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Abstract

Unobserved confounding arises when an unmeasured feature influences both the1

treatment and the outcome, leading to biased causal effect estimates. This issue2

undermines observational studies in fields like economics, medicine, ecology or3

epidemiology. Recommender systems leveraging fully observed data seem not to4

be vulnerable to this problem. However many standard practices in recommender5

systems result in observed features being ignored, resulting in effectively the same6

problem. This paper will show that numerous common practices such as feature7

engineering, A/B testing and modularization can in fact introduce confounding8

into recommendation systems and hamper their performance. Several illustrations9

of the phenomena are provided, supported by simulation studies with practical10

suggestions about how practitioners may reduce or avoid the affects of confounding11

in real systems.12

1 Introduction13

In a recommender system all information that leads to a recommendation is known, which in principle14

should make unobserved confounding impossible. However this paper shows that many common15

practices for training click models in production results in available covariates or features being16

ignored. These practices are pervasive in real systems and likely result in many systems behaving17

sub-optimally.18

Researchers in recommender systems are probably somewhat familiar with the way confounding can19

lead to scenarios where correlation does not equal causation, but to set concepts and terminology20

Figure 1 Left provides a simple illustration of Simpson’s famous paradox. The diagram serves to21

illustrate how three variables interact, life expectancy, income and Champagne consumption. The22

diagram shows that life expectancy increases with Champagne consumption, but it also illustrates23

that once income is adjusted for, life expectancy decreases with Champagne consumption (which is24

perhaps a more plausible causal relationship). Simpson’s paradox refers to the fact that there can be25

different causal interpretations between three or more variables as in this example. A confounder is26

a covariate that must be incorporated into the model in order for the correct causal inference to be27

arrived at (in this case income is a confounder), in natural experiments it is possible (indeed common)28

for the confounder to be unobserved rendering a correct causal inference impossible. If a click29

model is used to produce personalized recommendations then in principle everything is observed30

and confounding will not occur. Many ‘best practices’ in production systems can result in observed31

information being ignored resulting in confounding and reduced performance.32

Let a click be denoted c, the recommendation or action a, and the covariate used for personalization33

currently is x1, a second covariate that may also be used to personalize is denoted x2, The terms34

covariate and feature are used interchangeably. The causal graph is shown in Figure 1 Right, the35

click c is caused by all three of the action a and the covariates x1 and x2. In the current setup the36
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Figure 1: Left: Simpson’s paradox, Right Causal DAG.

recommendation is personalized only by x1 only indicated by the arrow from x1 → a, the dashed37

arrow from x2 → a is absent (for now). The joint distribution on the covariates is denoted by the38

arrow x1 → x2, this choice of direction simplifies the proofs. The recommender system is trained on39

a log of observations of a, x1, x2, c by regressing c on x1, a i.e. a logistic regression model is fit:40

β̂ = argmaxβ

n∑
i=1

ci log σ((x1i ⊗ ai)
Tβ) + (1− ci) log(1− σ((x1i ⊗ ai)

Tβ))

where σ(·) is the logistic sigmoid and ⊗ is the Kronecker product. It is assumed that training on41

recent history (the previous day) mitigates any non-stationarity. This model can then be used in order42

to produce a new epsilon greedy recommendation policy, where the exploration parameter is given by43

ϵ and the number of actions is A.44

π(a|x1) = (1− ϵ)1{a = argmaxa′(x1 ⊗ a′)T β̂}+ ϵ

A
.

We verify that this standard practice is in fact sound from a causal inference point of view. Applying45

the do calculus gives the following expression:46

P (c|do(a), x1) =
∑
x2

P (c|a, x1, x2)P (x2|x1) (1)

however the absent of the edge x2 → a, by the backdoor criterion shows that x2 is ignorable. This47

means that the logistic regression model in Equation 1, directly estimates the causal quantity in48

Equation 2.49

What if the system then changes such that personalization now uses x2 i.e. the edge x2 → a is added,50

but the goal remains to propose a new system that does not use x2. Applying the do calculus still51

gives the same formula for the causal effect (Equation 1), however now ignorability of x2 no longer52

applies and this formula must be applied (which is rather unpalatable to practitioners as it involves53

fitting a larger model to both P (c|a, x1, x2) and P (x2|x1) and performing a sum or integral over x2).54

In a recommender system x1 is the feature currently used for personalization and x2 is an additional55

feature that may be used in the future. This paper makes two main points: If the recommender system56

ignores some feature x2 i.e. there is no arrow x2 → a, then ignorability applies even if x2 → c.57

Researchers do not need to worry about confounding or causal theory in this case. Numerous common58

practices result in the link between some feature x2 → a existing, but the model training procedure59

ignoring this link and erroneously assume x2 to be ignorable.60

The main mathematical results that this paper relies on is that Equation 1 is the appropriate formula61

for both causal graphs in Figure 1 Right (both with and without the dashed line), as can be shown62

using the do calculus1. Secondly that ignorability of x2 applies if and only if the graph in Figure63

1By application of the do calculus’ Rule 2 and Rule 3, resulting in a rule that slightly generalized the backdoor
rule Pearl (1995).
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(a) The standard practice of feature engineering
causes confounding on Day 3. Exactly the same
training procedure is used on Day 1, 4 and 5 as
Day 3, but on the log for Day 3 (Day 2) the policy
implements x2 → a causing x2 to not be ignor-
able. The same procedure that worked on Day 1
no longer works on Day 3.

(b) Demonstrates how A/B testing with common
training can entrench confounding effects The A/B
test starts on Day 1, where A uses only x1 and
B uses x1, x2. Both A and B are trained on a
combined log resulting in A suffering from con-
founding that persists as long as the A/B test runs.
The plot shows two approaches to A/B testing with
separate training data (blue) and combined (red),
only population A suffers confounding and only
population A is shown.

Figure 2: Confounding caused by dropping x2.

1 has no arrow x2 → a, as can be shown by applying the backdoor criterion or the Rubin Causal64

Model2. There are two main cases where a link might be introduced into x2 → a, yet is ignored in65

subsequent training. The first is due to feature engineering, the second is due to modularization (both66

good practices from other points of view).67

2 Confounding due to Feature Engineering and A/B Testing68

Feature engineering is a standard optimization of machine learning models in recommendation teams.69

Consider the following story.70

Day 0: the recommender system is doing pure random exploration of the action a independent71

of all features. That is the policy is π0(a|x1, x2) = π0(a) = 1
A . Data is collected on Day 0 i.e.72

D0 = {c(i), x(i)
1 , x

(i)
2 , a(i))L0

i=1.73

The reco team decides that features x1 are more interesting, and they will ignore x2 for now, they fit74

the model with maximum likelihood i.e.75

β̂0 = argmaxβ

L0∑
i=1

logP (c(i)|x(i)
1 , a(i), β).

The model might be a logistic regression P (c = 1|x1, a, β) = σ((x1 ⊗ a)Tβ). From a confounding76

point of view, everything is fine, it doesn’t matter that x2 is ignored. In practice this means that if the77

estimate β̂1 is good it means that the ‘true’ CTR for any given x1 and action a is indeed given by78

P (c = 1|x1, a, β̂1). Similarly, the model can be used to find the optimal a for any given x1 which is79

achieved using an epsilon greedy policy starting on Day 1.80

2When the arrow x2 → a is present in the causal graph (x1 → a, x2 → a, x1 → c, x2 → c, a→ c, x1 →
x2), x2 is not ignorable for estimating P (c | x1, do(a)), as it confounds the a→ c relationship via the backdoor
path a ← x2 → c, requiring adjustment with

∑
x2

P (c | x1, x2, a)P (x2 | x1). When the arrow x2 → a is
absent (x1 → a, x1 → c, x2 → c, a → c, x1 → x2), x2 is ignorable, as all backdoor paths (a ← x1 → c,
a ← x1 → x2 → c) are blocked by conditioning on x1, yielding P (c | x1,do(a)) = P (c | x1, a). , for
ignorability in the Rubin Causal Model see Rubin (1974); Rosenbaum and Rubin (1983).
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Day 1: the reco team then deploys on Day 1 the following policy:81

π1(a|x1) = (1− ϵ)1{a = argmaxa′P (c = 1|x1, a
′, β̂0)}+

ϵ

A

where ϵ controls an epsilon greedy policy. This new policy produces an uplift and everyone is happy.82

The reco team also collect some new data for Day 1 D1 = {c(i), x(i)
1 , x

(i)
2 , a(i)}L1

i=L0+1. The reco83

team then decides that maybe they could also incorporate the features x2 into the model, so at the84

end of Day 1 they then fit:85

β̂1 = argmaxβ

L1∑
i=L0+1

logP (c(i)|x(i)
1 , x

(i)
2 , a(i), β).

The model again might be a logistic regression P (c = 1|x1, a, β) = σ((x1 ⊗ x2 ⊗ a)Tβ). There86

is no confounding, and indeed there is better personalization because now x2 is used. Again, this87

means that the ‘true’ CTR for a user arriving with features x1, x2 and action a is estimated by88

P (c|x1, x2, a, β̂1).89

Day 2 the reco team then deploy the following policy:90

π2(a|x1, x2) = (1− ϵ)1{a = argmaxa′P (c = 1|x1, x2, a
′, β̂1)}+

ϵ

A
.

The new policy is more personalized (as it now uses both x1 and x2) and produces an uplift, but91

for technical reasons it is decided that incorporating the extra complexity of using x2 is not worth92

the extra engineering cost. So, the reco team decide that in the future the model will return to only93

use x1 i.e. they re-apply the methodology they applied at the end of Day 0. It seems like the same94

methodology should work again, but will it? The data collected is D2 = {c(i), x(i)
1 , x

(i)
2 , a(i)}L2

i=L1+1.95

They use this data to estimate:96

β̂2 = argmaxβ

L2∑
i=L1+1

logP (c(i)|x(i)
1 , a(i), β)

Unfortunately, the model P (c = 1|x1, a, β̂2) is now confounded, this means that the true CTR for a97

given x1 and action a is not given by P (c = 1|x1, a, β̂2), similarly selecting the a that maximizes98

the click probability will not give the best policy.99

Day 3: the reco team deploy:100

π3(a|x1) = (1− ϵ)1{a = argmaxa′P (c = 1|x1, a
′, β̂2)}+

ϵ

A

The click model is confounded and consequently the wrong preferred action is selected for some101

contexts resulting in a lower average click through rate. On subsequent days, (Day 4, Day 5), the102

confounding disappears again, because the model is only trained on the previous day and from103

Day 3 onwards, the recommendations are determined only by x1. Figure 2a shows a simulated104

demonstration of this behavior where confounding impacts the Day 3 CTR but it returns on Day 4105

and 5. This suggests that one solution to mitigate confounding is to simply wait, unfortunately this106

solution is not generally applicable. Consider the same scenario but now the feature engineering107

performance is being measured using A/B testing and both A and B are trained on a common log108

as shown by the red line in Figure 2b, the practice of having each policy training on its own log as109

shown by the blue line remedies the confounding problem but reduces the sample size.110

The experiments in Figure 2a and Figure 2b have a similar setup. Both x1 and x2 are categorical111

variables with 5 states and a is a categorical with 10 states. The simulations use 400 000 samples. In112

Figure 2b the A/B test starts on Day 2, causing confounding starting on Day 3. Population A is the113

model that only has access to x1, only population A suffers from confounding as such only the CTR114

of population A is shown. Code for both experiments is available here.115
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A Confounding due to Feature Engineering and Modularization148

Modularization is an important engineering practice, but when combined with feature engineering it149

can also lead to confounding. Consider the situation where there is a separate sale and click model.150

Let c be a click, s be a sale, a be an action and x be the context, the goal is to maximize post click151

sales. This can be achieved by solving152

a∗ = argmaxaP (c = 1, s = 1|a, x)
= argmaxaP (s = 1|a, x, c = 1)P (c = 1|a, x)

Now, consider that a different team build the click and the sale model and they both do feature153

engineering and produce different feature sets x′, and x′′, so instead the delivered action is:154

a∗ = argmaxaP (s = 1|a, x′, c = 1)P (c = 1|a, x′′)
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Figure 3: Causal graph for the post click sale models. If the sale model only is able to see x′ and the
click model is only able to see x′′ then the two models confound each other.

This procedure looks sound from the point of view of the individual models, but when the individual155

models are estimated on real data the above procedure produces sub-optimal actions due to each156

model being confounded. The causal graph is shown in Figure 3, training the click model and157

sales model individually results in either x′ or x′′ being an unobserved (or more accurately ignored)158

confounder. This highlights a dilemma. As the post click sales model is trained on a log where clicks159

have already occurred it is a much smaller dataset and hence there is a risk of higher variance in the160

estimation. Conventional machine learning wisdom suggests that x′ should be simpler than x′′ as a161

way to reduce this variance in the sales model, but having x′ and x′′ different leads to confounding.162

A similar situation can occur when there are two decisions, let’s say d is the decision to display a163

recommendation and a is the recommendation and our problem is to maximize clicks c, then a correct164

solution (neglecting exploration) is:165

β̂ = argmaxβ

N∑
i=1

logP (ci|ai, di, xi, β) (2)

π(a, d|x) = 1{a, d = argmaxa′,d′P (c = 1|a′, d′, x, β̂)}

However perhaps the decision of a and d must be made separately and without knowledge of166

the other part of the system. A common practice is to fit two models, P (c|a, x′) and P (c|d, x′′),167

and let π(a, d|x) = π(a|x′)π(d|x′′), where π(a|x′) = 1{a = argmaxa′P (c = 1|a, x′)}, and168

π(d|x′) = 1{a = argmaxd′P (c = 1|d, x′′)}. Similar to the above example each of these models169

confound each other.170

Avoiding confounding requires fitting the model in Equation 3, and then if engineering limits require171

the policy to be simplified to π(a, d|x) = πΞ(a|x′)πΓ(d|x′′), where Ξ and Γ parameterize the172

implementable policies. Policy learning can be used to find:173

argmaxΞ,ΓEa∼πΞ(a|x′)d∼πΓ(d|x′′)x,x′,x′′∼P (x,x′,x′′)P (c = 1|a, d, x, β̂).

Algorithms such as REINFORCE Williams (1992) can be used to target this type of objective.174

B Past Work on Confounding for Recommender Systems175

Recommender systems by construction have access to all covariates that lead to past recommendations,176

hence confounding can in principle be avoided simply by adjusting for all non-ignorable covariates.177

The study in Xu et al. (2023) develops personalization algorithms for cases where confounders are178

truly unobserved using an instrumental variable approach. As past recommendations are always a179

function of observed information this does not apply to recommendation. Computational advertising180
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can handle market conditions (price of inventory) by making the action the bid, or by using intention181

to treat, which reformulates the problem without any unobserved confounders.182

The study in Jadidinejad et al. (2021) does not use click models to build a recommender system but183

rather applies to standard collaborative filtering datasets. It is rather difficult to map this work to the184

practices in a real world recommender system.185

The study in Jeunen and London (2023) considers estimating the reward of a policy using inverse186

propensity score based estimators when both the propensity and covariates that determine the187

propensity are missing.188

Propensity score methods are relevant to confounding, there are two broad approaches. Balancing189

scores Rosenbaum and Rubin (1983) use the balancing score as a (usually) low dimensional substitute190

for a covariate in order to estimate an unconfounded model. In contrast, inverse propensity score191

estimators (IPS) avoid using a model and instead estimate the expected utility of a new policy192

Joachims et al. (2018). Variants of this estimator typically make trade-offs in terms of bias and193

variance of the expected utility, common variants include clipping, self-normalized importance194

sampling and doubly robust. Both balancing scores for models propensity scores for policy estimators195

avoid problems of confounding. The trade-offs in using estimators directly of the policy utility, rather196

than a likelihood based approach for estimating a model are rather complicated (see Sims (2006)) and197

beyond scope. Broadly, both methods do something that might be considered unnecessary; model198

based approaches must estimate the reward of every action, IPS based methods must estiamte the199

expected utility (which is not needed to select an action). IPS based estimators can have very high200

variance and violate the likeihood principle Berger and Wolpert (1988), but they are much more201

practical in multi-turn problems Sakhi et al. (2025).202

C Are These Practices Really ‘Pervasive’?203

Real recommender systems are built from many sub-models. Although the details of real systems are204

not publicly known, it is not a secret that many systems use at least two stages Borisyuk et al. (2016);205

Yi et al. (2019) and separate the reward into components such as clicks and sales Vasile et al. (2017).206

To avoid confounding requires a lot of discipline, either using the same features in all sub-models or207

another more sophisticated approach. Given that no paper describes this practice, it is reasonable208

speculation that most tech companies do not implement a strategy to avoid confounding. Moreover,209

there are real costs in making avoiding confounding a priority. Working legacy systems will need210

significant modification. Parameter estimation accuracy may suffer in some sub-models (that have211

their feature dimension increased). Also note that many tech companies prioritize building highly212

personalized recommendation engines using many features perhaps based on deep learning models.213

Often the pursuit of this goal will be at the expense of making sure that all sub-models are absolutely214

free from confounding.215

Similarly, the temporal confounding effects of adding or removing a feature into a sub-model are not216

documented in the literature. While surely some practitioners are aware of these concerns, the lack of217

a systematic discussion, strongly suggests that it is neglected by most tech companies.218

It is hard to know the A/B testing practices used at different tech companies, and again, there is no219

systematic treatment of the concept applied to recommendation in the literature (where models are220

re-trained). Our reasonably informed speculation is that some A/B tests involve models training on a221

common log producing another source of confounding.222

D Strategies for Avoiding Confounding223

Some strategies for avoiding confounding remain research questions, but the following ideas should224

be implemented where possible:225

• A/B Testing should involve each candidate recommender system training exclusively on its226

own log.227

• A feature can be added to (all models) within a system without any concern about confound-228

ing.229
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• The removal of a feature from (all models) within a system will cause confounding. Sim-230

ply, waiting for the confounded log to move outside the training window is one possible231

approach. Another approach is to use the backdoor rule, but this is likely very unappealing232

to practitioners.233

• Adding a feature into a sub-model will improve the performance of that sub-model, but234

confound all other models. This should give pause to thought to improving only one235

sub-model.236

• Putting the same features in all sub-models might well be unacceptable from a model fitting237

point of view (some models may estimate poorly if the feature dimension becomes larger).238

One approach is to use the balancing scores (see Rosenbaum and Rubin (1983)) which is239

a score b(x2) such that x2 → a can be replaced with b(x2) → a, using b() as a feature240

can help modularize, reduce variance and avoid confounding. However, the first step is for241

practitioners to simply recognize that confounding is a potentially serious problem in real242

recommender systems.243
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