
Intersecting-Boundary-Sensitive Fingerprinting for Tampering Detection of
DNN Models

Xiaofan Bai * 1 2 3 4 5 Chaoxiang He * 1 2 3 4 5 Xiaojing Ma 1 2 3 4 5 Bin Benjamin Zhu 6 Hai Jin 7 2 3 8

Abstract

Cloud-based AI services offer numerous ben-
efits but also introduce vulnerabilities, allow-
ing for tampering with deployed DNN mod-
els, ranging from injecting malicious behaviors
to reducing computing resources. Fingerprint
samples are generated to query models to de-
tect such tampering. In this paper, we present
Intersecting-Boundary-Sensitive Fingerprinting
(IBSF), a novel method for black-box integrity
verification of DNN models using only top-1 la-
bels. Recognizing that tampering with a model al-
ters its decision boundary, IBSF crafts fingerprint
samples from normal samples by maximizing the
partial Shannon entropy of a selected subset of
categories to position the fingerprint samples near
decision boundaries where the categories in the
subset intersect. These fingerprint samples are al-
most indistinguishable from their source samples.
We theoretically establish and confirm experimen-
tally that these fingerprint samples’ expected sen-
sitivity to tampering increases with the cardinality
of the subset. Extensive evaluation demonstrates
that IBSF surpasses existing state-of-the-art fin-
gerprinting methods, particularly with larger sub-
set cardinality, establishing its state-of-the-art per-
formance in black-box tampering detection using
only top-1 labels. The IBSF code is available
at: https://github.com/CGCL-codes/
IBSF.
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Figure 1. Potential adversarial tampering attacks on deployed mod-
els and the use of tampering detection to thwart them.

1. Introduction
Deep neural networks (DNNs) have made significant strides
across various domains, such as in computer vision (He
et al., 2016; Redmon et al., 2016; Long et al., 2015). To
broaden the utilization of DNN models, cloud providers
offer AI platforms like Microsoft Azure ML (Microsoft
Azure, 2023), Google AutoML (Google Cloud, 2023), and
Amazon SageMaker (Amazon Web Services, 2023). These
platforms enable users to deploy their DNN models in the
cloud, enhancing accessibility and scalability.

However, deploying DNN models in the cloud introduces
several security risks, as depicted in Fig. 1. Notably, ad-
versaries may exploit deployed DNN models through Tro-
jan (Liu et al., 2018) or backdoor attacks (Gu et al., 2019),
introducing malicious behavior. Furthermore, Unethical
model providers might maliciously alter a competitor’s
model to undermine its performance and gain a competitive
advantage. Additionally, dishonest cloud service providers
could surreptitiously replace a deployed model with a sim-
pler, compressed version to cut operational costs. These
actions jeopardize the integrity and reliability of cloud-
deployed DNN models.

To address these threats, various fingerprinting techniques
have been proposed for tampering detection in deployed
DNN models (He et al., 2019; Wang et al., 2023). These
techniques verify deployed models by querying them with
fingerprint samples, akin to normal queries. Given that de-
ployed models often return only the top-1 category labels in
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real-world applications, fingerprint samples must effectively
differentiate the authentic model (referred to as the target
model of fingerprints) from tampered models by yielding
different top-1 label values. Thus, fingerprint samples must
be highly sensitive to any alterations in the target model,
ensuring that modifications lead to distinct label outputs for
the same fingerprint sample. During the verification process,
one or several fingerprint samples may be employed to query
the model. The higher the sensitivity of these samples, the
fewer are needed for effective verification, thus enhancing
the efficiency of fingerprinting.

Several fingerprinting methods have been proposed.
Sensitive-sample fingerprinting (SSF) (He et al., 2019) and
its variants (Docena et al., 2021; Kuttichira et al., 2022)
use a white-box approach to craft fingerprint samples for
the target model by approximating and maximizing their
sensitivity to tampering. In contrast, PublicCheck (Wang
et al., 2023) employs a generative model to produce finger-
print samples positioned near the decision boundary of two
intersected categories of the target model using a black-box
approach. Among these methods, PublicCheck achieves
state-of-the-art (SOTA) performance for integrity verifica-
tion of DNN models. The fingerprint samples generated by
these methods appear natural and are nearly visually indis-
tinguishable from normal samples, thwarting adversaries’
attempts to identify them for integrity verification (He et al.,
2019). Additionally, to enable public integrity verification,
(Wang et al., 2023) introduces a trusted third party to dis-
tribute fingerprint samples, allowing any interested party to
verify if the deployed model has been tampered with.

In this paper, we propose a novel fingerprinting method,
Intersecting-Boundary-Sensitive Fingerprinting (IBSF).
Based on the understanding that tampering with a model
inevitably alters its decision boundary, IBSF strategically po-
sitions fingerprint samples near decision boundaries where
K categories intersect (referred to as K-intersecting bound-
aries) of a target model for tampering detection. We formally
define the sensitivity of samples to model tampering as the
divergence of prediction vectors before and after tampering,
measured with cross-entropy. Assuming that model tam-
pering generally induces local boundary shifts that follow
a probabilistically isotropic distribution, we theoretically
establish that the tampering sensitivity of fingerprint sam-
ples located on the decision boundary increases with K, i.e.,
the number of intersected categories at its located boundary.
Leveraging this analysis, IBSF employs partial Shannon en-
tropy loss to effectively and efficiently locate K-intersecting
boundaries and generate highly sensitive fingerprint sam-
ples near them, starting from normal samples. Generated
fingerprint samples are almost indistinguishable from their
source samples.

Similar to most existing fingerprinting methods (He et al.,

2019; Docena et al., 2021), IBSF generates fingerprint sam-
ples with white-box access to the target model. This dif-
fers from PublicCheck (Wang et al., 2023), which employs
black-box access to the target model in generating finger-
print samples. We argue that the practical advantage of
black-box generation of fingerprint samples is negligible
due to the very purpose of generating these fingerprint sam-
ples. Fingerprint samples can be generated by the model
owner or a delegated party with access to the target model
and sent to a trusted third party to provide fingerprint sam-
ples for public integrity verification. In this scenario, there
is no need for any party to generate fingerprint samples in
a black-box manner. Moreover, black-box generation of
fingerprint samples introduces an additional risk: the model
used in generating fingerprint samples cannot be verified
and thus may already be tampered with, leaving a loophole
for adversaries to evade fingerprint detection. On the other
hand, IBSF conducts integrity verification of a deployed
model in a black-box manner, similar to SSF (He et al.,
2019) and PublicCheck (Wang et al., 2023). Only top-1
category labels are used in our integrity verification.

We conduct extensive experiments on three widely used
datasets, CIFAR10, GTSRB, and ImageNet, to evaluate
IBSF and compare it with two leading fingerprinting meth-
ods, SSF (He et al., 2019) and PublicCheck (Wang et al.,
2023). Our evaluation encompasses various tampering sce-
narios, including backdoor and Trojan attacks, bit-flipping
attacks, poisoning degradation attacks, targeted attacks, and
model compression. The results consistently showed that
IBSF outperformed existing methods across different types
of tampering and datasets, highlighting its effectiveness in
detecting DNN model tampering.

Our major contributions can be summarized as follows:

• We conduct theoretical analyses of fingerprint samples’
sensitivity to model tampering and its relationship to
K-intersecting boundary. We establish that sensitivity
increases with K when the local decision boundary
shifts due to model tampering following an isotropic
probability distribution.

• Based on our theoretical analyses, we propose
intersecting boundary sensitive fingerprinting (IBSF),
a novel fingerprinting method that maximizes the sen-
sitivity of generated fingerprint samples by positioning
them near boundaries where more categories intersect.

• We propose using partial Shannon entropy loss to effec-
tively and efficiently locate K-intersecting boundaries
for a selection of K categories.

• We conduct extensive empirical evaluations to demon-
strate IBSF’s superior performance over existing SOTA
fingerprinting methods, including SSF and Public-
Check, and its robustness against adaptive attacks when
a large number of fingerprint samples are leaked.
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2. Related Work
2.1. Black-box Integrity Verification

Black-box integrity verification of DNN models has been
explored using watermarking and fingerprinting techniques.
Watermarking (Zhu et al., 2021) involves embedding a
unique signature or pattern into the model during training.
This embedded watermark can subsequently be queried with
specific inputs to compare the model’s output with the wa-
termark for integrity verification of the model. However,
watermarking necessitates modifications to the model dur-
ing training, which could potentially impact its performance
or efficiency.

In contrast, fingerprinting techniques, such as Sensitive-
Sample Fingerprinting(SSF) (He et al., 2019), do not re-
quire modification to the model. They generate a set of
sensitive samples that elicit distinct responses from mod-
els with slight parameter variations from the target model.
These generated samples serve as fingerprints for integrity
verification, with their responses being used to assess the
integrity of the target model.

While fingerprinting techniques have also been employed for
intellectual property (IP) protection (Cao et al., 2021; Wang
& Chang, 2021; Lukas et al., 2021; Wang et al., 2021; Chen
et al., 2021; Li et al., 2021; Zhao et al., 2020; Le Merrer
et al., 2020; Yang et al., 2022; Pan et al., 2022), our focus
here is on fingerprinting for integrity verification.

2.2. Fingerprinting Techniques for Integrity Verification

Sensitive-Sample Fingerprinting (SSF) (He et al., 2019)
pioneered fingerprinting for detecting tampering in DNN
models. It defines the sensitivity of a model to tamper-
ing and maximizes it to generate a collection of sensitive
and visually natural samples that elicit significant output
changes in response to parameter variations. SSF selects a
subset of these samples to achieve maximum coverage of
activated neurons, which then serve as fingerprint samples
for integrity verification of the model.

Following the seminal work of SSF, symbolic constraint
solvers are used in (Docena et al., 2021), and Bayesian
optimization (BO) is used in (Kuttichira et al., 2022) to solve
SSF’s optimization problem in generating sensitive samples.
PublicCheck (Wang et al., 2023) employs generative models
to generate fingerprint samples with black-box access to the
target model. It searches for the decision boundary that
separates two different categories and generates fingerprint
samples located in close proximity to the found decision
boundary.

Both AID (Aramoon et al., 2021) and Decision-based Frag-
ile Watermarking (DBFW) (Yin et al., 2023) generate fin-
gerprint samples with uniform probability vectors by mini-

mizing the logit and probability variance between different
labels, respectively, utilizing mean square error (MSE) loss
functions. The fingerprint samples generated by these meth-
ods exhibit similarities to those produced by our IBSF at
decision boundaries where all categories intersect. However,
unlike these methods, our IBSF is robustly supported by
theoretical analysis of the relationship between fingerprint
sensitivity and decision boundaries. Additionally, our IBSF
employs a more efficient loss function, partial Shannon in-
formative loss, compared to the MSE loss used in AID and
DBFW.

All the above fingerprinting techniques utilize top-1 labels
returned by the tested model to verify integrity. Our pro-
posed method, IBSF, also follows this integrity verification
paradigm.

3. Decision Boundary and Sample Sensitivity
In this paper, we focus on tampering detection for DNN
models of classification tasks. This section begins by defin-
ing the decision boundary of a DNN model and the sensitiv-
ity of tampering detection. We then analyze the relationship
between the decision boundary, where K categories inter-
sect, and detection sensitivity.

3.1. Decision Boundary of DNN Models

A DNN can be represented as a function f parameterized by
parameters W , mapping an input sample x to an output vec-
tor y, where y “ fpW,xq. In classification tasks, an output
vector typically represents the probabilities associated with
various categories.

Definition 3.1 (Decision Boundary of a DNN Model).
The decision boundary is the hypersurface where the model
changes its classification decision from one class to another,
i.e., where the model assigns equal probabilities to two or
more classes. For multi-class classification problems, the
decision boundary between any two classes i and j can be
represented as:

fipW,xq “ fjpW,xq (1)

where fi and fj are the model’s predicted probabilities of
classes i and j, respectively.

In classification tasks with C categories, when sample x is
positioned near the decision boundaries where kpk ď Cq

categories intersect, the predicted probabilities of these k
categories will be very close while significantly higher than
those of the remaining C ´ k categories.

3.2. Sample Sensitivity in Tampering Detection

Tampering with a DNN model involves modifying the
model’s parameters W . We denote model tampering as
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∆W . This alteration inevitably changes the decision bound-
ary of the model and affects the predictions of some samples,
forming the basis for black-box tampering detection using
fingerprint samples.

Definition 3.2 (Sample Sensitivity to Model Tampering).
For a given model tampering ∆W , the sensitivity of a sam-
ple x to ∆W is the prediction divergence of x when ∆W is
applied:

Spxq “ DpfpW,xq}fpW`∆W,xqq “ Dpy}y`∆yq (2)

where Dp¨}¨q denotes a divergence measure function of two
probability vectors, y represents the prediction vector be-
fore tampering ∆W , and ∆y represents the change in the
prediction vector induced by ∆W .

Sample sensitivity measures the extent to which a sample’s
prediction deviates from the original when subjected to tam-
pering. Effective fingerprint samples for tampering detec-
tion must be sensitive to various types of model tampering,
including those unknown at the time of their creation, rather
than being specific to only one type.

Definition 3.3 (Expected Sample Sensitivity over Model
Tampering Distribution). For a given model tampering
distribution ∆W „ Φ, the sensitivity of a sample x over Φ
is the expected prediction divergence of x when ∆W „ Φ
is applied:

Spxq “ E∆W„ΦpDpfpW,xq}fpW ` ∆W,xqqq

“ E∆ypDpy}y ` ∆yqq
(3)

where E represents the expectation function.

We utilize cross-entropy as the divergence measure function,
as it is commonly used in classification tasks. The cross-
entropy between two probability vectors P and Q is defined
as:

HpP,Qq “ ´
ÿ

i

Qi logPi (4)

where i is a category index.

Combining Eq. 3 and Eq. 4, we have:

Spxq “ E∆yp´
ÿ

i

pyi ` ∆yiq log yiqq

“ p´
ÿ

i

pyi ` Ep∆yiqq log yiq
(5)

This equation illustrates that, for a given sample x and a
model tampering distribution Φ to detect, sample sensitivity
to the tampering distribution can be optimized by sampling
∆W from Φ and calculating the empirically estimated ex-
pectation of prediction change Ep∆yq. While this approach
is general, it is challenging to execute and find the optimal
solution. In the following subsection, we will focus on the
local decision boundary around which a fingerprint sample

category A
category B

category C

PublicCheck
BIFS (ours)
decision boundary

category A
category B

category C

PublicCheck
BIFS (ours)
decision boundary

(a) (b)

Figure 2. Illustration of IBSF. (a): The blue triangles represent nor-
mal samples, while the red diamonds represent fingerprint samples
generated by IBSF. Due to the proximity of the fingerprint samples
to the decision boundary, they are sensitive to shifts of the decision
boundary. (b): The blue triangles represent fingerprint samples
located at the intersecting decision boundary of two categories,
while the red diamonds represent fingerprint samples located at
the intersecting decision boundary of three categories.

is located, and assume a local model tampering distribution
around this location, instead of optimizing Eq. 5 with a
global model tampering distribution. This approach will
establish the relationship between the decision boundary
where K categories intersect (referred to as K-intersecting
boundary) and sample sensitivity.

3.3. Relationship between K-Intersecting Boundary and
Sample Sensitivity

When a classification model is tampered with, its parame-
ters change, inevitably altering the decision boundary. For
black-box integrity verification of DNN models with top-
1 category labels, fingerprint samples should be located
around the decision boundary to be sensitive to changes
in its local decision boundary, thus detecting whether the
model has been tampered with or not. As shown in Fig. 2(a),
any attempt to tamper with a DNN model results in a shift of
the model’s decision boundary, and this shift may alter the
model’s predicted category labels for fingerprint samples lo-
cated around the local decision boundary, thereby triggering
detection.

For a fingerprint sample, we can focus on the local decision
boundary around which the fingerprint sample is located.
Model tampering can alter the local decision boundary in
different directions. We assume that model tampering alters
the local boundary in any direction with equal probability,
i.e., the local model tampering distribution is an isotropic
probability. With this assumption, the expected prediction
change would be zero, i.e., Ep∆yiq “ 0 for each category i.
Proposition 3.4. Given that model tampering induces an
expected prediction change of zero, i.e., Ep∆yiq “ 0, the ex-
pected sensitivity of samples located on pk`1q-intersecting
boundaries is greater than that of those located on k-
intersecting boundaries.

Proof. Combining Ep∆yiq “ 0 and Eq. 5, we obtain:

Spxq “

C
ÿ

i“1

´yi ¨ log yi (6)
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This is Shannon entropy. Suppose xp1q and xp2q

are fingerprint samples located on pk ` 1q- and k-
intersecting boundaries, respectively, with prediction vec-
tors of yp1q “

´

1
k`1 ,

1
k`1 , ...,

1
k`1 , 0, ..., 0

¯

and yp2q “
`

1
k ,

1
k , ...,

1
k , 0, ..., 0

˘

. Substituting these prediction vec-
tors into Eq. 6, we obtain their expected sample sensitiv-
ities: Spxp1qq “ logpk ` 1q and Spxp2qq “ log k. Since
Spxp1qq ą Spxp2qq, we conclude that the expected sensitivity
of the samples located near pk ` 1q-intersecting boundaries
is higher than that of the samples located near k-intersecting
boundaries.

Proposition 3.4 establishes that samples located on decision
boundaries where more categories intersect exhibit higher
expected detection sensitivity to model tampering.

Proposition 3.5. The maxima of Eq. 6 can be achieved when
fingerprint samples are located on C-intersecting bound-
aries, where C is the number of categories, and yi “ 1

C for
every category index i.

Proof. We employ the Lagrange multipliers method to solve
the constrained optimization problem of Spxq “

řC
i“1 ´yi ¨

log yi with
řC

i“1 yi “ 1 to prove that its maxima occur
when yi “ 1

C .

First, we formulate the Lagrangian function by introducing
a Lagrange multiplier λ:

Lpy1, . . . , yC , λq “

C
ÿ

i“1

´yi ¨ log yi `λ

˜

C
ÿ

i“1

yi ´ 1

¸

(7)

To find the maxima of Eq. 7, we calculate the partial deriva-
tives of L with respect to each yi, and set them to zero:

BLpyi, λq

Byi

“
Br´pyi ¨ log yi `

řC
j‰i yj ¨ log yjq ` λ ¨ pyi `

řC
j‰i yj ´ 1qs

Byi

“ ´ log yi ´ 1 ` λ “ 0
(8)

Solving Eq. 8 for yi, we have:

´ log yi “ 1 ´ λ ñ log yi “ λ ´ 1 ñ yi “ eλ´1 (9)

Due to the symmetry in the derivatives (none of the deriva-
tives depend specifically on i), all yi are equal. Summing
them up and using the constraint:

C
ÿ

i“1

eλ´1 “ 1 ñ C ¨ eλ´1 “ 1 ñ eλ´1 “
1

C
ñ yi “

1

C

(10)

Lastly, we confirm that the solution indeed represents a
maximum. First, the sign of the second derivatives of Spxq

with respect to each yi is negative: B
2S

By2
i

“ ´ 1
yi

, indicating it
is a local maximum. Second, since Spxq is a sum of convex
functions, the entire function is convex. Any local extremum
for a convex function is a global extremum. Thus we can
conclude that Spxq is maximized when each yi is uniformly
distributed as 1

C .

4. Intersecting-Boundary-Sensitive
Fingerprinting (IBSF)

4.1. Threat Model

We adopt a threat model comprising white-box generation
and black-box verification. Specifically, during the gener-
ation of fingerprint samples, we assume white-box access
to the target DNN model, utilizing a set of available nor-
mal samples as source data. However, during the model’s
integrity verification using the generated fingerprint sam-
ples, we assume that the access to test model is black-box:
only querying the model with samples in a standard opera-
tional manner is permitted. Additionally, we assume that the
model only provides its top-1 prediction label in response to
a query sample, without disclosing extra information such
as confidence levels or prediction vectors.

Moreover, we assume the presence of a trustworthy third
party responsible for securely storing and distributing the
generated fingerprint samples to interested parties, facilitat-
ing public integrity verification. Conversely, we assume that
the DNN service provider lacks trustworthiness and may
detect probing fingerprint samples, thus evading tampering
detection. Additionally, we assume that adversaries may
gain access to some fingerprint samples, either through self-
generation or collection from confederates, and exploiting
them to bypass tampering detection.

4.2. IBSF Method

It’s well established that in targeted adversarial attacks, a
slight, nearly imperceptible modification to any input sam-
ple can cause a DNN model to classify it as any predeter-
mined target label. Leveraging this property, we generate
a fingerprint sample from a normal input sample by intro-
ducing a small, imperceptible perturbation to position the
resulting fingerprint sample at an intersecting boundary of
selected categories. Specifically, given a normal input data
point x P X and a subset of categories Csub Ď C, where C is
the set of categories in the classification task, we create a fin-
gerprint sample by adding a perturbation ∆x to x, guiding
x ` ∆x toward a decision boundary where each category in
Csub intersects.

When the fingerprint sample is situated around an inter-
secting boundary where categories in Csub intersect, the
prediction probabilities of these categories should be ap-
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proximately equal, while the prediction probabilities of cat-
egories not in Csub should be close to zero. This objective is
achieved by maximizing the partial Shannon entropy of the
categories in Csub:

Hpartialpx, Csubq “ ´
ÿ

iPCsub

yi ¨ log yi (11)

where yi “ fipxq represents the output probability of the
i-th category. When Eq. 11 reaches its maximum, the predic-
tion probabilities of categories in Csub are equal, indicating
that the fingerprint sample is positioned near a decision
boundary where the categories in Csub intersect.

Consequently, the optimization problem for IBSF can be
formalized as:

argmax∆x Hpartialpx ` ∆x, Csubq

s.t. }∆x}p ď ϵ
(12)

The constraint }∆x}p ď ϵ limits the perturbation within an
ϵ-ball under the Lp norm, ensuring that the generated fin-
gerprint sample remains perceptually similar to the original
normal sample.

Eq. 12 can be iteratively solved using projected gradient
ascent as in (Kurakin et al., 2017b;a):

xk`1 “ Clipϵpxk ` η∇xk
Hpartialpxk, Csubqq (13)

where xk “ x ` ∆xk represents the generated fingerprint
sample at the k-th iteration. This optimization process even-
tually yields a sample positioned near a decision boundary
that separates categories within Csub, i.e., |Csub|-intersecting
boundary, where | ¨ | denotes the cardinality of the set. By
default, IBSF selects the top |Csub| categories of x.

When Csub “ C, Eq. 11 becomes Eq. 6. Propositions 3.4
and 3.5 indicate that fingerprint samples positioned at C-
intersecting boundaries, where C “ |C|, exhibit higher
expected sensitivity compared to those at K-intersecting
boundaries, where K ă C. However, generating fingerprint
samples located at K-intersecting boundaries with K ă C
provides additional variability and more decision boundaries
to detect tampering, making it challenging for adversaries
to evade detection even if some fingerprint samples are
compromised, as elaborated in Section 5.6.

5. Experimental Evaluation
5.1. Datasets, Models, and Baselines

To evaluate detection performance, three commonly used
datasets are adopted: CIFAR10 (Krizhevsky, 2009), GT-
SRB (Stallkamp et al., 2012), and ImageNet (Russakovsky
et al., 2015). To evaluate the effectiveness of a finger-
printing method across diverse architectures, we employ
a variety of models in our evaluation. Specifically, we use

ResNet20 (He et al., 2016) for CIFAR10, a convolutional
neural network (LeCun et al., 1995) (CNN) with 6 convo-
lution layers and 1 fully-connected layer for GTSRB, and
DenseNet121 (Huang et al., 2016) for ImageNet.

Two SOTA fingerprinting methods, SSF (He et al., 2019)
and PublicCheck (Wang et al., 2023), serve as our base-
line comparisons. We utilize the default settings outlined
in their respective papers, unless explicitly specified other-
wise. Additional implementation specifics are provided in
Appendix A. For each fingerprinting method, we generate
1000 fingerprint samples. In the case of SSF, we select 10
samples with the highest coverage of activated neurons from
a pool of 100 generated sensitive samples as fingerprint sam-
ples each time, until we obtain a total of 1000 fingerprint
samples.

5.2. Tampering Types and Settings

In our experiments, we evaluate IBSF and the baselines on
the 3 types of model tampering used by existing fingerprint-
ing papers, BadNets (Gu et al., 2017), Trojan (Liu et al.,
2018), and model compression, and three additional tam-
pering types, the bit-flipping attack (Rakin et al., 2019), the
poisoning degradation attack (Jagielski et al., 2021), and
the targeted attack (Koh & Liang, 2017; Suciu et al., 2018;
Shafahi et al., 2018). The last two tampering types are
conducted at the individual sample level to minimize modi-
fications to a target model. More details on these tampering
attacks can be found in Appendix B.

Each tampering type is executed independently 10 times,
resulting in 10 distinct models for each type. The reported
experimental results are averaged across these 10 tampered
models to mitigate randomness in evaluating tampering de-
tection performance for fingerprinting methods.

5.3. Tampering Detection: Setup and Calculation

For each tamper detection, a subset of fingerprint samples,
denoted as SF , is randomly selected from the pool of 1000
fingerprint samples to query the test model. The top-1 la-
bels returned by the model are then compared with their
ground-truth labels, which correspond to the top-1 labels
predicted by the target model. If all returned labels match
their respective ground truth labels, the model is consid-
ered untampered; otherwise, it is flagged as tampered. This
process is repeated 100 times for each test model. Since
we generate 10 tampered models for each attack type, we
conduct a total of 1000 tests for each attack type. The tam-
pering detection rate is calculated as the proportion of the
1000 tests where the tampering is successfully detected.

5.4. Perceptual Quality of Fingerprint Samples

Figure 3 displays fingerprint samples generated by IBSF
and the two baselines. These samples generally appear nat-
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Figure 3. Source images (top) from ImageNet and fingerprint samples generated from them by IBSF (2nd row), SSF (3rd row), and
PublicCheck (bottom).

ural, with almost imperceptible perturbations. Specifically,
those generated by IBSF and SSF, constrained by the same
L2 norm bound, are very similar, featuring imperceptible
pixel-level perturbations. However, PublicCheck’s sam-
ples exhibit distinctly different artifacts, characterized by
semantic-level alterations to the original images. For exam-
ple, the distorted eye region of the wolf in the 3rd column of
Fig. 3 vividly illustrates this effect. These alterations stem
from the use of generative models in crafting the fingerprint
samples, making them considerably more noticeable.

5.5. Effectiveness of Tampering Detection

Figures 4, 5, and 6 present the tampering detection rates on
CIFAR10, GTSRB, and ImageNet, respectively, of IBSF us-
ing fingerprint samples at K-intersecting boundaries, where
K P t2, 4, 6, 8, 10u for CIFAR10, K P t2, 4, 6, 8, 10, 20u

for GTSRB, and K P t2, 4, 6, 8, 100, 500u for ImageNet,
alongside the two baselines. Key observations include:

Detection performance improves with increasing K: In-
creasing K notably enhances detection rates, consistent
with our theoretical analysis of fingerprint sensitivity and
K-intersecting boundaries. For instance, for targeted attacks
on CIFAR10, IBSF’s detection rate using a single finger-
print sample increases from 35.7% at K “ 2 to 65.2% at
K “ 10, almost doubling the detection rate.

IBSF surpasses existing SOTA methods: IBSF generally
outperforms the two SOTA baselines, although exceptions
arise for IBSF at K “ 2 when using a single fingerprint sam-

ple to detect Trojan attacks: its detection rate is 3.7% and
2.1% lower than SSF on CIFAR10 and GTSRB, respectively.
This discrepancy can be attributed to SSF’s susceptibility to
modifications in the last fully connected (FC) layer, which
Trojan attacks heavily affect. As K increases, IBSF grad-
ually outperforms SSF, with improvements of up to 16.7%
on CIFAR10 and 18.5% on GTSRB at K “ 10. Similarly,
while IBSF at K “ 2 exhibits comparable performance
to PublicCheck with a single fingerprint sample due to a
shared underlying mechanism, it outperforms PublicCheck
significantly as K increases. For example, at K “ 10,
IBSF detects targeted attacks on CIFAR10, GTSRB, and
ImageNet with improvements of 1.32ˆ, 0.89ˆ, and 0.47ˆ,
respectively, compared to PublicCheck.

Moreover, using 5 fingerprint samples for detection, IBSF
achieves perfect detection rates across all cases with suffi-
ciently large K (greater than 8 for CIFAR10 and GTSRB,
and 6 for ImageNet), while SSF and PublicCheck some-
times fail to detect tampering perfectly, particularly in cases
like targeted and degradation attacks.

Challenges in detecting sample-level manipulations: Cer-
tain tampering types pose greater challenges for detection
due to their subtle modifications. For instance, Degradation-
S and targeted attacks are generally more difficult to detect.
On CIFAR10 and GTSRB, both SSF and PublicCheck ex-
hibit significantly lower tampering detection rates for these
subtle tampering attacks compared to more severe tamper-
ing like pruning, BadNets, Trojan attacks, and bit-flipping
attacks. These harder-to-detect tampering types typically
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(a) BadNets (b) Trojan attack

(e) Bit-Flip attack

(c) Targeted attack (d) Degradation-S

(f) Model compression

Figure 4. Tampering detection rates on CIFAR10 using 1 (blue)
and 5 (orange) fingerprint samples. The leftmost two pairs of
bars in each subfigure show the results of the two baselines, while
others show the results of IBSF with K-intersecting boundaries.

(a) BadNets (b) Trojan attack

(e) Bit-Flip attack

(c) Targeted attack (d) Degradation-S

(f) Model compression
Figure 5. Tampering detection rates on GTSRB using 1 (blue) and
5 (orange) fingerprint samples. The leftmost two pairs of bars in
each subfigure show the results of the two baselines, while others
show the results of IBSF with K-intersecting boundaries.

involve minor alterations to the target model, making them
more challenging to detect. In contrast, IBSF achieves sub-
stantially higher tampering detection rates, particularly with
higher K, when using a single fingerprint sample for these
challenging tampering types.

(a) BadNets (b) Trojan attack

(e) Bit-Flip attack

(c) Targeted attack (d) Degradation-S

(f) Model compression
Figure 6. Tampering detection rates on ImageNet using 1 (blue)
and 5 (orange) fingerprint samples. The leftmost two pairs of
bars in each subfigure show the results of the two baselines, while
others show the results of IBSF with K-intersecting boundaries.

5.6. Robustness to Adaptive Attacks

Adversaries may attempt to evade tampering detection by
leveraging previously used fingerprint samples or generating
new ones using IBSF, employing them in adaptive attacks
to bypass IBSF’s detection. In such attacks, the adversary
manipulates the model while ensuring that the top-1 labels
on the collected fingerprint samples remain unchanged.

To assess resilience against adaptive attacks, we generate
an additional 1,000 fingerprint samples using IBSF. These
samples are then employed to launch adaptive attacks. This
set of fingerprint samples is called the tamper set, while the
set for tampering detection is termed as the validation set.

We conduct adaptive attacks using both BadNets and sample-
level degradation attacks on CIFAR10. The results are
shown in Fig. 7. As the training steps increase, the de-
tection rates for the tamper set gradually decline to 0% for
both BadNets and degradation attacks, indicating successful
evasion of the tamper set by the adaptive attacks. However,
the detection rates for the validation set remain reasonably
high even after the adaptive attacks conclude their training,
with a minor degradation of approximately 10% compared
to the detection rates without adaptive attacks. These results
suggest that adaptive attackers are ineffective against IBSF.

The resilience of IBSF against adaptive attackers stems from
its diverse source samples. This diversity ensures that finger-
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(a) BadNets tamper attack for K=2 (b) Degradation tamper attack for K=2

(c) BadNets tamper attack for K=6 (d) Degradation tamper attack for K=6

Figure 7. Tampering detection rates on CIFAR10 using a single
fingerprint sample at K-intersecting boundary to detect adaptive
attacks. (a)-(b): K “ 2, (c)-(d): K “ 6. Black dotted lines: no
adaptive attacks. Red: tamper set. Blue: validation set.

print samples generated from different source samples are
unlikely to occupy the same region of the decision bound-
aries. As a result, the generated fingerprint samples are
distributed across various intersecting decision boundaries
of the target model, with each sample occupying an inde-
pendent and unpredictable local region. This characteristic
reduces the influence of a fingerprint sample from one re-
gion on the detection capacity of samples from other regions,
thereby enhancing robustness against adaptive attacks.

5.7. Computational Cost

We evaluate the computational cost of IBSF and the base-
lines, summarized in Table 1. The assessment was con-
ducted on a single NVIDIA RTX3090 GPU. We measured
the computational cost in terms of generation time (in sec-
onds) and GPU memory utilization (in GB) per fingerprint
sample for CIFAR10 and ImageNet, encompassing both
small and large image resolutions, and across various model
architectures with differing sizes. Our findings reveal the
following insights:

• Computational costs tend to increase with higher image
resolution or larger model parameters. Despite this trend,
IBSF demonstrates notable computational efficiency per
sample, positioning it as a resource-efficient solution for
tampering detection.

• IBSF’s effectiveness extends to challenging scenar-
ios, including high-resolution images from ImageNet and
GPU memory-demanding large-scale vision models like the
Vision Transformer (ViT (Dosovitskiy et al., 2020)). As
illustrated in Table 1, our approach achieves a generation
time of 8.41 seconds and GPU memory utilization of 3.41
GB per fingerprint sample for ViT-L-32 on ImageNet, the
largest model and dataset commonly used for classification
tasks.

• IBSF’s effectiveness extends to challenging scenar-

ios, including high-resolution images from ImageNet and
GPU memory demanding large-scale vision models like the
Vision Transformer (ViT (Dosovitskiy et al., 2020)). As
illustrated in Table 1, our approach achieves a generation
time of 8.41 seconds and GPU memory utilization of 3.41
GB per fingerprint sample for ViT-L-32 on ImageNet, the
largest model and dataset commonly used for classification
tasks.

• IBSF exhibits versatility across various DNN architec-
tures, encompassing ResNet, DenseNet, and Vision Trans-
former, among others. This adaptability facilitates effective
use across models of different sizes, highlighting IBSF’s
broad applicability.

Table 1. Computational cost by model size and image resolution.
Each A{B pair represents time cost (seconds) and memory utiliza-
tion (GB) for generating a single fingerprint sample. Top three
rows: CIFAR10, 32 ˆ 32 pixels. Bottom three rows: ImageNet,
224 ˆ 224 pixels.

Model Arch. IBSF SSF PubCheck Params
ResNet20 0.17/0.07 1.32/0.81 0.69/0.89 0.27M
ResNet18 0.21/0.17 1.48/1.25 0.71/0.91 11.2M
ResNet50 0.52/0.24 3.71/2.87 0.77/1.47 23.5M
DenseNet121 1.57/0.37 73.14/3.11 4.71/2.25 8.0M
ResNet50 3.91/0.82 141.36/7.06 17.12/4.21 25.6M
ResNet152 4.82/1.12 152.44/9.21 17.24/4.39 58.2M
ViT-L-32 8.41/3.41 193.21/14.2 18.12/5.63 306.5M

6. Conclusion
We introduced Intersecting-Boundary-Sensitive
Fingerprinting (IBSF), a novel method for black-
box integrity verification of DNN models using only top-1
labels. Designed based on our theoretical analysis of the
relationship between fingerprint sensitivity and decision
boundaries where two or more categories intersect, IBSF
crafts a fingerprint sample from a normal input sample
by maximizing the partial Shannon entropy of a selected
subset of categories to perturb the input sample, positioning
it near a decision boundary where the categories in the
subset intersect. The generated fingerprint sample is
almost indistinguishable from its source sample. Our
theoretical analysis, supported by experiments, indicates
that fingerprint sensitivity to tampering increases with
subset cardinality. Extensive evaluation confirms IBSF’s
superiority over existing methods, particularly with
larger subset cardinality, establishing its state-of-the-art
performance in black-box tampering detection using only
top-1 labels.
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Impact Statement
This paper presents Intersecting-Boundary-Sensitive Finger-
printing (IBSF), a method aimed at enhancing the security
of deep neural network (DNN) models deployed in cloud en-
vironments. The primary goal of our work is to advance the
field of Machine Learning by providing a robust technique
for tampering detection in DNN models, thereby ensuring
the integrity and reliability of AI services.

Our contributions include the development of a novel fin-
gerprinting method, a theoretical foundation for its effec-
tiveness, and extensive experimental validation. While the
direct implications of our work are technical, enhancing the
security and trustworthiness of AI systems, we acknowledge
the potential broader societal consequences:

1. Ethical Aspects: Ensuring the integrity of AI mod-
els is crucial for maintaining trust in AI-driven decisions
across various sectors, including healthcare, finance, and
autonomous systems. By detecting tampering, our method
helps prevent malicious activities that could lead to harmful
consequences.

2. Future Societal Consequences: As AI continues to inte-
grate into daily life, securing AI models against tampering
will become increasingly important. Our work contributes
to this goal by providing a method that can be used to verify
the integrity of AI models, thus promoting safer and more
reliable AI applications.

3. Potential Misuse: While our method is designed to
enhance security, we recognize that any technology can be
misused. It is important for practitioners to apply IBSF
responsibly and ethically, ensuring it is used to protect and
not to undermine trust in AI systems.

In summary, this paper presents work whose goal is to ad-
vance the field of Machine Learning by improving the secu-
rity and integrity of DNN models. There are many potential
societal consequences of our work, none of which we feel
must be specifically highlighted here.
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A. Implementation Details
For SSF, we use the official open-source code with the de-
fault settings (He, 2021). Fingerprint samples are bound
with the L2-norm to be perceptually similar to original sam-
ples. PublicCheck uses generative models to generate fin-
gerprint samples near the decision boundary. For CIFAR10
and GTSRB, we train VQVAEs as generative models using
their training sets with Pythea (Chadebec et al., 2022). For
ImageNet, we use a pre-trained VQVAE from (Esser et al.,
2021).

B. Model Tampering Setup
We use the following tampering types to evaluate the perfor-
mance of fingerprinting methods.

• Backdoor attacks: A backdoor attack aims to insert a
backdoor into a model to make it misclassify any sample
carrying a designated trigger to a predetermined label. We
evaluate with two types of backdoor attacks, BadNets (Gu
et al., 2017) and Trojan (Liu et al., 2018), with open-
source code from (verazuo, 2022; AdamtayZzz, 2020).
For both attack types and all the three datasets in our
experiments, a square trigger is positioned at the bottom-
right corner and the injection ratio is set to 0.1. The trigger
size is set to 4 ˆ 4 pixels for CIFAR10 and GTSRB, and
8 ˆ 8 pixels for ImageNet.

• Model compression (Cheng et al., 2017): It reduces the
size of a DNN model to conserve computing resources.
Model pruning (Molchanov et al., 2019) removes com-
ponents with the least contribution to the model’s perfor-
mance and then recovers the lost performance by fine-
tuning the remaining components. The official pruning
API of Microsoft NNI (Microsoft, 2022) is used, with the
pruning ratio set to 20%.

• Bit-flipping attack (Rakin et al., 2019): It aims to degrade
a model’s accuracy by reversing the most vulnerable bits
of the model. Open-source code (He, 2022) is used to flip
the most crucial bit.

• Poisoning degradation attack (Jagielski et al., 2021): It
degrades the accuracy of a model by contaminating its
training data. In our experiments, we randomly mislabel a
training sample and fine-tune all layers of the model. This
attack is denoted as Degradation-S in the paper.

• Targeted attack (Koh & Liang, 2017; Suciu et al., 2018;
Shafahi et al., 2018): This attack aims to make a model
mispredict specific input samples to a specific label while
predicting other input samples normally. In our experi-
ments, modifications to a target model are minimized by
randomly selecting a training sample, assigning the label
with the shortest moving distance from the original label
at the penultimate layer, and fine-tuning only the last fully
connected (FC) layer.
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