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Abstract

Unobserved confounding arises when an unmeasured feature influences both the
treatment and the outcome, leading to biased causal effect estimates. This issue
undermines observational studies in fields like economics, medicine, ecology or
epidemiology. Recommender systems leveraging fully observed data seem not to
be vulnerable to this problem. However many standard practices in recommender
systems result in observed features being ignored, resulting in effectively the same
problem. This paper will show that numerous common practices such as feature
engineering, A/B testing and modularization can in fact introduce confounding
into recommendation systems and hamper their performance. Several illustrations
of the phenomena are provided, supported by simulation studies with practical
suggestions about how practitioners may reduce or avoid the affects of confounding
in real systems.

1 Introduction

In a recommender system all information that leads to a recommendation is known, which in principle
should make unobserved confounding impossible. However this paper shows that many common
practices for training click models in production results in available covariates or features being
ignored. These practices are pervasive in real systems and likely result in many systems behaving
sub-optimally.

Researchers in recommender systems are probably somewhat familiar with the way confounding can
lead to scenarios where correlation does not equal causation, but to set concepts and terminology
Figure [I| Left provides a simple illustration of Simpson’s famous paradox. The diagram serves to
illustrate how three variables interact, life expectancy, income and Champagne consumption. The
diagram shows that life expectancy increases with Champagne consumption, but it also illustrates
that once income is adjusted for, life expectancy decreases with Champagne consumption (which is
perhaps a more plausible causal relationship). Simpson’s paradox refers to the fact that there can be
different causal interpretations between three or more variables as in this example. A confounder is
a covariate that must be incorporated into the model in order for the correct causal inference to be
arrived at (in this case income is a confounder), in natural experiments it is possible (indeed common)
for the confounder to be unobserved rendering a correct causal inference impossible. If a click
model is used to produce personalized recommendations then in principle everything is observed
and confounding will not occur. Many ‘best practices’ in production systems can result in observed
information being ignored resulting in confounding and reduced performance.

Let a click be denoted ¢, the recommendation or action a, and the covariate used for personalization
currently is x1, a second covariate that may also be used to personalize is denoted x5, The terms
covariate and feature are used interchangeably. The causal graph is shown in Figure [I|Right, the
click c is caused by all three of the action a and the covariates x; and z5. In the current setup the
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Figure 1: Left: Simpson’s paradox, Right Causal DAG.

recommendation is personalized only by z; only indicated by the arrow from z; — a, the dashed
arrow from xo — a is absent (for now). The joint distribution on the covariates is denoted by the
arrow x1 — 2, this choice of direction simplifies the proofs. The recommender system is trained on
a log of observations of a, z1, x2, c by regressing c on x1, a i.e. a logistic regression model is fit:

B = argmax g Zci logo((z1, ® a;)"'B) + (1 — ¢;) log(1 — o((z1, ® a;)" B))

i=1

where o(-) is the logistic sigmoid and ® is the Kronecker product. It is assumed that training on
recent history (the previous day) mitigates any non-stationarity. This model can then be used in order
to produce a new epsilon greedy recommendation policy, where the exploration parameter is given by
€ and the number of actions is A.

A
T

We verify that this standard practice is in fact sound from a causal inference point of view. Applying
the do calculus gives the following expression:

m(alz1) = (1 — €)1{a = argmaxy (21 ® a’)7 B} +

P(c|do(a), x1) = > _ P(cla, z1,x2) P(a2|21) (1)

however the absent of the edge x5 — a, by the backdoor criterion shows that z5 is ignorable. This
means that the logistic regression model in Equation 1, directly estimates the causal quantity in
Equation 2.

What if the system then changes such that personalization now uses z2 i.e. the edge x5 — a is added,
but the goal remains to propose a new system that does not use xo. Applying the do calculus still
gives the same formula for the causal effect (Equation T)), however now ignorability of 25 no longer
applies and this formula must be applied (which is rather unpalatable to practitioners as it involves
fitting a larger model to both P(c|a, x1,22) and P(x2|x1) and performing a sum or integral over x2).

In a recommender system x; is the feature currently used for personalization and z» is an additional
feature that may be used in the future. This paper makes two main points: If the recommender system
ignores some feature x5 i.e. there is no arrow o2 — a, then ignorability applies even if zo — c.
Researchers do not need to worry about confounding or causal theory in this case. Numerous common
practices result in the link between some feature x5 — a existing, but the model training procedure
ignoring this link and erroneously assume x5 to be ignorable.

The main mathematical results that this paper relies on is that Equation|[I]is the appropriate formula
for both causal graphs in Figure[T|Right (both with and without the dashed line), as can be shown
using the do calculusﬂ Secondly that ignorability of x5 applies if and only if the graph in Figure

"By application of the do calculus’ Rule 2 and Rule 3, resulting in a rule that slightly generalized the backdoor
rule Pearl (1995).
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Day
(a) The standard practice of feature engineering
causes confounding on Day 3. Exactly the same
training procedure is used on Day 1, 4 and 5 as
Day 3, but on the log for Day 3 (Day 2) the policy
implements z2 — a causing x2 to not be ignor-
able. The same procedure that worked on Day 1
no longer works on Day 3.

—— Common
—— Separate

1 2 3 ] 5
Day

(b) Demonstrates how A/B testing with common
training can entrench confounding effects The A/B
test starts on Day 1, where A uses only x; and
B uses z1,x2. Both A and B are trained on a
combined log resulting in A suffering from con-
founding that persists as long as the A/B test runs.
The plot shows two approaches to A/B testing with
separate training data (blue) and combined (red),
only population A suffers confounding and only
population A is shown.

Figure 2: Confounding caused by dropping zs.

1 has no arrow x5 — a, as can be shown by applying the backdoor criterion or the Rubin Causal
Modeﬂ There are two main cases where a link might be introduced into zo — a, yet is ignored in
subsequent training. The first is due to feature engineering, the second is due to modularization (both
good practices from other points of view).

2 Confounding due to Feature Engineering and A/B Testing

Feature engineering is a standard optimization of machine learning models in recommendation teams.
Consider the following story.

Day 0: the recommender system is doing pure random exploration of the action a independent
of all features. That is the policy is mo(a|z1,z2) = mo(a) = 4. Data is collected on Day 0 i.e.

Dy = {c(i),xgi)7xg)7a(i))f="l.

The reco team decides that features x; are more interesting, and they will ignore x5 for now, they fit
the model with maximum likelihood i.e.

Lo
Bo = argmaxg Z log P(c? |asgl)7 a®,pB).
i=1
The model might be a logistic regression P(c = 1|1, a, 3) = o((z1 ® a)” 3). From a confounding
point of view, everything is fine, it doesn’t matter that x» is ignored. In practice this means that if the
estimate 3, is good it means that the ‘true’ CTR for any given x; and action « is indeed given by

P(c = 1|z1,a, 31). Similarly, the model can be used to find the optimal a for any given z; which is
achieved using an epsilon greedy policy starting on Day 1.

>When the arrow z2 — a is present in the causal graph (1 — a, T2 — a, &1 — ¢, Ta — ¢,a — ¢, T1 —
Z2), T2 is not ignorable for estimating P(c | 1, do(a)), as it confounds the a — ¢ relationship via the backdoor
path a <— x2 — ¢, requiring adjustment with >~ P(c | z1,22,a)P(22 | z1). When the arrow z2 — a is
absent (x1 — a,r1 — ¢, T2 — ¢,a — ¢, X1 — X2), T2 is ignorable, as all backdoor paths (a < z1 — ¢,
a < x1 — x2 — c) are blocked by conditioning on z1, yielding P(c | z1,do(a)) = P(c | z1,a). , for
ignorability in the Rubin Causal Model see Rubin| (1974)); |Rosenbaum and Rubin| (1983).
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Day 1: the reco team then deploys on Day 1 the following policy:

m(alz1) = (1 — €)1{a = argmax,, P(c = 1|z, d’, Bo)} + %

where e controls an epsilon greedy policy. This new policy produces an uplift and everyone is happy.

The reco team also collect some new data for Day 1 D; = {c(i), xgi), xéi), a(i)}iLZILOH. The reco
team then decides that maybe they could also incorporate the features x5 into the model, so at the
end of Day 1 they then fit:

Ly
Blzargmaxﬁ Z logP(c(i)|x§Z),xél)ﬂz(i),ﬁ)‘
i=Lo+1

The model again might be a logistic regression P(c = 1|z1,a,3) = o((z1 ® 22 ® a)” 3). There
is no confounding, and indeed there is better personalization because now x- is used. Again, this
means that the ‘true’ CTR for a user arriving with features x,, x5 and action a is estimated by

P(clz1, 72, a, Bl)
Day 2 the reco team then deploy the following policy:

71'2(a|501,:1}2) = (1 - 6)1{0’ = argmaxa,P(c - 1|5L’1,£L'2,a/,31)} + %

The new policy is more personalized (as it now uses both z; and z5) and produces an uplift, but
for technical reasons it is decided that incorporating the extra complexity of using s is not worth
the extra engineering cost. So, the reco team decide that in the future the model will return to only
use x; i.e. they re-apply the methodology they applied at the end of Day 0. It seems like the same
methodology should work again, but will it? The data collected is Dy = {c(?, mgl), a:g), a(i)}iL;LIH.
They use this data to estimate:

Lo

32 = argmaxg Z IOg P(c(l)|x51)7a(l)7ﬁ)
i=L1+1

Unfortunately, the model P(c = 1|21, a, 52) is now confounded, this means that the true CTR for a

given z; and action a is not given by P(c = 1|z1, a, 52) similarly selecting the a that maximizes
the click probability will not give the best policy.

Day 3: the reco team deploy:

m3(alz1) = (1 — €)1{a = argmax,, P(c = 1|z, d’, Bz)} + %

The click model is confounded and consequently the wrong preferred action is selected for some
contexts resulting in a lower average click through rate. On subsequent days, (Day 4, Day 5), the
confounding disappears again, because the model is only trained on the previous day and from
Day 3 onwards, the recommendations are determined only by x;. Figure [2a] shows a simulated
demonstration of this behavior where confounding impacts the Day 3 CTR but it returns on Day 4
and 5. This suggests that one solution to mitigate confounding is to simply wait, unfortunately this
solution is not generally applicable. Consider the same scenario but now the feature engineering
performance is being measured using A/B testing and both A and B are trained on a common log
as shown by the red line in Figure 2b] the practice of having each policy training on its own log as
shown by the blue line remedies the confounding problem but reduces the sample size.

The experiments in Figure |[2al and Figure [2blhave a similar setup. Both z; and z5 are categorical
variables with 5 states and a is a categorical with 10 states. The simulations use 400 000 samples. In
Figure|2b|the A/B test starts on Day 2, causing confounding starting on Day 3. Population A is the
model that only has access to x1, only population A suffers from confounding as such only the CTR
of population A is shown. Code for both experiments is available here.


https://colab.research.google.com/drive/1hvt_skstFsLdsShEaWLsKlWXN0ZF_lQt?usp=sharing
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A Confounding due to Feature Engineering and Modularization
Modularization is an important engineering practice, but when combined with feature engineering it
can also lead to confounding. Consider the situation where there is a separate sale and click model.

Let ¢ be a click, s be a sale, a be an action and x be the context, the goal is to maximize post click
sales. This can be achieved by solving

a* = argmax,P(c=1,s = 1]a, )
= argmax,P(s = l|a,z,c = 1)P(c = 1|a, x)

Now, consider that a different team build the click and the sale model and they both do feature
engineering and produce different feature sets x’, and 2", so instead the delivered action is:

a* = argmax,P(s = 1|a,2’,c = 1)P(c = 1|a,z")
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Figure 3: Causal graph for the post click sale models. If the sale model only is able to see x’ and the
click model is only able to see x’’ then the two models confound each other.

This procedure looks sound from the point of view of the individual models, but when the individual
models are estimated on real data the above procedure produces sub-optimal actions due to each
model being confounded. The causal graph is shown in Figure [3] training the click model and
sales model individually results in either =’ or z” being an unobserved (or more accurately ignored)
confounder. This highlights a dilemma. As the post click sales model is trained on a log where clicks
have already occurred it is a much smaller dataset and hence there is a risk of higher variance in the
estimation. Conventional machine learning wisdom suggests that =’ should be simpler than z’’ as a
way to reduce this variance in the sales model, but having =" and z"’ different leads to confounding.

A similar situation can occur when there are two decisions, let’s say d is the decision to display a
recommendation and a is the recommendation and our problem is to maximize clicks c, then a correct
solution (neglecting exploration) is:

N
8= argmaxﬂZlogp(ci\ai,diaﬂfiaﬁ) @

i=1

(a,d|z) = 1{a,d = argmax,, ; P(c = 1|a’,d’,z, 5)}

However perhaps the decision of a and d must be made separately and without knowledge of
the other part of the system. A common practice is to fit two models, P(c|a,2’) and P(c|d,z"),
and let w(a,d|z) = 7(a|z’)w(d|2"), where 7(al]z’) = 1{a = argmax, P(c = 1|a,2’)}, and
m(d|z") = 1{a = argmaxy P(c = 1|d,z")}. Similar to the above example each of these models
confound each other.

Avoiding confounding requires fitting the model in Equation 3, and then if engineering limits require
the policy to be simplified to 7(a,d|z) = w=(alz’)nrr(d|z”), where Z and T’ parameterize the
implementable policies. Policy learning can be used to find:

argmaXE’FEaNﬂE(am/)dwﬂr(d|x/,)x7x/7x/wp($7$,,QL,//)P(C = 1|(l, d, Z, ﬂ)

Algorithms such as REINFORCE Williams| (1992) can be used to target this type of objective.

B Past Work on Confounding for Recommender Systems

Recommender systems by construction have access to all covariates that lead to past recommendations,
hence confounding can in principle be avoided simply by adjusting for all non-ignorable covariates.

The study in|Xu et al.| (2023) develops personalization algorithms for cases where confounders are
truly unobserved using an instrumental variable approach. As past recommendations are always a
function of observed information this does not apply to recommendation. Computational advertising
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can handle market conditions (price of inventory) by making the action the bid, or by using intention
to treat, which reformulates the problem without any unobserved confounders.

The study inJadidinejad et al.[|(2021)) does not use click models to build a recommender system but
rather applies to standard collaborative filtering datasets. It is rather difficult to map this work to the
practices in a real world recommender system.

The study in|Jeunen and London| (2023) considers estimating the reward of a policy using inverse
propensity score based estimators when both the propensity and covariates that determine the
propensity are missing.

Propensity score methods are relevant to confounding, there are two broad approaches. Balancing
scores|Rosenbaum and Rubin| (1983) use the balancing score as a (usually) low dimensional substitute
for a covariate in order to estimate an unconfounded model. In contrast, inverse propensity score
estimators (IPS) avoid using a model and instead estimate the expected utility of a new policy
Joachims et al.| (2018). Variants of this estimator typically make trade-offs in terms of bias and
variance of the expected utility, common variants include clipping, self-normalized importance
sampling and doubly robust. Both balancing scores for models propensity scores for policy estimators
avoid problems of confounding. The trade-offs in using estimators directly of the policy utility, rather
than a likelihood based approach for estimating a model are rather complicated (see [Sims|(2006)) and
beyond scope. Broadly, both methods do something that might be considered unnecessary; model
based approaches must estimate the reward of every action, IPS based methods must estiamte the
expected utility (which is not needed to select an action). IPS based estimators can have very high
variance and violate the likeihood principle Berger and Wolpert (1988)), but they are much more
practical in multi-turn problems Sakhi et al.[(2025).

C Are These Practices Really ‘Pervasive’?

Real recommender systems are built from many sub-models. Although the details of real systems are
not publicly known, it is not a secret that many systems use at least two stages [Borisyuk et al.|(2016));
Yi et al.| (2019) and separate the reward into components such as clicks and sales|Vasile et al.|(2017).
To avoid confounding requires a lot of discipline, either using the same features in all sub-models or
another more sophisticated approach. Given that no paper describes this practice, it is reasonable
speculation that most tech companies do not implement a strategy to avoid confounding. Moreover,
there are real costs in making avoiding confounding a priority. Working legacy systems will need
significant modification. Parameter estimation accuracy may suffer in some sub-models (that have
their feature dimension increased). Also note that many tech companies prioritize building highly
personalized recommendation engines using many features perhaps based on deep learning models.
Often the pursuit of this goal will be at the expense of making sure that all sub-models are absolutely
free from confounding.

Similarly, the temporal confounding effects of adding or removing a feature into a sub-model are not
documented in the literature. While surely some practitioners are aware of these concerns, the lack of
a systematic discussion, strongly suggests that it is neglected by most tech companies.

It is hard to know the A/B testing practices used at different tech companies, and again, there is no
systematic treatment of the concept applied to recommendation in the literature (where models are
re-trained). Our reasonably informed speculation is that some A/B tests involve models training on a
common log producing another source of confounding.

D Strategies for Avoiding Confounding

Some strategies for avoiding confounding remain research questions, but the following ideas should
be implemented where possible:

» A/B Testing should involve each candidate recommender system training exclusively on its
own log.

* A feature can be added to (all models) within a system without any concern about confound-
ing.
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* The removal of a feature from (all models) within a system will cause confounding. Sim-
ply, waiting for the confounded log to move outside the training window is one possible
approach. Another approach is to use the backdoor rule, but this is likely very unappealing
to practitioners.

* Adding a feature into a sub-model will improve the performance of that sub-model, but
confound all other models. This should give pause to thought to improving only one
sub-model.

* Putting the same features in all sub-models might well be unacceptable from a model fitting
point of view (some models may estimate poorly if the feature dimension becomes larger).
One approach is to use the balancing scores (see Rosenbaum and Rubin|(1983)) which is
a score b(xs) such that x5 — a can be replaced with b(xz2) — a, using b() as a feature
can help modularize, reduce variance and avoid confounding. However, the first step is for
practitioners to simply recognize that confounding is a potentially serious problem in real
recommender systems.
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