
Rethinking Model-based, Policy-based, and
Value-based Reinforcement Learning via the Lens of

Representation Complexity

Guhao Feng∗† Han Zhong∗‡

Abstract

Reinforcement Learning (RL) encompasses diverse paradigms, including model-
based RL, policy-based RL, and value-based RL, each tailored to approximate
the model, optimal policy, and optimal value function, respectively. This work
investigates the potential hierarchy of representation complexity among these
RL paradigms. By utilizing computational complexity measures, including time
complexity and circuit complexity, we theoretically unveil a potential representation
complexity hierarchy within RL. We find that representing the model emerges as
the easiest task, followed by the optimal policy, while representing the optimal
value function presents the most intricate challenge. Additionally, we reaffirm this
hierarchy from the perspective of the expressiveness of Multi-Layer Perceptrons
(MLPs), which align more closely with practical deep RL and contribute to a
completely new perspective in theoretical studying representation complexity in
RL. Finally, we conduct deep RL experiments to validate our theoretical findings.

1 Introduction

The past few years have witnessed the tremendous success of Reinforcement Learning (RL) [43] in
solving intricate real-world decision-making problems, such as Go [41] and robotics [27]. These
successes can be largely attributed to powerful function approximators, particularly Neural Networks
(NN) [30], and the evolution of modern RL algorithms. These algorithms can be categorized into
model-based RL, policy-based RL, and value-based RL based on their respective objectives of
approximating the underlying model, optimal policy, or optimal value function.

Despite the extensive theoretical analysis of RL algorithms in terms of statistical error [e.g., 5, 21, 42,
24, 23, 14, 17, 58, 51] and optimization error [e.g., 2, 49, 9, 29] lenses, a pivotal perspective often left
in the shadows is approximation error. Specifically, the existing literature predominantly relies on the
(approximate) realizability assumption, assuming that the given function class can sufficiently capture
the underlying model, optimal value function, or optimal policy. However, limited works examine
the representation complexity in different RL paradigms — the complexity of the function class
needed to represent the underlying model, optimal policy, or optimal value function. In particular, the
following problem remains elusive:

Is there a representation complexity hierarchy among model-based RL, policy-based RL, and
value-based RL?

To our best knowledge, the theoretical exploration of this question is limited, with only two exceptions
[13, 62]. [13] employs piecewise linear functions to represent both the model and value functions,

∗Alphabetical order.
†School of EECS, Peking University. Email: fenguhao@stu.pku.edu.cn
‡Center for Data Science, Peking University. Email: hanzhong@stu.pku.edu.cn

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Computational Complexity
(time complexity and circuit complexity)

Expressiveness of Log-precision MLP/Transformer
(constant layers and polynomial hidden dimension)

3-SAT MDP
NP MDP

Model AC0 ✓
Policy NP-Complete ✗
Value NP-Complete ✗

CVP MDP
P MDP

Model AC0 ✓
Policy AC0 ✓
Value P-Complete ✗

Table 1: A summary of our main results. ✓ means that the function can be represented by log-
precision MLP with constant layers and polynomial hidden dimension, while ✗ means that this MLP
class cannot represent the function. Blue denotes low representation complexity, and red represents
high representation complexity.

utilizing the number of linear pieces as a metric for representation complexity. They construct a class
of Markov Decision Processes (MDPs) where the underlying model can be represented by a constant
piecewise linear function, while the optimal value function necessitates an exponential number of
linear pieces for representation. This disparity underscores that the model’s representation complexity
is comparatively less than that of value functions. Recently, [62] reinforced this insight through a
more rigorous circuit complexity perspective. They introduce a class of MDPs wherein the model can
be represented by circuits with polynomial size and constant depth, while the optimal value function
cannot. However, the separation between model-based RL and value-based RL demonstrated in
[62] may not be deemed significant (cf. Remark 5.6). More importantly, [13, 62] do not consider
policy-based RL and do not connect the representation complexity in RL with the expressive power
of neural networks such as Multi-Layer Perceptron (MLP) and Transformers [47], thereby providing
limited insights for deep RL.

Our Contributions. To address the limitations of previous works and provide a comprehensive
understanding of representation complexity in RL, we explore representation complexity within
(1) model-based RL; (2) policy-based RL; and (3) value-based RL, employing (i) computational
complexity (time complexity and circuit complexity) and (ii) expressiveness of MLP to rigorously
quantify representation complexity. We outline our results below, further summarized in Table 1.

• To elucidate the representation complexity separation between model-based RL and model-free
RL4, we introduce two types of MDPs: 3-SAT MDPs (Definition 3.2) and a broader class referred to
as NP MDPs (Definition 3.7). In both cases, the representation complexity of the model, inclusive
of the reward function and transition kernel, falls within the complexity class AC0 (cf. Section 2).
In contrast, we demonstrate that the representation of the optimal policy and optimal value function
for 3-SAT MDPs and NP MDPs is NP-complete. Significantly, our results not only demonstrate
the significant representation complexity separation between model-based RL and model-free RL,
but also address an open question in [62]. See Remark 3.4 for details.

• To further showcase the separation within the realm of model-free RL, we introduce two classes of
MDPs: CVP MDPs (Definition 4.1) and a broader category denoted as P MDPs (Definition 4.4).
In both instances, the representation complexity of the underlying model and the optimal policy is
confined to the complexity class AC0. In contrast, the representation complexity for the optimal
value function is characterized as P-complete, reflecting the inherent computational challenges
associated with computing optimal values. This underscores the efficiency in representing policies
(and models) while emphasizing the inherent representation complexity involved in determining
optimal value functions.

• To provide more practical insights, we establish a connection between our previous findings and the
realm of deep RL, where the model, policy, and value function are represented by neural networks.
Specifically, for 3-SAT MDPs and NP MDPs, we demonstrate the effective representation of the
model through a constant-layer MLP/Transformer with polynomial hidden dimension, while the
optimal policy and optimal value exhibit constraints in such representation. Furthermore, for the
CVP MDPs and P MDPs, we illustrate that both the underlying model and optimal policy can be
represented by constant-layer MLPs/Transformers with polynomial hidden dimension. However,
the optimal value, in contrast, faces limitations in its representation using MLPs/Transformers
with constant layers and polynomial hidden dimensions. These results corroborate the messages
conveyed through the perspective of computational complexity, contributing a novel perspective
that bridges the representation complexity in RL with the expressive power of MLP/Transformer.
In addition, we conduct deep RL experiments to corroborate our theory.

4Throughout this paper, we use the term model-free RL to include both policy-based RL and value-based RL.

2

In summary, our work unveils a potential hierarchy in representation complexity among different
categories of RL paradigms — where the underlying model is the most straightforward to represent,
followed by the optimal policy, and the optimal value function emerges as the most intricate to
represent. This insight offers valuable guidance on determining appropriate targets for approximation,
enhancing understanding of the inherent challenges in representing key elements across different RL
paradigms. Moreover, our representation complexity theory is closely tied to the sample efficiency
gap observed among various RL paradigms. Given that the sample complexity of RL approaches
often depends on the realizable function class in use [21, 42, 14, 23, 17, 58], our results suggest that
representation complexity may play a significant role in determining the diverse sample efficiency
achieved by different RL algorithms. This aligns with the observed phenomenon that model-based
RL typically exhibits superior sample efficiency compared to other paradigms [22, 42, 45, 20, 54, 56].
Consequently, our work underscores the importance of considering representation complexity in the
design of sample-efficient RL algorithms. See Appendix C.1 for more elaborations.
Additional Related Works. We have discussed most related works in the introduction part, and more
related works are deferred to Appendix A.
Notations. We denote the distribution over a set X by ∆(X). We use N and N+ to denote the set of all
natural numbers and positive integers, respectively. For any n ∈ N+, we denote [n] = {1, 2, · · · , n},
and 0n = (0, 0, · · · , 0︸ ︷︷ ︸

n times

)⊤,1n = (1, 1, · · · , 1︸ ︷︷ ︸
n times

)⊤.

2 Preliminaries
Markov Decision Process. We consider the finite-horizon Markov decision process (MDP), which
is defined by a tuple M = (S,A, H,P, r). Here S is the state space, A is the action space, H is
the length of each episode, P : S × A 7→ ∆(S) is the transition kernel, and r : S × A 7→ [0, 1] is
the reward function. Moreover, when the transition kernel is deterministic, say P(· | s, a) = δs′ for
some s′ ∈ S . we denote P(s, a) = s′. A policy π = {πh : S 7→ ∆(A)}Hh=1 consists of H mappings
from the state space to the distribution over action space. For the deterministic policy πh satisfying
πh(·|s) = δa for some a ∈ A, we denote πh(s) = a. Here δa is the Dirac measure at a. Given a
policy π, for any (s, a) ∈ S×A, we define the state value function and state-action value function (Q-
function) as V πh (s) = Eπ[

∑H
h′=h rh′(sh′ , ah′) | sh = s], Qπh(s, a) = Eπ[

∑H
h′=h rh′(sh′ , ah′) | sh =

s, ah = a]. Here the expectation Eπ[·] is taken with respect to the randomness incurred by the policy
π and transition kernels. There exists an optimal policy π∗ achieves the highest value at all timesteps
and states, i.e., V π

∗

h (s) = supπ V
π
h (s) for any h ∈ [H] and s ∈ S. For notation simplicity, we use

the shorthands V ∗
h = V π

∗

h and Q∗
h = Qπ

∗

h for any h ∈ [H].

RL encompasses diverse paradigms, including model-based RL, policy-based RL, and value-based
RL, each tailored to approximate the model (r and P), optimal policy π∗, and optimal value function
Q∗, respectively. See Appendix B.1 for more details regarding function approximation.

Computational Complexity. Our work will use some classical computational complexity theory [3].
Specifically, we will utilize five complexity classes: AC0, TC0, L, P, and NP. Here, L, P, and NP
are defined in terms of the running time of Turing Machines (Definition B.1), while AC0 and TC0

are defined based on the complexity of Boolean circuits (Definition B.2). To facilitate the readers,
we provide the detailed definition in Appendix B.2. The relationship between these five complexity
classes is AC0 ⊊ TC0 ⊂ L ⊂ P ⊂ NP. The question of whether the relationship TC0 ⊂ P ⊂ NP
holds as a strict inclusion remains elusive in theoretical computer science. However, it is widely
conjectured that P = NP and TC0 = P are unlikely to be true.

3 The Separation between Model-based RL and Model-free RL

In this section, we focus on the representation complexity gap between model-based RL and model-
free RL, which encompasses both policy-based RL and value-based RL.

3.1 3-SAT MDP

As a warmup example to showcase the separation between model-based RL and model-free RL, we
propose the 3-SAT MDPs, whose construction is closely linked to the well-known NP-complete
problem 3-satisfiability (3-SAT). The formal definition of 3-SAT is as follows.

3

ψ

0n

0

ψ

ψ

ψ

ψ

ψ

1

r = 0.5

r = 1

a = 1 ……

ψ

v

k

v′
1

v′
0

k + 1

k + 1
a = 1

a = 0

……

……

n + 1

n + 1

r = 0

…
..…

…

…
..…

…

v′
end

v′′
end

ψ(vend) = 1

ψ(vend) = 0

0n

ψ

0n

2n + 2

ψ

0n

n + 2

action sequencesa = 0

Figure 1: A visualization of 3-SAT MDPs. Here, v is an n-dimensional vector, v0 and v1 are vectors
obtained by replacing the k-th element of v with 0 and 1, respectively. Additionally, vend, v′

end, and
v′′
end represent the assignments at the end of the episode.

Definition 3.1 (3-SAT Problem). A Boolean formula ψ over variables u1, u2, · · · , un is in the 3-
conjunctive normal form (3-CNF) if it takes the form of a conjunction of one or more disjunctions,
each containing exactly 3 literals. Here, a literal refers to either a variable or the negation of a variable.
Formally, the 3-CNF formula ψ has the form of ψ =

∧
i∈I(vi,1 ∨ vi,2 ∨ vi,3), where I is the index

set and vi,j ∈ {uk,¬uk} for some k ∈ [n]. The 3-SAT problem is defined as follows: given a 3-CNF
Boolean formula ψ, judge whether ψ is satisfiable. Here, “satisfiable” means that there exists an
assignment of variables such that the formula ψ evaluates to 1.
Now we present the detailed construction of 3-SAT MDPs.
Definition 3.2 (3-SAT MDP). For any n ∈ N+, let V = {u1,¬u1, · · · , un,¬un} be the set of
literals. An n-dimensional 3-SAT MDP (S,A, H,P, r) is defined as follows. The state space S is
defined by S = V3n×{0, 1}n× ({0}∪ [2n+2]), where each state s can be denoted as s = (ψ,v, k).
In this representation, ψ is a 3-CNF formula consisting of n clauses and represented by its 3n literals,
v ∈ {0, 1}n can be viewed as an assignment of the n variables and k is an integer recording the
number of actions performed. The action space is A = {0, 1} and the planning horizon is H = n+2.
Given a state s = (ψ,v, k), for any a ∈ A, the reward r(s, a) is defined by:

r(s, a) =


1 If v is satisfiable and k = n+ 1,

0.5 If k = 2n+ 2,

0 Otherwise.
(3.1)

Moreover, the transition kernel is deterministic and takes the following form:

P
(
(ψ,v, k), a

)
=


(ψ,v, n+ 2) If a = k = 0,

(ψ,v, 1) If a = 1 and k = 0,

(ψ,v′, k + 1) If k ∈ [n]

(ψ,v, k + 1) If k > n.

(3.2)

where v′ is obtained from v by setting the k-th bit as a and leaving other bits unchanged, i.e.,
v′[k] = a and v′[k′] = v[k′] for k′ ̸= k. The initial state takes form (ψ,0n, 0) for any length-n
3-CNF formula ψ.

The visualization of 3-SAT MDPs is given in Figure 1. We assert that our proposed 3-SAT model
is relevant to real-world problems. In the state s = (ψ,v, k), ψ characterizes intrinsic environmental
factors that remain unchanged by the agent, while v and k represent elements subject to the agent’s
influence. Notably, the agent is capable of changing 0n to any n-bits binary string within the episode.
Using autonomous driving as an example, ψ could denote fixed factors like road conditions and
weather, while v and k may represent aspects of the car that the agent can control. While states and
actions in practical scenarios might be continuous, they are eventually converted to binary strings in
computer storage due to bounded precision. Regarding the reward structure, the agent only receives
rewards at the end of the episode, reflecting the goal-conditioned RL setting and the sparse reward

4

setting, which capture many real-world problems. Intuitively, the agent earns a reward of 1 if ψ is
satisfiable, and the agent transforms 0n into a variable assignment that makes ψ equal to 1 through
a sequence of actions. The agent receives a reward of 0.5 if, at the first step, it determines that ψ is
unsatisfiable and chooses to “give up”. Here, we refer to taking action 0 at the first step as “give up”
since this action at the outset signifies that the agent foregoes the opportunity to achieve the highest
reward of 1. In all other cases, the agent receives a reward of 0. Using the example of autonomous
driving, if the car successfully reaches its (reachable) destination, it obtains the highest reward. If the
destination is deemed unreachable and the car chooses to give up at the outset, it receives a medium
reward. This decision is considered a better choice than investing significant resources in attempting
to reach an unattainable destination, which would result in the lowest reward.
Theorem 3.3 (Representation complexity of 3-SAT MDP). Let Mn be the n-dimensional 3-SAT
MDP in Definition 3.2. The transition kernel P and the reward function r of Mn can be computed
by circuits with polynomial size (in n) and constant depth, falling within the circuit complexity class
AC0. However, computing the optimal value function Q∗

1 and the optimal policy π∗
1 of Mn are both

NP-complete under the polynomial time reduction.
The proof of Theorem 3.3 is deferred to Appendix E.1. Theorem 3.3 states that the representation
complexity of the underlying model is in AC0, whereas the representation complexity of optimal
value function and optimal policy is NP-complete. This demonstrates the significant separation of
the representation complexity of model-based RL and that of model-free RL.
Remark 3.4. The recent work of [62] raises an open problem regarding the existence of a class of
MDPs whose underlying model can be represented by ACk circuits while the optimal value function
cannot. Here, ACk is a complexity class satisfying AC0 ⊂ ACk ⊂ P ⊂ NP. Therefore, our results not
only address this open problem by revealing a more substantial gap in representation complexity be-
tween model-based RL and model-free RL but also surpass the expected resolution conjectured in [62].
Remark 3.5. Although Theorem 3.3 only shows that Q∗

1 is hard to represent, our proof also implies
that V ∗

1 is hard to represent. Moreover, we can extend our results to the more general case, say
{Q∗

h}h∈[⌊n
2 ⌋] are NP-complete, by introducing additional irrelevant steps. Notably, one cannot

anticipate Q∗
h to be hard to represent for any h ∈ [H] since QH reduces to the one-step reward

function r. This aligns with our intuition that the multi-step correlation is pivotal in rendering the
optimal value functions in the “early steps” challenge to represent. Also, although we only show that
π∗
1 is hard to represent in our proof, the result can be extended to step h where 2 ≤ h ≤ H , as π∗

1
also serves as an optimal policy at step h. Finally, We want to emphasize that, since our objective is
to show that Q∗ = {Q∗

h}Hh=1 and π∗ = {π∗
h}Hh=1 have high representation complexity, it suffices to

demonstrate that Q∗
1 and π∗

1 are hard to represent.
Remark 3.6. Our results can be extended to stochastic MDPs and partially observable MDPs
(POMDPs) via slight modifications. See Appendices H.1 and H.2 for details.

3.2 NP MDP: A Broader Class of MDPs

We extend the results for 3-SAT MDPs by introducing the concept of NP MDP—a broader class of
MDPs. Specifically, for any NP-complete language L, we can construct a corresponding NP MDP
that encodes L into the structure of MDPs. Importantly, this broader class of MDPs yields the same
outcomes as 3-SAT MDPs. In other words, in the context of NP MDP, the underlying model can be
computed by circuits in AC0, while the computation of both the optimal value function and optimal
policy remains NP-complete. The detailed definition of NP MDP is provided below.
Definition 3.7 (NP MDP). An NP MDP is defined concerning a language L ∈ NP. Let M be a
nondeterministic Turing Machine recognizing L in at most P (n) steps, where n is the length of
the input string and P (n) is a polynomial. Let M have valid configurations denoted by Cn, and let
each configuration c = (sM , t, l) ∈ Cn encompass the state of the Turing Machine sM , the contents
of the tape t, and the pointer on the tape l, requiring O(P (n)) bits for representation. Then an n-
dimensional NP MDP is defined as follows. The state space S is Cn× ({0}∪ [2P (n)+ 2]), and each
s = (c, k) ∈ S consists of a valid configuration c = (sM , t, l) and a index k ∈ {0} ∪ [2P (n) + 2]
recording the number of steps M has executed. The action space is A = {0, 1} and the planning
horizon is H = P (n) + 2. Given state s = (c, k) = (sM , t, l, k) and action a, the reward function
r(s, a) is defined by:

r(s, a) =


1 If sM = saccpet and k = P (n) + 1,

0.5 If k = 2P (n) + 2,

0 Otherwise,
(3.3)

5

where saccept is the accept state of Turing MachineM . Moreover, the transition kernel is deterministic
and can be defined as follows:

P
(
(c, k), a

)
=


(c, P (n) + 2) If a = k = 0,

(c, 1) If a = 1 and k = 0,

(c′, k + 1) If k ∈ [P (n)]

(c, k + 1) If k > P (n).

(3.4)

where c′ is the configuration obtained from c by selecting the branch a at the current step and
executing the Turing Machine M for one step. Let xinput be an input string of length n. We can
construct the initial configuration c0 of the Turing Machine M on the input xinput by copying the
input string onto the tape, setting the pointer to the initial location, and designating the state of the
Turing Machine as the initial state. The initial state is defined as (c0, 0).

The definition of NP MDP in Definition 3.7 generalizes that of the 3-SAT MDP in Definition 3.2
by incorporating the nondeterministic Turing Machine, a fundamental computational mode. The
configuration c and the accept state saccpet in NP MDPs mirror the formula-assignment pair (ψ,v)
and the scenario that ψ(v) = 1 in 3-SAT MDP, respectively. To the best of our knowledge, NP
MDP is the first class of MDPs defined in the context of (non-deterministic) Turing Machine and can
encode any NP-complete problem in an MDP structure. This represents a significant advancement
compared to the Majority MDP in [62] and the 3-SAT MDP in Definition 3.2, both of which rely on
specific computational problems such as the Majority function and the 3-SAT problem. The following
theorem provides the theoretical guarantee for the NP-complete MDP.
Theorem 3.8 (Representation complexity of NP MDP). Consider any NP-complete language L
alongside its corresponding n-dimensional NP MDP Mn, as defined in Definition 3.7. The transition
kernel P and the reward function r of Mn can be computed by circuits with polynomial size (in n)
and constant depth, belonging to the complexity class AC0. In contrast, the problems of computing
the optimal value function Q∗

1 and the optimal policy π∗
1 of Mn are both NP-complete under the

polynomial time reduction.

The proof of Theorem 3.8 is deferred to Appendix E.2. Theorem 3.8 demonstrates that a substantial
representation complexity gap between model-based RL (AC0) and model-free RL (NP-complete)
persists in NP MDPs. Consequently, we have extended the results for 3-SAT MDP in Theorem 3.3
to a more general setting as desired. Similar explanations for Theorem 3.8 can be provided, akin
to Remarks 3.4, 3.5, and 3.6 for 3-SAT MDPs, but we omit these to avoid repetition.

4 The Separation between Policy-based RL and Value-based RL

In Section 3, we demonstrate the representation complexity gap between model-based RL and model-
free RL. In this section, our focus shifts to exploring the representation complexity hierarchy within
model-free RL, encompassing policy-based RL and value-based RL. More specifically, we construct
a broad class of MDPs where both the underlying model and the optimal policy are easy to represent,
while the optimal value function is hard to represent. This further illustrates the representation
hierarchy between different categories of RL algorithms.

4.1 CVP MDP

We begin by introducing the CVP MDPs, whose construction is rooted in the circuit value problem
(CVP). The CVP involves computing the output of a given Boolean circuit (refer to Definition B.2)
on a given input.
Definition 4.1 (CVP MDP). An n-dimensional CVP MDP is defined as follows. Let C be the set of all
circuits of size n. The state space S is defined by S = C × {0, 1, Unknown}n, where each state s can
be represented as s = (c,v). Here, c is a circuit consisting of n nodes with c[i] = (c[i][1], c[i][2], gi)
describing the i-th node, where c[i][1] and c[i][2] indicate the input node and gi denotes the type of
gate (including ∧,∨,¬, 0, 1). When gi ∈ {∧,∨}, the outputs of c[i][1]-th node and c[i][2]-th node
serve as the inputs; and when gi = ¬, the output of c[i][1]-th node serves as the input and c[i][2] is
meaningless. Moreover, the node type of 0 or 1 denotes that the corresponding node is a leaf node
with a value of 0 or 1, respectively, and therefore, c[i][1], c[i][2] are both meaningless. The vector
v ∈ {0, 1, Unknown}n represents the value of the n nodes, where the value Unknown indicates that
the value of this node has not been computed and is presently unknown. The action space is A = [n]

6

c

vunknown

r = 1

……
v

v′
1

v′
n

a = 1

a = n

……

……
r = 0

…
..…

…

v′
end

v′′
end

c a = i

c

v′
i

c

…
…

…
…

……

vend[n] = 1

otherwise

…
…

…
…

c

c

c

Figure 2: A visualization of CVP MDPs. Here, vunknown, which contains n Unknown values, is the
initial value vector. For any state s including a circuit c and a value vector v, choosing the action i,
the environment transits to (c,v′

i). Moreover, vend, v′
end, and v′′

end are value vectors at the end of
the episode.
and the planning horizon is H = n+ 1. Given a state-action pair (s = (c,v), a), its reward r(s, a)
is given by:

r(s, a) =

{
1 If the value of the output gate v[n] = 1,

0 Otherwise.

Moreover, the transition kernel is deterministic and can be defined as: P
(
(c,v), a

)
= (c,v′). Here,

v′ is obtained from v by computing and substituting the value of node a. More exactly, if the inputs
of node a have been computed, we can compute the output of the node a and denote it as o[a]. Then
we have

v′[j] =


v[j] If a ̸= j,
o[a] If a = j and inputs of a are computed,
Unknown If a = j and inputs of a are not computed.

Given a circuit c, the initial state of CVP MDP is (c,vunknown) where vunknown denotes the vector
containing n Unknown values.

The visualization of CVP MDPs is given in Figure 2. In simple terms, each state s = (c,v) comprises
information about a given size-n circuit c and a vector v ∈ {0, 1, Unkown}n. At each step, the agent
takes an action a ∈ [n]. If the a-th node has not been computed, and the input nodes are already
computed, then the transition kernel of the CVP MDP modifies v[a] based on the type of gate
c[a]. The agent achieves the maximum reward of 1 only if it transforms the initial vector vunknown,
consisting of n Unknown values, into the v satisfying v[n] = 1. This also indicates that CVP MDPs
exhibit the capacity to model many real-world goal-conditioned problems and scenarios featuring
sparse rewards. Hence, we have strategically encoded the circuit value problem into the CVP MDP
in this manner. The representation complexity guarantee for the CVP MDP is provided below, and
the proof is provided in Appendix F.1.
Theorem 4.2 (Representation Complexity of CVP MDP). Let Mn be the n-dimensional CVP MDP
defined in Definition 4.1. The reward function r, transition kernel P , and optimal policy π∗ of Mn

can be computed by circuits with polynomial size (in n) and constant depth, falling within the circuit
complexity class AC0. However, the problem of computing the optimal value function Q∗

1 of Mn is
P-complete under the log-space reduction.
Theorem 4.2 illustrates that, for CVP MDPs, the representation complexity of the optimal value
function is notably higher than that of the underlying model and optimal policy.
Remark 4.3. We explain why P-completeness is considered challenging. In computational com-
plexity theory, problems efficiently solvable in parallel fall into class NC. It is widely believed that
P-complete problems cannot be efficiently solved in parallel (i.e., NC ̸= P). Neural networks like
MLP and Transformers [47], which are implemented in a highly parallel manner, face limitations
when addressing P-complete problems. See Section 5 for details.

4.2 P MDP: A Broader Class of MDPs

We broaden the scope of CVP MDP to encompass a broader class of MDPs — P MDPs. In this
extension, we can encode any P-complete problem into the MDP structure while preserving the
results established for CVP MDP in Theorem 4.2. We introduce the P MDP as follows.

7

Definition 4.4 (P MDP). Given a language L in P, and a circuit family C, where Cn ∈ C contains
the circuits capable of recognizing strings of the length n in L. The size of the circuits in Cn
is upper bounded by a polynomial P (n). An n-dimensional P MDP based on L is defined as
follows. The state space S is defined by S = {0, 1}n × Cn × {0, 1, Unknown}P (n), where each
state s can be represented as s = (x, c,v). Here, c is the circuit recognizing the strings of length
n in L with c[i] = (c[i][1], c[i][2], gi) representing the i-th node where the output of nodes i1
and i2 serves as the input, and gi is the type of the gate (including ∧,∨,¬, and Input). When
gi ∈ {∧,∨}, the outputs of c[i][1]-th node and c[i][2]-th node serve as the inputs; and when gi = ¬,
the output of c[i][1]-th node serves as the input and c[i][2] is meaningless. Moreover, the type
Input indicates that the corresponding node is the c[i][1]-th bit of the input string. The vector
v ∈ {0, 1, Unknown}P (n) representing the value of the n nodes, and the value Unknown indicates
that the value of the corresponding node has not been computed, and hence is currently unknown.
The action space is A = [P (n)] and the planning horizon is H = P (n) + 1. The reward of any
state-action (s = (x, c,v), a) is defined by:

r(s, a) =

{
1 If the value of the output gate v[P (n)] = 1,

0 Otherwise.

Moreover, the transition kernel is deterministic and can be defined as: P
(
(x, c,v), a

)
= (x, c,v′),

where v′ is obtained from v by computing and substituting the value of node a. In particular, if the
inputs of node a have been computed or can be read from the input string, we can determine the
output of node a and denote it as o[a]. This yields the formal expression of v′:

v′[j] =


v[j] If a ̸= j,

o[a] If a = j and inputs of a are computed,
Unknown If a = j and inputs of a are not computed.

Given an input x and a circuit c capable of recognizing strings of specific length in L, the initial state
of P MDP is (c,vunknown) where vunknown denotes the vector containing P (n) Unknown values and
P (n) is the size of c.

In the definition of P MDPs, we employ circuits to recognize the P-complete language L instead of
using a Turing Machine, as done in the NP MDP in Definition 3.7. While it is possible to define
P MDPs using a Turing Machine, we opt for circuits to maintain consistency with CVP MDP and
facilitate our proof. Additionally, we remark that employing circuits to define NP MDPs poses
challenges, as it remains elusive whether polynomial circuits can recognize NP-complete languages.
Theorem 4.5 (Representation complexity of P MDP). For any P-complete language L, consider
its corresponding (n-dimensional) P MDP Mn as defined in Definition 4.4. The reward function r,
transition kernel P , and the optimal policy π∗ of Mn can be computed by circuits with polynomial
size (in n) and constant depth, falling within the circuit complexity class AC0. However, the problem
of computing the optimal value function Q∗

1 of Mn is P-complete under the log-space reduction.
The proof of Theorem 4.5 is deferred to Appendix F.2. Theorem 4.5 significantly broadens the
applicability of Theorem 4.2 by enabling the encoding of any P-complete problem into the MDP
structure, as opposed to a specific circuit value problem. In these expanded scenarios, the representa-
tion complexity of the model and optimal policy remains noticeably lower than that of the optimal
value function.

Consequently, by combining Theorems 3.3, 3.8, 4.2, and 4.5, a potential representation complexity
hierarchy has been unveiled. Specifically, the underlying model is the easiest to represent, followed
by the optimal policy, with the optimal value exhibiting the highest representation complexity.

5 Connections to Deep RL

While we have uncovered the representation complexity hierarchy between model-based RL,
policy-based RL, and value-based RL through the lens of computational complexity in Sections 3
and 4, these results offer limited insights for modern deep RL, where models, policies, and values
are approximated by neural networks. To address this limitation, we further substantiate our revealed
representation complexity hierarchy among different RL paradigms through the perspective of the
expressiveness of neural networks. Specifically, we focus on the MLP with Rectified Linear Unit
(ReLU) as the activation function5 — an architecture predominantly employed in deep RL algorithms.

5Our results in this section are ready to be extended to other activation functions, such as Exponential Linear
Unit (ELU), Gaussian Error Linear Unit (GeLU) and so on.

8

Definition 5.1 (Log-precision MLP). An L-layer MLP is a function from input e0 ∈ Rd to output
y ∈ Rdy , recursively defined as

h1 = ReLU (W1e0 + b1) ,W1 ∈ Rd1×d,b1 ∈ Rd1 ,

hℓ = ReLU (Wℓhℓ−1 + bℓ) , Wℓ ∈ Rdℓ×dℓ−1 ,bℓ ∈ Rdℓ ,

y = WLhL + bL,WL ∈ Rdy×dL ,bL ∈ Rdy ,

where 2 ≤ ℓ ≤ L− 1 and ReLU(x) = max{0, x} for any x ∈ R is the standard ReLU activation.
Log-precision MLPs refer to MLPs whose internal neurons can only store floating-point numbers
within O(log n) bit precision, where n is the maximal length of the input dimension.

The log-precision MLP is closely related to practical scenarios where the precision of the machine
(e.g., 16 bits or 32 bits) is generally much smaller than the input dimension (e.g., 1024 or 2048 for
the representation of image data). In our paper, all occurrences of MLPs will implicitly refer to the
log-precision MLP, and we may omit explicit emphasis on log precision for the sake of simplicity.
See Appendix B.3 for more details regarding log precision.

Transition Reward Optimal Policy Optimal Value
Input (es, ea) (es, ea) es (es, ea)

Output es′ r(s, a) ea Q∗
1(s, a)

Table 2: The input and output of the MLPs that represent the model, optimal
policy, and optimal value function.

To employ MLPs to repre-
sent the model, policy, and
value function, we encode
each state s and action a
into embeddings es ∈ Rds
and ea ∈ Rda , respectively. The detailed constructions of state embeddings and action embeddings
of each type of MDPs are provided in Appendix G.1. In addition, we specify the input and output of
MLPs that represent the model, policy, and value function in Table 2.

We now unveil the hierarchy of representation complexity from the perspective of MLP expressiveness.
To begin with, we demonstrate the representation complexity gap between model-based RL and
model-free RL.
Theorem 5.2. The reward function r and transition kernel P of n-dimensional 3-SAT MDP and NP
MDP can be represented by an MLP with constant layers, polynomial hidden dimension (in n), and
ReLU as the activation function.
Theorem 5.3. Assuming that TC0 ̸= NP, the optimal policy π∗

1 and optimal value function Q∗
1 of

n-dimensional 3-SAT MDP and NP MDP defined with respect to an NP-complete language L cannot
be represented by an MLP with constant layers, polynomial hidden dimension (in n), and ReLU as
the activation function.

The proof of Theorems 5.2 and 5.3 are deferred to Appendices G.2 and G.3, respectively. Theo-
rems 5.2 and 5.3 show that the underlying model of 3-SAT MDP and NP MDP can be represented
by constant-layer perceptron, while the optimal policy and optimal value function cannot. These
demonstrate the representation complexity gap between model-based RL and model-free RL from
the perspective of MLP expressiveness. The following two theorems further illustrate the represen-
tation complexity gap between policy-based RL and value-based RL, and the proof are deferred to
Appendices G.4 and G.5, respectively.
Theorem 5.4. The reward function r, transition kernel P , and optimal policy π∗ of n-dimensional
CVP MDP and P MDP can be represented by an MLP with constant layers, polynomial hidden
dimension (in n), and ReLU as the activation function.
Theorem 5.5. Assuming that TC0 ̸= P, the optimal value function Q∗

1 of n-dimensional CVP MDP
and P MDP defined with respect to a P-complete language L cannot be represented by an MLP
with constant layers, polynomial hidden dimension (in n), and ReLU as the activation function.

Combining Theorems 5.2, 5.3, 5.4, and 5.5, we reaffirm the potential representation complexity
hierarchy uncovered in Sections 3 and 4 from the perspective of MLP expressiveness. To our best
knowledge, this is the first result on representation complexity in RL from the perspective of MLP ex-
pressiveness, aligning more closely with modern deep RL and providing valuable insights for practice.
Remark 5.6. The results presented in this section underscore the importance of establishing NP-
completeness and P-completeness in Sections 3 and 4. Specifically, constant-layer MLPs with
polynomial hidden dimension are unable to simulate P-complete problems and NP-complete problems
under the assumptions that TC0 ̸= P and TC0 ̸= NP, which are widely believed to be impossible.
In contrast, it is noteworthy that MLPs with constant layers and polynomial hidden dimension can

9

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 16 dimensions and 2 layers
 to fit dataset of size 30000
Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(a)

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 16 dimensions and 2 layers
 to fit dataset of size 100000

Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(b)

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

0.5

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 16 dimensions and 2 layers
 to fit dataset of size 300000

Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(c)

H.C. Humanoid I.P. Ant0.0

0.2

0.4

0.6

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 16 dimensions and 3 layers
 to fit dataset of size 30000
Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(d)

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 16 dimensions and 3 layers
 to fit dataset of size 100000

Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(e)

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 16 dimensions and 3 layers
 to fit dataset of size 300000

Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(f)

Figure 3: The approximation errors computed by employing MLPs with varying depths d and widths
w to approximate the transition kernel, reward function, optimal policy, and optimal Q-function in
four MuJoCo environments. In each subfigure, the title indicates the configuration including hidden
dimensions, number of layers, and dataset size. The x-axis lists the four MuJoCo environments,
where H.C. represents HalfCheetah and I.P. represents InvertedPendulum. The y-axis represents the
approximation error defined in (D.1).

represent basic operations within TC0 (Lemma I.6), such as the Majority function. Consequently,
the model, optimal policy, and optimal value function of “Majority MDPs” presented in [62] can be
represented by constant-layer MLPs with polynomial size. Hence, the class of MDPs presented in [62]
cannot demonstrate the representation complexity hierarchy from the lens of MLP expressiveness.

Applicability and Extensions of Our Theory. As mentioned in the introduction, our representation
results have implications for the statistical complexity in RL, as detailed in Appendix C.1. Although
we have shown that the revealed hierarchy of representation complexity holds for a wide range of
MDPs in theory, examining its broader applicability is essential. We discuss more general theoretical
insights and extension to Transformer [47] architecture to Appendices C.2 and C.3.

Experiments. We want to emphasize that our theoretical results do not apply to all MDPs, such as
the MDP with all zero rewards and complex transitions. However, these additional MDP classes
may not be typical in practice and could be considered pathological examples from a theoretical
standpoint. To demonstrate that our theory captures practical problems, we conduct an empirical
investigation into the representation complexity of different RL paradigms across various MuJoCo
Gym environments [7]. Our empirical findings align with our theoretical conclusions. We report
part of our experimental results in Figure 3, more detailed experimental description and results are
deferred to Appendix D.

6 Conclusions

This paper studies three RL paradigms — model-based RL, policy-based RL, and value-based RL —
from the perspective of representation complexity. Through leveraging computational complexity
(including time complexity and circuit complexity) and the expressiveness of MLPs as representation
complexity metrics, we unveil a potential hierarchy of representation complexity among different
RL paradigms. Our theoretical framework posits that representing the model constitutes the most
straightforward task, succeeded by the optimal policy, while representing the optimal value function
poses the most intricate challenge. Our work contributes to a deeper understanding of the nuanced
complexities inherent in various RL paradigms, providing valuable insights for the advancement of
RL methodologies.

10

References
[1] Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. Pc-pg: Policy cover directed

exploration for provable policy gradient learning. Advances in neural information processing
systems, 33:13399–13412, 2020.

[2] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. The Journal of Machine
Learning Research, 22(1):4431–4506, 2021.

[3] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[4] Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based rein-
forcement learning with value-targeted regression. In International Conference on Machine
Learning, pages 463–474. PMLR, 2020.

[5] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. In International Conference on Machine Learning, pages 263–272.
PMLR, 2017.

[6] Vincent D Blondel and John N Tsitsiklis. A survey of computational complexity results in
systems and control. Automatica, 36(9):1249–1274, 2000.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[8] Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy
optimization. In International Conference on Machine Learning, pages 1283–1294. PMLR,
2020.

[9] Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence of
natural policy gradient methods with entropy regularization. Operations Research, 70(4):2563–
2578, 2022.

[10] Zixiang Chen, Chris Junchi Li, Angela Yuan, Quanquan Gu, and Michael I Jordan. A general
framework for sample-efficient function approximation in reinforcement learning. arXiv preprint
arXiv:2209.15634, 2022.

[11] Chef-Seng Chow and John N Tsitsiklis. The complexity of dynamic programming. Journal of
complexity, 5(4):466–488, 1989.

[12] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, ACM, 1971, page 151–158, 1971.

[13] Kefan Dong, Yuping Luo, Tianhe Yu, Chelsea Finn, and Tengyu Ma. On the expressivity
of neural networks for deep reinforcement learning. In International conference on machine
learning, pages 2627–2637. PMLR, 2020.

[14] Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong
Wang. Bilinear classes: A structural framework for provable generalization in rl. In International
Conference on Machine Learning, pages 2826–2836. PMLR, 2021.

[15] Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation
sufficient for sample efficient reinforcement learning? arXiv preprint arXiv:1910.03016, 2019.

[16] Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards
revealing the mystery behind chain of thought: a theoretical perspective. Advances in Neural
Information Processing Systems, 36, 2024.

[17] Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity
of interactive decision making. arXiv preprint arXiv:2112.13487, 2021.

11

[18] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

[19] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11:1563–1600, 2010.

[20] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. Advances in neural information processing systems, 32,
2019.

[21] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E. Schapire.
Contextual decision processes with low Bellman rank are PAC-learnable. In Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1704–1713. PMLR, 06–11 Aug 2017.

[22] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably
efficient? Advances in neural information processing systems, 31, 2018.

[23] Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes
of rl problems, and sample-efficient algorithms. Advances in neural information processing
systems, 34:13406–13418, 2021.

[24] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143. PMLR, 2020.

[25] Ying Jin, Zhimei Ren, Zhuoran Yang, and Zhaoran Wang. Policy learning” without”overlap:
Pessimism and generalized empirical bernstein’s inequality. arXiv preprint arXiv:2212.09900,
2022.

[26] Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

[27] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[28] Richard E Ladner. The circuit value problem is log space complete for p. ACM Sigact News,
7(1):18–20, 1975.

[29] Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new sam-
pling complexity, and generalized problem classes. Mathematical programming, 198(1):1059–
1106, 2023.

[30] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

[31] Leonid Anatolevich Levin. Universal sequential search problems. Problemy peredachi infor-
matsii, 9(3):115–116, 1973.

[32] Michael L Littman, Judy Goldsmith, and Martin Mundhenk. The computational complexity of
probabilistic planning. Journal of Artificial Intelligence Research, 9:1–36, 1998.

[33] Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural trust region/proximal policy
optimization attains globally optimal policy. Advances in neural information processing systems,
32, 2019.

[34] Qinghua Liu, Gellért Weisz, András György, Chi Jin, and Csaba Szepesvári. Optimistic natural
policy gradient: a simple efficient policy optimization framework for online rl. arXiv preprint
arXiv:2305.11032, 2023.

[35] Zhihan Liu, Miao Lu, Wei Xiong, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran
Yang, and Zhaoran Wang. One objective to rule them all: A maximization objective fusing
estimation and planning for exploration. arXiv preprint arXiv:2305.18258, 2023.

12

[36] William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.

[37] Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision processes.
Mathematics of operations research, 12(3):441–450, 1987.

[38] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[39] Lior Shani, Yonathan Efroni, Aviv Rosenberg, and Shie Mannor. Optimistic policy optimization
with bandit feedback. In International Conference on Machine Learning, pages 8604–8613.
PMLR, 2020.

[40] Uri Sherman, Alon Cohen, Tomer Koren, and Yishay Mansour. Rate-optimal policy optimization
for linear markov decision processes. arXiv preprint arXiv:2308.14642, 2023.

[41] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[42] Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based
rl in contextual decision processes: Pac bounds and exponential improvements over model-free
approaches. In Conference on learning theory, pages 2898–2933. PMLR, 2019.

[43] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[44] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

[45] Stephen Tu and Benjamin Recht. The gap between model-based and model-free methods on
the linear quadratic regulator: An asymptotic viewpoint. In Conference on Learning Theory,
pages 3036–3083. PMLR, 2019.

[46] Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under
partial coverage. arXiv preprint arXiv:2107.06226, 2021.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[48] Tianhao Wu, Yunchang Yang, Han Zhong, Liwei Wang, Simon Du, and Jiantao Jiao. Nearly
optimal policy optimization with stable at any time guarantee. In International Conference on
Machine Learning, pages 24243–24265. PMLR, 2022.

[49] Lin Xiao. On the convergence rates of policy gradient methods. The Journal of Machine
Learning Research, 23(1):12887–12922, 2022.

[50] Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-
consistent pessimism for offline reinforcement learning. Advances in neural information
processing systems, 34:6683–6694, 2021.

[51] Yunbei Xu and Assaf Zeevi. Bayesian design principles for frequentist sequential learning. In
International Conference on Machine Learning, pages 38768–38800. PMLR, 2023.

[52] Kai Yang, Jan Ackermann, Zhenyu He, Guhao Feng, Bohang Zhang, Yunzhen Feng, Qiwei Ye,
Di He, and Liwei Wang. Do efficient transformers really save computation? arXiv preprint
arXiv:2402.13934, 2024.

[53] Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive
features. In International Conference on Machine Learning, pages 6995–7004. PMLR, 2019.

13

[54] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural
Information Processing Systems, 33:14129–14142, 2020.

[55] Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. In International Conference
on Machine Learning, pages 7304–7312. PMLR, 2019.

[56] Zihan Zhang, Yuxin Chen, Jason D Lee, and Simon S Du. Settling the sample complexity of
online reinforcement learning. arXiv preprint arXiv:2307.13586, 2023.

[57] Zihan Zhang, Xiangyang Ji, and Simon Du. Is reinforcement learning more difficult than
bandits? a near-optimal algorithm escaping the curse of horizon. In Conference on Learning
Theory, pages 4528–4531. PMLR, 2021.

[58] Han Zhong, Wei Xiong, Sirui Zheng, Liwei Wang, Zhaoran Wang, Zhuoran Yang, and Tong
Zhang. Gec: A unified framework for interactive decision making in mdp, pomdp, and beyond.
arXiv preprint arXiv:2211.01962, 2022.

[59] Han Zhong, Zhuoran Yang, Zhaoran Wang, and Csaba Szepesvári. Optimistic policy optimiza-
tion is provably efficient in non-stationary mdps. arXiv preprint arXiv:2110.08984, 2021.

[60] Han Zhong and Tong Zhang. A theoretical analysis of optimistic proximal policy optimization
in linear markov decision processes. arXiv preprint arXiv:2305.08841, 2023.

[61] Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement
learning for linear mixture markov decision processes. In Conference on Learning Theory,
pages 4532–4576. PMLR, 2021.

[62] Hanlin Zhu, Baihe Huang, and Stuart Russell. On representation complexity of model-based
and model-free reinforcement learning. arXiv preprint arXiv:2310.01706, 2023.

14

A Additional Related Works

Representation Complexity in RL. In the pursuit of achieving efficient learning in RL, most
existing works [e.g., 21, 42, 15, 23, 14, 50, 46, 17, 58, 25] adopt the (approximate) realizability
assumption. This assumption allows the learner to have access to a function class that (approximately)
captures the underlying model, optimal policy, or optimal value function, contingent upon the specific
algorithm type in use. However, justifying the complexity of such a function class, with the capacity
to represent the underlying model, optimal policy, or optimal value function, has remained largely
unaddressed in these works. To the best of our knowledge, two exceptions are the works of [13]
and [62], which consider the representation complexity in RL. As mentioned earlier, by using the
number of linear pieces of piecewise linear functions and circuit complexity as metrics, these two
works reveal that the representation complexity of the optimal value function surpasses that of the
underlying model. Compared with these two works, our work also demonstrates the separation
between model-based RL and value-based from multiple angles, including circuit complexity, time
complexity, and the expressive power of MLP, where the last perspective seems completely new in
the RL theory literature. Moreover, our result demonstrates a more significant separation between
model-based RL and value-based RL. In addition, we also study the representation complexity of
policy-based RL, providing a potential hierarchy among model-based RL, policy-based RL, and
value-based RL from the above perspectives.

Classic Computational Complexity Results. There are many classical computational complexity
results of RL [37, 11, 32, 6]. These studies characterize the computational complexity of the process
of solving the decision problems (finding the optimal decision) in RL. However, our work differs
by examining the representation complexity hierarchy among different RL paradigms, using the
computational complexity and expressiveness of MLPs as the complexity measure. Consequently,
our findings do not contradict previous classical results and cannot be directly compared to them.

Model-based RL, Policy-based RL, and Value-based RL. In the domain of RL, there are distinct
paradigms that guide the learning process: model-based RL, policy-based RL, and value-based
RL, each with its unique approach. In model-based RL, the primary objective of the learner is to
estimate the underlying model of the environment and subsequently enhance the policy based on this
estimated model. Most work in tabular RL [e.g., 19, 5, 55, 57, 56] fall within this category — they
estimate the reward model and transition kernel using the empirical means and update the policy by
performing the value iteration on the estimated model. Additionally, some works extend this approach
to RL with linear function approximation [4, 61] and general function approximation [42, 17, 58, 51].
Policy-based RL, in contrast, uses direct policy updates to improve the agent’s performance. Typical
algorithms such as policy gradient [44], natural policy gradient [26], proximal policy optimization
[38] fall into this category. A long line of works proposes policy-based algorithms with provable
convergence guarantees and sample efficiency. See e.g., [33, 1, 2, 8, 39, 59, 9, 49, 48, 29, 60, 34, 40]
and references therein. In value-based RL, the focus shifts to the approximation of the value function,
and policy updates are driven by the estimated value function. A plethora of provable value-based
algorithms exists, spanning tabular RL [22], linear RL [53, 24], and beyond [21, 14, 23, 58, 10,
35]. These works mainly explore efficient RL through the lens of sample complexity, with less
consideration for representation complexity, which is the focus of our work.

B Additional Background Knowledge

B.1 Function Approximation in Model-based, Policy-based, and Value-based RL

In modern reinforcement learning, we need to employ function approximation to solve complex
decision-making problems. Roughly speaking, RL algorithms can be categorized into three types –
model-based RL, policy-based RL, and value-based RL, depending on whether the algorithm aims to
approximate the model, policy, or value. In general, policy-based RL and value-based RL can both be
regarded as model-free RL, which represents a class of RL methods that do not require the estimation
of a model. We assume the learner is given a function class F , and we will specify the form of F in
model-based RL, policy-based RL, and value-based RL, respectively.

• Model-based RL: the learner aims to approximate the model, including the reward function and
the transition kernels. Specifically, F = {(r : S × A 7→ [0, 1],P : S × A 7→ ∆(S))}. We also

15

want to remark that we consider the time-homogeneous setting, where the reward function and
transition kernel are independent of the timestep h. For the time-inhomogeneous setting, we can
choose F = F1 × · · · × FH and let Fh approximate the reward and transition at the h-th step.

• Policy-based RL: the learner directly approximates the optimal policy π∗. The function class F
takes the form F = F1 × · · · × Fh with Fh ⊂ {πh : S 7→ ∆(A)} for any h ∈ [H].

• Value-based RL: the learner utilizes the function class F = F1 × · · · ×FH to capture the optimal
value function Q∗, where Fh ⊂ {Qh : S ×A 7→ [0, H]} for any h ∈ [H].

In previous literature [e.g., 23, 14, 50, 46, 17, 58, 25], a standard assumption is the realizability
assumption – the ground truth model/optimal policy/optimal value is (approximately) realized in
the given function class. Typically, a higher complexity of the function class leads to a larger
sample complexity. Instead of focusing on sample complexity, as previous works have done, we
are investigating how complex the function class should be by characterizing the representation
complexity of the ground truth model, optimal policy, and optimal value function.

B.2 Computational Complexity

To rigorously describe the representation complexity, we briefly introduce some background knowl-
edge of classical computational complexity theory, and readers are referred to [3] for a more compre-
hensive introduction. We first define three classes of computational complexity classes P, NP, and
L.

• P is the class of languages6 that can be recognized by a deterministic Turing Machine in polynomial
time.

• NP is the class of languages that can be recognized by a nondeterministic Turing Machine in
polynomial time.

• L is the class containing languages that can be recognized by a deterministic Turing machine using
a logarithmic amount of space.

To facilitate the readers, we also provide the definitions of deterministic Turing Machine and nonde-
terministic Turing Machine in Definition B.1.
Definition B.1 (Turing Machine). A deterministic Turing Machine (TM) M is described by a tuple
(Γ,Q,T), where Γ is the tape alphabet containing the “blank” symbol, “start” symbol, and the
numbers 0 and 1; Q is a finite, non-empty set of states, including a start state qstart and a halting
state qhalting; and T : Q× Γk 7→ Q× Γk−1 × {Left,Stay,Right}, where k ≥ 2, is the transition
function, describing the rules M use in each step. The only difference between a nondeterministic
Turing Machine (NDTM) and a deterministic Turing Machine is that an NDTM has two transition
functions T0 and T1, and a special state qaccept. At each step, the NDTM can choose one of two
transitions to apply, and accept the input if there exists some sequence of these choices making the
NDTM reach qaccept. A configuration of (deterministic or nondeterministic) Turing Machine M
consists of the contents of all nonblank entries on the tapes of M , the machine’s current state, and the
pointer on the tapes.

To quantify the representation complexity, we also adopt the circuit complexity, a fundamental
concept in theoretical computer science, to characterize it. Circuit complexity focuses on representing
functions as circuits and measuring the resources, such as the number of gates, required to compute
these functions. We start with defining Boolean circuits.
Definition B.2 (Boolean Circuits). For any m,n ∈ N+, a Boolean circuit c with n inputs and m
outputs is a directed acyclic graph (DAG) containing n nodes with no incoming edges and m edges
with no outgoing edges. All non-input nodes are called gates and are labeled with one of ∧ (logical
operation AND), ∨ (logical operation OR), or ¬ (logical operation NOT). The value of each gate
depends on its direct predecessors. For each node, its fan-in number is the number of incoming edges,
and its fan-out number is its outcoming edges. The size of c is the number of nodes in it, and the
depth of c is the maximal length of a path from an input node to the output node. Without loss of
generality, we assume the output node of a circuit is the final node of the circuit.

6Following the convention of computational complexity [3], we may use the term “language” and “decision
problem” interchangeably.

16

A specific Boolean circuit can be used to simulate a function (or a computational problem) with
a fixed number of input bits. When the input length varies, a sequence of Boolean circuits must
be constructed, each tailored to handle a specific input size. In this context, circuit complexity
investigates how the circuit size and depth scale with the input size of a given function. We provide
the definitions of circuit complexity classes AC0 and TC0.

• AC0 is the class of circuits with constant depth, unbounded fan-in number, polynomial AND and
OR gates.

• TC0 extends AC0 by introducing an additional unbounded-fan-in majority gate MAJ, which
evaluates to false when half or more arguments are false and true otherwise.

The relationship between the aforementioned five complexity classes is

AC0 ⊊ TC0 ⊂ L ⊂ P ⊂ NP.

The question of whether the relationship TC0 ⊂ P ⊂ NP holds as a strict inclusion remains elusive
in theoretical computer science. However, it is widely conjectured that P = NP and TC0 = P are
unlikely to be true.

Uniformity of Circuits. Given a circuit family C, where ci ∈ C is the circuit takes n bits as input, the
uniformity condition is often imposed on the circuit family, requiring the existence of some possibly
resource-bounded Turing machine that, on input n, produces a description of the individual circuit
cn. When this Turing machine has a running time polynomial in n, the circuit family C is said to be
P-uniform. And when this Turing machine has a space logarithmic in n, the circuit family C is said
to be L-uniform.

B.3 Log Precision.

In this work, we focus on MLPs, of which neuron values are restricted to be floating-point numbers
of logarithmic (in the input dimension n) precision, and all computations operated on floating-point
numbers will be finally truncated, similar to how a computer processes real numbers. Specifically,
the log-precision assumption means that we can use O(log(n)) bits to represent a real number, where
the dimension of the input sequence is bounded by n. An important property is that it can represent
all real numbers of magnitude O(poly(n)) within O(poly(1/n)) truncation error.

C More Discussions and Additional Restuls

C.1 Connections to Statistical Complexity

To elaborate further on the connections to statistical/sample complexity, the previous sample complex-
ity (in both online and offline RL) of finding an ε optimal policy is typically poly(d,H, 1/ε) · log |H|,
where d represents the complexity measure in online RL (e.g., DEC in [17] and GEC in [58]) or the
coverage coefficient in offline RL (e.g., [50] and [46]), H denotes the horizon, and H stands for the
model/policy/value hypothesis. According to our representation complexity hierarchy theory, the
model-based hypothesis could be simpler since the ground truth model is easy to represent, resulting
in a smaller log |H|. This provides an explanation of why model-based RL typically enjoys better
sample efficiency than model-free RL. Furthermore, this connection highlights the importance of
considering representation complexity in the design of sample-efficient RL algorithms.

We also remark that the planning error of computing the optimal policy and value function using
the learned model is an optimization error, and is a parallel direction of statistical error (sample
efficiency). In summary, we consider the approximation error (representation complexity of the
ground truth model/policy/value) in our work and provide an implication for the statistical error
(sample efficiency of learning algorithms). We believe that exploring the twisted approximation
error, optimization error, and statistical error, and providing a deeper comparison between model-
based RL and model-free RL would be an interesting direction, and we will endeavor to explore this
in our future work.

17

C.2 Generality of Representation Complexity Hierarchy

First, we wish to underscore that our identified representation complexity hierarchy holds in a general
way. Theoretically, our proposed MDPs can encompass a wide range of problems, as any NP or P
problems can be encoded within their structure. More crucially, our thorough experiments in diverse
simulated settings support the representation complexity hierarchy we have uncovered. In fact, we
have a generalized result establishing a hierarchy between policy-based RL and value-based RL, as
stated in the following proposition:
Proposition C.1. Given a Markov Decision Process (MDP) M = (S,A, H,P, r), where S ⊂
{0, 1}n and |A| = O(poly(n)), the circuit complexity of the optimal value function will not fall
below the optimal policy under the TC0 reduction.

Proof. Note that given the optimal value function Q∗, the optimal policy π∗ can be represented
as π∗(s) = argmaxa∈AQ(s, a), for any s ∈ S. Therefore, we represent the optimal policy as the
following Boolean circuits:

π∗(s) =
∨
a∈A

(
a ∧

(∧
a′∈A

1[Q∗(s, a) ≥ Q∗(s, a′)]
))
.

Therefore, the circuit complexity of the optimal value function will not fall below the optimal policy
under the TC0 reduction.

However, our representation complexity hierarchy is not valid for all MDPs. For instance, in MDPs
characterized by complex transition kernels and zero reward functions, the model’s complexity
surpasses that of the optimal policy and value function. However, these additional MDP classes may
not be typical in practice and could be considered pathological examples from a theoretical standpoint.
We leave the fully theoretical characterizing of representation hierarchy between model-based RL,
policy-based RL, and value-based RL as an open problem. For instance, it could be valuable to
develop a methodology for classifying MDPs into groups and assigning a complexity ranking to each
group within our representation framework.

C.3 Extension to Transformer Architectures

Our theoretical results can also naturally extend to the Transformer architectures. First, we formulate
the Transformer architectures to represent the model, policy, and value function. We encode each
state s and action a into a sequence ss and sa, the detailed construction of the MDPs in this paper are
listed as follows:

• Sequences for the 3-SAT MDP. The state of the n-dimensional 3-SAT MDP is denoted as
s = (ψ,v, k). Here, ψ is represented by a sequence of literals of length 3n, and v by a sequence of
length n. By concatenating these sequences, we represent the state s = (ψ,v, k) using a sequence
Ss of length 4n+ 1. The action a ∈ {0, 1} is represented by a single token.

• Sequences for the NP MDP. The state of the n-dimensional NP MDP is s = (c, k), where c
represents the configuration of a non-deterministic Turing machine (NTM). The configuration c
includes the machine’s internal state sM , the tape content t, and the tape head position l. These
components are encoded as an integer, a sequence of length P (n), and another integer, respectively.
Thus, the state s = (c, k) is represented by a sequence Ss of length P (n)+3. The action a ∈ {0, 1}
is encoded with a single token.

• Sequences for the CVP MDP. The state of the n-dimensional CVP MDP is s = (c,v), where
c denotes a circuit and v is a vector. Each node c[i] of the circuit is represented by a sequence
of 3 tokens. Consequently, a sequence of length 3n represents the entire circuit c, and the state
s = (c,v) is encoded by a sequence Ss of length 4n. The action a ∈ [n] is represented by a single
token.

• Sequences for the P MDP. The state of the n-dimensional P MDP is s = (x, c,v). Assuming the
circuit c has a size bounded by P (n), we represent the circuit using a sequence of length 3P (n).
The value vector v is encoded by a sequence of length P (n), and the input string x by a sequence
of length n. Therefore, the state s = (x, c,v) is represented by the concatenated sequence Ss. The
action a ∈ [P (n)] is encoded as a scalar.

18

With these formulations, we can extend our theoretical results to the Transformer architectures.
Theorem C.2. Assuming that TC0 ̸= NP, the optimal policy π∗

1 and optimal value function Q∗
1 of

n-dimensional 3-SAT MDP and NP MDP defined with respect to an NP-complete language L cannot
be represented by a Transformer with constant layers, polynomial hidden dimension (in n),and ReLU
as the activation function.
Theorem C.3. Assuming that TC0 ̸= P, the optimal value function Q∗

1 of n-dimensional CVP MDP
and P MDP defıned with respect to a P-complete language L cannot be represented by a Transformer
with constant layers, polynomial hidden dimension (in n), and ReLU as the activation function.

Proof of Theorems C.2 and C.3. According to the previous work [36], a Transformer with logarith-
mic precision, a fixed number of layers, and a polynomial hidden dimension can be simulated by a
L-uniform TC0 circuit. On the other hand, the computation of the optimal policy and optimal value
function for the 3-SAT MDP and NP MDP is NP-complete, and the computation of the optimal
value function for CVP MDP and P MDP is P-complete. Therefore, the theorem holds under the
assumption of TC0 ̸= NP and TC0 ̸= P.

Theorem C.4. The reward function r and transition kernel P of n-dimensional 3-SAT MDP and NP
MDP can be represented by a Transformer with constant layers, polynomial hidden dimension (in n),
and ReLU as the activation function.
Theorem C.5. The reward function r, transition kernel P , and optimal policy π∗ of n-dimensional
CVP MDP and P MDP can be represented by a Transformer with constant layers, polynomial hidden
dimension (in n), and ReLU as the activation function.

Proof of Theorems C.4 and C.5. According to previous works [16, 52], the Transformer model can
aggregate the embeddings of the whole sequence to the embedding of one token with the attention
mechanism. According to Theorems 5.2 and 5.4, an MLP with constant layers, polynomial hidden
dimension (in n) and ReLU activation can represent these functions. Given an input sequence of
states, the transformer first uses the attention layer to aggregate the whole sequence into a vector, and
then just use the MLP module to calculate the corresponding functions.

D Experimental Details

In this section, we empirically investigate the representation complexity of model-based RL, policy-
based RL, and value-based RL and validate our theory with a comprehensive set of experiments on
various common simulated environments. Following [62], fixing the depth d and the width w, and
denoting the class of MLPs with d layers and w hidden units (with input and output sizes adjusted to
the context) as F , we define the relative approximation errors as follows:

etransition = min
f∈F

E[∥f(s, a)− P(s, a)∥2] 12
E[∥P(s, a)− E[P(s, a)]∥2] 12

,

ereward = min
f∈F

E[
(
f(s, a)− r(s, a)

)2
]
1
2

E[(r(s, a)− E[r(s, a)])2] 12
,

epolicy = min
f∈F

E[∥f(s)− π∗(s)∥2] 12
E[∥π∗(s)− E[π∗(s)]∥2] 12

,

evalue = min
f∈F

E[
(
f(s, a)−Q∗(s, a)

)2
]
1
2

E[(Q∗(s, a)− E[Q∗(s, a)])2]
1
2

,

(D.1)

where the expectation is taken with respect to the distribution induced by the optimal policy, and
the square root of mean squared errors is divided by the standard deviation to ensure that the scales
of different errors match. Hence, the quantities etransition, ereward, epolicy, and evalue defined in (D.1)
characterize the difficulty for the MLP to approximate the transition kernel, the reward function, the
optimal policy, and the optimal value function, respectively.

19

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 16 dimensions and 2 layers
 to fit dataset of size 30000
Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(a)

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 16 dimensions and 2 layers
 to fit dataset of size 100000

Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(b)

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

0.5

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 16 dimensions and 2 layers
 to fit dataset of size 300000

Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(c)

H.C. Humanoid I.P. Ant0.0

0.2

0.4

0.6

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 16 dimensions and 3 layers
 to fit dataset of size 30000
Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(d)

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 16 dimensions and 3 layers
 to fit dataset of size 100000

Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(e)

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 16 dimensions and 3 layers
 to fit dataset of size 300000

Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(f)

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

0.5

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 32 dimensions and 2 layers
 to fit dataset of size 30000
Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(g)

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 32 dimensions and 2 layers
 to fit dataset of size 100000

Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(h)

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

0.5

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 32 dimensions and 2 layers
 to fit dataset of size 300000

Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(i)

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 32 dimensions and 3 layers
 to fit dataset of size 30000
Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(j)

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 32 dimensions and 3 layers
 to fit dataset of size 100000

Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(k)

H.C. Humanoid I.P. Ant0.0

0.1

0.2

0.3

Ap
pr

ox
im

at
io

n
 E

rro
r

MLP of 32 dimensions and 3 layers
 to fit dataset of size 300000

Transition Kernel
Reward Function
Optimal Policy
Optimal Q-Function

(l)

Figure 4: The approximation errors computed by employing MLPs with varying depths d and widths
w to approximate the transition kernel, reward function, optimal policy, and optimal Q-function in
four MuJoCo environments. In each subfigure, the title indicates the configuration including hidden
dimensions, number of layers, and dataset size. The x-axis lists the four MuJoCo environments,
where H.C. represents HalfCheetah and I.P. represents InvertedPendulum. The y-axis represents the
approximation error defined in (D.1).

We conduct experiments on four MuJoCo Gym environments [7]: HalfCheetah-v4, Humanoid-v4,
InvertedPendulum-v4, and Ant-v4. To calculate the approximation errors defined in (D.1), we
employ the TD3 algorithm [18] to train a RL agent and utilize this agent to generate a dataset of size
{30000, 100000, 300000}. The parameters used in TD3 are provided in Table 3. Subsequently, we
use MLPs of different sizes (see Table 4) to approximate corresponding functions and calculate the
approximation error. We run the experiment for each MLP configuration 5 times with 5 random seeds
and report the means and standard deviations. All the experiments are conducted on an NVIDIA
GeForce RTX 3090 Ti GPU. Figure 4 illustrates the results. In all experiments, the approximation
error of the optimal value function is greater than the error of the optimal policy. And both of them
are greater than the approximation error of the transition kernel and reward function. These results
consistently indicate that the approximation errors of the optimal Q-function surpass those of the

20

optimal policy, which, in turn, exceed those of the transition kernel and reward functions, across
all environments and configurations. These empirical results validate our representation hierarchy
revealed from the theoretical perspective.

Table 3: Configurations for training the ground-truth agent by TD3 algorithm.

Number of Layers of Actor-Network 3
Hidden Dimensions of Actor-Network 256
Number of Layers of Critic-Network 3

Hidden Dimensions of Critic-Network 256
Standard Deviation of Gaussian Exploration Noise 0.1

Discount Factor 0.99
Target Network Update Rate 0.05

Table 4: Configurations for fitting the MLP to the corresponding functions and measuring the
approximation error.

Size of Dataset {30000, 100000, 300000}
Batch size 128

Optimization Steps ∼ 70k
Number of Layers {2, 3}

Hidden Dimensions {16, 32}
Optimizer Adam

Learning rate 0.001

E Proofs for Section 3

E.1 Proof of Theorem 3.3

Proof of Theorem 3.3. We investigate the representation complexity of the reward function, transition
kernel, optimal value function, and optimal policy in sequence.

Reward Function. First, we prove the reward function can be implemented by AC0 circuits. Given a
literal α ∈ {u1, u2 · · · , un,¬u1,¬u2, · · · ,¬un}, we can obtain its value by

α =
(∨
j∈[n]

(v[j] ∧ 1[α = ui])
)
∨
(∨
j∈[n]

(¬v[j] ∧ 1[α = ¬ui])
)
.

After substituting the literal by its value under the assignment v, we can calculate the 3-CNF Boolean
formula ψ(v) by two-layer circuits as its definition. Then the reward can be expressed as

r(s, a) = 1[ψ(v) ∧ k = n+ 1] + 0.5 · 1[k = 2n+ 2],

which further implies that the reward function can be implemented by AC0 circuits.

Transition Kernel. Then, we will implement the transition kernel by AC0 circuits. It is noted that we
only need to modify the assignment v, k. Given the input v, k and a, we have the output as follows:

ψ′ = ψ, v′[i] = (v[i] ∧ 1[i ̸= k]) ∨ (a ∧ 1[i = k]),

k′ = (k + 1) · 1[k ≥ 1] + 1[k = 0 ∧ a = 1] + (n+ 2) · 1[a = k = 0].
(E.1)

It is noted that each element in the output is determined by at mostO(log n) bits. Therefore, according
to Lemma I.4, each bit of the output can be computed by two-layer circuits of polynomial size, and
the overall output can be computed by AC0 circuits.

Optimal Policy. We aim to show that, given a state s = (ψ,v, k) as input, the problem of judging
whether π∗

1(s) = 1 is NP-complete. We give a two-step proof.

21

Step 1. We first verify that this problem is in NP. Given a satisfiable assignment v∗ as the certificate,
we only need to verify the following things to determine whether there exists a sequence of actions to
achieve the final reward of 1:

• The assignment is satisfiable;

• When k ∈ [n] or k = 0, v[i] = v∗[i], i ∈ [k] and v∗[k + 1] = 1.

Notably, when exist such certificates, action a = 1 yields the reward of 1 and is consequently optimal.
Conversely, when such certificates are absent, action a = 1 leads to the reward of 0, and in this case,
a = 0 is the optimal action. Moreover, when k = n + 1 or k = n + 2, selecting a = 1 is always
optimal. Consequently, given the certificates, we can verify whether π∗

1(ψ,0n, 0) = 1.

Step 2. Meanwhile, according to the well-known Cook-Levin theorem (Lemma I.1), the 3-SAT
problem is NP-complete. Thus, our objective is to provide a polynomial time reduction from the
3-SAT problem to the problem of computing the optimal policy of 3-SAT MDP. Given a Boolean
formula of length n, the number of variables is at most n. Then, we can pad several meaningless
clauses such as (u1 ∨ ¬u1 ∨ u1) to obtain the 3-CNF Boolean formula ψ′ with n clauses. Then the
Boolean formula ψ is satisfiable if and only if π∗

1(ψ
′,0n, 0) = 1. This provides a desired polynomial

time reduction.

Optimal Value Function. To show the NP-completeness of computing the optimal value function,
we formulate the decision version of this problem: given a state s = (ψ,v, k), an action a and a
number γ as input, and the goal is to determine whether Q∗

1(s, a) > γ. According to the definition of
NP-completeness, we need to prove that this problem belongs to the complexity class NP and then
provide a polynomial-time reduction from a recognized NP-complete problem to this problem. These
constitute the objectives of the subsequent two steps.

Step 1. We first verify that this problem is in NP. Given the input state s = (ψ,v, k), input action a,
and input real number γ, we use the assignments v′ of ψ as certificates. When γ ≥ 1, the verifier
Turing Machine will reject the inputs, and when γ < 0, the verifier Turing Machine will accept the
inputs. When γ ∈ [0.5, 1), the verifier Turing Machine will accept the input when there exists a v′

satisfying the following two conditions:

• The assignment v′ is satisfiable for ψ

• When k ∈ [n], it holds that v[i] = v′[i] for all i ∈ [k].

When γ ∈ [0, 0.5), except in the scenario where the aforementioned two conditions are met, the
verifier Turing Machine will additionally accept the input when k = a = 0. Then we have
Q∗

1(s, a) > γ if and only if there exists a certificate v′ such that the verifier Turing Machine accepts
the input containing s, a, γ, and the assignment v′. Moreover, the verifier Turing Machine runs in at
most polynomial time. Therefore, this problem is in NP.

Step 2. Meanwhile, according to the well-known Cook-Levin theorem(Lemma I.1), the 3-SAT
problem is NP-complete. Thus, our objective is to provide a polynomial time reduction from the
3-SAT problem to the computation of the optimal value function for the 3-SAT MDP. Given a Boolean
formula of length n, the number of variables is at most n. Then, we can pad several meaningless
clauses such as (u1∨¬u1∨u1) to obtain the 3-CNF Boolean formula ψ′ with n clauses. The Boolean
formula ψ is satisfiable if and only if Q∗

1((ψ
′,0n, 0), 1) > 3

4 , which gives us a desired polynomial
time reduction.

Combining these two steps, we can conclude that computing the optimal value function is NP-
complete.

E.2 Proof of Theorem 3.8

Proof of Theorem 3.8. Following the proof paradigm of Theorem 3.3, we characterize the represen-
tation complexity of the reward function, transition kernel, optimal policy, and optimal value function
in sequence.

22

Reward Function. Given the state s = (sM , t, l, k), the output of the reward

r(s, a) = 1[sM = saccept ∧ k = P (n) + 1] + 0.5 · 1[k = 2P (n) + 2]. (E.2)

It is not difficult to see that the reward function can be implemented by AC0 circuits.

Transition Kernel. We establish the representation complexity of the transition kernel by providing
the computation formula for each element of the transited state. Our proof hinges on the observation
that, for a state s = (sM , t, l, k), we can extract the content x of the location l on the tape by the
following formula:

χ =
∧

i∈[P (n)]

(1[i = l] ∨ t[i])

It is noted that we assume the contents written on the tape are 0 and 1. However, for the general
case, we can readily extend the formula by applying it to each bit of the binary representation of the
contents. Regarding the configuration c′ = (s′M , t

′, l′) defined in (3.4), we observe that

(i) the Turing Machine state s′M is determined by sM , a and χ;

(ii) the content of the location l on the tape, t′[l], is determined by sM , a and χ, whereas the
contents of the other locations on the tape remain unaltered, i.e., t′[i] = t[i] for i ̸= k;

(iii) the pointer l′ is determined by l, sM , a and χ.

Moreover, the number of steps k′ is determined by k and a. Therefore, each element in the output is
determined by at mostO(log n) bits. According to Lemma I.4, each bit of the output can be computed
by two-layer circuits of polynomial size, and the output can be computed by the AC0 circuits.

Optimal Policy. Our objective is to demonstrate the NP-completeness of the problem of determining
whether π∗

1(s) = 1, given a state s = (ψ,v, k) as input. We will begin by establishing that this
problem falls within the class NP, and subsequently, we will provide a polynomial-time reduction
from the NP-complete language L to this specific problem.

Step 1. Given a sequence of choice of the branch as the certificate, we only need to verify the
following two conditions to determine whether the optimal action a = 1:

• The final state of the Turing Machine M is the accepted state.

• When k ∈ [P (n)], the configuration of the Turing Machine after k-steps execution under
the choice provided by the certificate is the same as the configuration in the current state.

• When k ∈ [P (n)], the choice of the k-th step is branch 1.

Note that, when exist such certificates, action a = 1 can always get the reward of 1 and is therefore
optimal, and otherwise, action a = 1 always gets the reward of 0, and a = 0 is always optimal.
Moreover, when k = P (n) + 1 or k = P (n) + 2, we can always select the action a = 1 as the
optimal action. So given the certificates, we can verify whether π∗

1(ψ,0n, 0) = 1.

Step 2. Given an input string sinput of length n. We can simply get the initial configuration c0 of the
Turing Machine M on the input sinput. Then sinput ∈ L if and only if π∗

1((c0, 0)) = 1, which gives us
a desired polynomial time reduction.

Combining these two steps, we know that computing the optimal policy of NP MDP is NP-complete.

Optimal Value Function. To facilitate our analysis, we consider the decision version of the problem
of computing the optimal value function as follows: given a state s = (sM , t, l, k), an action a, and a
number γ as input, and the goal is to determine whether Q∗

1(s, a) > γ.

Step 1. We first verify that the problem falls within the class NP. Given the input state s, we use
a sequence of choice of the branch as the certificate. When γ ≥ 1, the verifier Turing Machine
will reject the inputs, and when γ < 0, the verifier Turing Machine will accept the input. When
γ ∈ [0.5, 1), the Turing Machine accepts the input when there is a certificate that satisfies the
following two conditions:

23

• The final state of the Turing Machine M is saccept.

• When k ∈ [P (n)], the configuration of the Turing Machine after k-steps execution under
the choice provided by the certificate is the same as the configuration in the current state.

When γ ∈ [0, 0.5), in the scenario where the aforementioned two conditions are met, the verifier
Turing Machine will additionally accept the input when k = a = 0. Note that, all these conditions can
be verified in polynomial time. Therefore, given the appropriate certificates, we can verify whether
Q∗

1(s, a) > γ in polynomial time.

Step 2. Given that L is NP-complete, it suffices to provide a polynomial time reduction from the
L to the problem of computing the optimal value function of NP MDP. Let sinput be an input string
of length n. To obtain the initial configuration c0 of the Turing Machine M on the input sinput, we
simply copy the input string onto the tape, set the pointer to the initial location, and designate the
state of the Turing Machine as the initial state. Therefore, sinput ∈ L if and only if Q∗

1((c0, 0), 1) >
3
4 ,

which provides a desired polynomial time.

Combining these two steps, we can conclude that computing the optimal value function of NP MDP
is NP-complete.

F Proofs for Section 4

F.1 Proof of Theorem 4.2

Proof of Theorem 4.2. We characterize the representation complexity of the reward function, transi-
tion kernel, optimal policy, and optimal value function in sequence.

Reward Function. First, we prove that the reward function of CVP MDP can be computed by AC0

circuits. According to the definition, the output is

r(s, a) = 1[v[n] = 1].

Therefore, the problem of computing the reward function falls within the complexity class AC0.

Transition Kernel. Then, we prove that the transition kernel of CVP MDP can be computed by AC0

circuits. Given the state-action pair (s = (c,v), a), we denote the next state P(s, a) as s′ = (c′,v′).
For any index i ∈ [n], we can simply fetch the node c[i] and its value by

c[i] =
∨
j∈[n]

(c[j] ∧ 1[i = j]), v[i] =
∨
j∈[n]

(v[j] ∧ 1[i = j]), (F.1)

where the AND and OR operations are bit-wise operations. Given the node c[a] and its inputs
v[c[a][1]] and v[c[a][2]], we calculate the value of the a-th node and denote it as ō[a]. Here, ō[a]
represents the correct output of the a-th node when its inputs are computed, and is undefined when
the inputs of the a-th node have not been computed. Therefore, let ō[a] be Unknown when the inputs
of the a-th node have not been computed. Specifically, we can compute ō[a] as follows:

ō[a] =
(
1[ga = ∧] ∧ 1[v[c[i][1]],v[c[i][2]] ̸= Unknown] ∧ (v[c[i][1]] ∧ v[c[i][2]])

)
∨
(
1[ga = ∨] ∧ 1[v[c[i][1]],v[c[i][2]] ̸= Unknown] ∧ (v[c[i][1]] ∨ v[c[i][2]])

)
∨
(
1[ga = ¬] ∧ 1[v[c[i][1]] ̸= Unknown] ∧ (¬v[c[i][1]])

)
∨
(
1[ga ∈ {0, 1}] ∧ ga

)
∨
(
Unknown ∧

((
1[ga ∈ {∨,∧}] ∧ 1[Unknown ∈ {v[c[i][1]],v[c[i][2]]}]

)
∨(

1[ga = ¬] ∧ 1[v[c[i][1]]] = Unknown
)))

.

(F.2)

Furthermore, we can express s′ = (c′,v′), the output of the transition kernel, as

c′ = c, v′[i] = (ō[a] ∧ 1[i = a]) ∧ (v[i] ∧ 1[i ̸= a]),

which implies that the transition kernel of CVP MDP can be computed by AC0 circuits.

24

Optimal Policy. Based on our construction of CVP MDP, it is not difficult to see that π∗
1 = π∗

2 =
· · · = π∗

H . For simplicity, we omit the subscript and use π∗ to represent the optimal policy. Intuitively,
the optimal policy is that given a state s = (c,v), we find the nodes with the smallest index among the
nodes whose inputs have been computed and output has not been computed. Formally, this optimal
policy can be expressed as follows. Given a state s = (c,v), denoting c[i] = (c[i][1], c[i][2], gi), let
G(s) be a set defined by:

G(s) ={i ∈ [n] | gi ∈ {∧,∨},v[c[i][1]],v[c[i][2]] ∈ {0, 1},v[i] = Unknown}
∪ {i ∈ [n] | gi = ¬,v[c[i][1]] ∈ {0, 1},v[i] = Unknown}
∪ {i ∈ [n] | gi ∈ {0, 1},v[i] = Unknown}.

(F.3)

The set G(s) defined in (F.3) denotes the indices for which inputs have been computed, and the output
has not been computed. Consequently, the optimal policy π∗(s) is expressed as π∗(s) = minG(s) .
If the output of the circuit c is 1, the policy π∗ can always get the reward 1, establishing its optimality.
And if the output of circuit c is 0, the optimal value is 0 and π∗ is also optimal. Therefore, we have
verified that the π∗ = minG(s) defined by us is indeed the optimal policy. Subsequently, we aim
to demonstrate that the computational complexity of π∗ resides within AC0. Let Υ[i] denote the
indicator of whether i ∈ G(s), i.e., Υ[i] = 1 signifies that i ∈ G(s), while Υ[i] = 0 denotes that
i /∈ G(s). According to (F.3), we can compute Υ[i] as follows:

Υ[i] =
(
1[gi ∈ {∧,∨}] ∧ 1[v[c[i][1]],v[c[i][2]] ∈ {0, 1}] ∧ 1[v[i] = Unknown]

)
∨
(
1[gi = ¬] ∧ 1[v[c[i][1]] ∈ {0, 1}] ∧ 1[v[i] = Unknown]

)
∨
(
1[gi ∈ {0, 1}] ∧ 1[v[i] = Unknown]

)
.

Under this notation, we arrive at the subsequent expression for the optimal policy π∗:

π∗(s) =
∨
i∈[n]

(Υ′[i] ∧ i), where Υ′[i] = ¬
(∨
j<i

Υ[j]
)
∧Υ[i].

Therefore, the computation complexity of the optimal policy falls in AC0.

Optimal Value Function. We prove that the computation of the value function of CVP MDP is
P-complete under the log-space reduction. Considering that the reward in a CVP MDP is constrained
to be either 0 or 1, we focus on the decision version of the optimal value function computation. Given
a state s = (c,v) and an action a as input, the objective is to determine whether Q∗

1(s, a) = 1. In the
subsequent two steps, we demonstrate that this problem is within the complexity class P and offer a
log-space reduction from a known P-complete problem (CVP problem) to this decision problem.

Step 1. We first verify the problem is in P. According to the definition, a state s = (c,v) can get the
reward 1 if and only if the output of c is 1. A natural algorithm to compute the value of the circuit c
is computing the values of nodes with the topological order. The algorithm runs in polynomial time,
indicating that the problem is in P.

Step 2. Then we prove that the problem is P-complete under the log-space reduction. According to
Lemma I.2, the CVP problem is P-complete. Thus, our objective is to provide a log-space reduction
from the CVP problem to the computation of the optimal value function for the CVP MDP. Given
a circuit c of size n and a vector vunkown containing n Unknown values, consider s = (c,vunkown).
Let i = π∗(s), where the optimal policy π∗ is defined in the proof of the “optimal policy function”
part. The output of c is 1 if and only if Q∗

1(s, i) = 1. Furthermore, the reduction is accomplished by
circuits in AC0 and, consequently, falls within L.

Combining these two steps, we know that computing the optimal value function is P-complete under
the log-space reduction.

F.2 Proof of Theorem 4.5

Proof of Theorem 4.5. We characterize the representation complexity of the reward function, transi-
tion kernel, optimal policy, and optimal value function in P MDPs in sequence.

Reward Function. We prove that the reward function of P MDP can be computed by AC0 circuits.
According to the definition, the output is

r(s, a) = 1[v[P (n)] = 1].

25

So the complexity of the reward function falls within the complexity class AC0.

Transition Kernel. First, we prove that the transition kernel of P MDP can be computed by
AC0 circuits. Given a state-action pair (s = (x, c,v), a), we denote the next state P(s, a) by
s′ = (x′, c′,v′). Similar to (F.1) in the proof of Theorem 4.2, we can fetch the node c[i], its value
v[i], and the i-th character of the input string x[i]. We need to compute the output of the a-th node.
Given the node c[a] and its inputs v[c[a][1]] and v[c[a][2]] or x[c[a][1]], we can compute the a-th
node’s value ō[a] similar to (F.2), where ō[a] is the correct output of the a-th node if the inputs are
computed, and is Unknown when the inputs of the a-th node contain the Unknown value. In detail, ō
can be computed as Here, ō[a] can be computed as:

ō[a] =
(
1[ga = ∧] ∧ 1[v[c[i][1]],v[c[i][2]] ̸= Unknown] ∧ (v[c[i][1]] ∧ v[c[i][2]])

)
∨
(
1[ga = ∨] ∧ 1[v[c[i][1]],v[c[i][2]] ̸= Unknown] ∧ (v[c[i][1]] ∨ v[c[i][2]])

)
∨
(
1[ga = ¬] ∧ 1[v[c[i][1]] ̸= Unknown] ∧ (¬v[c[i][1]])

)
∨
(
1[ga = Input] ∧ x[c[i][1]]

)
∨
(
Unknown ∧

((
1[ga ∈ {∨,∧}] ∧ 1[Unknown ∈ {v[c[i][1]],v[c[i][2]]}]

)
∨(

1[ga = ¬] ∧ 1[v[c[i][1]]] = Unknown
)))

.

(F.4)

Then the next state s′ = (x′, c′,v′) can be expressed as

x′ = x, c′ = c, v′[i] = (o[a] ∧ 1[i = a]) ∧ (v[i] ∧ 1[i ̸= a]),

which yields that the transition kernel of P MDP can be computed by AC0 circuits.

Optimal Policy. Given a state s = (x, c,v), the optimal policy finds the nodes with the smallest
index among the nodes whose inputs have been computed and output has not been computed. To
formally define the optimal policy, we need to introduce the notation G̃(s) to represent the set of
indices of which inputs have been computed and output has not been computed. Given a state
s = (x, c,v), denoting c[i] = (c[i][1], c[i][2], gi), the set G̃(s) is defined by:

G̃(s) ={i ∈ [P (n)] | gi ∈ {∧,∨},v[c[i][1]],v[c[i][2]] ∈ {0, 1},v[i] = Unknown}
∪ {i ∈ [P (n)] | gi = ¬,v[c[i][1]] ∈ {0, 1},v[i] = Unknown}
∪ {i ∈ [P (n)] | gi = Input,v[i] = Unknown}.

(F.5)

Under this notation, we can verify that the optimal policy is given by π∗(s) = min G̃(s). Here we
omit the subscript and use π∗ to represent the optimal policy since π∗

1 = π∗
2 = · · · = π∗

H . Specifically,
(i) if the output of the circuit c is 1, the policy π∗ can always get the reward 1 and is hence optimal;
(ii) if the output of circuit c is 0, the optimal value is 0 and π∗ is also optimal. Therefore, our objective
is to prove that the computation complexity of π∗ falls in AC0. Let Υ̃[i] be the indicator of whether
i ∈ G̃(s), i.e. Υ̃[i] = 1 indicates that i ∈ G̃(s) and Υ̃[i] = 0 indicates i /∈ G̃(s). By the definition of
G̃(s) in (F.5), we can compute Υ̃[i] as follows:

Υ̃[i] =
(
1[gi ∈ {∧,∨}] ∧ 1[v[c[i][1]],v[c[i][2]] ∈ {0, 1}] ∧ 1[v[i] = Unknown]

)
∨
(
1[gi = ¬] ∧ 1[v[c[i][1]] ∈ {0, 1}] ∧ 1[v[i] = Unknown]

)
∨
(
1[gi = Input] ∧ 1[v[i] = Unknown]

)
.

Then, we can express the optimal policy as

π∗(s) =
∨

i∈[P (n)]

(Υ̃′[i] ∧ i) where Υ̃′[i] = ¬
(∨
j<i

Υ̃[j]
)
∧ Υ̃[i].

Therefore, the computational complexity of the optimal policy falls in AC0.

Optimal Value Function. We prove that the computation of the value function of P MDP is P-
complete under the log-space reduction. Note that the reward of the P MDP can be only 0 or 1, we

26

consider the decision version of the problem of computing the optimal value function as follows:
given a state s = (x, c,v) and an action a as input, the goal is determining whether Q∗

1(s, a) = 1.
we need to prove that this problem belongs to the complexity class P and then provide a log-space
reduction from a recognized P-complete problem to this problem.

Step 1. We first verify the problem is in P. According to the definition, a state s = (x, c,v) can
get the reward 1 if and only if the output of c is 1. A natural algorithm to compute the value of the
circuit c is computing the values of nodes according to the topological order. This algorithm runs in
polynomial time, showing that the target decision problem is in P.

Step 2. Then we prove that the problem is P-complete under the log-space reduction. Under the
condition that L is P-complete, our objective is to provide a log-space reduction from L to the
computation of the optimal value function for the P MDP. By Lemma I.3, a language in P has log-
space-uniform circuits of polynomial size. Therefore, there exists a Turing Machine that can generate
a description of a circuit c in log-space which can recognize all strings of length n in L. Therefore,
given any input string x of length n, we can find a corresponding state s = (x, c,vunknown), where
vunknown denotes the vector containing P (n) Unknown values. Let i = π∗(s), where π∗ is the
optimal policy defined in the “optimal policy” proof part. Then x ∈ L if and only if Q∗

1(s, i) = 1.
This provides a desired log-space reduction. We also want to remark that here the size of reduction
circuits in L should be smaller than P (n). This condition can be easily satisfied since we can always
find a sufficiently large polynomial P (n).

Combining the above two steps, we can conclude that computing the optimal value function is
P-complete.

G Proofs for Section 5

G.1 State Embeddings and Action Embeddings

Embeddings for the 3-SAT MDP. The state of the n dimension 3-SAT MDP s = (ψ,v, k). We
can use an integer ranging from 1 to 2n to represent a literal from V = {u1,¬u1, · · · , un,¬un}. For
example, we can use (i, i + n) to represent (ui,¬ui) for any i ∈ [n]. Therefore, we can use a 3n
dimensional vector eψ to represent the ψ ∈ V3n and a 4n+ 1 dimensional vector es = (eψ,v, k) to
represent the state s = (ψ,v, k). And we use a scalar to represent the action a ∈ {0, 1}.

Embeddings for the NP MDP. The state of the n-dimension NP MDP is denoted as s = (c, k). A
configuration of a non-deterministic Turing Machine, represented by c, encompasses the state of the
Turing Machine sM , the contents of the tape t, and the pointer on the tape l. To represent the state
of the Turing Machine, the tape of the Turing Machine, and the pointer, we use an integer, a vector
of P (n) dimensions, and an integer, respectively. Therefore, a P (n) + 2 dimensional vector ec is
employed to represent the configuration, and a P (n) + 3 dimensional vector es = (ec, k) is used to
represent the state s = (c, k). Additionally, a scalar is utilized to represent the action a ∈ {0, 1}.

Embeddings for the CVP MDP. The state of the n-dimension CVP MDP is denoted as s = (c,v).
Utilizing a 3 dimensional vector, we represent a node c[i] of the circuit. Consequently, a 3n
dimensional vector ec is employed to represent the circuit c, and a 4n dimensional vector es = (ec,v)
is used to represent the state s = (c,v). In this representation, an integer ranging from 1 to n is used
to signify the node index, an integer ranging from 1 to 5 is employed to denote the type of a node,
and an integer ranging from 1 to 3 is utilized to represent the value of a node. Additionally, a scalar is
used to represent the action a ∈ [n].

Embeddings for the P MDP. The state of the n dimensional P MDP is denoted as s = (x, c,v).
Assuming the upper bound of the size of the circuit is P (n), similar to the previous CVP MDP, a
3P (n)-dimension vector ec is employed to represent the circuit c. Meanwhile, a P (n) dimensional
vector v is used to represent the value vector of the circuit, and a n dimensional vector x represents
the input string. In this representation, an integer is used to denote the character of the input, the
index of the circuit, the value of a node, or the type of a node. Therefore, a 4P (n) + n dimensional
vector es = (x, ec,v) is used to represent the state s = (x, c,v). Additionally, a scalar is used to
represent the action a ∈ [P (n)].

27

G.2 Proof of Theorem 5.2

Proof of Theorem 5.2. We show that the model, encompassing both the reward and transition kernel,
of both 3-SAT MDPs and NP MDPs can be represented by MLP with constant layers for each
respective case.

Reward Function of 3-SAT MDP. First of all, we will prove that the reward function of 3-SAT
MDP can be implemented by a constant layer MLP. Denoting the input

e0 = (es, a) = (eψ,v, k, a),

which embeds the state s = (ψ,v, k) and the action a. For the clarity of presentation, we divide the
MLP into three modules and demonstrate each module in detail.

Module 1. The first module is designed to substitute the variable in ψ. Let ψ′ be the formula
obtained from ψ by substituting all variables and containing only Boolean value. Recall that we use
[2n] to represent {u1,¬u1, · · · , un,¬un}. We define a 2n dimensional vector ṽ such that, for any
literal τ ∈ {u1,¬u1, · · · , un,¬un}, ṽ[τ] = v[i] if τ = ui and ṽ[τ] = ¬v[i] if τ = ¬ui. Hence,
given a literal τ ∈ [2n], we can get its value ṽ[τ] by

ṽ[τ] = ReLU
(∑
i∈[n]

ReLU(v[i] + 1[τ = ui]− 1) +
∑
i∈[n]

ReLU(1[τ = ¬ui])− v[i]
)
.

According to Lemma I.5, the function 1[τ = ui] and 1[τ = ¬ui] can be implemented by the constant
layer MLP of polynomial size. So we can get the output of Module 1, which is

e1 = (eψ′ ,v, k, a).

Module 2. The next module is designed to compute the value of ψ′. Given the value of each literal
αi,j we can compute the value of ψ′, i.e., ψ(v), by the following formula:

ψ(v) = ReLU
(∑
i∈[n]

(
ReLU(αi,1 + αi,2 + αi,3)− ReLU(αi,1 + αi,2 + αi,3 − 1)

)
− n+ 1

)
.

So we can get the output of Module 2, which is

e2 = (ψ(v), k, a).

Module 3. The last module is designed to compute the final output r(s, a). Given the input
e2 = (ψ(v), k, a), we can compute the output r(s, a) by

r(s, a) = 1[ψ(v) ∧ (k = n+ 1)] + 0.5 · 1[k = 2n+ 2].

While the input can take on polynomial types of values at most, according to Lemma I.5, we can use
the MLP to implement this function. Therefore, we can use a constant layer MLP with polynomial
hidden dimension to implement the reward function of n dimension 3-SAT MDP.

Transition Kernel of 3-SAT MDP. We can use a constant layer MLP with polynomial hidden
dimension to implement the transition kernel of 3-SAT MDP. Denote the input

e0 = (es, a) = (eψ,v, k, a),

which embeds the state s = (ψ,v, k) and the action a. We only need to modify the embeddings
v and k and denote them as v′ and k′. According to (E.1) in the proof of the transition kernel of
Theorem 3.3, we have the output v′ and k of the following form:

e′ψ = eψ, v′[i] = (v[i] ∧ 1[i ̸= k]) ∨ (a ∧ 1[i = k]),

k′ = (k + 1) · 1[k ≥ 1] + 1[k = 0 ∧ a = 1] + (n+ 2) · 1[a = k = 0].
(G.1)

In (G.1), each output element is determined by either an element or a tuple of elements that have
polynomial value types at most. Therefore, according to Lemma I.5, each output element can be
computed by constant-layer MLP of polynomial size, and the overall output can be represented by a
constant layer MLP of polynomial size.

28

Reward Function of NP MDP. We can use a constant layer MLP with polynomial hidden dimension
to implement the reward function of NP MDP. Denote the input

e0 = (es, a) = (ec, k, a),

which embeds the state s = (c, k) = (sM , t, l, k) and the action a. By (E.2) in the proof of
Theorem 3.8, the transition function can be computed by the formula

r(s, a) = 1[(sM = saccept) ∧ (k = P (n) + 1)] + 0.5 · 1[k = 2P (n) + 2].

Therefore, the reward r(s, a) is determined by a tuple (sM , a, k), which has polynomial value types at
most. According to Lemma I.5, we can compute this function by a constant-layer MLP of polynomial
hidden dimension.

Transition Kernel of NP MDP. Finally, we switch to the transition kernel of NP MDP. Denote the
input

e0 = (es, a) = (ec, k, a),

which embeds the state s = (c, k) = (sM , t, l, k) and the action a and denote the dimension of t
is P (n). We obtain the final output in three steps. The first step is to extract the content χ of the
location l on the tape by the formula

χ =
∨

i∈[P (n)]

(t[i] ∧ 1[i = l]).

We further convert it to the form in MLP by

χ = ReLU
(∑
i∈[P (n)]

χ′
i

)
− ReLU

(∑
i∈[P (n)]

χ′
i − 1

)
, where χ′

i = t[i] · 1[i = l].

Regarding the configuration c′ = (s′M , t
′, l′) defined in (3.4), we notice that

(i) the Turing Machine state s′M is determined by s, a and χ;

(ii) the content of the location l on the tape, t′[l], is determined by sM , a and χ, whereas the
contents of the other locations on the tape remain unaltered, i.e., t′[i] = t[i] for i ̸= k;

(iii) the pointer l′ is determined by l, sM , a and χ.

In addition, the number of steps k′ is determined by k and a. Therefore, each output element is
determined by an element or a tuple of elements having polynomial value types at most. According
to Lemma I.5, a constant-layer MLP of polynomial size can compute each output element, and the
overall output can be computed by a constant-layer MLP of polynomial size.

G.3 Proof of Theorem 5.3

Proof of Theorem 5.3. According to Lemma I.7, the computational complexity of MLP with constant
layer, polynomial hidden dimension (in n), and ReLU as the activation function is upper-bounded by
TC0. On the other hand, according to Theorem 3.3 and Theorem 3.8, the computation of the optimal
policy and optimal value function for the 3-SAT MDP and NP MDP is NP-complete. Therefore, the
theorem holds under the assumption of TC0 ̸= NP.

G.4 Proof of Theorem 5.4

Proof of Theorem 5.4. We show that the reward function, transition kernel, and optimal policy of
both CVP MDPs and P MDPs can be individually represented by MLP with constant layers and
polynomial hidden dimension.

Reward Function of CVP MDP. We can use a constant layer MLP with polynomial hidden
dimension to implement the reward function of CVP MDP. Denote the input

e0 = (es, a) = (ec,v, a),

29

which embeds the state s = (c,v) and the action a. According to the definition, we can represent the
reward as

r(s, a) = 1[v[n] = 1].

By Lemma I.5, we know that 1[v[n] = 1] can be represented by a constant-layer MLP with
polynomial hidden dimension. Hence, the reward function of CVP MDP can be represented by a
constant-layer MLP with polynomial hidden dimension.

Transition Kernel of CVP MDP. We can use a constant layer MLP with polynomial hidden
dimension to implement the transition kernel of CVP MDP. Denote the input

e0 = (es, a) = (ec,v, a),

which embeds the state s = (c,v) and the action a. Given an index i, we can fetch the node i and its
value by

v[i] =
∑
j∈[n]

αi,j , where αi,j = 1[i = j] · v[i],

c[i] =
∑
j∈[n]

βi,j , where βi,j = 1[i = j] · c[i].
(G.2)

Then, compute the output of node i and denote it as o[i]. o[i] is determined by the i-th node ci and
its input, therefore, can be computed by a constant layer MLP with polynomial hidden dimension
according to Lemma I.5. Denoting the output as (e′c,v

′), according to the definition of the transition
kernel, we have

e′c = e, v[i]′ = v[i] · 1[i ̸= a] + v[i] · 1[i = a]

Therefore, we can compute the transition kernel of CVP MDP by a constant layer MLP with
polynomial hidden dimension.

Optimal Policy of CVP MDP. We prove that the MLP can implement the optimal policy, which is
specified in the proof of Theorem 4.2 (Appendix F.1). For the convenience of reading, we present the
optimal policy here again. Given a state s = (c,v), denoting c[i] = (c[i][1], c[i][2], gi), we define
G(s)

G(s) ={i ∈ [n] | gi ∈ {∧,∨},v[c[i][1]],v[c[i][2]] ∈ {0, 1},v[i] = Unknown}
∪ {i ∈ [n] | gi ∈ {¬},v[c[i][1]] ∈ {0, 1},v[i] = Unknown}
∪ {i ∈ [n] | gi ∈ {0, 1},v[i] = Unknown}.

(G.3)

The set G(s) defined in (G.3) denotes the indices for which inputs have been computed, and the output
has not been computed. Consequently, the optimal policy π∗(s) is expressed as π∗(s) = minG(s) .
Subsequently, we aim to demonstrate that a constant-layer MLP with polynomial hidden dimension
can compute the optimal policy π∗. Let Υ[i] denote the indicator of whether i ∈ G(s), i.e., Υ[i] = 1
signifies that i ∈ G(s), while Υ[i] = 0 denotes that i /∈ G(s). According to (G.3), we can compute
Υ[i] depends on the i-th node c[i], its inputs and output, therefore, can be computed by a constant-layer
MLP with polynomial hidden dimension. Then we can express the optimal policy π∗ as:

π∗(s) = ReLU
(∑
i∈[n]

Υ′[i]
)
, where Υ′[i] = ReLU

(
1−

∑
j<i

Υ[j]
)
.

Therefore, we can compute the optimal policy by a constant-layer MLP with polynomial size.

Reward Function of P MDP. Denote the input

e0 = (es, a) = ((x, ec,v), a),

which embeds the state s = (x, c,v) and the action a and denote the size of the circuit c as P (n).
According to the definition, we have

r(s, a) = 1[v[P (n)] = 1].

Owning to Lemma I.5, we can compute the reward function of P MDP by a constant layer MLP with
polynomial hidden dimension.

30

Transition Kernel of P MDP. Denote the input

e0 = (es, a) = ((x, ec,v), a),

which embeds the state s = (x, c,v) and the action a. We can fetch the node i and its value by (G.2).
Then we compute the output of node i and denote it as o[i], where o[i] is determined by the i-th
node c[i] and its inputs. Hence, by Lemma I.5, o[i] can be computed by a constant-layer MLP with
polynomial hidden dimension. Denoting the output as (x′, e′c,v

′), together wths the definition of the
transition kernel, we have

x′ = x, e′c = ec, v′[i] = v[i] · 1[i ̸= a] + v[i] · 1[i = a].

Therefore, we can compute the transition kernel of P MDP by a constant layer MLP with polynomial
hidden dimension.

Optimal Policy of P MDP. We prove that the MLP can efficiently implement the optimal policy in
the proof of Theorem 4.5 (Appendix F.2). For completeness, we present the definition of optimal
policy here. Given a state s = (x, c,v), denoting c[i] = (c[i][1], c[i][2], gi), let G̃(s) be a set defined
by:

G̃(s) ={i ∈ [P (n)] | gi ∈ {∧,∨},v[c[i][1]],v[c[i][2]] ∈ {0, 1},v[i] = Unknown}
∪ {i ∈ [P (n)] | gi = ¬,v[c[i][1]] ∈ {0, 1},v[i] = Unknown}
∪ {i ∈ [P (n)] | gi = Input,v[i] = Unknown}.

(G.4)

The set G̃(s) defined in (G.4) denotes the indices for which inputs have been computed, and the output
has not been computed. With this set, the optimal policy π∗(s) is expressed as π∗(s) = min G̃(s) .
Subsequently, we aim to demonstrate that a constant-layer MLP with polynomial hidden dimension
can compute the optimal policy π∗. Let Υ̃[i] denote the indicator of whether i ∈ G̃(s), i.e., Υ̃[i] = 1

signifies that i ∈ G̃(s), while Υ̃[i] = 0 denotes that i /∈ G̃(s). Using (G.4), the computation of Υ̃[i]
depends on the i-th node ci, its inputs, and output. This observation, together with Lemma I.5, allows
for the computation through a constant-layer MLP with polynomial hidden dimension. Employing
this notation, we can formulate the following MLP expression for the optimal policy π∗:

π∗(s) = ReLU
(∑
i∈[P (n)]

Υ̃′[i]
)
, where Υ̃′[i] = ReLU

(
1−

∑
j<i

Υ̃[j]
)
.

Therefore, the optimal policy of P MDP can be represented by a constant-layer MLP with polynomial
hidden dimension.

G.5 Proof of Theorem 5.5

Proof of Theorem 5.5. By Lemma I.7, we have that the computational complexity of MLP with
constant layer, polynomial hidden dimension (in n), and ReLU as the activation function is upper-
bounded by TC0. On the other hand, by Theorem 4.2 and 4.5, the computation of the optimal value
Function of CVP MDP and P MDP is P-complete. Therefore, we conclude the proof under the
assumption of TC0 ̸= P.

H Discussions on the Extensions of Our Results

H.1 Connections to POMDPs

For the partially observable Markov decision process (POMDP), the agent can only receive the
observation o ∈ O, generated by the emission function O = {Oh : S 7→ ∆(O)}h∈[H]. one
can choose the observation as a substring of the state, and the representation complexity of the
emission function remains low, similar to the transition kernel. However, the optimal policy and
optimal value function may depend on the full history rather than just the current state, leading to a
higher representation complexity for these two quantities. Consequently, in the presence of partial
observations, the representation complexity gap between model-based RL and model-free RL could
be more pronounced.

31

H.2 Extension to Stochastic MDPs

In this section, we demonstrate how our construction of the 3-SAT MDP, NP MDP, CVP MDP, and
P MDP can be seamlessly extended to their stochastic counterparts. We offer a detailed extension
of the 3-SAT MDP to its stochastic version and outline the conceptual approach for extending other
types of MDPs to their stochastic counterparts.

Stochastic 3-SAT MDP. First, we add some randomness to the transition kernel and reward function.
Moreover, to maintain the properties in Theorem 3.3, Theorem 5.3, and Theorem 5.2 of 3-SAT MDP,
we slightly modify the action space and extend the planning horizon.
Definition H.1 (Stochastic 3-SAT MDP). For any n ∈ N+, let V = {u1,¬u1, · · · , un,¬un} be the
set of literals. An n-dimensional stochastic 3-SAT MDP (S,A, H,P, r) is defined as follows. The
state space S is defined by S = V3n × {0, 1, Next}n × ({0} ∪ [n+ 2]), where each state s can be
denoted as s = (ψ,v, k). In this representation, ψ is a 3-CNF formula consisting of n clauses and
represented by its 3n literals, v ∈ {0, 1}n can be viewed as an assignment of the n variables and k
is an integer recording the number of actions performed. The action space is A = {0, 1} and the
planning horizon is H = n2 + n+ 2. Given a state s = (ψ,v, k), for any a ∈ A, the reward r(s, a)
is defined by:

r(s, a) =


1 If v is a satisfiable assignment of ψ, k = n+ 1 and a = Next,
1
2 If k = n2 + 2n+ 2,

0 Otherwise.
(H.1)

Moreover, the transition kernel is stochastic and takes the following form:

P
(
(ψ,v, k), a

)
=



(ψ,v, n+ 2) If a = k = 0,

(ψ,v, 1) If a = 1 and k = 0,

(ψ,v, k + 1) If a = Next,

(ψ,v′, k) If k ∈ [n] and a ∈ {0, 1}
(ψ,v, k) If k > n and a ∈ {0, 1},

(H.2)

where v′ is obtained from v by setting the k-th bit as awith probability 2
3 and as 1−awith probability

1
3 , and leaving other bits unchanged, i.e.,

v′[k] =

{
a with probability 2

3

1− a with probability 1
3

v′[k′] = v[k′] for k′ ̸= k.

Given a 3-CNF formula ψ, the initial state of the 3-SAT MDP is (ψ,0n, 0).
Theorem H.2 (Representation complexity of Stochastic 3-SAT MDP). Let Mn be the n-dimensional
stochastic 3-SAT MDP in Definition H.1. The transition kernel P and the reward function r of Mn

can be computed by circuits with polynomial size (in n) and constant depth, falling within the circuit
complexity class AC0. However, computing the optimal value function Q∗

1 and the optimal policy π∗

of Mn are both NP-hard under the polynomial time reduction.

Proof of Theorem H.2. We investigate the representation complexity of the reward function, transition
kernel, optimal value function, and optimal policy in sequence.

Reward Function. The reward function is the same as the deterministic version, therefore, we can
apply the proof of Theorem 3.3 and conclude that the complexity of the reward function falls in AC0.

Transition Kernel. Then, we will implement the transition kernel by AC0 circuits. Slightly different
from the deterministic version, in this case, the input of the transition kernel P are two states
s = (ψ,v, k), s′ = (ψ′,v′, k′) and action a, and the output is the probability of transition from s to
s′. Given the input v, k,v′, k′ and a, we have the output as follows:

• The output is 1 if the input satisfies the following four equations:

a = Next, v = v′, ψ = ψ′,

k′ = (k + 1) · 1[k ≥ 1] + 1[k = 0 ∧ a = 1] + (n+ 2) · 1[a = k = 0].

32

• The output is 2
3 if the input satisfies the following four equations:

a ∈ {0, 1}, k = k′, ψ = ψ′, v′[i] = (v[i] ∧ 1[i ̸= k]) ∨ (a ∧ 1[i = k]).

• The output is 1
3 if the input satisfies the following four equations:

a ∈ {0, 1}, k = k′, ψ = ψ′, v′[i] = ¬(v[i] ∧ 1[i ̸= k]) ∨ (a ∧ 1[i = k]).

• The output is 0 otherwise.

It is noted that each element in the previous equations is determined by at most O(log n) bits.
Therefore, according to Lemma I.4, the condition judgments can be computed by two-layer circuits
of polynomial size, and the overall output can be computed by AC0 circuits.

Optimal Value Function. Next, we will prove the NP-hardness of computing the optimal value
function. Similar to the optimal value function part of the proof of Theorem 3.3, we formulate a
simpler decision version of this problem: given a state s = (ψ,v, k), an action a and a number γ as
input, and the goal is to determine whether Q∗

1(s, a) >
1
2 . According to the well-known Cook-Levin

theorem (Lemma I.1), the 3-SAT problem is NP-complete. Thus, our objective is to provide a
polynomial time reduction from the 3-SAT problem to the computation of the optimal value function
for the 3-SAT MDP. Given a Boolean formula of length n, the number of variables is at most n. Then,
we can pad several meaningless clauses such as (u1∨¬u1∨u1) to obtain the 3-CNF Boolean formula
ψ′ with n clauses. When the Boolean formula ψ is not satisfiable, the value of Q∗

1((ψ
′,0n, 0), 1) is

0. When the Boolean formula ψ is satisfiable, we will prove that the probability of the reward 1 is
higher than 1

2 . Note that, when ψ is satisfiable, we only need to modify the values of the variables at
most n times to get a satisfiable assignment in the deterministic case. In the stochastic case, we have
n2 chances to modify the value of a variable with a success probability of 2

3 , and to get the reward,
we only need n times success. Therefore, we can compute the probability of getting the reward as

Pr(n times success in n2 chances) ≥
(
Pr(one success in n chances)

)n
=

(
1− 1

3n

)n
>

(
1− 1

2n

)n
≥ 1

2
. (H.3)

Therefore, ψ is satisfiable if and only if Q∗
1((ψ

′,0n, 0), 1) > 1
2 , we can conclude that computing the

optimal value function is NP-hard.

Optimal Policy. Finally, we will prove that the problem of computing the optimal policy is NP-hard.
According to the well-known Cook-Levin theorem (Lemma I.1), the 3-SAT problem is NP-complete.
Thus, our objective is to provide a polynomial time reduction from the 3-SAT problem to the problem
of computing the optimal policy of 3-SAT MDP. Given a Boolean formula of length n, the number
of variables is at most n. Then, we can pad several meaningless clauses such as (u1 ∨ ¬u1 ∨ u1) to
obtain the 3-CNF Boolean formula ψ′ with n clauses. When the Boolean formula ψ is satisfiable,
according to (H.3), we have

Q∗
1((ψ

′,0n, 0), 1) > 0.7 > Q∗
1((ψ

′,0n, 0), 0),

which gives that π∗(ψ′,0n, 0) = 1. When the Boolean formula ψ is not satisfiable, we have

Q∗
1((ψ

′,0n, 0), 1) = 0 < Q∗
1((ψ

′,0n, 0), 0),

which implies that π∗(ψ′,0n, 0) = 0. So the Boolean formula ψ is satisfiable if and only if
π∗(ψ′,0n, 0) = 1, which concludes that the problem of computing the optimal policy is NP-hard.

Almost the same as the stochastic version of 3-SAT MDP, we can construct the stochastic version
NP MDP. And under the assumption of L ∈ NP, the same theorem as Theorem H.2 will hold. More
exactly, the complexity of the transition kernel and the reward function of the MDP based on L fall in
AC0, and the complexity of the optimal policy and optimal value function are NP-hard. Moreover,
similar to the case of the stochastic version of 3-SAT MDP, we add some randomness to the transition
function of CVP MDP and P MDP. In the deterministic version of the transition function, given the
action i, we will compute the value of the i-th node. In contrast, the computation of the value of
i-th node will be correct with the probability of 2

3 and will be incorrect with the probability of 1
3 .

33

And we extend the planning horizon to O(n2) or O(P (n)2). Then we can get similar conclusions
as Theorems 4.2 and 4.5. To avoid repetition, we only provide the construction and corresponding
theorem of stochastic CVP and omit the proof and the detailed extension to stochastic P MDPs.
Definition H.3 (Stochastic CVP MDP). An n-dimensional Stochastic CVP MDP is defined as follows.
Let C be the set of all circuits of size n. The state space S is defined by S = C × {0, 1, Unknown}n,
where each state s can be represented as s = (c,v). Here, c is a circuit consisting of n nodes
with c[i] = (c[i][1], c[i][2], gi) describing the i-th node, where c[i][1] and c[i][2] indicate the input
node and gi denotes the type of gate (including ∧,∨,¬, 0, 1). When gi ∈ {∧,∨}, the outputs of
c[i][1]-th node and c[i][2]-th node serve as the inputs; and when gi = ¬, the output of c[i][1]-th node
serves as the input and c[i][2] is meaningless. Moreover, the node type of 0 or 1 denotes that the
corresponding node is a leaf node with a value of 0 or 1, respectively, and therefore, c[i][1], c[i][2] are
both meaningless. The vector v ∈ {0, 1, Unknown}n represents the value of the n nodes, where the
value Unknown indicates that the value of this node has not been computed and is presently unknown.
The action space is A = [n] and the planning horizon is H = n + 1. Given a state-action pair
(s = (c,v), a), its reward r(s, a) is given by:

r(s, a) =

{
1 If v contains correct value of the n gates and the value of the output gate v[n] = 1,

0 Otherwise.

Moreover, the transition kernel is deterministic and can be defined as follows:

P
(
(c,v), a

)
= (c,v′).

Here, v′ is obtained from v by computing and substituting the value of node a with the probability of
2
3 . More exactly, if the inputs of node a have been computed, we can compute the output of the node
a and denote it as o[a]. Let õ[a] be a random variable getting value of o[a] with probability of 2

3 and
getting value of Unknown with probability of 1

3 . Then we have

v′[j] =


v[j] If a ̸= j,
õ[a] If a = j and the inputs of node a have been computed,
Unknown If a = j and the inputs of node a have not been computed.

Given a circuit c, the initial state of CVP MDP is (c,vunknown) where vunknown denotes the vector
containing n Unknown values.
Theorem H.4 (Representation complexity of Stochastic CVP MDP). Let Mn be the n-dimensional
stochastic CVP MDP in Definition H.1. The transition kernel P , the reward function r, and the
optimal policy π∗ of Mn can be computed by circuits with polynomial size (in n) and constant depth,
falling within the circuit complexity class AC0. However, computing the optimal value function Q∗

1
of Mn are P-hard under the log space reduction.

I Auxiliary Lemmas

Lemma I.1 (Cook-Levin Theorem [12, 31]). The 3-SAT problem is NP-complete.
Lemma I.2 (P-completeness of CVP [28]). The CVP is P-complete.
Lemma I.3 (Theorem 6.5 in [3]). A language has log-space-uniform circuits of polynomial size if
and only if it is in P.
Lemma I.4 (Implement Any Boolean Function). For every Boolean function f : {0, 1}l → {0, 1},
there exists a two layer circuit c of size O(l · 2l) such that c(u) = f(u) for all u ∈ {0, 1}l.

Proof. For every v ∈ {0, 1}l, let

cv(u) =
∧
i∈[n]

gv[i](ui),

where g0(u[i]) = ¬u[i] and g1(u[i]) = u[i]. Then we have cv(u) = 1 if and only if u = v. When
there exists u ∈ {0, 1} such that f(u) = 1, we can construct the two-layer circuit as

c(u) =
∨

v∈{v|f(v)=1}

(
cv(u)

)
.

34

By definition, we can verify that f(u) = c(u) for any u ∈ {0, 1}l. When f(u) = 0 for all
u ∈ {0, 1}l, we can construct the circuit as c(u) = 0. Therefore, for every Boolean function
f : {0, 1}l → {0, 1}, there exists a two-layer circuit c of size O(l · 2l) such that c(u) = f(u) for all
u ∈ {0, 1}l, which concludes the proof of Lemma I.4.

Lemma I.5 (Looking-up Table for MLP). For any function f : X → R, where X is a finite
subset of Rl, there exists a constant-layer MLP fMLP with hidden dimension O(l · |X |) such that
fM (x) = f(x) for all x ∈ X .

Proof. Denote the minimum gap between each pair of elements in X by δmin, i.e.,

δmin = min
u,v∈X

∥u− v∥∞.

For each u ∈ X , we can construct an MLP as

fu(x) = ReLU
(∑
i∈[l]

fu,i(x)− (l − 1) · δmin

)
,

where

fu,i(x) = ReLU
(
2δmin − 2 · ReLU(x[i]− u[i])− ReLU(u[i]− x[i] + δmin)

)
.

We have

fu(x) =

{
δmin If x = u,

0 If x ∈ X\{u}.
Then we can construct the MLP fMLP as

fMLP(x) =
∑
u∈S

(fu(x)
δmin

· f(u)
)
.

It is easy to verify that fMLP(x) = f(x) for all x ∈ X , which concludes the proof of Lemma I.5.

Lemma I.6 (MLP can Implement Basic Gates in TC0). Given x ∈ {0, 1}n as input, constant-layer
MLPs can implement the following basic operation functions:

• AND: fAND(x) =
∧
i∈[n] x[i];

• OR: fOR(x) =
∨
i∈[n] x[i];

• NOT: fNOT(x[1]) = 1− x[1];

• Majority: fMAJ(x) = 1[
∑
i∈[n] x[i] >

n
2].

Proof. We express the four functions in the MLP forms as follows:

• fAND(x) = ReLU(
∑
i∈[n] x[i]− n+ 1);

• fOR(x) = 1− ReLU(1−
∑
i∈[n] x[i]);

• fNOT(x[1]) = 1− x[1];

• fMAJ(x) = ReLU(2 ·
∑
i∈[n] x[i]− n)− ReLU(2 ·

∑
i∈[n] x[i]− n− 1).

Therefore, the basic gates of TC0 can be implemented by constant-layer MLPs with ReLU as the
activation function.

Lemma I.7 (Upper Bound of Expressive Power for MLP). Any log-precision MLP with constant
layers, polynomial hidden dimension (in the input dimension), and ReLU as the activation function
can be simulated by a L-uniform TC0 circuits.

35

Proof. In the previous work by [36], it was demonstrated that a Transformer with logarithmic
precision, a fixed number of layers, and a polynomial hidden dimension can be simulated by a
L-uniform TC0 circuit. The proof presented by [36] established the validity of this result specifically
when the Transformer employs standard activation functions (e.g., ReLU, GeLU, and ELU) in the
MLP. Considering that the MLP can be perceived as a submodule of the Transformer, it follows that
a log-precision MLP with a consistent number of layers, polynomial hidden dimension, and ReLU as
the activation function can be simulated by a L-uniform TC0 circuit.

36

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist”,
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Sections 3, 4, and 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix C.

37

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are provided in the main paper, and the proof can be found in
the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.

38

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will public the data and code after acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

39

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Experiments are conducted in 5 seeds, and the statistical significance is
reflected in Figure 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

40

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research in this work conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.

41

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

42

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

43

	Introduction
	Preliminaries
	The Separation between Model-based RL and Model-free RL
	3-SAT MDP
	NP MDP: A Broader Class of MDPs

	The Separation between Policy-based RL and Value-based RL
	CVP MDP
	P MDP: A Broader Class of MDPs

	Connections to Deep RL
	Conclusions
	Additional Related Works
	Additional Background Knowledge
	Function Approximation in Model-based, Policy-based, and Value-based RL
	Computational Complexity
	Log Precision.

	More Discussions and Additional Restuls
	Connections to Statistical Complexity
	Generality of Representation Complexity Hierarchy
	Extension to Transformer Architectures

	Experimental Details
	Proofs for Section 3
	Proof of Theorem 3.3
	Proof of Theorem 3.8

	Proofs for Section 4
	Proof of Theorem 4.2
	Proof of Theorem 4.5

	Proofs for Section 5
	State Embeddings and Action Embeddings
	Proof of Theorem 5.2
	Proof of Theorem 5.3
	Proof of Theorem 5.4
	Proof of Theorem 5.5

	Discussions on the Extensions of Our Results
	Connections to POMDPs
	Extension to Stochastic MDPs

	Auxiliary Lemmas

