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ABSTRACT

We generalise the reparameterization trick applied in variational autoencoders
(VAEs) letting these have latent spaces of non-trivial topology – i.e. that of base
manifolds covered with other ones, on which some technique for RT is available.
That is possible since covering maps are measurable – moreover, in case of par-
ticular measure preservation property holding for the covering, one can establish
an inequality on KL-divergence between pushforward (PF) densities on the base
latent manifold, making the KL-term of VAE’s ELBO analytically tractable, de-
spite the topological non-triviality of the supporting latent manifold. Our develop-
ment follows a route close but somewhat alternative to reparameterization on Lie
groups, the latest proposal for which is to reparameterize PFs of normal densities
from the Lie algebra – “through” the exponential map, seen by us as sometimes a
particular case of what we propose to call reparameterization through a covering.
Covering maps need not be global diffeomorphisms (although Lie-exp maps, in
general, need not either, but, to date only smooth ones were considered in this
context, to the best of our knowledge), which makes many non-trivial topologies
tamable to our proposed technique, that we detail on a particular such example.
We demonstrate the working of our approach by constructing a VAE with the la-
tent space of Klein bottle (not a Lie group) topology, which we call KleinVAE,
successfully learning an appropriate artificial dataset. We discuss potential appli-
cability of such topology-informed generative models as weight priors in Bayesian
learning, particularly for convolutional vision models, where said manifold was
peculiarly shown to have some relevance.

1 INTRODUCTION

Natural data often possesses certain regularities, forcing it to concentrate near certain (latent) mani-
folds in the feature (representation) space – that is the statement of the manifold hypothesis. If some
data is a priori known to possess such a manifold structure, this topological inductive bias should
ideally be held in mind when modeling the data distribution – which can be done with e.g. varia-
tional autoencoders (VAEs), of all generative models. Constructing a VAE involves introducing a
family of model conditional probability distributions of data latent features, called variational pos-
teriors (VPs), the parameters of which can be inferred with low variance from input data, using the
technique called the reparameterization trick (RT) (Kingma & Welling, 2013; Rezende et al., 2014).

As first introduced, RT implies that the VP is some input-data-conditioned normal distribution on
Euclidean space of the latents, the topology of which is trivial (in homotopy theory sense: Rn is
simply-connected, as its fundamental group is trivial), potentially unsuitable for modeling certain
types of data (if the latent dimension is constrained). In this context, in recent years RT has been
successfully generalized for latent spaces of various non-trivial topologies: e.g. (n-dim hyper-)
spheres Sn by Davidson et al. (2018) and Lie groups by Falorsi et al. (2019). Particular examples of
the latter are: n-dimensional tori Tn and, in fact, plain old (historically first to support RT) Euclidean
spaces: with Rn forming both a Lie group and, at the same time, a Lie algebra of itself.

Inspired by these elegant developments, this paper proposes an alternative, somewhat more
basically-topological view (more from the point-set topology and measure theory side of things)
on RT in non-trivial topologies. As a model latent space, one can, in principle, consider any mani-
fold (base of the covering) that can be covered with some other (cover) manifold, on the latter of
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Figure 1: Two-sheet covering, see (2), f2→1 : T 2 → K of the Klein bottle K by a torus T 2. Each
y ∈ K has 2 pre-images x1, x2 ∈ T 2.

which some technique for RT is available. In present work we consider the case when the cover
is the Euclidean space Rn, on which as a family of “source” VPs one can consider the family of
normal distributions N (µ,Σ) – particular probability measures (PMs) on Rn. These can be pushed-
forward (PF) onto the base by the covering map to make the family of “target”, model VPs on that
“target” base manifold.

The key fact (see Appendix) making this legit is that if both the base and the cover are measurable
spaces, a covering between them is a measurable mapping: the PFs of source VPs from the cover
constitute PMs on the base, so one can do probabilistic modeling on the “target” base manifold (with
the cover being its source “proxy”). E.g. Monte-Carlo estimation of expectations (of measurable
functions from the base manifold to real numbers – R-valued random variables (RVs) on it) is done
by just sampling from the source VP on the “proxy” cover, mapping the sample point onto the
base with the covering map, and then averaging (the averaged function). This is required e.g. for
computing the evidence lower bound (ELBO) of VAE models, since it has a form of expectation
w.r.t. some probability measure on the latent space.

The claimed contribution of present work is that reparameterization via coverings (RVC) is also
totally possible, due to said measurability of any covering map (it always being a local homeomor-
phism, so preserving the topology of measurable Borel sets), allowing to compute expectations in
the above way: since the basic idea of RT is in the decomposition of the corresponding (parameter-
ized) stochastic (generative) map into parts: 1) purely stochastic sampling, but of some standard
(un-parameterized) RV; and then 2) re-parameterization of said standard RV’s sample point with a
purely derministic reparameterization map.

With present work we hope to show that said scheme can be performed on various non-trivial topolo-
gies as opposed to that of Euclidean spaces.

1.1 THE KLEIN BOTTLE & ITS TOPOLOGY IN IMAGE DATA

In present work we show how reparameterization can be done on a wide class of manifolds, that
need not necessarily be Lie groups. As an minimal non-trivial example, we consider the Klein
bottle, additionally motivated by its occurence in natural data. The Klein bottle K is a compact
surface (manifold of dimension 2), that is non-orientable – and thus not a Lie group (since any Lie
group is parallelizable). K can be realized as a unit square [0, 1]2 with points on the edges identified:

(0, y) ≡ (1, y), (x, 0) ≡ (1− x, 1) ∀x, y ∈ [0, 1], (1)

so K ∼= [0, 1]2/ ≡, is a quotient of [0, 1]2 by the above (1) equivalence relation. Notably, such
realization of K can be covered by the 2-dimensional torus T 2 realized as a rectangle [0, 2]×[0, 1]
with opposing points on the sides symmetrically identified (see (3) below), the covering map reads:

f2→1(x, y) =

{
(x, y) if x ≤ 1,

(x−1, −y) otherwise.
(2)

This map (2) is a 2-sheet covering f2→1 : T 2 → K, as any point y ∈ K has two pre-images
x1,2 = f−1(y) ∈ T 2 in the two parts (where x ≤ 1 or otherwise) of T 2. See Fig. 1.

Just as K can be two-sheet covered by T 2, the torus itself can be covered by R2, 2D Euclidean space
– its quotient R2/ ≡, by the following equivalence:

(x1, y1) ≡ (x2, y2) ⇔
{
x1 = x2 (mod 2)

y1 = y2 (mod 1).
(3)
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is a rectangle [0, 2]×[0, 1] with the above symmetric identification of edge points. This gives a map

fR2/Z2(x, y) = ((x mod 2), (y mod 1)), (4)

an infinite-sheet (any point on T 2 has infinitely many preimages on R2) covering fR2/Z2 : R2 → T 2.

Combining maps (2) and (4) provides an infinite-sheet covering of K by R2:

fR2→K = f2→1 ◦ fR2/Z2 . (5)

Note that, by construction, this covering is just, sheet-wise, an identical projection (albeit flipping
the orientation on a half of all sheets) – the base K is covered by (infinitely many) sheets that are unit
squares in R2, so an open ball Br(x) (Borel subset) neighborhood (of sufficiently small radius r) of
any point x ∈ R2 is mapped onto an open ball of the same radius in K realized as [0, 1]2 (modulo
edgepoints equivalence). This makes the covering fR2→K a very “nice” mapping – a measurable
one – in fact, any covering is such, being a local homeomorphism.

Another reason we’re interested in this particular manifold, K – is due to its appearance in natural
data – which is, amuzingly, not limited to images: Klein bottle topology was also found by Martin
et al. (2010); Stolz et al. (2020) in the energy landscape of conformations of cyclooctane molecules.
In the limits of present work we only consider the appearence of K in natural images – see Discussion
section for more details, at this point let us focus on purely topological side of things.

To model Klein bottle topology found in natural images, Love et al. (2023) propose to consider a
certain subset of the Gabor filters (known in computer vision) – ones given by the following function:

F [θ1, θ2](x, y) = sin(θ2) tθ(x, y) + cos(θ2)Q (tθ(x, y)) (6)

on the domain of a square {(x, y)} = [−1, 1]2, parameterized by two angles, θ1, θ2, where
tθ(x, y) = cos(θ1)x+sin(θ1) y is projection onto a line specified by θ1, and Q is a certain degree-2
Chebyshev polynomial: Q(t) = 2t2 − 1. This function F is clearly periodic in its parameter space
Θ = {θ1, θ2}, with period [0, 2π]2 – but, moreover, satisfies the following condition:

F [θ1, θ2](x, y) = F [θ1+π,−θ2](x, y), (7)

making the fundamental domain in Θ not a torus [0, 2π]2, but rather its subset [0, π]× [0, 2π] with
Klein bottle topology. If F is discretized on a grid, one gets what we refer to as Gabor-Klein filters.

To prove that Gabor-Klein filters indeed have the topology of K, one can compute their persistent ho-
mology (PH) (Zomorodian & Carlsson, 2004; Weinberger, 2011). We do exactly that: by sampling
(θ1, θ2) ∼ U [[0, 2π]2] uniformly from the (double) fundamental region of F , we obtain a sample of
500 filters 3×3 filters and compute its PH with Ripser software library by Bauer (2021). These 500
filters are just real 3×3 matrices that we flatten turning them into a point cloud in R3×3 = R9. In
this space, Euclidean distance is a natural metric, coinciding with Frobenius norm of difference of
the matrices yet un-flattened – PH is homology of Vietoris-Rips filtration of its sub-level sets.

Persistence diagrams we obtain are shown on Fig. 2. We do not display 0-homology for visual
clarity. Recall that reduced homology groups of the Klein bottle over Z are H0

∼= 0, H1
∼= Z⊕ Z2

and H2
∼= 0 (Hatcher, 2002). So, if computed over Z2 and Z3, they become respectively:{

H1(K;Z2) ∼= Z2 ⊕ Z2,

H2(K;Z2) ∼= Z2,

{
H1(K;Z3) ∼= Z3,

H2(K;Z3) ∼= 0.
(8)

This explains Fig. 2: over Z2, both components of H1 are rightfully seen persisting, with one of
them, originally Z over Z, now reduced to Z2, yet still non-trivial. Over Z3, the other component
of H1, Z2 from the start over Z – disappears, hence not persisting. The “phantom” 2-homology
of Z2 over Z2 rightfully disappears over Z2. Higher homology groups of K are trivial, since it’s a
2-manifold. Aforementioned effects are due to what’s called torsion of K being a non-orientable
manifold. This raises the so-called field choice problem in computational homology (Obayashi &
Yoshiwaki, 2019), that was in fact shown solvable by Boissonnat & Maria (2019) by effectively
computing PH over many fields at once. These torsion effects make the topology of K (that can only
be truly spotted by computing PH over Z2 and Z3 simultaneously) a notable test case for topological
data analysis, as compared to other similarly low-dimensional manifolds.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Left: Gabor-Klein filters = discretizations of function F (6), with θ1,θ2 params, on a
3×3 grid. Upper half, θ1≤π, is the fund. region of F in the parameter space Θ, with Klein bottle
topology. This is also an illustration of a 2-sheeted covering of K by a 2-torus: the whole square
doubly covers the top half. Right: Persistence diagrams of 500 filters sampled from U [Θ]: left is
PH over Z2; right is over Z3. Persistent features that exist over Z2 and disappear over Z3 are circled.

2 REPARAMETERIZATION IN DIFFERENT TOPOLOGIES

Probabilistic generative modeling on manifolds is a broad and developing subject, reviewing it whole
is beyond the scope of present paper. We only focus on variational autoencoder (VAE) models, with
the latent space having some required non-trivial topology (as opposed to that of Rn, Euclidean
space). The reasons for such choice are as follows.

First: VAEs do not require an explicit parameterization of the latent manifold Z , as a sufficiently
expressive decoder (paired with a proper encoder) can itself learn a parameterization map embedding
(if possible) Z back into the data generation space X . All one needs is to implicitly set latent
topology – that of Z , that is: by introducing a reparameterizeable family of variational posterior
(VP) probability measures (conditioned on data observed in X ) on Z . Specifically, said VP family
should permit: 1) sampling from the VP distribution on Z (to compute expectations of measurable
functions – random variables – on Z with Monte-Carlo), 2) computing the KL-divergence between
the VP and the prior distribution of latent parameters – coordinates on Z manifold. Both these
computations should allow passage of their backward gradients w.r.t. parameters of VAE’s layers,
and, at that, the parameters of the VP distribution (as output of the encoder given sample points
in X as input). Selecting VPs to be push-forwards, by some measurable map (covering being
such), onto Z – allows these possibilities. To sample a point from a VP distribution being a PF
by the covering map, one just samples from its pullback probability measure on the “proxy” cover
of Z , then projecting the sample point onto it, the base, with the covering map. By definition
of pushforward, probability measures of all random events are “re-calculated” by the PF function
correctly. As for reparameterizing this sampling map, the output of which is further fed to the
decoder on a forward pass; and as for computing the KL-divergence between the VP and the prior
defined on Z – both as PFs of their “proxies” (pullbacks) on the cover – see further. As we show,
under an appropriate measure-preservation property of the covering map, an analytic inequality
on KL-divergence arises between two “target” distributions on Z , that are PFs by such covering –
bounding it by the KL between their “proxy” pullbacks – from the right side, so minimizing KL
between pullbacks delivers minimizing it between the pushforwards by such a covering map.

Second reason for consideration of present work being limited to VAEs is that despite, undoubtably,
more expressive (density-based) topology-aware generative models were proposed, like e.g. nor-
malizing flows by Rezende & Mohamed (2015) (which were generalized to have latent spaces of
toric and spherical topology by Rezende et al. (2020), and potentially more general topologies by
Brehmer & Cranmer (2020)), that are capable of learning multimodal distributions, VAEs can be
seen as a basic building blocks for such models to figure out first. After all, the (un-) normalization
map of flows can be seen as a more intricate development of the reparameterization map.
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We see it that, with the proposed technique of reparameterization via covegings (RVC), detailed
further, one has all the ingredients for a topological VAE (provided its model latent space has such
topology that it admits a covering with another “proxy” manifold, whereon some technique for RT
is already available). Such TopoVAEs should not be confused with topological authoencoders:
TopoAEs as proposed by Moor et al. (2020) and RTD-AEs by Trofimov et al. (2023) – in these, the
ambient latent space is Euclidean, into which the model learns to embed a point cloud of informative
latent codes conditioned on observed input data – in such a way that the persistent homology these
latent representations is close to that of input ones. Said closeness is measured with some (differ-
entiable, at least almost everywhere, thus learnable) distance between the persistence diagrams, or
as a norm of the diagram of a special cross-filtration (representation topology divergence of RTD-
AEs). In contrast to this, the class of VAE models we propose initially has proper implicitly set
latent topology. Also, making “vanilla” AEs data-generative is possible (Bengio et al., 2013), but is,
sadly, an arguably underdeveloped direction of research; while presently proposed TopoVAEs are,
architecturally, just VAEs, by-design generative models that are well understood, see Appendix.

2.1 EUCLIDEAN DENSITY REPARAMETERIZATION, SPHERES

The key to constructing a VAE is reparameterization (Kingma & Welling, 2013; Rezende et al.,
2014). Consider it for the case when the latent space of a VAE is just the “backbone” 1D Euclidean
space, the real line R. The reparameterization (setting parameters µ and σ) transform on it reads:

z = fµ,σ(ε) = µ+ σ · ε, (9)

given as input a sample point ε ∼ N (0, 1) of a standard normal random variable (RV), fµ,σ is a
(deterministic) map that outputs such a sample point of a normal RV z ∼ N (µ, σ) with parame-
ters µ, σ. To construct a Topo-VAE with a topologically non-trivial latent space Z , one needs to
generalize (9) (or some version of it) to work on this space.

Note that (9) exploits the the linear (affine, to be precise) structure of R. The real variable ε that
is input to fµ,σ can be seen as a 1D vector, lying in R. With R forming a vector space (over itsel,
R, as a base field), vectors in it can be added and multiplied by a number from the base field,
the latter equivalent to adding a vector to itself some real number of times. This, in fact, is also
a manifestation of 1D Euclidean space R being a Lie group G, with (9) giving the affine group
action on this manifold: a combination of affine maps is again an affine map, and it depends on its
parameters µ, σ smoothly. Notably, G also serves as a Lie algebra g for itself – being a vector space
as above explained. The (Lie) exponential map from g to G here is just the identity map.

The above described view is exactly what was proposed (generalized to other non-trivial examples)
by Falorsi et al. (2019) as reparameterization on manifolds that are Lie groups. It should be noted,
however, that Lie group structure is only one of many possible structures a manifold can be equipped
with (if not to say it’s arguably one of the “nicest”, hence most restrictive, structures) and one can
potentially exploit those other ones to design reparameterization tricks.

For example, if the latent manifold Z is Riemannian (equipped with a metric), one can do reparam-
eterization by sampling random walks (diffusion) on it, as Rey et al. (2019) propose: the intuition
behind this is that in the limit, random walks converge to some form of Riemannian normal law with
density at point z proportional to exp(−d2(µ, z)). There is a lot of progress in this direction of gen-
erative modeling on manifolds (see also (Gemici et al., 2016; Yu et al., 2025; Kalatzis et al., 2021)
for more flow-based approaches), but present work follows a different, more measure-theoretic, path
(with a VAE as a basic vehicle): we do not explicitly require a Riemannian structure of the manifold
(except perhaps for it having a volume form so one can talk of Riemannian measure on it).

Before fully diving into Lie group, let us briefly mention a very interesting case of (hyper-) spherical
topologies – separately from Lie groups, since, exotically, not all spheres are Lie groups (not even
all of them admit a weaker, topological group structure (Megıa, 2007)). Reparameterization can be
generalized to spheres of arbitrary dimension (Davidson et al., 2018) exploiting other structures: e.g.
using a probabilistic technique of reparameterization through accept-reject sampling on spheres was
proposed by Naesseth et al. (2017), thus only appealing to the compactness of spheres. We envision
an alternative approach: computing implicit reparameterization gradients proposed by Figurnov
et al. (2018) “through” smooth automorphisms of spheres. A very similar technique for spherical
normalizing flows via Möbius transformations group was proposed by Rezende et al. (2020).
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2.2 LIE GROUP DENSITY REPARAMETERIZATION

Our work was most inspired by reparameterization generalized to the case of the latent manifold
being a Lie group by Falorsi et al. (2018; 2019). For a brief reminder on Lie groups, see Appendix.

A Lie group G is a smooth manifold that also possesses a group structure. For an example, imagine
a unit circle, which is a 1-sphere S1, embedded in Euclidean plane R2 with Cartesian coordinates,
centered at its zero origin. Any point on S1 can be parameterized with an angle φ that one counts
wrapping around the circle counterclockwise starting from point with coordinates (1, 0). A line
tangent to the circle at this point (1, 0) (identity group action element of G) can be seen as a vector
space R – this is the Lie algebra g of G. One can say that the angles φ parameterizing points on S1

“live” in this line (in the algebra g being a vector space) – angles can be added and multiplied by a
real number. There is a smooth map from g to G, called the exponential map, which in this example,
given an angle φ ∈ g, returns a point on S1 (in G) with coordinates (cosφ, sinφ) in the plane.

To work with distributions on the sphere S1, it being a Lie group G, one can consider distributions
on the very familiar g ∼= R – e.g. normal distributions. Any normal probability density N (µ, σ) on
g ∼= R can be pushed onto G ∼= S1 by the exponential map – its pushforward is called wrapped
normal distribution (on the circle). The idea of reparameterization on Lie groups is that one can
reparameterize distributions on Lie algebras of Lie groups (this works at least for compact connected
ones (Falorsi et al., 2018; 2019)) – which are then pushed forward onto the group by the exponential
map. So, the measurable space of the Lie algebra g serves as a “proxy” of that of the Lie group G
it corresponds to: instead of working with probability densities on G, one can work with their g-
supported “proxies”. Lie algebras of many Lie groups are isomorphic to Euclidean spaces Rn, with
normal distributions as one possible choice of localised yet expressive distribution models on such.

This reparameterization through the exp map onto Lie groups is, in fact, also a particular case of
what we call reparameterization through the coveging map, since the above described exponential
map from g ∼= R to G ∼= S1 also delivers an infinite-sheet covering map! Although not always,
Lie-exp maps sometimes also serve as universal covering maps g → G (when G is connected
and abelian). These two different yet similar classes of maps: coverings of G-s and Lie-exp maps
g → G thus provide two ways to map non-trivial topologies in a way that allows reparameterization
of probability densities on these. An important distinction between these two constructions (that are
otherwise very similar in this case of G ∼= S1) is that Lie-exp maps are more often expected to be
(almost-) global diffeomorphisms (for g ∼= R → G ∼= S1 the above described Lie-exp is such, due
to sin(·) and cos(·) functions being smooth except at one infinity point), while covering maps need
not at all – not expected to be more than local homeomorphisms, they seem less restrictive, and
thus perhaps more practically helpful, as if the covering map is not smooth at some points – one
could not care less, since sometimes this set of points of derivative discontinuity is of measure zero.

2.3 COVERED SPACES: CIRCLE, KLEIN BOTTLE

We outline a method to reparameterize probability measures on certain manifolds – namely, ones
that can be covered with other ones (on which one can do reparameterization) in a certain way (such
that the measure is not-increased sheet-wise by the covering). This is possible since any covering is
a measurable map. We do so on a particular example – the Klein bottle, motivated by the mentioned
appearance of this peculiar manifold in natural data. For a memo on coverings, see Appendix.

2.3.1 RVC ON THE CIRCLE OF S1

Topologically, S1 can be realized as a quotient R/Z of the real line R by the integer lattice Z – by
the following equivalence relation:

x ≡ y ⇔ x = y (mod 1), (10)

so the circle S1 is isomorphic to an interval [0, 1] with endpoints identified, 0≡1. The map

f(x) = (x mod 1) (11)

(taking the fractional part of a number) thus provides a covering f : R → [0, 1] of the base interval
with R (the cover). This is an infinite-sheet covering: every point x ∈ [0, 1] has (countably) infinitely
many pre-images f−1(x) in the cover.
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The real line R with a Borel sigma algebra B(R) on it, (R,B(R)) – is a measurable space that
can be equipped with a “natural” measure – Lebesgue measure λ, with respect to which one can
integrate measurable functions (compute expectations of RVs). Normal distributions N (µ, σ) form
a family of probability distributions (on R) of very special interest – these are often used as VPs.

The distribution of a normal RV X∼N (µ, σ) is a probability measure PX on R that is absolutely
continuous w.r.t. λ, so it has a probability density function (PDF) pX(x), the Gaussian:

dPX = pX dλ = (2πσ2)−1/2e−(x−µ)2/2σ2

dλ. (12)

The covering (11) f : R → [0, 1] is a measurable map from (R,B(R), λ) to [0, 1] (with a Borel
sigma-algebra on it), so one can consider the pushforward (PF) f∗PX of PX – a measure on [0, 1].
Pushforward measure of a small neighborhood B = Bε(y) of any point y ∈ [0, 1] is thus given by

f∗PX(B) =
∑

{Ai}=f−1(B)

PX(Ai), (13)

where Ai are small open neighborhoods of (infinitely many) points {xi} = f−1(y) – pre-images of
y. In fact, sheet-wise (restricted to any sheet Xi ⊂ R, f is a bijection), the covering map f is just an
identical projection, so Lebesgue measure λ is pushed unchanged from every sheet:

d(f∗PX)(y) =
∑
i

pX(xi) dλ =
(∑

i

pX(xi)
)
dλ, (14)

so it makes sense to talk about the pushforward density f∗pX (Radon-Nikodym derivative of f∗PX

w.r.t. λ), which, at any point y, is given by the above equation 14 infinite sum (that converges due to
properties of the Gaussian) of normal densities pX at pre-images {xi} = f−1(y). This distribution
on the circle S1 ∼= [0, 1) is referred to as wrapped normal distribution – it inherits many properties
of the normal on R: in particular, it concentrates (the more the smaller the value of σ) around its
single mode at f(µ), so it is naturally used to model spherical RVs in directional statistics.

A very important consequence of f preserving measure λ, sheet-wise (constrained on any sheet),
is the following statement. Consider two probability distributions on R – with densities q and p. If
these are pushed onto [0, 1] by f (denote pushforwards q∗ = f∗q and p∗ = f∗p) and one considers
Kullback–Leibler (KL-) divergence between the PFs is given by:

KL(q∗ || p∗) =
∫
[0,1]

q∗ log
q∗

p∗
dλ (15)

where both q∗ and p∗ at any point y ∈ [0, 1] equal to sums q∗(y) =
∑

i q(xi) =
∑

i qi, same
for p∗(y) =

∑
i pi of pullback densities at pre-images xi of y. Then, by the log sum inequality

(following from Jensen’s inequality), the integrand, and hence the integral, in (15) is bounded from
above by the KL-divergence:

KL(q∗ || p∗) ≤
∫
[0,1]

∑
i

qi log
qi
pi

dλ = KL(q || p) (16)

between the original (pullback) densities q and p on R. The above is because, if one permutes the
sum and the integral in (16), one just gets a sum of integrals over all the sheets of the covering,
which, due to sheet-wise preservation of measure λ, just equals the integral over the whole R.

2.3.2 INEQUALITY ON KL UNDER COVERINGS, RVC ON THE KLEIN BOTTLE

Central to our proposed reparameterization technique is the result of an inequality on KL-
divergence under covering maps between measurable spaces. In particular case of a sheet-wise
measure-preserving map f(x) = (x mod 1) covering each point of [0, 1] with (measurably)
infinitely-many pre-images (those of any point indexed i below) from R, the inequality (16) reads:∫

[0,1]

q∗ log
q∗

p∗
dλ =

∫
[0,1]

∑
i

q∗i log
q∗i
p∗i

dλ ≤
∫
[0,1]

∑
i

qi log
qi
pi

dλ. (17)

If said sheet-wise (Lebesgue) measure λ preservation property is relaxed to sheet-wise non-increase
of measure – generic measure m, B(x) for a Borel “ball” set containing point x:

∀xi : f∗m(B(xi)) ≤ m(f−1(B(xi))), (18)
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one trivially – proof follows from 1) linearity (of summation w.r.t. the pre-logarithm density multi-
ple, with any point-wise re-scaling of measures not affecting the densities ratio in the logarithm), 2)
the fact since the push-forwards are on the left hand side of both (17) and (18) and 3) the log sum
inequality – obtains present paper’s self-contained mathematical result, namely:

Proposition 1 Given X and Y – measurable spaces; P and Q – probability measures on X ; p
and q – their corresponding probability densities – Radon-Nikodym derivatives w.r.t. some ambient
measure m on X ; and a sheet-wise measure-non-increasing covering map f : X → Y; p∗ dm
and q∗ dm – pushforwards of p dm and p dm onto Y by f ; it holds true that KL-divergence is
non-increasing under the covering f: KL(p∗ || q∗) ≤ KL(p || q).

With that established, one can consider the case of Klein bottle K topology. As described in the
introduction, K can be realized as a unit square [0, 1]2 with points on the sides appropriately iden-
tified. It can be 2-sheet covered (2) by a 2-torus, T 2, realized as a rectangle [0, 2] × [0, 1] with
endpoints identified symmetrically as in (3). Denote said covering map f2→1. Note that f2→1 is
a sheet-wise identical projection map (albeit flipping the orientation on half of the sheets) – so if
T 2 ∼= [0, 2] × [0, 1] is equipped with Lebesgue measure λ, inherited from R2, then on each sheet
λ is preserved by f2→1. The torus, in turn, can be realized as a quotient of R2 by Z × 2Z – this
provides a (infinite-sheet) covering, denoted fR2/Z2 , which is also, sheet-wise, just a truly identical
projection preserving λ. So K ∼= [0, 1]2 is covered with R2 with a map

f = f2→1 ◦ fR2/Z2 : R2 → K (19)

that is sheet-wise measure-preserving for λ . With that, one can introduce RVs on K, by introduc-
ing RVs on R2 and then pushing their distributions onto K by f .

Thus to construct a TopoVAE with its latent space topology that of K, one can pick the PFs of
normal distributions N (µ,Σ) fromon R2 onto K by f as a family of VPs. PFs of N (µ,Σ) onto
T 2 by fR2/Z2 are known in (directional) statistics as multivariate wrapped normal distributions.
The unimodality of N (µ,Σ)-s may break when these are pushed onto K by f , but at least in the limit
of small variance, when N (µ,Σ) is close to a delta-measure at µ, its PF by f will also concentrate
around one point on K. Such divergence of VP from unimodality can be controlled with the prior.

So consider two normal probability measures P and Q on R2, with parameters θp = (µp,Σp) and
θq = (µq,Σq) and denote their PFs onto K by f with P ∗ and Q∗. Since measure is preserved
sheet-wise by f , P ∗ and Q∗ have PDFs in K – p∗ and q∗, which, at any point on K, equal sums of
PDFs of P and Q on R2, p and q, at all pre-images of that point.

With that one constructs a particular TopoVAE, that we’ll refer to as KleinVAE, as follows:

• latent space: Z = [0, 1]2 ∼= K,
• PDF of VP (of latent z given observed x): q∗(z|x) – PF of N (µq,Σq) by f (see Eq. 19),
• PDF of prior (of latent z, unconditioned by x): p∗(z) – PF of N (µp,Σp) by f (see Eq. 19).

On a forward pass, the encoder, given an input batch of data x, outputs the parameters θq of the
VP q∗. By definition of PF (or by so-called LOTUS, see Appendix), sampling a RV z ∼ f∗q can
be done by first sampling from q and then applying f to the result. This random sample z ∼ q∗θq is
then passed to the decoder that outputs the parameters of p(x|z) – the likelihood of reconstruction
x given latent z. In turn, the gradient of evidence lower bound (ELBO):

ELBO(W ) = Ez∼q∗
θq(Wenc)

pWdec(x|z)− KL(q∗θq(Wenc)
|| p∗θp) (20)

w.r.t. W = (Wenc,Wdec) – the parameters of the VAE network’s layers is easily backward passed.
Due to sheet-wise preservation of measure by f , KL-divergence between q∗ and p∗ on Z = K is
bounded from above by KL between q and p on R2 – so the negative KL term (20) in ELBO is
bounded from below by

−KLK(q
∗
θq || p

∗
θp) ≥ −KLR2(qθq || pθp), (21)

– KL-div between two bivariate Gaussians qθq and pθp , for which a well-known analytic formula
exists. So maximizing ELBO, equivalent to that if (20) with the KL-term changed for this KLR2 –
is computationally advantageous (more tractable), mitigating Monte-Carlo estimation of KL.
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So what’s left is to define how to backward-pass the gradient (w.r.t. θq) through sampling (in the
first, reconstruction loss, term of ELBO):

z ∼ q∗θq = f∗ qθq = f∗ PDFN (µq,Σq) (22)

– this stochastic map is decomposed into sampling a standard RV ε ∼ N (0, I), and then then
reparameterizing it

z = f(µq +Σ1/2
q ε). (23)

This provides gradient passage through reparameterization via covering, since the f map is a
covering map, being part of the reparameterization map (23). With the covering being (19) simply a
sheet-wise identical projection (albeit changing the orientation on half of the sheets), differentiating
it is trivial, and can be safely delegated to automatic differentiation – as f is only discontinuous at
the boundaries of the sheets, which are a set of Lebesgue measure zero in R2. Practically it is
thus enough to implement f with e.g. differentiable torch.where and torch.remainder
functions of Pytorch library by Paszke et al. (2019).

3 CONCLUSION

In present work, we show how one can do the reparameterization trick of variational inference on
various topologically non-trivial spaces. This allows to use these as latent spaces of topology-aware
generative models, as we exemplify by constructing a Topo-VAE with the latent space having the
topological structure of the Klein bottle. This is novel since, to date, reparameterization for such
non-trivial topologies has been explicitly generalized, of comparably non-trivial cases – only to
Lie groups. As opposed to that, our proposed technique of reparameterization via coverings, that is
more grounded in measure theory (we state a Proposition on non-increase of KL-divergence between
pushforwards of probability measures by a measure-non-increasing covering map between two mea-
surable topological spaces) – does not expect global differentiability of the reparameterization map,
allowing to have an arbitrarily complicated set of its discontinuities, provided it has measure zero.
We construct such a TopoVAE with latent Klein bottle topology and report its performance on an
appropriate artificial dataset. We also speculate on applicability of such topology-aware genera-
tive models as model weight priors in Bayesian learning, providing potentially helpful topological
inductive bias.

9
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A APPENDIX I: EXPERIMENT, KLEINVAE

A.1 ARTIFICIAL CIRCLES DATASET

As a proof of validity of our method, we implement a VAE with the latent space having the topology
of the Klein bottle, that we call KleinVAE. We experimented with learning the distribution of Gabor-
Klein filters (see Fig. 2) with it, but found it not so easy with shallow autoencoders with standard
layers – possibly due to the non-linear oscillating nature of these filters. That is why we provide a
demo of KleinVAE on some other artificial data.

Figure 3: Klein-Circles dataset. Left: samples of original data – circles on the Klein bottle with cen-
ters at different positions. Right: reconstructions of corresponding images with KleinVAE. White =
intensity equals 1, black = zero.

We generate small images (30×30 pixels) of a circle of radius 0.3 on a unit square. Boundary points
of the square are identified in such a way that it has topology of K. With circle center at uniformly
random positions, this forms our Klein-Circles dataset. We generate 100.000 (= 105) such images.

Figure 4: Persistence diagrams of 500 images decoded by KleinVAE from images with uniformly
random circle center positions.

We train a KleinVAE with the encoder made of fully-connected layers of sizes 30×30 = 900→
1024→512→128→32→5 (so the latent space has dimension 5, since on it we predict 5 parameters
of the VP: 2 components of the µ vector and 3 components of the lower-triangular scale matrix, that,
squared, provides the 2× 2covariance matrix of the VP), and the decoder with similar ones but in
reverse sequence, with Leaky-ReLU nonlinearity. Batch size is set to 1024, training is done with
Adam optimizer Kingma & Ba (2014) for 50 epochs with initial learning rate lr = 10−3 with LR
scheduler ReduceLROnPlateau with reduction factor of 0.99. KL term in ELBO is set to have
a weight of 10−2. The prior is set to a (pushforward onto K of) normal with µ = (0.5, 0.5) (center
of the square) and Σ = diag(0.1, 0.1).
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We compute persistent homology of reconstructions of a sample of 500 images with uniformly
random circle center positions - persistence diagrams can be seen on Fig. 4. These suggest that
KleinVAE successfully learns the latent structure of the Klein bottle.

A.2 ABLATION STUDY

As an ablation study of utility of such topological inductive bias in VAEs, we trained several VAE
models: 1) ordinary VAE with latent spaces of different dimensions (2D, 3D, 4D), 2) VAE with the
latent space being a Torus T 2, which we refer to as the TorusVAE, and 3) VAE with the latent space
being the Klein bottle K, which we refer to as the KleinVAE.

In order to estimate how good the models were in the learning an embedding of proper K topology
into the data space, we compute the persistent homology of the reconstructed hold-out subset of the
validation set. Due to computational cost of this procedure, we randomly selected 500 points from
the validation set as the hold-out subset. We used the Python’s Ripser.py Tralie et al. (2018)
interface for Ripser Bauer (2021) for persistent homology computations, and computed persistent
homology in dimensions 0, 1 and 2.

To numerically compare the persistent diagrams of the original hold-out set with its reconstruction,
we computed the bottleneck distance dB between the diagrams. The bottleneck distance is defined
in terms of the bottleneck cost cM

c(M) = max

{
sup

(p,q)∈M

∥p− q∥∞, sup
s∈P⊔Q unmatched

|sy − sx|
2

}
,

where (p, q) ∈ P × Q is called the matched pair, if ∀p ∈ P there exists at most one q ∈ Q and
∀q ∈ Q there exists at most one p ∈ P . An element s ∈ P (resp. Q) is unmatched, if it has no pair
in Q (resp. P ).

The bottleneck distance dB between two diagrams P and Q is the smallest bottleneck cost achieved
by partial matchings between them

db(P,Q) = inf
M :P↔Q

c(M).

The bottleneck distance is computed independently for each homology dimension. To create a single
aggregated metric, we report the ℓ2-norm of the vectors of these distances

∥dB(P,Q)∥2 =

(
n∑

h=0

dB(Ph, Qh)
2

)1/2

,

where Ph and Qh are the persistence diagrams for the original data and its reconstruction in homol-
ogy dimension H respectively.

We trained these models within the same setup for 200 epochs, with the encoder and decoder made as
fully-connected networks with 1 hidden layer of dimension 64. Batch size was set to 1024, learning
rate was set to 0.01, optimized with Adam (Kingma & Ba, 2014) with the ReduceLROnPlateau
LR Scheduler with factor 0.99. We used Leaky − ReLU as a non-linear activation function. The
weight of KL term in ELBO calculation was set to 0.001.

From Figures 5 and 6 that, although the topological-fidelity metricd (bottleneck distances) of
“vanilla” (plain Euclidean) VAEs seem better; the reconstruction metrics of “topology-aware” mod-
els (toric and Klein-bottle ones) are better – since the covering map does not alter the ambient
Lebesgue measure, the part of ELBO that is (negative) KL between Normals on the plane and the
other topologies – is identical, so the difference is in reconstruction lossess only. We have a hypoth-
esis as to why “topology-unaware” models did somewhat better in reconstructing it, as measured
by homological bottleneck distance: these models have “more room” in the Euclidean space (that
is “chopped of” by the covering map) to tesselate it with “remembered” latent codes: to check this,
we also compute the variance of the latent points. Plot (b) on 5 does not violate our hypothesis. We
envision a detailed explanation of observed effects as our future work.
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(a) ELBO (b) Latent Variance

Figure 5: Training dynamics and topological metrics for all models. (a) Evidence Lower Bound, (b)
Latent code variance

(a) db over Z2 (b) dB over Z3

Figure 6: (a-b) Total bottleneck distance over Z2 and Z3.

B APPENDIX II: OUTLOOK

With the main claimed contribution of present work being a generalization of RT – with reparame-
terization via coverings shown possible, advocated to be used in generative modeling (not limited to
VAEs – seen as basic latent models that can be used as building blocks for more expressive ones to
figure out first), we’re not merely interested in this technique per se. We hope to highlight connec-
tions seen between several directions of research: gen. modeling, Bayesian learning, and topological
data analysis (TDA) – by proposing an exemplar construction of such a topology-aware (manifold-
supported) generative models, that can be used as a prior (in the sense of Bayesian inference) on the
parameters of some other model, thus providing it with relevant topological inductive bias.

B.1 BAYESIAN LEARNING

Bayesian inference in machine learning, or just Bayesian learning (BL) – is a motivation of present
work. BL is developing since at least 90s (Neal, 1996; Neapolitan, 2003), and is still relevant in the
modern age of deep learning (DL) (Wang & Yeung, 2020; Fortuin, 2022).

Any model processing data X is specified by its parameter θ – if the model is a neural network (NN),
θ contains the weights of its layers. In BL, instead of considering one optimal parameter value given
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training data X , one considers

p(θ|X) =
p(X|θ) p(θ)

p(X)
(24)

the whole posterior probability distribution p(θ|X) of possible parameter θ values given observed
data X . From Bayes’ theorem (24), it follows that p(θ|X) is proportional to the likelihood p(X|θ) of
observed data X given a certain value of θ – times the prior p(θ) probability of parameter θ taking a
certain value, independent of observed data. With a prior p(θ) one can incorporate all of knowledge
of what values θ should or should not likely take – into the model. Typically, such Bayesian models
are trained with Monte-Carlo (MC) techniques, for which it is enough to be able to sample random
values θ ∼ p(θ) from the prior.

In principle, incorporating informative prior beliefs into models improves their performance and
generalization ability (if the prior is “strong” enough compared to the amount of training data avail-
able). We were particularly motivated by weight priors for vision models: it was shown by Pearce
et al. (2020) that imposing priors on the structure of the filters of convolutional layers of CNNs
(the original LeNet (LeCun et al., 1989), VGG (Simonyan & Zisserman, 2014), ResNet (He et al.,
2016))) improves their performance (faster training to reach same accuracy) and generalization abil-
ity (higher entropy of predictions of an untrained CNN initialized only from the prior); see also
(Fortuin et al., 2021). Said imposed structure is, in fact, well-known – filters are sampled from
the family of Gabor filters (Marĉelja, 1980) (rather than from uncorrelated Gaussian noise com-
ponents), that were widely used in CV before the success of CNNs. This “revival” of Gabor filter
usage – as weight initialization for CNNs – happened before: (Luan et al., 2018; Alekseev & Bobe,
2019), but it was Pearce et al. (2020) who properly framed this as Bayesian learning.

Further on, it was proposed by Atanov et al. (2018) to learn (with a generative model, e.g. a VAE)
such distributions of useful NN weights (CNN filters) from a NN trained on one dataset – to transfer
those as priors for NNs operating on other datasets – this was called Deep Weight Prior (DWP),
following the introduction of Deep Image Prior (DIP) by Ulyanov et al. (2018).

Said works strongly motivated present work, which advocates paying more attention to topological
structures when doing probabilistic modeling, as, in particular, do Jin et al. (2024). As described
further, one such a topological structure for CNN weights in particular has been known for some
time, so we propose to combine the flexibility of priors learned with a generative model (e.g. a
VAE) with such “topological inductive bias”: knowing which exact manifold the prior distribution
is in fact supported on. We propose to refer to such priors as Topological Weight Priors.

B.2 PRIORS FOR TOPOLOGICAL DEEP LEARNING: KLEIN BOTTLE IN VISION

Another side of this, seemingly, single direction of research – is topological deep learning (TDL).
Its motivating premise is that data possesses certain topological structure (e.g due to restrictions of
symmetry) to account for when designing models processing such data (Carlsson, 2009).

One particular observation that inspired much development in the field called topological data anal-
ysis (TDA) – is that such structure is found in natural images (Lee et al., 2003): if one considers
grayscale images of natural objects at a small scale – i.e. (high contrast) patches of e.g. 3×3 pixels,
the distribution of such patches would not fill the entire feature space R9, but would rather con-
centrate near a certain (embedded) manifold of dimension 2. Using the construction of persistent
homology (Barannikov, 1994; Robins, 1999; Edelsbrunner et al., 2002; Zomorodian & Carlsson,
2004), the vehicle of TDA, it was shown by Carlsson et al. (2008) that said manifold, in fact, has a
topological structure very similar to that of the Klein bottle K.

It was proposed by Perea & Carlsson (2014) to utilize this knowledge to build low-parameter dic-
tionaries of natural textures. More recently, it was proposed by Gabrielsson & Carlsson (2018);
Carlsson & Gabrielsson (2020); Love et al. (2023) to directly incorporate said topological structure
into CNNs – authors refer to these as Topological CNNs (TCNNs). The idea is clear: by design (Le-
Cun et al., 1989), convolutional filters of CNNs are meant to detect repeating motifs of small image
patches, activating most on patches they are most co-aligned with – so if certain structure is present
in typical image patches, a similar, dual structure should emerge in the filters of a trained CNN, this
is exactly what Gabrielsson & Carlsson (2018) observed. These filters are, in fact, a certain subset
of the mentioned Gabor filters – to which we refer to as Gabor-Klein filters.
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The proposal of Love et al. (2023) with TCNNs is thus to incorporate these Gabor-Klein filters into
(at least, early) layers of CNNs by sampling these from their (Klein bottle) topology. That is done
essentially by discretizing this topology into a graph and sampling from a (discrete) distribution on
it. In contrast, our proposal is to learn a smooth distribution of informative filters on a smooth
representation of such a priori known topologies – with an appropriate genererative model.

C APPENDIX III: BACKGROUND

C.1 COVERINGS

Recall Hatcher (2002) that a covering is a continuous map (can be thought of, and so referred to, as
a projection, albeit not necessarily linear)

c : X → Y (25)

between topological spaces (where X is said to be the covering space, or simply the cover; and Y
is said to be the base), such that every point y ∈ Y has an open neighborhood Uy such that

c−1(Uy) =
∐

d∈Dy

Sd (26)

its pre-image is a discrete space Dy – a direct sum (disjoint union) of sheets Sd – open subsets of
X , such that projection from every sheet

c|Sd
: Sd → Uy (27)

is a homeomorphism. The discrete set c−1(y) of pre-images of any point y ∈ Y is called the fiber of
x. We will only consider the case when the base Y is connected, so the covering map is surjective,
and the cardinality of Dy is the same ∀y ∈ Y – this value is called the degree of the covering. One
may refer to coverings of degree n as n-sheet or n-fold. This value need not be finite – we will
consider countably infinite degree coverings.

C.1.1 UNIVERSAL COVERINGS

Two coverings of the same base space, c : X → Y and c̃ : X̃ → Y , with simply connected covers
can be shown to be equivalent – i.e. there exists a uniquely determined homeomorphism h : X → X̃
such that the diagram

X X̃

Y

h

c c̃

commutes. So in this case the covering (X , c) is determined uniquely up to said equivalence, and is
called the universal covering of Y . If the base Y is locally simply connected (i.e., any neighborhood
Uy of any point y ∈ Y contains a “smaller” neighborhood Vy ⊂ Uy which is simply connected),
then a universal covering c : X → Y exists, and can be defined constructively. Any topological
manifold (topological space that is locally Euclidean) is locally simply connected and thus admits a
universal covering.

C.1.2 EXAMPLES OF COVERINGS

The 1-sphere S1 represented as a circle of unimodular complex numbers

S1 ≃ {z ∈ C | |z| = 1} (28)

is n-sheet covered with a n ∈ N power map

f : z → zn (29)
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– any point in the circle has n pre-images.

The 1-sphere S1 represented as a unit circle centered at the origin in Euclidean plane is covered by
the real line R with a map

fS : t → (cos(t), sin(t)) (30)

– which is equivalent to first factorizing R

f·/2πZ : t → t mod 2π (31)

by the 2πZ-lattice (which provides a covering of [0, 2π), where the endpoints 0 and 2π are identified
– with R), and then applying fS (which, on [0, 2π) is already injective, so the important part is taking
the quotient (31)). With that R is, in fact, made to be the universal cover of S1.

An n-torus, being a product of 1-spheres,

Tn ≃ S1 × · · · × S1︸ ︷︷ ︸
n copies

(32)

is thus universally covered with the product Rn, by factorizing each coordinate with (31).

C.2 MEASURE AND PROBABILITY

Any topological space X can be equipped with a Borel sigma-algebra B(X ) – the smallest sigma-
algebra containing all sets obtainable with the operations of countable union, countable intersection
and relative complement to open (or equivalently – closed) subsets of X .

A topological space with its sigma-algebra (X ,A) is called a measurable space if it can be equipped
with a measure – a function m : A → R ∪ {±∞} from A to the extended real line such that:

1. non-negative: ∀A ∈ A : m(A) ≥ 0,
2. m(∅) = 0 where ∅ is the empty set,
3. countably-additive: m (

⋃∞
i=1 Ai) =

∑∞
i=1 m(Ai) for any {Ai}∞i=1 – countable collection

of pairwise disjoint sets in A,

On the real line R (and, by extension, on any n-dimensional Euclidean space Rn) we will only
consider the “natural” measure – Lebesgue measure λ.

A measurable space (X ,A) with a measure m on it – (X ,A,m) is called a measure space. In
probability theory, one considers probability spaces – i.e. measure spaces (Ω,F , P ), such that

1. Ω is a non-empty set of elementary events (outcomes), called the sample space,
2. F is a sigma-algebra on it,
3. P is a certain measure on F , called a probability measure: it assigns a measure equal to

1 to the whole sample space, P (Ω) = 1.

C.2.1 PUSHFORWARD

Given two measurable spaces (X ,AX ) and (Y,AY), a measurable mapping between them

f : X → Y (33)

– i.e. such that the pre-image of any AY ∈ AY is an element of AX :

f−1(AY) = {x ∈ X | f(x) ∈ AY} ∈ AX , (34)

and a measure mX : AX → [0,+∞], a “pushforward of mX by f”, denoted by f∗mX , given by

f∗mX (AY) = mX (f−1(AY)) ∀AY ∈ AY (35)

is a measure on (Y,AY).
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C.2.2 RANDOM VARIABLES

Given a probability space (Ω,F , P ), a random variable (RV) X , taking values in X ((X ,AX ) is a
measurable space) is a measurable mapping

X : Ω → X . (36)

Assume (X ,AX ) is equipped with some “reference” measure mX . Oftentimes the codomain X is
taken to be Rn, with AX being the Borel sigma-algebra B(Rn) on it, and the reference measure is
Lebesgue measure λ on B(Rn).

If the pushforward X∗P is absolutely continuous w.r.t. the reference measure mX (required to be so-
called sigma-finite), denoted X∗P ≪ mX (i.e., for any mX -measurable set A ∈ AX , mX (A) = 0
implies X∗P (A) = 0), then the Radon-Nikodym theorem states the existence of a function pX :
X → [0,∞), which is mX -measurable, such that:

X∗P (A) =

∫
A

pX dmX (37)

– called probability density function (PDF) of RV X . The integral here is in Lebesgue integral,
which can be defined in certain cases for arbitrary topological spaces. It thus measures probabilities
of events A ∈ AX – that X takes certain values:

Pr(X ∈ A) =

∫
X−1A

dP =

∫
A

pX dmX . (38)

We will refer to PX (measure on AX ) as probability distribution of RV X , meaning that:
dPX = d(X∗P ) = pX dmX . (39)

Standard notation for “random variable X follows distribution PX” reads:
X ∼ PX or equivalently X ∼ pX . (40)

C.2.3 EXPECTATIONS

For a RV X ∼ PX one can compute expectations of measurable functions f : X → R (where R is
equipped with Borel sigma-algebra B(R) and Lebesgue measure λ)

EPX
f(X) =

∫
Ω

f ◦X dP =

∫
X
f dPX , (41)

where the subscript of EPX
(somewhat redundant in this case) means we are averaging f(X) with

PX . This (41) is sometimes referred to as the law of the unconscious statistician (LOTUS).

Now consider a sequence of measurable mappings:

Ω
X→ X f→ Y g→ R (42)

– so X ∼ PX is a RV on X , Y = f(X) is a RV on Y , and we consider a measurable function g of
Y . If

Y ∼ f∗PX (43)
– the distribution of Y is a pushforward of PX , then, if g ◦ f is integrable w.r.t. PX , it holds true
(see Theorem 3.6.1 in Bogachev (2007)) that∫

Y
g d(f∗PX) =

∫
X
g ◦ f dPX (44)

iff g ◦ f is integrable w.r.t. PX . Note that the mapping f is not required to be injective – if so, to
compute the contribution of a certain point y ∈ Y (more precisely, its “small” open neighborhood
Uy ⊃ y) to the LHS of (44), one has, by definition of pushforward (35), to sum over all pre-images:∫

Uy

g d(f∗PX) =

∫
f−1(Uy)

g ◦ f dPX , (45)

which can be nontrivial. Luckily, though, if one is only looking to compute the expectation of g(Y ),
where Y ∼ f∗PX , then, by LOTUS (41),

Ef∗PX
g(Y ) =

∫
X
g ◦ f dPX (46)

– if integrating over the whole X is somehow easier, one can just do that.
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C.2.4 MONTE-CARLO

In practice, computing expectations of (measurable) functions f : X → R of a RV X ∼ PX is
often done with Monte-Carlo (MC) methods: given access to a generator of (independent) random
samples

Xn = {xi}ni=1, where xi ∼ PX , (47)
the expectation is approximated with large (n≫1) sample average:

EPX
f(X) ≈ 1

n

n∑
i=1

f(xi). (48)

C.3 LIE GROUPS

A Lie group G is a smooth (real, finite-dimensional) manifold that also possesses a structure of a
group – that is, group operations (multiplication and inversion), are smooth maps (see e.g. Kirillov
(2008) for a detailed introduction). Formally, it is enough to require that:

(x, y) → x−1y (49)

is a smooth mapping from G×G to G. Many examples of Lie groups are subgroups of the general
linear group GL(n,R) of invertible n×n matrices (with matrix multiplication as group product).

C.3.1 LIE ALGEBRA

The Lie algebra g of an n-dimensional Lie group G is its tangent space (G is a smooth manifold)
at 1G – the identity group element. g is an n-dimensional vector space of “infinitesimal generators”,
from which elements of G can be obtained with the exponential map.

C.3.2 EXPONENTIAL MAP

The exponential map
exp(·) : g → G (50)

maps elements of the algebra g to elements of the group G – e.g. exp(0) = 1G. The exponential
map is surjective if G is compact and connected, but, in general, not injective – so the inverse of
exp(·), the logarithm map, log(·) – is in general multi-valued.

C.3.3 ADJOINT

The Lie algebra g of a Lie group G is naturally equipped with a binary operation called the Lie
bracket [·, ·] : g×g → g, which is bilinear, and ∀x ∈ g, [x, x] = 0. With it, one defines the adjoint
representation of x ∈ g:

adx(y) = [x, y]. (51)

C.3.4 EXAMPLES

An illustrative example of a Lie group is the 1-sphere S1 – consider it embedded to R2 as a unit
circle centered at the origin. Any point on the circle is specified by the angle φ – it can be obtained
by taking the vector (1, 0)T and acting on it with a matrix:

Rφ =

(
cosφ − sinφ
sinφ cosϕ

)
. (52)

This is the matrix representation of SO(2) – special orthogonal group (group of rotations of the 2D
plane), acting on the circle. Note that

Rφ = exp

[
φ

(
0 −1
1 0

)]
(53)

– any group element Rφ is given by the matrix exponential (which is a smooth map)

exp(X) =

n∑
k=0

Xk

k!
(54)
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of the single basis element of the Lie algebra g spanned by this matrix of “infinitesimal” rotation –
including R0 = I2, 2×2 identity matrix which is the group identity element 1G. Thus (53) provides
the exponential map from the Lie algebra g ≃ R, where the rotation angle φ “lives” – one can add
and subtract rotation angles; to the Lie group G = SO(2) ≃ S1.

Note that this Lie exponential map (54) Rφ : R → SO(2) ≃ S1 is smooth in its argument angle
φ – everywhere except at one infinity point. Modulo the latter, it can be thus said to be a global
diffeomorphism. The angle φ in it, however, is defined modulo 2π – at that, Rφ is also an infinite-
sheet covering of S1 with R. But such a covering can be constructed even simpler: as the following
quotient-ing map (same as (31):

fR/2πZ : t → (t mod 2π) (55)

– that covers with R an interval [0, 2π] with endpoints identified. Note that this covering map is,
sheet-wise, just an identity projection, so its Jacobian clearly equals one except at the endpoints
where this map is continuous but not smooth, as opposed to the matrix exponential map (52). Jaco-
bian of the latter everywhere from on R, by the Pythagorean theorem, also equals one, so a pushfor-
ward of standard Borel measure R (Lebesgue measure λ in this case) by either of these maps is very
simple – one just needs to sum Lebesgue measures of pre-images of any subset of the covering base
S1, without any non-unitary weights obtained from the Jacobian.

C.3.5 HAAR MEASURES

The Haar measure µHaar is a canonical way to equip a Lie group G (or generally any locally
compact Hausdorff topological group) with the measure structure. It is defined as a regular Borel
measure that is left-invariant under the group action: for any Borel set S ⊆ G and for any g ∈ G,
we have µHaar(gS) = µHaar(S).

Haar measures always exist and are unique up to a positive scaling factor; when G is compact, the
Haar measure can be normalized to be a probability measure.

C.4 VARIATIONAL AUTOENCODERS

Variational autoencoders (VAEs) (introduced in Kingma & Welling (2013), see also Kingma et al.
(2019) for a detailed introduction) are a family of generative models: given a training sample Xn

of data (points in the data space X ), a VAE learns to map small subsamples (batches) of it onto
the space Z of “latent” parameters describing the distribution this subsample came from – so sim-
ilar datapoints can be sampled from it. This can be understood from the perspective of Bayesian
inference: Bayes’ theorem states

p(z|x) = p(x|z) p(z)
p(x)

(56)

that the posterior probability p(z|x) of (latent) parameter z taking a certain value for a datapoint x
– is given by the likelihood p(x|z) of observing this datapoint given z; times the prior probability
p(z) of such z; divided by the evidence p(x) of the datapoint x. The latter is a source of a problem:

p(x) =

∫
Z
p(x|z) p(z) dz (57)

might be intractable (especially if the dimension of Z is high). This is mitigated with the technique
of variational inference – instead of computing the exact posterior p(z|x), one aims to find an
approximation qθq (z|x) – thus called the variational posterior (VP) – such that

KL(qθq (z|x) || p(z|x)) → min
θq

(58)

the Kullback–Leibler divergence

KL(q(z) || p(z)) =
∫
Z
q(z) log

q(z)

p(z)
dz (59)

between them is minimized. It can be shown (by Jensen inequality) that KL-divergence is non-
negative, and zero iff q=p (as measures), so minimizing it makes distributions similar. Minimization
in (58) is done in a sense that q is chosen from some family of probability distributions (called the
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variational family), a representative of which is chosen by setting the parameters θq equal to some
value. Since (58) still involves the true posterior p(z|x), one uses the following observation:

log p(x) = Ez∼q log
p(x, z)

q(z|x)
+ KL(q(z|x) || p(z|x)) (60)

that (log-)evidence, which does not depend on z and thus on parameters θq of q, is bounded from
below (since KL-divergence is always ≥ 0) with the first term in (60), which is thus called evi-
dence lower bound (ELBO). So instead of minimizing KL between q and p(z|x), one can as well
maximize ELBO, which can be rewritten (with (56)) as:

ELBO(θq) = Ez∼q log p(x|z)− KL(q(z|x) || p(z)) (61)

Notably, both terms of (61) are expectations w.r.t. q – so, if one can sample z ∼ q, these can be
computed with Monte-Carlo (48).

In VAEs, q(z|x) and p(x|z) are given by neural networks. The encoder network, parameterized
with Wenc, given a batch of input data x, outputs parameters θq

θq = encoderWenc(x) (62)

of the VP q, which is typically chosen to come from the family of normal distributions N (µ,Σ)
(with θq = (µq,Σq)) on the latent space Z , which is Euclidean space RD. If the prior p(z) is also
chosen to be a normal distribution with parameters θprior, then the KL term of ELBO (61) admits a
closed-form analytic expression in terms of θq and θprior.

The decoder network, parameterized with Wdec, given a (random) sample point

z ∼ qθq(x) (63)

(q parameterized with θq output by the encoder), outputs

θp(x|z) = decoderWdec(z) (64)

the parameters θp(x|z) of the likelihood p(x|z) of the datapoint x. If x is e.g. a binary image, the
likelihood p(xi|z) of its pixels xi can be set to Bernoulli distribution, with θp(xi|z) ∈ [0, 1] being its
parameter.

A VAE model is thus trained by optimizing ELBO w.r.t. the parameters W = (Wenc,Wdec) of the
network – typically by some version of stochastic gradient descent (SGD). Since sampling (63) a
point z from the VP qθq is part of computing the optimization objective function (the “forward pass”
of a VAE), to train a VAE one has to compute the gradient of this (stochastic) mapping w.r.t. θq
(and then “backward pass” the gradient to Wenc). This can be done with the technique known as the
reparameterization trick Kingma & Welling (2013); Rezende et al. (2014): if the VP qθq is chosen
to be a normal distribution, then to obtain a random sample z∼q = N (µq,Σq), one can

1. sample from the standard normal ε ∼ N (0, I)

2. apply a loc-scale transform z = rθq (ε) = µ+Σ1/2 ε

(where Σ1/2 can be found from the covariance matrix Σ with e.g. Cholesky decomposition). With
that one decomposes the stochastic mapping (63) into deterministic rθq reparameterization mapping,
and stochastic sampling mapping z∼N (0,Σ) that has no parameters to optimize.

22


	Introduction
	The Klein bottle & its topology in image data

	Reparameterization in different topologies
	Euclidean density reparameterization, Spheres
	Lie group density reparameterization
	Covered spaces: circle, Klein bottle
	RVC on the circle of S1
	Inequality on KL under coverings, RVC on the Klein bottle


	Conclusion
	Appendix I: Experiment, KleinVAE
	Artificial Circles dataset
	Ablation study

	Appendix II: Outlook
	Bayesian learning
	Priors for Topological Deep Learning: Klein bottle in vision

	Appendix III: Background
	Coverings
	Universal coverings
	Examples of coverings

	Measure and probability
	Pushforward
	Random variables
	Expectations
	Monte-Carlo

	Lie groups
	Lie algebra
	Exponential map
	Adjoint
	Examples
	Haar measures

	Variational Autoencoders


