±0.93 6.11±2.13 23.28±0.20 19.76±8.22 15.45±3.36

MICN AT 41.06±0.01 14.83±0.00 15.51±0.22 11.21±0.21 30.45±1.03 49.79±0.01 7.14±0.25
DC 41.29±1.05 8.97±6.34 11.93±1.66 17.86±1.64 18.84±13.37 27.40±4.31 21.05±4.73

GPT2 AT 42.19±1.87 14.60±0.00 14.20±0.50 11.24±0.36 32.51±1.52 48.08±0.01 27.14±0.71
DC 22.13±11.67 11.02±2.56 9.58±4.16 9.78±0.06 18.13±3.80 28.92±17.93 16.59±6.70

iTransformer AT 41.64±1.78 14.68±0.22 14.91±0.39 11.06±0.22 33.54±2.03 45.05±0.05 26.81±0.78
DC 37.04±5.55 9.79±5.80 6.53±1.81 16.30±0.27 11.99±16.32 31.05±17.03 18.78±7.80

A2P (Ours) 50.16±0.11 30.95±0.02 27.08±0.03 24.61±0.01 53.43±0.08 51.66±0.08 39.65±0.06

Table 1: Anomaly Prediction results on multivariate cases. The best results are in bold and the second
bests are underlined. All experiments were conducted with 3 random seeds and the average values
were reported when Lin = 100.

4.3 ANALYSIS

Ablation Study. To further examine the effectiveness of our novel methods, we thoroughly conducted
ablation studies. The ablation results of Intra-Signal Anomaly Discrepancy loss LIntra and Inter-
Signal Anomaly Divergence loss LInter within Signal Adaptive Prompting are indicated in Table
3 to see the impact of each loss term. As shown in Table 3, 1) guiding the energy of attention map
regarding abnormal time points to be higher compared to normal time points and 2) driving the
synthetic anomaly feature to be distinct from pseudo-normal signals improved Anomaly Prediction
performances, respectively.

In addition, Table 4 demonstrates the ablation of Anomaly-Aware Forecasting. The use of AAF
enhanced the performance of Anomaly Prediction, indicating that considering abnormal time points
for forecasting was effective in detecting future anomalies. In order to investigate the impact of
sharing transformer layers between the forecasting model and the anomaly detection model, we
conducted ablation experiments regarding the effectiveness of the shared backbone as demonstrated
in Table 5.

Sharing the layers of backbone for forecasting and anomaly detection remarkably enhanced the
performances, implying that sharing the knowledge of forecasting and anomaly detection helped to
enrich the representation learning of time series signals.

We evaluated the impact of pre-training of Anomaly Prompt Pool as shown in Table 6. When the
pre-training stage of APP is removed, there was a significant performance drop, highlighting the
effectiveness of pre-training APP so that APP can be utilized to synthesize abnormal features in main
training stage.
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LIntra LInter MBA MSL WADI Avg. F1
✗ ✗ 35.52 40.70 55.35 43.81
✓ ✗ 47.31 42.10 58.11 49.17
✗ ✓ 53.26 44.70 59.70 52.55
✓ ✓ 58.66 45.04 61.71 55.14

Table 3: Ablation results for the proposed loss terms
LIntra and LInter in SAP, when Lin = Lout = 100.

AAF MBA MSL WADI Avg. F1
✗ 54.95 44.72 60.37 53.35
✓ 58.66 45.04 61.71 55.14

Table 4: Ablation for the proposed Anomaly-Aware
Forecasting (AAF).

Shared MBA MSL WADI Avg. F1
✗ 44.73 44.23 58.46 49.14
✓ 58.66 45.04 61.71 55.14

Table 5: Ablation for the shared transformer backbone.

Pre-T MBA MSL WADI Avg. F1
✗ 38.37 41.36 57.32 45.68
✓ 58.66 45.04 61.71 55.14

Table 6: Ablation for the pre-training of APP.

Lout 100 200 400
Metric MSE MAE MSE MAE MSE MAE

P-TST + AT 6.632 0.314 6.665 0.304 8.489 0.328
A2P (Ours) 2.142 0.081 2.035 0.078 2.649 0.086

Table 7: The forecasting performances of the baseline (the combination of
PatchTST and AnomalyTransformer) and A2P (Ours) in MSL dataset.

Results on Forecasting.
As shown in Table 7, our
proposed A2P was advan-
tageous at predicting more
accurate future signals. The
performance improvements
in not only Anomaly Pre-
diction but also forecasting
indicate that our proposed
approaches contributed to
learning the representations of both normal and abnormal signals effectively, compared to the
baseline. Notably, when Lout was significantly longer, our proposed A2P outperformed at forecasting
future signals with anomalies, indicating the capability of handling long-term signals.

t 10 20 50 100 ∞ Avg. F1
P-TST+AT 12.95 22.75 41.91 57.38 93.41 45.68
A2P (Ours) 13.50 23.87 45.04 60.94 94.96 47.66

Table 8: Anomaly Prediction results on various tolerances t on MSL dataset.

Results on Diverse Toler-
ances. In the Anomaly Pre-
diction task, it is crucial to
detect the exact time steps
of anomalies. In this re-
gard, the general Point Ad-
justment strategy is not fit
to the Anomaly Prediction
task. Therefore, we define t as the number of time steps to allow errors in anomaly detection outputs
before and after each time step, which is used for controlling the difficulty of the task. We conducted
experiments by varying t from 10 to ∞, where ∞ is equivalent to the existing point adjustment
setting. As shown in Table 8, our proposed A2P outperformed on all t, implying that A2P can be
used in diverse scenarios from situations where strict localization of time step is required, to more
relaxed scenarios. In our experiments, we used t = 50 as our default setting.

5 CONCLUSION

In this paper, we first addressed a novel scenario, named Anomaly Prediction (AP), where the
model needs to detect abnormal time points from unarrived future signals. We tackled this issue
by establishing a unified architecture that shares the feature extractor for forecasting and anomaly
detection models. In addition, we employed to use synthetic anomalies in train time, whereas
traditional time series forecasting and anomaly detection models were trained with only normal
time series features, limiting their generalizability to abnormal signals. We proposed two effective
approaches, Anomaly-Aware Forecasting (AAF) and Synthetic Anomaly Prompting (SAP). In AAF,
we designed an Anomaly-Aware Forecasting Network to help the model forecast time steps with
anomalies. In SAP, we defined an anomaly prompt pool which learns how to prompt the input
signals to have anomalous features. In addition, we devised two novel loss terms, energy loss and
Inter-Signal Anomaly Divergence loss, to make the anomaly-prompted features more anomalous. We
achieved state-of-the-art performances on the Anomaly Prediction task in seven real-world datasets,
demonstrating the effectiveness of our methods through comprehensive experiments. We hope
our pioneering attempt to predict future anomalies provides an opportunity to anticipate potential
breakdowns, while also opening up a new direction for research.
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