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Abstract

Finding classifiers robust to adversarial examples is critical for their safe deploy-
ment. Determining the robustness of the best possible classifier under a given
threat model and comparing it to that achieved by state-of-the-art training methods
is thus an important diagnostic tool. In this paper, we find achievable information-
theoretic lower bounds on loss in the presence of a test-time attacker for multi-class
classifiers on any discrete dataset. We provide a general framework for computing
lower bounds on 0 − 1 loss based on solving a linear program (LP). This LP is
constructed based on what we introduce as a conflict hypergraph, and we explore
different settings in the construction of this hypergraph and their impact on the
computed lower bound. Our work enables, for the first time, an analysis of the gap
to optimal robustness for classifiers in the multi-class setting.

1 Introduction

Machine learning models are susceptible to small imperceptible perturbations known as adversarial
examples [Szegedy et al., 2013]. Several empirical approaches have been proposed for training
classifiers robust to adversarial examples [Madry et al., 2018, Zhang et al., 2019, Croce et al., 2020].
In this paper, we ask: what is the minimum achievable 0 − 1 loss on the training data for any
multi-class classifier in the presence of an adversary? Addressing this question allows us to assess
the effectiveness of existing techniques for robust training and goes significantly beyond previous
work [Bhagoji et al., 2019, Pydi and Jog, 2020, Bhagoji et al., 2021] restricted to binary classification.

We formulate and solve an optimization problem to determine classifier-agnostic lower bounds for
the robust 0 − 1 loss for multi-class classification. We provide techniques to efficiently compute
these bounds for commonly used image datasets including MNIST, CIFAR-10, and CIFAR-100, and
compare these bounds to current robust training methods. Our contributions are as follows:

1. We introduce a framework for computing lower bounds for 0− 1 loss in the presence of an
adversary for multi-class classification. In this framework, given a dataset and adversary, we
construct a conflict hypergraph which contains vertices representing training examples in
the dataset and hyperedges representing overlaps between adversarial neighborhoods around
each training example. This hypergraph is then used to construct a linear program whose
solution is a lower bound on 0− 1 loss. This conflict hypergraph is analogous to the conflict
graph introduced by Bhagoji et al. [2021] for binary classification.

2. We compute lower bounds on 0−1 loss for commonly used image datasets including MNIST,
CIFAR-10, and CIFAR-100. Using these lower bounds, we analyze the effectiveness of
robust training methods like adversarial training and TRADES.
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3. We provide a method to optimally aggregate lower bounds from binary classification to
determine a lower bound on the true multi-class bound. We find the full multi-class bound
is much more informative in most practical settings. In addition, we analyze the impact of
hyperedges of different sizes on the multi-class lower bound.

2 Formulating Lower Bounds as a Linear Program

In this section, we provide a framework for obtaining lower bounds on 0− 1 loss in the presence of a
test-time adversary. We will show that the lower bound can be computed as the solution of a linear
program (LP), which is defined based on a hypergraph constructed from the classification problem.
We note that these bounds are classifier agnostic and can be computed for any discrete distribution
(e.g. training dataset).

2.1 Problem Formulation

Notation. We consider a supervised classification problem where inputs are sampled from input
space X , and labels belong to K classes: y ∈ Y = {1, ...,K}. Let P be the joint probability over
X × Y . Let Hsoft denote the space of all soft classifiers; specifically, for all h ∈ Hsoft we have
that h : X → [0, 1]K and

∑K
i=1 h(x)i = 1 for all x ∈ X . Here, h(x)i represents the probability

that the input x belongs to the ith class. For classification, we consider a randomized hard-decision
classifier f(x) ∼ Cat(h(x)) where Cat denotes the categorical distribution. We use classification
error probability of this randomized classifier as our loss function: `(h, (x, y)) = 1 − h(x)y =
Pr[f(x) 6= y].

Test-time adversaries. We are interested in the setting where there exists a test-time adversary that
can modify any data point x to generate an adversarial example x̃ that lies within the neighborhood
N(x) of x. We require that for all x ∈ X , N(x) always contains x. The objective of the learner is to
find h that outputs classification probabilities such that in expectation the classifier f achieves the
minimum 0− 1 loss over P in the presence of an adversary restricted to N . The optimal loss, which
depends on a distribution P , hypothesis classH, and neighborhood N , is

L∗(P,H, N) = min
h∈H

E
(x,y)∼P

max
x̃∈N(x)

`(h, (x̃, y)) = 1−max
h∈H

E
(x,y)∼P

min
x̃∈N(x)

h(x̃)y. (1)

In general, when H′ ⊆ H, L∗(P,H, N) ≤ L∗(P,H′, N). In particular, the class of hard-decision
classifiers is a subset of the class of soft classifiers (Hsoft). For any fixed architecture, the class of
functions represented by some parameterization of that architecture is another subset. Thus optimal
loss overHsoft provides a lower bound on loss in these settings.

Optimal loss for distributions with finite support. Since we would like to compute the optimal
loss for distributions P with finite support, we can rewrite the expectation in Equation 1 as an
inner product. Let V be the support of P , i.e. the set of points (x, y) ∈ X × Y that have positive
probability in P . Let p ∈ [0, 1]V be the probability mass vector for P : pv = P ({v}). For a
soft classifier h, let q(h) ∈ RV be the vector of correct classification probabilities for vertices
v = (x, y) ∈ V : q(h)v := minx̃∈N(x) h(x̃)y. Rewriting (1) with our new notation, we have
1 − L∗(P,Hsoft, N) = maxh∈Hsoft p

T q(h). This is the maximization of a linear function over all
possible vectors q(h). In fact, the convex hull of all correct classification probability vectors is a
polytope and this optimization problem is a linear program, as described next.

2.2 Conflict Hypergraph Construction

In order to characterize the possible vectors of correct classification probabilities, we represent
the structure of the classification problem with a hypergraph. We introduce a conflict hypergraph
G(≤m) = (V, E(≤m)), which records intersections between neighborhoods of points in X . The
conflict hypergraph is parameterized by m ∈ {2, 3, ...,K}, which controls the maximum size of
hyperedges in E(≤m). For all m, the set of vertices V of G(≤m) is the support of P . For a set S ⊆ V ,
S ∈ E(≤m) (i.e. S is a hyperedge in G(≤m)) if all vertices in S belong to different classes, |S| ≤ m,
and the neighborhoods of all vertices in S overlap:

⋂
(x,y)∈S N(x) 6= ∅. Thus, the size of each

hyperedge is at most m, E(≤m) is downward-closed, and every v ∈ V is a degree 1 hyperedge.
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2.3 Linear Program

Using the conflict hypergraph G(≤m), we can now describe the linear program for L∗(P,Hsoft, N).
Lemma 1 (Optimal loss as an LP (Adapted from [Bhagoji et al., 2021])). LetHsoft be the class of all
soft classifiers and N define the neighborhood of the adversary. For any distribution P with finite
support, let p ∈ RV be the probability mass vector for P (pv = P ({v})). Then,

1− L∗(P,Hsoft, N) = max
q
pT q s.t q ≥ 0, B(≤K)q ≤ 1. (2)

where B(≤K) ∈ RE(≤K)×V is the incidence matrix of the conflict hypergraph.

See Appendix A for proof. Because E(≤m) ⊆ E(≤K), the inequality B(≤m)q ≤ 1 is a relaxation of
the constraint in (2). By decreasing m, we get a sequence of linear programs with fewer constraints.
The values of these programs are a sequence of looser lower bounds on L∗(P,Hsoft, N). These
values can also be interpreted as optimal risks in variations on the adversarial classification game. We
describe this in Appendix B. In the remainder of the text, we will denote the solution to the variation
on the LP in Equation 2 with constraint B(≤m)q ≤ 1 as L∗(m).

2.4 Approximating multiclass lower bounds with lower bounds for binary classification

Prior works [Bhagoji et al., 2019, 2021] proposed methods of computing lower bounds for binary
classification problems. We now ask the question: how informative are lower bounds for binary
classification in computing a lower bound for multi-class classification?

Consider the setting where we obtain lower bounds on 0 − 1 loss for all one-versus-one binary
classification tasks. We can consider a weaker adversary which chooses pairings of classes such that
for each pair of classes (y1, y2), the adversary’s strategy is to perform a targeted attack on all inputs
with label y1 to class y2 and vice versa. These pairings can be optimized through maximum weight
coupling on the K ×K matrix of one-versus-one binary classification lower bounds. Thus, by using
maximum weight coupling to find optimal pairs and then averaging the one-versus-one losses across
these pairs, we can obtain a lower bound on multi-class 0− 1 loss using one-versus-one 0− 1 loss
lower bounds. We call this lower bound the class-only lower bound and denote this lower bound as
L∗co(2). Since the adversary is using a weaker strategy in comparison to the adversary considered
for computing multi-class lower bounds, we note that L∗co(2) ≤ L∗(m) for all m ∈ {2...K}. In
Appendix B, we demonstrate that L∗ and L∗co are the optimal losses for different classification games
and provide additional details about the corresponding games.

3 Empirical Results

We now compute lower bounds on 0− 1 loss for the training sets of MNIST and CIFAR-10 under the
presence of an `2-bounded adversary 1. We use the 3 variations of 0− 1 loss lower bounds described
in Section 2.3 and 2.4 to capture the differences between the various classification games. Further
experimental details are in Appendix D. Additionally, we include results for 3-class Gaussian data in
Appendix E.4.

Binary vs Multi-class Lower Bounds: We first investigate how much more information we gain
from computing multi-class lower bounds in comparison to aggregating lower bounds from all pairs
of binary classification problems. In other words, we compare L∗(2) with L∗co(2). We obtain L∗co(2)
by performing maximum weight coupling over a K × K matrix of optimal binary classification
losses. In Figures 1a and 1b, we see a noticeable gap between the two losses, and the gap increases as
ε increases, showing that L∗ is a tighter bound that L∗co for use as a diagnostic tool. This demonstrates
that an adversary that is restricted to class specific targeted attacks can be much weaker than an
adversary that is allowed to use untargeted example dependent attacks. The difference tapers off as
L∗(2) approaches its maximum value of 0.5, due to the high connectivity of all pairwise graphs.

Impact of Hyperedges: We further investigate the impact of changing m when computing L∗(m).
In Figures 1a and 1b, there is minimal change between L∗(2) and L∗(3) up to the ε we are able

1Due to the computational expense at larger budgets and sample sizes, some results could not be obtained in
a reasonable time (See Appendix E.2 for runtime details). In these cases, we reduce the sample size to obtain
representative results.
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Figure 1: Computed multiclass 0− 1 loss lower bound considering up
to degree 2 (L∗(2)) and degree 3 hyperedges (L∗(3)), and maximum
weight coupling of pairs of binary 0− 1 loss lower bounds (L∗co(2)).
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Figure 2: Multiclass 0 −
1 lower bounds for 3-class
MNIST with 1000 samples

to compute L∗(3) for. To bypass computational limitations, we use 1000 samples per class in a
3-class setting for MNIST (classes 1, 4, and 7) to observe the difference between L∗(2) and L∗(3)
as ε increases (Fig. 2). After ε = 4, there is a clear separation arising from the use of hyperedges.
L∗(3) approaches its maximum of 2

3 while L∗(2) tapers off at 1
2 . We provide additional results on

visualizing the impact of hyperedges in Appendix E.1.

State of Current Defenses To assess how well existing robust training methods are able to fit the
training data, we compare the training error of models trained with PGD adversarial training (PGD-
AT) [Madry et al., 2018, Gowal et al., 2020] and TRADES (TRADES-AT) [Zhang et al., 2019] to
L∗(2). For TRADES-AT, we use β = 1 for MNIST and β = 6 for CIFAR-10 and CIFAR-100. We
evaluate models using APGD [Croce and Hein, 2020] and report our results in Figure 3. Across
all datasets, we find that a large gap exists between the classifiers found using robust training and
the computed lower bound. This further validates previous work that existing training methods are
unable to robustly fit the training data well, with an even larger gap than in the 2-class setting. We
note that on CIFAR-10 and CIFAR-100 for the ε tested, TRADES-AT at β = 6 leads to models with
low clean loss but high robust loss, and performance may improve with better tuning of β.
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Figure 3: Comparison of loss obtained via current adversarial training (AT) techniques (PGD-AT
[Madry et al., 2018] and TRADES-AT [Zhang et al., 2019]) to computed lower bounds (L∗(2)).

4 Discussion

Our work in this paper firmly establishes for the multi-class case what was known only in the binary
setting before: there exists a large gap in the performance of current robust classifiers and the
optimal classifier. This raises the question: why does this gap arise and how can we improve training
to decrease this gap? In the future, we would like to see if increasing architecture size or using
additional data [Sehwag et al., 2022, Gowal et al., 2021] can close this gap. A surprising finding from
our experiments was that the addition of hyperedges to the multi-way conflict graph did not change
the lower bounds much, indicating we are in a regime where multi-way intersections minimally
impact optimal probabilities. One major limitation of our work is the computational expense at larger
budgets and sample sizes. We suspect this is due to the general-purpose nature of the solvers we use
and are developing custom algorithms to speed up the determination of lower bounds.
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Appendix

A Proof of Lemma 1

This proof consists of 2 parts. First, we will show that the classification probabilities in q must satisfy
the constraints of the LP. We will then show that for any q∗ that is a solution to the LP that there
exists an h ∈ Hsoft which attains q∗.

Constraints of the LP must hold. We note the first constraint hold because classification proba-
bilities must lie in the range [0, 1]. We will now demonstrate that the second constraint must also
hold. Let e = ((x1, y1), ..., (xn, yn)) be an nth degree hyperedge in E(≤m). By construction of
E , ∃x̃ ∈

⋂n
i=1N(xi). By definition of q(h), for each vertex (xi, yi), i ∈ {1...n}, we have that

q(h)(xi,yi) ≤ h(x̃)yi . Thus,
∑n
i=1 q(h)(xi,yi) ≤

∑n
i=1 h(x̃)yi ≤

∑K
i=1 h(x̃)i = 1. This gives us the

second constraint.

q∗ is attainable by some h ∈ Hsoft. We will prove this by constructing an oracle classifier h∗ ∈ Hsoft
that outputs the classification probabilities specified by q∗ (thus achieving the lower bound on 0− 1
loss) by doing the following:

1. Initialize h∗(x)y = 1
K for all x ∈ X , y ∈ Y

2. For each (x1, y1) in the support of P , find all hyperedges
3. Sort hyperedges by degree. Starting from the hyperedge of lowest degree do the following:

for each hyperedge ((x1, y1), ..., (xn, yn)),
(a) Set h∗(x)yi = q∗(xi,yi)

for all x ∈
⋂n
i=1N(xi).

(b) For all classification labels j ∈ Y \ {y1...yn} not involved in the hyperedge, set

h∗(x)j =
1−

∑n
i=1 q

∗
(xi,yi)

|Y\{y1...yn}| .

By construction, we can see that for any x ∈ X , h∗(x) outputs values in [0, 1]K and
∑K
i=1 h

∗(x) = 1.
This makes h∗ a valid soft classifier that achieves the lower bound.

B Hierarchy of Classification Games

Consider the following variations on the multiclass classification game with adversarial perturbations.
Both variations have a parameter m. In both the adversary selects C ⊆ Y such that y ∈ C
and |C| = m and gives C to the classifier as side information. Thus the classifier is a function
h : X ×

(Y
m

)
→ Y .

• Example-dependent class list: The adversary samples (x, y) ∼ P , then selects x̃ and C.
• Class-only class list: The adversary samples y ∼ Py , then selects C, then samples x ∼ Px|y

and selects x̃ ∈ N(x).

In other words, in the former variation the adversary’s choice of C can depend on x and in the
latter variation it cannot. Let L∗(m,P,H, N) be the minimum loss in the example-dependent
class list game with list length m and let L∗co(m,P,H, N) be the minimum loss in the class-only
class list game. When m = K, C = Y and both variations are equivalent to the original game,
so L∗(P,H, N) = L∗(K,P,H, N) = L∗co(K,P,H, N). For each variation, the game becomes
more favorable for the adversary as m increases: L∗(m,P,H, N) ≤ L∗(m + 1, P,H, N) and
L∗co(m,P,H, N) ≤ L∗co(m+ 1, P,H, N). For each m, it is more favorable for the adversary to see
x before selecting C, i.e. L∗co(m,P,H, N) ≤ L∗(m,P,H, N).
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Furthermore, the values of these games are each characterized by a natural variation on the linear
program for the value of the main game. For classifiers using class list side-information, the correct
classification probability is defined as follows: q(h)(x,y) = minx̃∈N(x) minC:y∈C h(x̃, C)y .

Lemma 2. In the example-dependent side information game, correct classification probabilities
satisfy B(≤m)q(h) ≤ 1. Furthermore the optimal loss satisfies

1− L∗(m,P,H, N) = max
h∈H

pT q(h) = max
q
pT q s.t q ≥ 0, B(≤m)q ≤ 1 (3)

In the class-only variation, the adversarial strategy for selecting C is a specified by a conditional
p.m.f. pC|y(C|y). Thus py|L(y|C) = pC|y(C|y)py(y)/

∑
y′ pC|y(C|y′)py(y′).

The optimal loss of the classifier against a particular adversarial strategy is just a mixture of the
optimal losses for each class list:

∑
L pC|y(C|y)py(y)L∗(Px|yPy|C ,H, N).

If pC|y(C|y) = pC|y(C|y′) for all y, y′ ∈ C, then py|C(y|C) = py(y)/
∑
y′∈C py(y′) and the

adversary has not provided the classifier with extra information beyond the fact that y ∈ C. Thus
Px|yPy|C = P |(y ∈ C). Call the optimal loss under this restriction L∗co,sym(m,P,H, N).

Lemma 3. L∗co,sym(2, P,H, N) = minz
∑
i,j py(i)zi,jL

∗(P |(y ∈ {i, j},H, N) where z is a sym-
metric doubly stochastic matrix.

C Hyperedge Finding

One challenge in computing lower bounds for 0− 1 loss in the multi-class setting is that we need
to find hyperedges in the conflict hypergraph. In this section, we will consider an `2 adversary:
N(x) = {x′ ∈ X | ||x′ − x||2 ≤ ε} and describe an algorithm for finding hyperedges within the
conflict graph.

We first note that for an n-way hyperedge to exist between n inputs {xi}ni=1, {xi}ni=1 must all lie on
the interior of an n− 1-dimensional hypersphere of radius ε.

Given input x1, ..., xn where xi ∈ Rd, we first show that distance between any two points in the
affine subspace spanned by the inputs can be represented by a distance matrix whose entries are the
squared distance between inputs. This allows us to compute the circumradius using the distance
information only, not requiring a coordinate system in high dimension. Then we find the circumradius
using the properties that the center of the circumsphere is in the affine subspace spanned by the inputs
and has equal distance to all inputs.

We construct matrix X ∈ Rd×n whose ith column is input xi. Let D ∈ Rn×n be the matrix of
squared distances between the inputs, i.e., Di,j = ‖xi − xj‖2.

We first notice that D can be represented by X and a vector in Rn whose ith entry is the squared
norm of xi. Let ∆ ∈ Rn be such vector such that ∆i = ‖xi‖2 = (XTX)i,i. Then given that Di,j is
the squared distance between xi and xj , we have

Di,j = ‖xi‖2 + ‖xj‖2 − 2〈xi, xj〉,

which implies that

D = ∆1T + 1∆T − 2XTX.

Let α, β ∈ Rn be vectors of affine weights: 1Tα = 1Tβ = 1. ThenXα andXβ are two points in the
affine subspace spanned by the columns of X . The distance between Xα and Xβ is −(α−β)

TD(α−β)
2 ,

shown as below:

−(α− β)TD(α− β)

2
=
−(α− β)T (∆1T + 1∆T − 2XTX)(α− β)

2

=
−(0 + 0− 2(α− β)TXTX(α− β)

2

= ‖Xα−Xβ‖2.
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Now we compute the circumradius using the squared distance matrix D. The circumcenter is in
the affine subspace spanned by the inputs so we let Xα to be the circumcenter where 1Tα = 1.
Let e(i) ∈ Rn be the ith standard basis vector. The distance between the circumcenter and xi is
‖Xα−Xe(i)‖2. From previous computation, we know that ‖Xα−Xe(i)‖2 = −(α−e(i))TD(α−e(i))

2 .
Since the circumcenter has equal distance to all inputs, we have

(α− e(1))TD(α− e(1)) = . . . = (α− e(n))TD(α− e(n)). (4)

Note that the quadratic term in α is identical in each of these expressions. In addition, e(i)TDe(i) = 0
for all i. So equation 4 simplifies to the linear system

e(i)TDα = c =⇒ Dα = c1

=⇒ α = cD−11

for some constant c. Since 1Tα = 1, we have
1 = 1Tα = c1TD−11

=⇒ 1

c
= 1TD−11

assuming that D is invertible. The square of the circumradius, r2, which is the squared distance
between the circumcenter and x1, is

‖Xα−Xe(1)‖2

=
−(α− e(1))TD(α− e(1))

2

=e(1)TDα− αTDα

2

=c− c21TD−11

2

=
c

2

=
1

21TD−11
.

Therefore, assuming matrix D is invertible, the circumradius is 1√
21TD−11

.

The inverse of D can be computed as detD
adjD . Since α = cD−11, we have α = cdetDadjD1. As r2 = c

2 ,
constant c is non-negative. Therefore, α ∝ detD

adjD1.

When all entries of α are non-negative, the circumcenter is a convex combination of the all inputs
and the circumsphere is the minimum sphere in Rn−1 that contains all inputs. Otherwise, the
circumsphere of {xi|αi > 0} is the minimum sphere contains all inputs.

After finding the radius of the minimum sphere that contains all inputs, we compare the radius with
the budget ε. If the radius is no larger than ε, then there is a hyperedge of degree n among the inputs.

D Experimental Setup

Datasets We compute lower bounds for MNIST [LeCun and Cortes, 1998], CIFAR-10, and CIFAR-
100 [Krizhevsky and Hinton, 2009]. Since we do not know the true distribution of these datasets, we
compute lower bounds based on the empirical distribution of the training set for each dataset.

LP solver For solving the LP in Equation 2, we primarily use Mosek LP solver [ApS, 2019]. When
Mosek solver did not converge, we use CVXOpt’s LP solver [Andersen et al., 2013].

Training Details For MNIST, we use 40 step optimization to find adversarial examples during
training and use step size ε

30 and train all models for 50 epochs. For CIFAR-10 and CIFAR-100, we
use 10 step optimization to find adversarial examples and step size ε√

10
and train models for 200

epochs. For MNIST TRADES training, we use β = 1 and for CIFAR-10 and CIFAR-100, we use
β = 6. Additionally, for CIFAR-10 and CIFAR-100, we optimize the model using SGD with learning
rate and learning rate scheduling from Gowal et al. [2020]. For MNIST, we use learning rate 0.01.
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Architectures used For CIFAR-10 and CIFAR-100, we report results from training a WRN-28-10
architecture. For MNIST, we train a small CNN architecture consisting of 2 convolutional layers,
each followed by batch normalization, ReLU, and 2 by 2 max pooling. The first convolutional layer
uses a 5 by 5 convolutional kernel and has 20 output channels. The second convolutional layer also
uses a 5 by 5 kernel and has 50 output channels. After the set of 2 convolutional layers with batch
normalization, ReLU, and pooling, the network has a fully connected layer with 500 output channels
followed by a fully connected classifier (10 output channels).

E Additional Experimental Results

E.1 Impact of hyperedges

In Figure 4, we show the count of edges, degree 3 hyperedges, and degree 4 hyperedges found in
the conflict hypergraphs of the MNIST, CIFAR-10, and CIFAR-100 train sets. We note that we did
not observe any increase in loss when considering degree 4 hyperedges at the ε with a data point for
number of degree 4 hyperedges in Figure 4. We find that the relative number of edges and hyperedges
is not reflective of whether we expect to see an increase in loss after considering hyperedges. For
example in CIFAR-10, at ε = 4.0, we there are about 100 times more hyperedges than edges, but
we see no noticeable increase in the 0 − 1 loss lower bound when incorporating these hyperedge
constraints.

Edges Degree 3 hyperedges Degree 4 hyperedges
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(a) MNIST
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(b) CIFAR-10

2.0 2.5 3.0 3.5 4.0 4.5 5.0

102

104

106
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(c) CIFAR-100

Figure 4: Number of edges, degree 3 hyperedges, and degree 4 hyperedges found in the conflict
hypergraphs of MNIST, CIFAR-10, and CIFAR-100 train sets. The red vertical line indicates the ε at
which we noticed an increase in the 0− 1 loss lower bound when considering degree 3 hyperedges.

We further examine the optimal classification probability qv of each vertex obtained as a solution
to the LP with (L∗(3)) and without considering constraints from degree 3 hyperedges (L∗(2)). We
show histograms of the distributions of qv for MNIST in Figure 5 and for CIFAR-10 in Figure 6.
For small ε, there is no change in the distribution of qv, which results in no change in overall loss.
For example, for MNIST at ε = 2.5 and CIFAR-10 at ε = 3.5, we observe that the distribution of
qv stays the same between L∗(2) and L∗(3). However at larger values of ε, we find that for L∗(2),
more values are assigned qv near 0.5, and these probabilities are highly impacted after incorporating
hyperedge constraints.

E.2 Computational complexity of computing lower bounds

Our experiments of L∗(3) for higher ε are limited due to computation constraints. From Figure 7 we
see that the time taken to compute the losses grows exponentially with ε. We are seeking algorithmic
optimization to achieve more results at high ε.

E.3 Clean errors of adversarially trained models

We report the training error of adversarially trained models shown in Figure 3 on unperturbed inputs in
Figure 8 (denoted as clean err) in comparison to the robust error. We find that in general, TRADES-AT
finds models with much lower clean error compared to PGD-AT, but for CIFAR-10 and CIFAR-100
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Figure 5: Distribution of optimal classification probabilities q obtained by solving the LP with up to
degree 2 hyperedges (m = 2) and up to degree 3 hyperedges (m = 3) on the MNIST training set.
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(b) ε = 4.0
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Figure 6: Distribution of optimal classification probabilities q obtained by solving the LP with up to
degree 2 hyperedges (L∗(2)) and up to degree 3 hyperedges (L∗(3)) on the CIFAR-10 training set.

this does not equate to finding more robust models. Tuning of the β hyperparameter of TRADES
may improve the robust loss on CIFAR-10 and CIFAR-100.

E.4 Results for Gaussian Data

In this section, we consider a 3-class problem on 2 dimensional input. We sample data from 3
spherical Gaussians with means at distance 3 away from from the origin (a sample is shown in Figure
9). We compute multiclass lower bounds on robust accuracy at various `2 budget ε. We compute
2 sets of lower bounds: lower bounds considering only pairwise edges (L∗(2)) and lower bounds
considering up to degree 3 hyperedges (L∗(3)). Additionally, we compare to a deterministic 3 way
classifier shown in black in Figure 9. This classifier classifies incorrectly, when a sample lies over the
edge of the nearest ε margin of the classifier.

We report results for the 3-class Gaussian classification problem in Figure 10. We find that generally
until the multiclass pairwise lower bound on 0− 1 error reaches 0.5, the difference between the lower
bound considering only pairwise edges and lower bound considering up to degree 3 hyperedges is
negligible. Similarily, we find that up until the 0− 1 lower bound reaches 0.5, we find that the error
of the deterministic classifier also lies close to the computed lower bound. This suggests that our
lower bound is not vacuous for deterministic classifiers.
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Figure 7: Time taken to compute L∗(2) and L∗(3) for MNIST and CIFAR-10.
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Figure 8: Robust and clean error on the training set for adversarially trained models in Figure 3
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Figure 9: A sample 3-class gaussian problem (each color pertains to a class) and a corresponding
classifier for this problem shown in black. The classifier classifies a sample incorrectly when it lies
over the edge of the ε margin (shown by the red lines) nearest the corresponding gaussian center.

11



L * (2) L * (3) Classifier loss

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
0.0

0.2

0.4

0.6

0.8

1.0

0-
1 

lo
ss

2 = 0.05

(a) σ2 = 0.05

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
0.0

0.2

0.4

0.6

0.8

1.0

0-
1 

lo
ss

2 = 0.5

(b) σ2 = 0.5

Figure 10: Lower bounds on error for the Gaussian 3-class problem (for variances σ2 = 0.05
and σ2 = 0.5) computed using only constraints from pairwise edges (L∗(2)) and up to degree 3
hyperedges (L∗(3)) in comparison to the performance of the deterministic 3-way classifier depicted
in Figure 9.
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