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Abstract

Predictive models are often introduced under the rationale that they improve per-
formance over an existing decision-making policy. However, it is challenging
to directly compare an algorithm against a status quo policy due to uncertainty
introduced by confounding and selection bias. In this work, we develop a regret esti-
mator which evaluates differences in classification metrics across decision-making
policies under confounding. Theoretical and experimental results demonstrate that
our regret estimator yields tighter regret bounds than existing auditing frameworks
designed to evaluate predictive models under confounding. Further, we show
that our regret estimator can be combined with a flexible set of causal identifi-
cation strategies to yield informative and well-justified policy comparisons. Our
experimental results also illustrate how confounding and selection bias contribute
to uncertainty in subgroup-level policy comparisons. Our auditing framework
provides a step towards the effective operationalization of regulatory frameworks
calling for more direct assessments of predictive model efficacy.

1 Introduction

Regulatory frameworks such as the NIST AI Risk Management Framework (RMF) and Algorithmic
Accountability Act of 2023 have called for model developers to more rigorously assess the efficacy of
algorithmic systems prior to deployment in critical settings such as employment, healthcare, and edu-
cation [Tabassi, 2023, Clarke, 2023]. A key question underlying efficacy evaluations involves whether
an algorithm offers an improvement over an existing decision-making policy. However, reliably
comparing an algorithm against the status quo is challenging due to uncertainty introduced by con-
founding and selection bias. Policy comparisons can be especially challenging among subpopulations
that received low selection rates under an existing policy due to limited outcome data.

In this work, we support the operationalization of newly developed regulatory frameworks by char-
acterizing and reducing uncertainty from confounding in policy comparisons. Given a proposed
algorithmic policy and observational data collected under a status quo policy, our approach bounds
the difference (i.e., regret) in predictive performance measures such as the false negative rate across
policies. We provide tight asymptotic regret bounds which characterize the most informative compar-
ison possible at a given level of confounding. We develop a one step difference-based regret estimator
which yields tight regret bounds by isolating uncertainty relevant to the policy comparison. We show
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that our approach yields more informative regret bounds than an existing two step auditing framework
(i.e., [Rambachan et al., 2022]), which requires (1) bounding the predictive performance of each
policy individually under confounding, then (2) taking a difference in upper and lower bounds across
policies. Our estimator can be combined with a flexible set of causal identification strategies such as
worst-case Manski-style bounds [Manski and Pepper, 1998] and an instrumental variable [Lakkaraju
et al., 2017, Kleinberg et al., 2015, Chen et al., 2023]. This allows practitioners to conduct the most
informative policy audit possible given a set of well justified causal assumptions.

We conduct a synthetic experiment assessing the bounds recovered by our approach. Results show
that our one step difference-based regret estimator yields more informative bounds which can support
qualitatively stronger conclusions when comparing decision-making policies under confounding (e.g.,
by ruling out a regret interval that contains zero). Our evaluation also illustrates how confounding
contributes to uncertainty in subgroup-level policy comparisons by yielding wider bounds among
subpopulations with lower selection rates under the status quo policy. In summary, we offer the
following three contributions:

• We formulate the problem of policy comparison under confounding (§ 2). We provide
several examples of policy-relevant auditing settings captured by our framework.

• We develop a regret estimator which reduces uncertainty in policy comparisons (§ 3.1). We
show that our technique is compatible with multiple causal identification strategies (§ 3.2).

• We conduct an experimental evaluation validating our regret estimator with synthetic data
(§ 4). Results show that our estimator reduces uncertainty in policy comparisons across
multiple identification strategies, at both the population and subgroup level.

2 Problem formulation

Let π0 : X × U → A be a status quo decision-making policy mapping measured covariates
X ∈ X ∈ Rd and unmeasured confounders U ∈ U ∈ Rw to a binary action A ∈ {0, 1}. This existing
decision-making policy (e.g., a physician or judge making decisions without a risk assessment)
observes recorded features X available for modeling (e.g., electronic medical records), as well as
unobserved side information U (e.g., real-time test results [Mullainathan and Obermeyer, 2019]).
Let π : X → A be a proposed algorithmic policy, which observes measured covariates but does not
have access to side information. We take Dπ0 , Tπ to be random variables indicating actions selected
under the status quo and updated policies, respectively.1 A key policy comparison question involves
whether π constitutes an improvement over the status quo π0, as measured by predictive performance
measures of interest.

In particular, let Y (a) ∈ {0, 1} be the potential outcome which would occur under action A = a
[Rubin, 2005] and let Y = Y (Dπ0) be outcomes observed under the status quo policy. Given
observational data O = {(Xi, T

π
i , D

π0
i , Yi) : i = 1, ..., n}, we would like to evaluate the regret of π

against π0, defined as a difference in predictive performance measures such as the false negative rate2

R(π, π0) = p(Tπ = 0 | Y (1) = 1)− p(Dπ0 = 0 | Y (1) = 1). (1)

For example, if Y (1) were positive disease diagnosis given admission of a medical test (a = 1),
R(π, π0) < 0 would indicate that π yields fewer missed diagnoses than the status quo π0. However,
because counterfactual outcomes Y (1−Dπ0) are unobserved in observational data, the policy regret
is partially identified within an interval H(R(π, π0)) = [R(π, π0), R(π, π0)]. Our goal in this work
is to recover the tightest (i.e., most informative) regret interval possible given observational data.

2.1 Framework examples

Our framework captures an extensive set of auditing scenarios of interest to model developers and
regulators. We briefly list a few examples of policy comparisons supported by our framework:

1We sometimes omit policy superscripts over random variables to ease notation.
2For ease of exposition, we focus on false negative rate regret in the main text and include regret bounds for

additional predictive performance measures in Appendix A.2.
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• Let π0 be an existing human-only decision-making policy (e.g., judicial decisions [Kleinberg
et al., 2018], physician testing decisions [Mullainathan and Obermeyer, 2019], insurance ap-
plication approvals [Lakkaraju et al., 2017]). Let π be an algorithmic decision support (ADS)
tool which recommends actions based on thresholded risk predictions (e.g., [Obermeyer
et al., 2019, Chouldechova et al., 2018, Angwin et al., 2016]). While humans will retain
final autonomy over decisions under the updated policy, we would like to assess whether
algorithmic recommendations alone constitute an improvement in predictive performance
measures over human-only decisions (e.g., [Rambachan et al., 2021]).

• Let π0 be a status quo policy in which humans make decisions with the support of ADS
recommendations (e.g., social workers making child welfare hotline screening decisions
with the support of a predictive model [Chouldechova et al., 2018]). Let π be the actions
which would have been taken by an algorithmic policy alone without human intervention.
We would like to assess performance differences across the deployed human+algorithm
policy versus the algorithmic policy alone (e.g., [Cheng et al., 2022]).

• Let π0 be a rule-based policy which can be manually overridden when justified by context-
dependent (i.e., unobserved) situational factors (e.g., MELD score for liver transplantation
[Kamath et al., 2001], Supplemental Nutrition Assistance Program eligibility [Cady, 2022]).
We would like to assess whether an updated scoring system π would improve predictive
performance measures over the existing scoring system [Ben-Michael et al., 2021].

3 Methodology

In § 3.1, we derive asymptotic bounds on the FNR policy regret. We leverage these bounds to propose
a one step difference-based regret estimator, which we show yields tighter asymptotic regret bounds
than existing auditing strategies. In § 3.2, we show that a flexible set of causal identification strategies
can be applied to our one step estimator to yield well-justified and informative regret bounds. Proofs
are included in Appendix A.1.

3.1 Asymptotic policy regret bounds

We begin by providing a theorem which characterizes the tightest bounds possible on the FNR regret,
given asymptotic data. This form of result bounding a target quantity (i.e., FNR policy regret) within
an interval given asymptotic data is also known as partial identification in causal inference literature.

Theorem 3.1. Let vtd = p(T = t,D = d, Y (1) = 1), with vt0 ∈ [vt0, vt0]. Then the FNR policy
regret is partially identified within the interval H(R(π, π0)) = [R(π, π0), R(π, π0)], with

R(π, π0) =
v01 − v10

γ + v10 + v01 + v11
, γ =

{
v00, v01 > v10
v00, v01 ≤ v10

,

R(π, π0) =
v01 − v10

γ + v10 + v01 + v11
, γ =

{
v00, v01 > v10
v00, v01 ≤ v10

(2)

This result decomposes regret into comparison quadrants vtd = p(T = t,D = d, Y (1) = 1). The vt1
terms are identifiable given observational data. However, the vt0 terms are partially identified within
the interval [vt0, vt0] because potential outcomes Y(1) are unobserved when D = 0. Therefore, these
terms are the key driver of uncertainty in asymptotic regret bounds. We refer Theorem 3.1 as a one
step approach because it directly bounds the performance difference across decision policies.

An alternative two step approach for deriving regret bounds involves bounding the predictive per-
formance of each policy separately (e.g., via [Rambachan et al., 2022]), then estimating the overall
regret by taking a difference across policy-specific performance intervals. However, the following
result shows that this two step approach yields less informative bounds than our one step estimator,
so long as v11 > 0 and v00 ̸= v00.

Theorem 3.2. Let FNR(π) and FNR(π0) be bounded as in Proposition (A.1) and (A.2) respectively,
and let R(π, π0) be bounded as in Proposition (3.1). Assume that v00 > v00 and v11 > 0. Then the
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following bounds hold on H(R(π, π0)).

FNR(π)− FNR(π0) < R(π, π0)

FNR(π)− FNR(π0) > R(π, π0)
(3)

Intuitively, this result holds because our one step regret bound isolates uncertainty relevant to the
policy comparison. Whereas a two step estimator inherits uncertainty from the v00 term in the
numerator of both policy-specific bounds, this uncertainty cancels in the one step difference-based
estimator.

3.2 Partial identification framework

Our one step difference estimator can be combined with a flexible set of causal identification strategies
to yield informative and well-justified regret estimates. When no assumptions on confounding are
reasonable, a worst case Manski-style bound ([Manski and Pepper, 1998]) can be derived by plugging
vt0 = 0, vt0 = p(T = t,D = 0) into the one step regret interval (Theorem 3.1).

While worst case bounds are unlikely to be informative in most settings, we can also leverage
additional causal assumptions to tighten bounds on vt0. This will translate to more informative
downstream regret estimates. For example, a popular partial identification framework for risk
assessment evaluation under confounding involves leveraging random assignment of cases to decision-
makers as an instrument [Lakkaraju et al., 2017, Kleinberg et al., 2018, Rambachan et al., 2022].
Assumption 1. (Random instrument) Let Z be an instrument satisfying the following conditions

1. Relevance: Z ⊥̸⊥ D | X

2. IV independence: Z ⊥⊥ U | X

3. Exclusion restriction: Z ⊥⊥ Y | D,X,U

This instrument has previously been used to bound predictive performance metrics [Rambachan et al.,
2022], social welfare [Rambachan et al., 2021], and failure rates [Lakkaraju et al., 2017] of predictive
models under confounding. In the following result, we leverage this instrument to establish sharp
bounds on the unobserved comparison quadrants vt0.
Theorem 3.3. Assume that 1 holds. Let µd(x; t, z) = E[Y (1) | D = d,X = x, T = t, Z = z]
and ed(x; t, z) = p(D = d | X = x, T = t, Z = z). Then ∀t ∈ {0, 1}, unobserved comparison
quadrants vt0 are bounded by

vt0 =
∑
x∈X

∑
z∈Z

max

{
µ(x; t)− µ1(x; t, z) · e1(x; t, z)

e0(x; t, z)
, 0

}
· p(Z = z, T = t,D = 0, X = x),

vt0 =
∑
x∈X

∑
z∈Z

min

{
µ(x; t)− µ1(x; t, z) · e1(x; t, z)

e0(x; t, z)
, 1

}
· p(Z = z, T = t,D = 0, X = x)

µ(x; a) = maxz̃∈Z {µ1(x; t, z̃)e1(x; t, z̃)}, µ̄(x; t) = minz̃∈Z {e0(x; t, z̃) + µ1(x; t, z̃)e1(x; t, z̃)}.

In comparison to prior uses of this instrument, our setting requires learning a propensity function
ed(x; t, z) and outcome regression µd(x; t, z) conditional on both policy recommendations D and T .
IV-based estimates can then be leveraged by our one step regret estimator (e.q. 22) to yield an overall
regret bound. In the future, it may be possible to apply a broader set of identification frameworks (e.g.,
sensitivity models such as the marginal sensitivity model [Tan, 2006] or Rosenbaum’s τ -sensitivity
model [Rosenbaum, 1987]) to bound vt0 when an instrument is unavailable.

4 Experiment

We conduct a synthetic experiment assessing the improvement in regret bounds recovered by our one
step estimator. Our synthetic evaluation allows us to introduce confounding of known magnitude by
varying which predictors are available to the status quo policy and the updated algorithmic policy. Our
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Figure 1: Our one step estimator narrows regret bounds across both instrumental variable (IV) and
worst case (WC) partial identification strategies. Top row indicates full population bounds, while
lower rows show regret over subgroups of varying selection rates (γ) and sizes (ω). Horizontal bars
indicate asymptotic regret bounds under confounding. We show statistical uncertainty over N = 10
runs by plotting 95% confidence intervals centered at each upper and lower asymptotic bound.

synthetic setup also allows us to compare estimated bounds to ground-truth policy regret. This would
not normally be feasible via real-world observational datasets because the magnitude of unmeasured
confounding is typically unknown.

We compare the size of bounds resulting from our one step FNR regret estimator against a two step
baseline. We partially identify unobserved outcome probabilities via a no assumptions worst case
(WC) bound with vt0 ∈ [0, p(T = t,D = 0)] and an instrumental variable (IV) bound as defined
in Theorem 3.3. Given our focus on identification, we assume knowledge of oracle outcome and
propensity functions when estimating IV bounds. Constructing finite sample estimators of these IV
regret bounds is an important next step for practical application of our techniques.

4.1 Data generating process

We draw five covariates from a multivariate Gaussian X ∈ R5 ∼ N (0,Σ) where Σ is the 5 × 5
identity matrix. We take Z ∼ ⌊U(0, 10)⌋ to be an instrumental variable with ten finite values (i.e.,
loan officers randomly assigned to cases). X = (X1, X2, X3) are measured covariates observed by
the propensity function, conditional outcome functions, and algorithmic policy, while U = (X4, X5)
are confounders unobserved by algorithmic policy. We define the propensity function e1(X,U,Z),
conditional outcome functions µd(X,U), and updated policy π(X) as follows

e1(X,U,Z) := σ(−1.1 + 1.7 ·X1 + .01 ·X2 + 1.5 ·X3 + .2 ·X4 + 0.2 ·X5 + .25 · Z)

µ1(X,U) := σ(1.3 + 0.8 ·X1 + .02 ·X2 + 0.9 ·X3 + 0.3 ·X4 + 0.6 ·X5)

µ0(X,U) := σ(1.5 + .05 ·X1 + 1.8 ·X2 + .05 ·X3 + 0.2 ·X4 + 0.5 ·X5)

π(X) := σ(1.5 + .05 ·X1 + 1.8 ·X2 + .05 ·X3 + .05 ·X3)

(4)

where σ is the sigmoid function. The X1, ..., X5 coefficients in the function definitions above were
selected to introduce (1) subgroup-level heterogeneity in ground-truth regret estimates and (2) an
improvement in bounds from heterogeneity in the instrument Z.

The oracle probability of Y (1) can be given by µ(X) = e1(X,Z) ·µ1(X)+ (1− e1(X,Z)) ·µ0(X).
We sample data by drawing D ∼ Bern(e1(X,Z)), T ∼ Bern(π(X)), Y ∼ Bern(µ(X)). We
estimate one step (e.q. 22) and two-step regret by computing empirical estimates of comparison
quadrants v̂t,d, then plugging these into the relevant estimator. To examine subgroup-level regret
estimates, we define two protected attributes with two levels each. The first correlates with X1, while
the second correlates with X2. This yields four intersectional subgroups G1-G4 with varying sizes
(ω) and selection rates under the status quo policy (γ).
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4.2 Results

Figure 1 compares the size of bounds returned by a one step and two step regret estimator across
worst case (WC) and instrumental variable (IV) partial identification strategies. Results are averaged
over 10 runs with N = 5000 samples each. Overall, this plot shows a net increase in the FNR under
π, with more nuanced differences at the subgroup level (e.g., G2 experiences an FNR decrease under
π, while G3 experiences a large increase in FNR under π). Our one step regret estimator narrows
bounds across all subgroups and partial identification strategies. Surprisingly, we also observe that
one step WC bounds are tighter than the two step IV bounds in several cases (e.g., population, G1,
G3). This indicates that, compared to a two step estimator, a one step estimator can sometimes yield
more reduction in uncertainty while making no additional assumptions on confounding. Critically,
tighter regret bounds can support stronger conclusions when comparing decision policies. In this
case, our one step estimator supports the interpretation that π yields in a net FNR increase across the
full population. This conclusion would not be warranted on the basis of a two step estimator because
its regret interval contains zero.

At the subgroup level, we see that groups with lower selection rates under the status quo policy
(e.g., G1, G2) have wider asymptotic bounds than those with higher selection rates (e.g., G3, G4).
This indicates that the key driver of uncertainty at the asymptotic level is confounding. We can also
examine statistical uncertainty in subgroup regret estimates by inspecting the size of confidence
intervals. We observe that smaller subgroups (e.g., G1, G3) have larger variance in regret estimates
than larger subgroups (e.g., G2, G4, full population). We can isolate subgroup size (ω) as the
source of this uncertainty because we fix selection rates across subgroups such that G1(γ)=G2(γ),
G3(γ)=G4(γ). Taken together, these results indicate that distinct sources of uncertainty can complicate
subgroup-level policy comparisons.

5 Discussion

In this work, we have proposed an approach for comparing decision-making policies under uncertainty
from confounding. We have theoretically and empirically shown that our one step regret estimator
reduces uncertainty in policy comparisons by narrowing bounds on regret across decision-making
policies. In the future, it will be important to extend our identification framework to be compatible
with a broader set of causal assumptions (e.g., the marginal sensitivity model [Tan, 2006], Rosenbaum
model [Rosenbaum, 1987], and mean outcome sensitivity model [Rambachan et al., 2022]) and
examine differences in one step and two step bounds across a wider set of predictive performance
measures. Additionally, while this work has primarily focused on asymptotic identification of regret
(i.e., characterizing uncertainty under given infinite data), it will also be important to develop practical
finite sample regret estimators and analyze their convergence properties.

More broadly, we hope to extend these approaches into a flexible toolkit which supports more robust
assessments of predictive model efficacy. While the NIST AI Risk Management Framework cites
model reliability and validity as foundational characteristics of trustworthy AI systems, no existing
software packages available via the RMF Playbook are designed to directly assess the impacts of
confounding and related challenges on decision-making policy comparisons [Tabassi, 2023]. This
presents a pressing barrier to the effective operationalization of regulatory guidelines governing the
introduction of automated decision-making systems. Our work offers one step towards a better set of
tools for practical efficacy evaluations.

6 Related work

Recent work has drawn attention to a number of technical challenges which can limit the efficacy of
predictive models in real-world deployments [Wang et al., 2022, Coston et al., 2023, Raji et al., 2022,
Hutchinson et al., 2022]. In this work, we propose evaluation tools to help practitioners conduct
more reliable policy comparisons under uncertainty from counterfactual outcomes, selection bias,
and unmeasured confounding. Lakkaraju et al. [2017] introduce the term selective labels to describe
a setting in which outcomes are only observed under one of the possible screening decisions (e.g.,
re-arrest observed under pre-trial release). The authors introduce a contraction-based technique which
estimates the failure rate of a model under confounding by leveraging heterogeneity in leniency
rates across decision-makers. Kleinberg et al. [2018] leverages this approach to conduct an in-depth

6



empirical comparison of judicial decision-making with a pre-trial risk assessment. More recent
frameworks have formalized heterogeneity in screening rates as an instrumental variable, and used
this approach to learn confounding robust models [Chen et al., 2023].

Most directly related to our work, [Rambachan et al., 2022] develop an auditing framework for
learning and evaluating predictive models in the presence of unmeasured confounding. This work
offers an approach for partially identifying common predictive performance measures under a mean
outcome sensitivity model (MOSM). In principle, this approach could be used to bound regret across
classification metrics by partially identifying performance of each policy separately, then taking
a difference in upper and lower bounds. We include this two step approach as a baseline in our
experiment. [Rambachan et al., 2021] leverages a similar set of tools to identify systematic prediction
mistakes in a status quo decision-making policy under uncertainty outcome utilities.

An additional body of work proposes techniques for learning and ranking decision-making policies
under confounding and overlap violations. [Kallus and Zhou, 2021, 2018] learn minimax-optimal
policies under unobserved confounding which are guaranteed to provide no performance reduction in
comparison to a status quo observational policy. [Ben-Michael et al., 2021] learns robust decision-
making policies in cases where some subpopulations had no chance of selection under the status quo
policy (i.e., overlap violations). [Zhang et al., 2021] develop an approach for ranking individualized
treatment assignment rules under confounding. Additional work in off policy evaluation aims to
estimate the value function of decision-making policies under confounding, but does not focus
on policy comparisons [Kallus and Zhou, 2020, Jung et al., 2020]. Most recently, Gao and Yin
[2023] develops a deferral-based framework to route examples to decision-makers at runtime given
unmeasured confounding. Like [Kallus and Zhou, 2021], this work models confounding via the
marginal sensitivity model.

Our work differs from prior off-policy evaluation frameworks in two key ways. First, our approach
is the first to support comparisons against a confounded data-generating baseline policy. Whereas
prior work in the non-sequential setting assumes that the data-generating mechanism and baseline
policy (i.e., treat all, treat none) differ [Zhang et al., 2021, Kallus and Zhou, 2021, Gao and Yin,
2023], we study a more realistic and challenging setting in which the confounded baseline policy
being bench-marked against generated the observational auditing dataset. This formulation is critical
for supporting policy comparisons of interest in key regulatory settings (i.e., examples described in
Section 2.1). Second, while prior work is tightly coupled to a specific causal partial identification
strategy (i.e., the marginal sensitivity model [Kallus and Zhou, 2021] or Rosenbaum’s τ -sensitivity
model [Zhang et al., 2021]), our framework generalizes to a broad set of identification approaches.
This offers flexibility required to support a diverse set of auditing contexts.
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A Appendix

A.1 Omitted results and proofs

Proposition A.1. Let vtd = p(T = t,D = d, Y (1) = 1), with vt0 ∈ [vt0, vt0]. Then FNR(π) =
E[1− Tπ | Y (1) = 1] is bounded by

FNR(π) =
v00 + v01

v00 + v10 + v01 + v11
, FNR(π) =

v00 + v01
v00 + v10 + v01 + v11

. (5)

Proof.

FNR(π) = E[1− Tπ | Y (1) = 1] (6)
= p(T = 0 | Y (1) = 1) (7)

=
p(T = 0, Y (1) = 1)

p(Y (1) = 1)
(8)

=
v01 + v00

v00 + v10 + v01 + v11
(9)

(10)

where the overall FNR is bounded under vt0 ∈ [vt0, vt0] via

v00 + v01
v00 + v10 + v01 + v11

≤ v01 + v00
v00 + v10 + v01 + v11

≤ v00 + v01
v00 + v10 + v01 + v11

Proposition A.2. Let vtd = p(T = t,D = d, Y (1) = 1), with vt0 ∈ [vt0, vt0]. Then FNR(π0) =
E[1−Dπ0 | Y (1) = 1] is bounded by

FNR(π0) =
v00 + v10

v00 + v10 + v01 + v11
, FNR(π0) =

v00 + v10
v00 + v10 + v01 + v11

. (11)

The bounds on FNR(π0) follow by a similar argument. We now prove Theorem 3.1.

Proof. Decomposing our expression for the FNR regret, we see that

R(π, π0) = E[1− Tπ | Y (1) = 1]− E[1−Dπ0 | Y (1) = 1] (12)
= p(T = 0 | Y (1) = 1)− p(D = 0 | Y (1) = 1) (13)

=
p(T = 0, Y (1) = 1)

p(Y (1) = 1)
− p(D = 0, Y (1) = 1)

p(Y (1) = 1)
(14)

=
v01 + v00

v00 + v10 + v01 + v11
− v10 + v00

v00 + v10 + v01 + v11
(15)

=
v01 − v10

v00 + v10 + v01 + v11
(16)

where vt1 is identifiable from observational data and vt0 ∈ [vt0, vt0] is partially identified.

v01 − v10
γ + v10 + v01 + v11

≤ v01 − v10
v00 + v10 + v01 + v11

≤ v01 − v10
γ + v10 + v01 + v11

We now prove Theorem 3.2. A similar argument can be applied to prove asymptotic bounds on the
regret of the one-step FPR, TNR, and TPR estimator.
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Proof. We will begin by showing that FNR(π)− FNR(π0) > R(π, π0). Case 1: v01 > v10.

v00 + v01
v00 + v10 + v01 + v11

− v00 + v10
v00 + v10 + v01 + v11

>
v01 − v10

v00 + v10 + v01 + v11
v00 + v01

v00 + v10 + v01 + v11
− v00 + v10

v00 + v10 + v01 + v11
− v01 − v10

v00 + v10 + v01 + v11
> 0

(v11 + v10) · (v00 − v00)

(v00 + v10 + v01 + v11) · (v00 + v10 + v01 + v11)
> 0

Case 2: v01 ≤ v01.

v00 + v01
v00 + v10 + v01 + v11

− v00 + v10
v00 + v10 + v01 + v11

>
v01 − v10

v00 + v10 + v01 + v11
v00 + v01

v00 + v10 + v01 + v11
− v00 + v10

v00 + v10 + v01 + v11
− v01 − v10

v00 + v10 + v01 + v11
> 0

(v11 + v01) · (v00 − v00)

(v00 + v10 + v01 + v11) · (v00 + v10 + v01 + v11)
> 0

In both cases, the left hand term must by positive by the assumption that v00 > v00 and v11 > 0.
Next, we will show that FNR(π)− FNR(π0) < R(π, π0). Case 1: v01 > v10.

v00 + v01
v00 + v10 + v01 + v11

− v00 + v10
v00 + v10 + v01 + v11

<
v01 − v10

v00 + v10 + v01 + v11
v00 + v01

v00 + v10 + v01 + v11
− v00 + v10

v00 + v10 + v01 + v11
− v01 − v10

v00 + v10 + v01 + v11
< 0

(v11 + v10) · (v00 − v00)

(v00 + v10 + v01 + v11) · (v00 + v10 + v01 + v11)
< 0

Case 2: v01 < v01.

v00 + v01
v00 + v10 + v01 + v11

− v00 + v10
v00 + v10 + v01 + v11

<
v01 − v10

v00 + v10 + v01 + v11
v00 + v01

v00 + v10 + v01 + v11
− v00 + v10

v00 + v10 + v01 + v11
− v01 − v10

v00 + v10 + v01 + v11
< 0

(v11 + v01) · (v00 − v00)

(v00 + v10 + v01 + v11) · (v00 + v10 + v01 + v11)
< 0

In both cases, the left hand term must by negative by the assumption that v00 > v00 and v11 > 0.

We now prove Theorem 3.3.

Proof. Observe that µ(x; a) = µ(x; t, z) = µ1(x; t, z) · e1(x; t, z) + µ0(x; t, z) · e0(x; t, z), where
the first equality holds by IV independence (1) and the second by iterated expectations. Applying
worst-case bounds on µ0(x; t, z) ∈ [0, 1] (Manski and Pepper [1998]), we have that ∀z ∈ Z

µ1(x; t, z)e1(x; t, z) ≤ µ(x; t, z) ≤ e0(x; t, z) + µ1(x; t, z)e1(x; t, z). (17)

Because Y (0), Y (1) ⊥⊥ Z | X , we have that E[Y (1) | X = x] = E[Y (1) | X = x, Z = z]. This
implies the intersection bound

max
z̃∈Z

{µ1(x; t, z̃)e1(x; t, z̃)} ≤ µ(x; t) ≤ min
z̃∈Z

{e0(x; t, z̃) + µ1(x; t, z̃)e1(x; t, z̃)} (18)
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Solving for µ0(x; t, z) yields

µ
0
(x; t, z) = max

{
µ(x; t)− µ1(x; t, z) · e1(x; t, z)

e0(x; t, z)
, 0

}
,

µ0(x; t, z) = min

{
µ(x; t)− µ1(x; t, z) · e1(x; t, z)

e0(x; t, z)
, 1

}
.

(19)

The result follows by marginalizing over Z.

A.2 Regret bounds on additional performance measures

The proof of one step regret bounds below follow by the same argument as the proof for Theorem 3.1.
Proposition A.3. (TNR regret bounds) Let wtd = p(T = t,D = d, Y (1) = 0), with wt0 ∈
[wt0, wt0]. Then the TNR policy regret is partially identified within the interval H(R(π, π0)) =
[R(π, π0), R(π, π0)], with

R(π, π0) =
w01 − w10

γ + w10 + w01 + w11
, γ =

{
w00, w01 > w10

w00, w01 ≤ w10

,

R(π, π0) =
w01 − w10

γ + w10 + w01 + w11
, γ =

{
w00, w01 > w10

w00, w01 ≤ w10

(20)

Proposition A.4. (FPR regret bounds) Let wtd = p(T = t,D = d, Y (1) = 0), with wt0 ∈
[wt0, wt0]. Then the FPR policy regret is partially identified within the interval H(R(π, π0)) =
[R(π, π0), R(π, π0)], with

R(π, π0) =
w10 − w01

γ + w10 + w01 + w11
, γ =

{
w00, w10 > w01

w00, w10 ≤ w01
,

R(π, π0) =
w10 − w01

γ + w10 + w01 + w11
, γ =

{
w00, w10 > w01

w00, w10 ≤ w01

(21)

Proposition A.5. (TPR regret bounds) Let vtd = p(T = t,D = d, Y (1) = 1), with vt0 ∈
[vt0, vt0]. Then the FPR policy regret is partially identified within the interval H(R(π, π0)) =
[R(π, π0), R(π, π0)], with

R(π, π0) =
v10 − v01

γ + v10 + v01 + v11
, γ =

{
v00, v10 > v01
v00, v10 ≤ v01

,

R(π, π0) =
v10 − v01

γ + v10 + v01 + v11
, γ =

{
v00, v10 > v01
v00, v10 ≤ v01

(22)
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