
Fast Adaptation and Robust Quantization for Multi-Modal Foundation Models
from Associative Memory: A Case Study in SpeechLM

Shang Wu * 1 Yen-Ju Lu * 2 Haozheng Luo * 1 Jerry Yao-Chieh Hu 1 Jiayi Wang 1 Najim Dehak 2

Jesus Villalba 2 Han Liu 1

Abstract
We present a preliminary investigation into the
outlier problem in the multi-modal foundation
model, focusing on SpeechLM. Specifically, we
consider SpeechLM models that use a pretrained
Language Model (LM) as the backbone and are
fine-tuned on multi-modal data (speech and text).
There is an outlier problem in pretrained LLMs
and multi-modal inputs in SpeechLM. By adopt-
ing a principled approach inspired by associative
memory models to address the outlier problem,
we achieve significant improvements in faster low-
rank adaptation, more accurate cross-modal fine-
tuning, and more robust post-training quantiza-
tion. Methodologically, we implement an outlier-
efficient Hopfield layer to replace the conven-
tional transformer attention mechanism. This ad-
justment effectively removes outliers, improving
the performance in multi-modal adaptation and
inference with a quantized model. Our proposed
framework yields an average performance im-
provement of 7.98% in cross-modal fine-tuning
and 67.85% in quantization, significantly outper-
forming standard frameworks in these respects.

1. Introduction
We propose to utilize an outlier-efficient Hopfield layer
to tackle the outlier problem in pretrained LLMs and
multi-modal fine-tuning in the current SpeechLM frame-
work. This approach leads to faster adaptation, better multi-
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modal fine-tuning, and more robust post-training quantiza-
tion. SpeechLM employs pretrained language models to
enhance speech recognition and synthesis, revolutionizing
natural language understanding and generation (Nguyen
et al., 2024). Adapting LLMs to speech efficiently and ef-
fectively remains challenging (Mehrish et al., 2023) due to
the inherent differences between text and speech modali-
ties. This process often requires extensive full(-parameter)
fine-tuning and resources (Zhang et al., 2024). Standard fine-
tuning and quantization techniques, like low-rank adaptation
and post-training quantization (PTQ), result in significant
performance degradation when applied to the SpeechLM
framework (Latif et al., 2023). We observe that the main
cause of this degradation is the challenges posed by outliers.
These outliers come from transformer-based models (Clark
et al., 2019; Kovaleva et al., 2019) and multi-modal input in
the SpeechLM framework (Wei et al., 2023; 2022).

We replace conventional transformer attention mechanisms
with an outlier-efficient Hopfield layer (Hu et al., 2024a),
known for its robust associative memory capabilities (Hu
et al., 2024b; Xu et al., 2024a; Wu et al., 2024a;b; Hu et al.,
2023; Ramsauer et al., 2020). The Outlier-Efficient Hopfield
(OutEffHop) layer effectively identifies and filters out
outliers that typically occur during the pretraining and low-
rank adaptation (LoRA) phases (Hu et al., 2024a).

This strategic modification achieves a “triple win” for the
model’s optimization and application: speeding up the adap-
tation processes, boosting the accuracy of low-rank adap-
tation training, and strengthening the model’s robustness
during post-training quantization. Overall, our proposed
multi-modal SpeechLM framework enhances both perfor-
mance and versatility across a range of speech-related tasks.

2. Methodology
This section introduces the proposed method, consisting
of the SpeechLM system, the Outlier-Efficient architecture,
and deployment of PTQ methods on SpeechLM system.

2.1. Proposed Method on SpeechLM System

We implement a straightforward design for the SpeechLM
architecture, building on the approaches detailed in (Nguyen
et al., 2024; Maiti et al., 2024). Our design employs a
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HuBERT (Hsu et al., 2021) model combined with k-means
clustering to transform speech into discrete tokens si ∈ Vsp,
which are then merged with text characters ti ∈ Vtxt to
create a unified vocabulary Vjoint. The joint probability of
speech and text tokens J is calculated as:

p(J) =

l∏
i=1

p(ji | j1, · · · , ji−1).

In our architecture, the input token J is processed through
an embedding layer, followed by L layers of a transformer
decoder. The final layer produces a probability distribution
across the unified vocabulary Vjoint. Training of this model
is conducted autoregressively using ground truth word as
input, where at each timestep i, the model uses the actual
previous output instead of its own prediction to produce a
predicted distribution as:

p̂i = Ours(j1, . . . , ji−1).

The cross-entropy loss is calculated as:

LCE(pi, p̂
i) = −

|Vjoint|∑
c=1

pi(c) log p̂
i(c).

2.2. Outlier Efficient Architecture

We discuss the outliers challenge in current transformer-
based language model (e.g, OPT) and elaborate on our pro-
posed outlier-efficient method.

Outliers Challenge in Transformer Architecture. As re-
ported by Bondarenko et al. (2024); Hu et al. (2024a), no-op
tokens (Clark et al., 2019) that have small value vectors of-
ten receive disproportionately large attention weights. This
behavior increases the computational and memory require-
ments during training and lowers the robustness of model
quantization. A detailed discussion of this outlier challenge
is presented in Appendix B.

Outlier-Efficient Method. The Outlier-Efficient Method
targets the reduction of outlier effects during model pre-
training (Hu et al., 2024a), fine-tuning (Chen et al., 2024),
and deployment phases (Hu et al., 2024a; Bondarenko et al.,
2024; Xiao et al., 2023a). Utilizing the Softmax1 function
within the attention mechanism is a proven strategy for man-
aging outliers effectively (Hu et al., 2024a; Miller, 2023)
and demonstrated in the equation below:

Softmax1(ai) =
exp(ai)

1 +
∑m

j=1 exp(aj)
,

for a = (a1, . . . , am) ∈ Rm and m is the number of se-
quence length in multi-modality data. In practical appli-
cations, similar to implementations in frameworks like Py-
Torch (Paszke et al., 2019), a normalization step adjusts
the input vector a ∈ RL by subtracting its maximum value
prior to applying the Softmax1 function. This adjustment
ensures numerical stability of the Softmax1 activation.

2.3. Post-Training Quantization on SpeechLM System

We deploy the post-training quantization methods on the
large language model (LLM) in SpeechLM system. The
other modules in SpeechLM system, such as speech de-
coders and speech tokenizers, are not quantized since cur-
rent PTQ methods are not designed for these modules. The
deployment of quantization on the LLM system in the
SpeechLM system can speed up the inference latency as
shown in Table 4.

3. Experimental Studies
In this section, we conduct a set of experiments to validate
the effectiveness of our proposed framework. Specifically,
we evaluate the performance of our method against state-of-
the-art (SOTA) methods outlined in (Maiti et al., 2024).

Models. Following Maiti et al. (2024), we validate our
method with 2 different size of the Open Pretrained Trans-
former (OPT) pretrained models, OPT-125m and OPT-
350m. We use the same BPE tokenizer as (Maiti et al.,
2024) for four different tasks, including textLM, speechLM,
ASR, and TTS. For OPT models equipped with the proposed
method, we follow the same pre-training procedure as (Hu
et al., 2024a).

Datasets. We use four datasets: LibriLight (LL) (Kahn
et al., 2020), Librispeech (Panayotov et al., 2015), LibriTTS
(LT) (Zen et al., 2019), VCTK (VC) (Veaux et al., 2017)
for textLM, speechLM, ASR, and TTS. For textLM, we
use Librispeech (Panayotov et al., 2015), working with 40
million text utterances. We use the speech data in LibriLight
(LL) (Kahn et al., 2020), featuring 60,000 hours of audio-
book recordings from 7,000 different speakers, totaling 12
million utterances for SpeechLM. For ASR, we use English
Multilingual Librispeech (MLS) (Pratap et al., 2020) dataset.
(Zen et al., 2019), VCTK (VC) (Veaux et al., 2017) are used
for TTS (Text-to-Speech) tasks. We experiment with those
datasets for OPT-125m and OPT-350m.

Evaluation Metrics. For speech and text generation, we
evaluate models using perplexity (PPL) for those with the
same vocabulary size. In automatic speech recognition
(ASR) tasks, we measure performance with the Word Error
Rate (WER). For text-to-speech (TTS) tasks, Hifi-gan (Kong
et al., 2020) serves as the vocoder, and we assess intelligi-
bility using the character error rate (CER) from whisper
decoding results. All these metrics aim for lower scores to
indicate better performance. For the accuracy metric, the
higher means better performance and we give more details
in the ablation study (Appendix E). Besides, we calculate
and compare the average performance drop across all tasks
for each method to assess their impact.
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Table 1. Comparing Ours with Vanilla Method in a Post-Training Quantization (PTQ) Setting. We conduct experiments on
proposed method with vanilla method across three quantization methods (SmoothQuant, AffineQuant, OmmiQuant) and two quantization
configurations (Weight-8bit-Activation-8bit and Weight-4bit-Activation-4bit). The evaluation metrics include Text Perplexity (PPL),
SpeechLM PPL, Word Error Rate (WER) in Automatic Speech Recognition (ASR), and Character Error Rate (CER) in Text-to-Speech
(TTS). We also measure the average performance drop after quantization to assess the efficiency of proposed method in the PTQ setting.
In most configurations, proposed method results in a smaller performance drop after quantization compared to vanilla method.

Model Method #Bits
Quantization

Method
TextLM
PPL (↓)

SpeechLM
PPL (↓)

ASR
WER (↓)

TTS
CER (↓)

Avg Performance
Drop (↓)

O
PT

-1
25

m

Van
illa

16W/16A - 22.56 59.42 12.40 12.08 -
8W/8A SmoothQuant 22.63 59.53 12.46 12.38 0.85%
8W/8A AffineQuant 22.61 59.52 12.42 12.37 0.74%
8W/8A OmmiQuant 22.62 59.53 12.44 12.38 0.81%
4W/4A SmoothQuant 45.23 96.87 52.31 48.79 197.31%
4W/4A AffineQuant 31.25 80.19 29.44 28.34 86.37%
4W/4A OmmiQuant 31.28 80.21 31.98 29.55 94.04%

Ours

16W/16A - 22.70 59.45 12.61 12.11 -
8W/8A SmoothQuant 22.71 59.49 12.64 12.18 0.23%
8W/8A AffineQuant 22.71 59.48 12.62 12.13 0.08%
8W/8A OmmiQuant 22.71 59.49 12.63 12.14 0.13%
4W/4A SmoothQuant 37.14 84.55 35.32 36.73 112.05%
4W/4A AffineQuant 26.11 68.42 14.33 15.71 18.52%
4W/4A OmmiQuant 26.12 68.63 14.53 16.01 19.63%

O
PT

-3
50

m

Van
illa

16W/16A - 14.01 45.08 17.76 11.59 -
8W/8A SmoothQuant 14.08 45.10 17.82 12.25 1.64%
8W/8A AffineQuant 14.04 45.08 17.78 12.18 1.35%
8W/8A OmmiQuant 14.05 45.09 17.80 12.20 1.45%
4W/4A SmoothQuant 38.51 87.34 67.87 47.28 214.62%
4W/4A AffineQuant 26.92 64.37 43.21 29.81 108.86%
4W/4A OmmiQuant 26.99 64.40 43.38 30.15 109.98%

Ours

16/16A - 14.04 45.38 17.81 12.53 -
8W/8A SmoothQuant 14.04 45.45 17.82 12.59 0.17%
8W/8A AffineQuant 14.04 45.44 17.81 12.55 0.07%
8W/8A OmmiQuant 14.05 45.47 17.81 12.57 0.15%
4W/4A SmoothQuant 24.77 62.61 37.57 32.45 96.08%
4W/4A AffineQuant 22.54 51.13 22.17 17.24 33.83%
4W/4A OmmiQuant 22.59 51.26 23.01 18.11 36.90%

3.1. Post-Training Quantization (PTQ)

To assess the performance of our method, we replace the
standard attention layer in OPT models (Zhang et al., 2022)
with the Softmax1 activation function (Vaswani et al., 2017).
We utilize pretrained OPT model checkpoints modified with
the proposed method (Hu et al., 2024a) and fine-tune them
at full rank following the approach described in (Maiti
et al., 2024). Our evaluation involves testing the models
on datasets using FP16 (16-bit floating point) and conduct-
ing post-training quantization (PTQ) to measure the perfor-
mance impact.

Baselines. Following Maiti et al. (2024), we vali-
date our method with 3 different quantization methods:
SmoothQuant (Xiao et al., 2023a), AffineQuant (Ma et al.,
2024), and OmniQuant (Shao et al., 2023). We employ the
hyperparameters specified in the original studies for each
quantization method. For SmoothQuant, we implement the
guidelines detailed in (Xiao et al., 2023a). The parameters
for AffineQuant are applied as described in (Ma et al., 2024).
Regarding OmniQuant, we utilize the hyperparameters out-
lined in (Shao et al., 2023).

Results. Referring to Table 1, our framework demonstrates
superior performance over the standard training framework

under W4A4 and W8A8 post-training quantization condi-
tions, employing state-of-the-art PTQ methods. Specifi-
cally, with both weights and activations quantized to 8 bits
(W8A8), our framework shows a negligible average perfor-
mance decline of only 0.08% on OPT-125m and 0.07% on
OPT-350m. Moreover, in the W4A4 setting, the standard
framework suffers a significant performance drop—over
197% on OPT-125m and 214% on OPT-350m. Our frame-
work reduces this impact, with declines of only 18.52% on
OPT-125m and 36.61% on OPT-350m.

3.2. Low-Rank Adaptation Methods

We evaluate our framework with Low-Rank Adaptation
(LoRA) methods, designed to increase fine-tuning efficiency
using fewer parameters. Our method undergoes comparison
with the standard version across various LoRA approaches.

LoRA Methods. We compare our method with the vanilla
method across 2 different LoRA methods: Lora (Hu et al.,
2021) and QLoRA (Dettmers et al., 2024). For the full fine-
funing method, we fine-tune the model with full-rank using
mixed-precision training. For the LoRA method, following
Hu et al. (2021), we fine-tune the model with low-rank
adaptations using a rank of 128 and an alpha value of 256.
For the QLoRA method, following Dettmers et al. (2024),
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Table 2. Comparing Ours with Vanilla Method in a Low-Rank
Adaptation Setting. We conduct experiments on proposed method
with vanilla method across two Low-Rank Adaptation methods
(LoRA, QLoRA). The evaluation metrics include Text Perplexity
(PPL), SpeechLM PPL, Word Error Rate (WER) in Automatic
Speech Recognition (ASR), and Character Error Rate (CER) in
Text-to-Speech (TTS). We also measure the average performance
drop after low-rank adaptation to assess the performance of pro-
posed method in the low-rank adaptation setting. In most config-
urations, proposed method results in better low-rank adaptation
performance compared to vanilla method.

Model Method
Quantization

Method
TextLM
PPL (↓)

SpeechLM
PPL (↓)

ASR
WER (↓)

TTS
CER (↓)

Average
Performance

Drop (↓)

O
PT

-1
25

m Vanilla
Full 22.56 59.42 12.40 12.08 -
Lora 25.69 62.16 12.39 15.47 11.61%

QLora 25.97 62.43 12.86 15.02 12.06%

Ours
Full 22.58 59.46 12.61 12.11 -
Lora 25.77 62.23 12.56 11.80 3.96%

QLora 25.77 62.23 13.42 12.46 7.03%

O
PT

-3
50

m Vanilla
Full 14.01 45.08 17.76 11.59 -
Lora 16.84 50.36 20.57 23.27 37.08%

QLora 16.17 48.99 24.06 26.38 46.79%

Ours
Full 14.04 45.38 17.81 12.53 -
Lora 16.17 49.44 21.78 23.57 33.61%

QLora 16.01 48.39 24.42 22.88 35.10%

we fine-tune the model with quantized low-rank adaptations,
maintaining the same rank and alpha value as specified in
LoRA, but using Int8 (Dettmers et al., 2022a) quantization
instead of 4-bit NormalFloat (NF4) (Dettmers et al., 2024).

Table 3. Comparison of Different Ranks Using LoRA. We com-
pare the validation accuracy (detailed in Appendix E) between
full fine-tuning with LoRA in different ranks (128, 256, 512).

Method Fine-Tuning Method Rank Val Acc (%)

Vanilla Full Fine-Tuning N/A 30.5
Ours Full Fine-Tuning N/A 30.2
Vanilla LoRA 512 27.6
Ours LoRA 512 27.8
Vanilla LoRA 256 28.1
Ours LoRA 256 28.9
Vanilla LoRA 128 27.5
Ours LoRA 128 27.5

Results. In Table 2, our results confirm the effectiveness
of proposed method in low-rank adaptation, showing sub-
stantial performance improvements in most configurations.
Specifically, proposed method achieves an average perfor-
mance gain of 7.98% over the standard framework for low-
rank adaptation tasks, with notable success in boosting the
OPT-350m model’s performance. Comparing to OPT-125m
vanilla model, our proposed method exhibits smaller perfor-
mance declines in LoRA and QLoRA. This trend is consis-
tent with findings in (Hu et al., 2024a) that larger models
like the OPT-350m are more affected by significant outliers.

Training Curve and Inference Comparison. To assess
the performance of our proposed method versus the conven-
tional (vanilla) method, we monitored the training curves
for both approaches. As shown in Figure 1, our method de-
livers superior performance compared to the vanilla method

Figure 1. Validation Accuracy vs. Training Epochs between
Ours and Vanilla. We visualize the accuracy versus epochs curve
on both proposed framework and vanilla framework. We can
observe that the proposed framework can always achieve higher
accuracy under the same epoch across the whole training process.

within the same number of training epochs.

We evaluate the end-to-end latency of the SpeechLM system
by comparing our proposed method with the vanilla method,
using validation data with a batch size of 1. The results,
presented in Table 4, demonstrate that our method does
not increase the overall latency of the SpeechLM system
compared to the vanilla method in both the 16W/16A and
8W/8A settings. Our method reducing the performance drop
when PTQ methods are applied to the entire SpeechLM
system without adding extra latency.

Table 4. Comparing Ours with Vanilla Method in Inference La-
tency. We perform experiments comparing our proposed method
with the vanilla method regarding inference latency for FP16 and
8-bit SmoothQuant. We evaluate the inference latency on TextLM
and SpeechLM tasks. In most configurations, our method demon-
strates latency similar to the vanilla method.

Model Method
Quantization

Method #Bits
Latency in

TextLM (ms)
Latency in

SpeechLM (ms)

O
PT

-1
25

m

Vanilla N/A 16W/16A 15.88 15.93
SmoothQuant 8W/8A 12.31 12.48

Ours N/A 16W/16A 16.12 16.21
SmoothQuant 8W/8A 12.44 12.52

O
PT

-3
50

m

Vanilla N/A 16W/16A 16.89 18.32
SmoothQuant 8W/8A 13.88 14.56

Ours N/A 16W/16A 17.31 19.82
SmoothQuant 8W/8A 14.11 14.94

4. Discussion and Conclusion
We present proposed method, an outlier-robust multi-modal
foundation model for speech-text tasks, designed to ad-
dress the computational challenges posed by outlier ef-
fects in modality fusion and cross-modality adaptation of
SpeechLM. Our solution not only mitigates the impact of
outliers in transformer-based models but also enhances both
low-rank adaptation and post-training quantization perfor-
mance. Experimentally, the proposed method achieves an
average performance improvement of 7.98% in cross-modal
fine-tuning (Section 3.2) and 67.85% in quantization (Sec-
tion 3.1), compared to existing methods.
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Broader Impact
We believe this methodology offers an opportunity to en-
hance the fine-tuning and inference processes of foundation
models, including low-rank adaptation and post-training
quantization, by leveraging insights from associative mem-
ory models. Our solution also enables large foundation
models to perform edge computing and facilitates model
fine-tuning without requiring extensive resources. However,
this approach might intensify biases present in the train-
ing data, potentially resulting in unfair or discriminatory
outcomes for underrepresented groups.
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Appendix

A. Related Work
Discrete Speech Representation. Recent advances in Self-Supervised Learning (SSL) for speech, exemplified by models
such as HuBERT (Hsu et al., 2021) and w2v-BERT (Chung et al., 2021), enhance our ability to extract meaningful
representations from raw audio data. These models generate semantic tokens by clustering learned features, effectively
capturing the linguistic content of speech. This process transforms speech into pseudo-text, which is highly beneficial for
speech-based natural language understanding and generation applications. Specifically, models like HuBERT transform
continuous speech features into discrete tokens representing phonetic or sub-word units, thereby improving the accuracy and
efficiency of high-level speech processing tasks such as text-to-speech (TTS) (Hayashi and Watanabe, 2020), speech-to-
speech translation (S2ST) (Lee et al., 2021), and automatic speech recognition (ASR) (Park et al., 2019).

Speech and Text LMs. As foundation models advance, multi-modality (Lu et al., 2024; Liu et al., 2024; Girdhar et al.,
2023; Luo et al., 2023a; Wang et al., 2023a; Samel et al., 2021) gains prominence, especially in the integration of speech and
text. This area is now a major focus within the field of foundation models. Jointing modeling of speech and text becomes a
central area of research. Early methods (e.g., (Ao et al., 2021; Chen et al., 2022)) utilize separate encoders and decoders for
speech and text, incorporating alignment losses to facilitate cross-modal transfer. However, more recent approaches shift
towards unified models capable of handling multiple tasks simultaneously. For instance, SpeechGPT (Zhang et al., 2023)
merges audio generation with text language models, while PolyVoice (qian Dong et al., 2023) applies speech language
modeling to speech-to-speech translation. Similarly, SpiritLM (Nguyen et al., 2024) is noted for its capabilities in both
speech and expressive speech generation, and is further adaptable to related speech tasks. Voxtlm (Maiti et al., 2024) is
versatile, supporting speech/text generation as well as automatic speech recognition and text-to-speech. In our work, we
start with a textually pretrained OPT model (Zhang et al., 2022) for better initialization, inspired by (Maiti et al., 2024;
Hassid et al., 2024), and utilize various speech tokens to ensure the full reproducibility of our findings.

Low-Rank Adaptation and Post Training Quantization. Low-Rank Adaptation (Xin et al., 2024; Huang et al., 2024;
Dettmers et al., 2024; Li et al., 2023; Hu et al., 2021) and Post Training Quantization (PTQ) (Qin et al., 2024a; Xu et al.,
2024b; Gu et al., 2024a; Luo et al., 2023b; Gholami et al., 2022; Horowitz, 2014; Tang and Kwan, 1993; Marchesi et al.,
1993) are essential for reducing the memory footprint and latency of large foundation models (Bommasani et al., 2021),
particularly those based on extensive transformer architectures. These models are crucial not only in machine learning
but also across various scientific fields such as finance (Wang et al., 2023b; Wu et al., 2023), genomics (Zhou et al.,
2024b; 2023; Ji et al., 2021), human mobility (Wu et al., 2024c), and speech processing (Maiti et al., 2024). Despite their
effectiveness, these resource-intensive models necessitate techniques like Low-Rank Adaptation and PTQ for deployment
on resource-constrained edge devices. Significant contributions are made in the area of Low-Rank Adaptation (Meo et al.,
2024; Qin et al., 2024b; Dettmers et al., 2024; Zhou et al., 2024a; Li et al., 2023; Hu et al., 2021) and PTQ (Ma et al., 2024;
Shao et al., 2023; Xiao et al., 2023a; Luo et al., 2023b). However, they typically do not address the outlier problem during
the adaptation and quantization processes, as highlighted by (Hu et al., 2024a). Moreover, Hu et al. (2024c) suggest that
LoRA adaptor weights might lead to performance and efficiency degradation due to their additive nature. To tackle these, we
incorporate the Outlier Efficiency Layer (OutEffHop), specifically designed to manage outliers during both the Low-Rank
Adaptation and the quantization phases, thereby enhancing model robustness and reliability.

Outlier-Efficient Methods. The Outlier-Efficient Method aims to mitigate the effects of outliers during the pre-training,
fine-tuning, and deployment phases of model development (Hu et al., 2024a; Chen et al., 2024; Bondarenko et al., 2024;
Xiao et al., 2023a). In the deployment phase, quantization reduces the computational demands of large models through
low-bit precision computing. However, outliers, creating disproportionately large attention weights, often compromise
the efficacy of quantizing transformer-based models (Bondarenko et al., 2023; 2021). To counter this, Wei et al. (2022)
modify LayerNorm to enable outlier-free quantization of activation tensors and introduce Token-Wise Clipping to optimize
token-specific clipping ranges. Additionally, Dettmers et al. (2022b) use varying precision levels for quantizing outlier
features, while Meo et al. (2024) incorporate a Bayesian approach with a prior distribution on quantization levels to help
manage outliers. Despite these efforts, as outliers stem from the Softmax function, these methods do not address the root
cause. Prior research (Hu et al., 2024a; Bondarenko et al., 2023) identifies no-op tokens as a primary issue: tokens that have
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small value vectors often receive disproportionately large attention weights. Hu et al. (2024a) interpret the outlier effect in
modern Hopfield networks as inefficient rare memory retrieval. They propose replacing the standard transformer layer with
an outlier-efficient Hopfield layer to address this issue.

Theories of Outliers in Transformer Attention Heads. Recent theoretical results also highlight the benefits of outlier
removal from attention heads in large transformer-based foundation models. Alman and Song (2023a;b) show that efficient
transformers, including vanilla and tensor versions, require bounded attention weights through precise reduction methods. Hu
et al. (2024b) indicate that efficient dense associative memory models (i.e., modern Hopfield models) and their corresponding
networks also require bounded query and key patterns for sub-quadratic time complexity using fine-grained reduction
techniques. Additionally, Hu et al. (2024c) theoretically show that the existence of outliers hamper the efficiency and
performance of LoRA fine-tuning. Further, Hu et al. (2024c); Gu et al. (2024b;c); Alman and Song (2024); Gao et al. (2023)
show that bounded weight matrices are essential for the efficient training of transformer-based models.

B. Outliers Challenge in Transformer Architecture
Clark et al. (2019) and Kovaleva et al. (2019) show that in BERT models, certain tokens like delimiters and punctuation
marks are allocated disproportionately high attention weights. Similarly, Kobayashi et al. (2020) note that tokens with small
value vectors also receive significantly larger attention weights. According to Bondarenko et al. (2024); Hu et al. (2024a),
these tokens, despite their low informational value, command high attention probabilities, resulting in a no-update operation.
This phenomenon not only increases computational and memory requirements during training but also leads to marked
performance drops during model quantization.

To see this, let X = [x1, . . . , xm] ∈ Rd×m denote the input and recall the attention mechanism

Attention(X) = Softmax(QKT/
√
d)V = A. (B.1)

We focus on the part of transformer right after the attention mechanism, model residual

Output = Residual(A+X). (B.2)

If the input X already has enough information and does not need to be updated, the transformer should not update the input
X . As a result, the attention mechanism does not pay attention to the input X and the attention weight should be 0. This is
known as the no-update situation: the output of Equation (B.2) should same as input X . However, the attention mechanism
does not always work as expected. The attention mechanism focus tokens with large values (as in V ) receive near-zero
attention weights (as in Softmax(QKT)), while tokens with small values receive large attention probability. By normalize
the natural of the Softmax function, the operation focus on its input QKT to have the wide range. This is fundamental
source of the outliers: there must be some tokens causing the wide-range of the QKT, namely the outliers. Those findings
also suggests in several recently research works (Sun et al., 2024; Hu et al., 2024a; Xiao et al., 2023b).

C. Computational Resource
All experiments are conducted using four NVIDIA A100 GPUs, each with 80GB of memory, and a 24-core Intel(R) Xeon(R)
Gold 6338 CPU operating at 2.00GHz. Our experimental code is developed in PyTorch and utilize the Hugging Face
Transformers Library for execution.

D. Visualization of Outliers Challenge
As shown in Figure 2, we use visualization to highlight the challenges posed by outliers in transformer-based models
during the fine-tuning period. We visualize the model’s hidden representations in the last hidden layers during the LoRA
fine-tuning process. In the figure, deeper shades of red indicate higher values of attention probability, value, and weight.
Conversely, deeper shades of blue represent lower values. This color coding helps illustrate the concentration of attention
and computational focus within the model. In the vanilla model, we observe that the attention probability is distributed
across various tokens rather than being concentrated on specific, significant tokens. This dispersion can cause the model to
expend effort on unnecessary tokens during fine-tuning, leading to performance degradation and resources inefficiency. In
contrast, the OutEffHop-enhanced model shows a more focused attention distribution, which helps reduce the computational
effort required for fine-tuning by concentrating on the significant tokens. Additionally, we find that the attention weight in
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Figure 2. Visualization of Attention Probability, Value and Weight in LoRA Funetuning. We present a visualization of the attention
probability, value, and weight for a cross-modality speech sample processed by the OPT-125m model. The visualization includes two
scenarios: (a) the vanilla OPT-125m model, and (b) the OutEffHop-enhanced OPT-125m model (Hu et al., 2024a). Additionally, we
visualize the model’s hidden representations in the last hidden layers during the LoRA fine-tuning process and scale up all heatmaps
from range 0 (blue) to 1 (red). In the vanilla model, we observe that the attention probability is distributed across various tokens rather
than being concentrated on specific, significant tokens. This dispersion causes the model to expend effort on unnecessary tokens during
fine-tuning, leading to performance degradation and resources inefficiency. In contrast, the OutEffHop-enhanced model shows a more
focused attention distribution, which helps in reducing the computational effort required for fine-tuning by concentrating on the significant
tokens. See Figure 1 for numerical verification.

OutEffHop is higher for tokens with high attention values. This indicates that the model does not spend extra computational
resources on less significant tokens, allowing the fine-tuning process to converge more efficiently.

E. Additional Numerical Experiments
Influence of Adaptor Rank. We conducte a comprehensive analysis to assess the efficacy of our proposed method using
Low-rank Adaptation (LoRA) across different ranks, comparing it to the conventional (vanilla) approach. The results,
detailed in Table 3, show that our method consistently outperformed the vanilla approach at all tested ranks, with a rank of
256 delivering optimal performance. This lead us to standardize on a rank of 256 for all subsequent LoRA experiments.
Further investigation indicates that increasing the rank beyond 256 does not lead to further performance improvements. This
is attributed to the fact that a higher rank introduces additional trainable parameters, which can improve learning capacity
but also demand significantly more training epochs for effective convergence. This extended training process introduces
inefficiencies and practical limitations that may outweigh the benefits of a higher parameter count, making a rank of 256 the
most effective choice for balancing performance enhancement and computational efficiency.
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