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Abstract

Latent generative models have shown remarkable progress in high-fidelity image
synthesis, typically using a two-stage training process that involves compressing
images into latent embeddings via learned tokenizers in the first stage. The quality
of generation strongly depends on how expressive and well-optimized these latent
embeddings are. While various methods have been proposed to learn effective
latent representations, the reconstructed images often lack realism, particularly in
textured regions with sharp transitions, due to loss of fine details governed by high
frequencies. We conduct a detailed frequency decomposition of existing state-of-
the-art (SOTA) latent tokenizers and show that conventional objectives inherently
prioritize low-frequency reconstruction, often at the expense of high-frequency
fidelity. Our analysis reveals these latent tokenizers exhibit a bias toward low-
frequency information, when jointly optimized, leading to over-smoothed outputs
and visual artifacts that diminish perceptual quality. To address this, we propose
a wavelet-based, frequency-aware variational autoencoder (FA-VAE) framework
that explicitly decouples the optimization of low- and high-frequency components.
This decoupling enables improved reconstruction of fine textures while preserving
global structure. Our approach bridges the fidelity gap in current latent tokenizers
and emphasizes the importance of frequency-aware optimization for realistic image
representation, with broader implications for applications in content creation,
neural rendering, and medical imaging.

1 Introduction

Latent generative modeling [} 2 13| 4] has emerged as a cornerstone of modern content creation,
with recent advances demonstrating remarkable capabilities in synthesizing high-fidelity visual
content. These models typically operate in compressed latent spaces learned via autoencoders such
as VAE:s [5} 6], where generation quality is directly influenced by the expressiveness of these latent
embeddings. While increasing latent dimensionality can enhance representational power, this often
leads to diminishing visual outputs and increased computational cost. VAVAE [[7] addresses this by
aligning the latent space with pre-trained vision foundation models to further improve convergence and
generative realism. However, despite such improvements, generated outputs or even the reconstructed
outputs often lack sharp textures and fine details, particularly in regions dominated by the high-
frequency information such as text on images. This limits perceptual realism and results in overly
smooth outputs. Prior works [8, |9} [10] have explored architectural and spectral enhancements to
inject high-frequency signals, but a systematic frequency-level analysis of how these current latent
tokenizers influence reconstruction quality, especially in differentiating low- vs. high-frequency
information remains absent.

In this work, we conduct a comprehensive frequency-based analysis of the reconstruction behavior
of state-of-the-art latent tokenizers used in generative pipelines [7, |6} [11} [12} [13]], focusing on
latent diffusion and autoregressive models, which represent the current forefront of high-quality
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visual generation. These models typically follow a two-stage pipeline: (1) learning quantized or
non-quantized latent embeddings using a latent tokenizer like VAE or its variant, and (2) training a
probabilistic generative model in the latent embedding space. Our analysis reveals a consistent bias
during the first stage of learning latent embeddings: while low-frequency components are on par well
reconstructed, high-frequency signals such as textures are poorly preserved. This low frequency bias
over high frequencies in optimization contributes significantly to perceptual degradation.

To address this fidelity gap, we propose a novel
Frequency-aware VAE (FA-VAE) latent tokenizer that
explicitly decouples and separately optimizes low- and
high-frequency components using wavelet decompo-
sition. Our method learns distinct latent embeddings
for low-high frequency subbands and later fuses them
into a unified latent space representation. This simple
design allows for better preservation of both global
structure and fine details. Figure [T] presents a visual
comparison between our method and the recent state-
of-the-art VAVAE, highlighting improved preservation
of fine details and sharp structures.

Example Input VAVAE Ours

Our main contributions are summarized as follows:

v/ We provide a frequency-based analysis of gjgyure 1: Visual comparison of reconstruc-
latent tokenizers used in latent generative tions. From left to right: example original image,
pipelines, showing that existing VAE variants  VAVAE reconstruction, and our approach (FA-
disproportionately emphasize low-frequency VAE). The red color highlighted regions empha-
components at the expense of fine detail. size areas rich in textures, edges, and text. Our

method better preserves high-frequency details

v/ We introduce FA-VAE, a frequency-aware and sharp structures, resulting in reconstructions

VAE framework that decouples optimization visually closer to the input.
of low- and high-frequency subbands using

wavelet decomposition, resulting in frequency

aware expressive latent representations.

2  Method

2.1 Frequency Evaluation of Latent Embeddings

Latent tokenization models typically begin with a Variational Autoencoder (VAE) or its tokenizer
variants, which learn compact embeddings z € Z from input data x € X'. Reconstruction quality is
often measured by the pixel-level error.

Erec == ||X7>A(||g7 )A(:D(E(X)),

where E and D are the encoder and decoder.

To study fidelity across frequency bands, we apply a discrete wavelet transform (DWT) with Haar
filter to decompose signals into low- and high-frequency bands with one decomposition level:

W(x) = (x1,xu1), W(X) = (XL, Xn),
Then, we compute the frequency-aware reconstruction losses as follows:

Lrp=|xL—%cl3, Lz =lxg—%uls

Beyond pixel errors, perceptual similarity is captured by LPIPS [[14], and distributional alignment
by reconstruction FID (rFID) [13]], computed from Inception features [[16]. Together, combining
frequency-aware losses (L1, L), perceptual similarity (LPIPS), and rFID provides a more complete
evaluation of reconstruction fidelity and expressiveness of the learned latent embeddings.
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Figure 2: FA-VAE. The Overall pipeline of FA-VAE latent tokenizer.

2.2 Frequency-Aware VAE (FA-VAE)

The overview of FA-VAE is shown in Fig. 2] To enhance the fidelity of latent embeddings, we
extend the standard VAE formulation by decoupling the input image into low- and high-frequency
components, which are then learned independently. Given an input image x € X', we apply a discrete
wavelet transform JV(+) to obtain:
W(x) = (xr,Xm),

where x7, and xz denote the low- and high-frequency representations, respectively. We use the Haar
filter for wavelet transformation, and apply the normalization strategy proposed in to normalize
both low and high frequency components. We employ separate encoder—decoder pairs (Ey,, Dy,) and
(En, Dg) to learn frequency-specific latent embeddings:

ZL:EL(XL), ZH:EH(XH).

Low-Frequency Objective. To learn low-frequency latent embeddings, we adopt a VA-VAE-style
objective [7]], incorporating a vision foundation alignment loss L. [[7], adversarial regularization
E(L} A\ inspired by VQGAN [[18]], and an additional perceptual loss ﬁlﬁ,lps to improve visual
quality. The total low-frequency objective is defined as:

Liow = LE + B L& + Avr - L5+ Aoan - LEn + Mpips - Lipips
where:

2
Lh = Eqasper) [Ixe = Dulzs)l3]

Ly, = Dxu (q(zr | x1) || p(z1))
with q(zz | xr) being the encoder’s approximate posterior and p(zr) ~ N(0,I), the standard
. . . . . L . .
gaussian prior. The vision foundation loss L+ aligns the latent codes with the feature space of a
pretrained foundation model (e.g., DINOv2 [19])). The adversarial loss ﬁé A~ Introduces a discrimina-

tor to distinguish real from reconstructed low-frequency inputs. Finally, the perceptual loss Lippg
encourages perceptual similarity between input and reconstruction using features from a pretrained
Inception network [16]. All these loss components are commonly used in modern VAE frameworks.

High-Frequency Objective. In contrast, high-frequency components are trained without super-
vision from pretrained models, as they tend to be biased toward low-frequency content. We use
a lightweight VAE objective focused on reconstructing fine-scale details, along with adversarial
regularization:

Lhigh = LI+ B L& + LEAN,
Ll =By ixm Ixe — Du(za)ll],
LE = Dxi (q(zw | xu) || p(zx))

At inference, both decoders reconstruct the respective frequency bands, and the final image is syn-
thesized via inverse wavelet transform. This frequency-aware latent tokenization via FA-VAE yields
more expressive embeddings by preserving details across the full spectrum of spatial frequencies.

)A(L :DL(ZL), )A(H:DH(ZH), }A(:Wil()A(L,)A(H).
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Model (Tokenizer)  Tokenizer Config  Recon.Loss  Low Freq. Loss  High Freq. Loss  LPIPS rFID

DC-AE 32¢32 0.0194 0.0484 0.0097 0.1580  0.7450
DC-AE f64c128 0.0207 0.0527 0.0100 0.1667  0.7623
DC-AE f128¢c512 0.0225 0.0581 0.0106 0.1805  0.7912
SD-VAE fl6c16 0.0180 0.0422 0.0100 0.1743  0.6213
KL-VAE fl6c16 0.0148 0.0326 0.0089 0.1355  0.5318
MS-VQ-VAE f16¢32v4096 0.0195 0.0549 0.0076 0.1890  0.6981
RQ-VAE £32¢256v16384 0.0416 0.1219 0.0149 02712 0.9095
TiTok-VQ-VAE f256x2c64v8192 0.0226 0.0561 0.0114 0.2082  0.7550
TiTok-VQ-VAE f256x4c64v8192 0.0339 0.0947 0.0137 0.2657  0.8823
TiTok-VQ-VAE f256x8c64v8192 0.0450 0.1344 0.0152 0.2949  0.9416
TiTok-VAE f256x1c16 0.0332 0.0923 0.0134 0.2232  0.8640
TiTok-VAE f256x2c16 0.0461 0.1380 0.0155 02682  0.9187
TiTok-VAE f256x4c16 0.0617 0.1961 0.0170 03182 09761
VQ-VAE f16c256v1024 0.0492 0.1478 0.0163 0.3064  0.9102
VQ-VAE f16c256v16384 0.0438 0.1262 0.0164 0.2784  0.8826
VA-VAE f16¢32 0.0105 0.0200 0.0074 0.0975  0.4884

Table 1: Quantitative comparison of latent tokenizers. Configurations: f = latent spatial resolution, ¢ = latent
dimensionality, v = vocabulary size (for quantized models). Lower is better.

3 Experiments

To evaluate the reconstruction performance of latent tokenizers in both the spatial and spectral
(frequency) domains, we consider a range of widely adopted visual tokenizers commonly used in
modern latent generative models. These tokenizers are based on different variants of autoencoding
architectures, each aiming to learn compact and informative latent embedding representations of the
input data distribution. For a comprehensive analysis, we include recent representative tokenizers
based on standard Autoencoders [20], Variational Autoencoders (VAEs) [21} 16,122} 123} [7], and Vector
Quantized Autoencoders (VQ-VAEs) [23, 18} [11]. We also include our proposed FA-VAE, which
explicitly incorporates frequency-awareness into the latent embedding learning process. This selection
enables a fair comparison across diverse tokenization strategies with varying latent dimensionalities
(¢) and latent feature resolutions (f) as shown in TableE] with diverse tokenization configurations. We
use the metrics discussed in method section[2.1] for our evaluation.

Our analysis in Table|I|shows that KL-regularized VAEs with carefully designed parameterizations
consistently outperform both standard VAEs and VQ-VAE baselines across all reconstruction metrics,
achieving efficient performance at higher latent compression rates due to the absence of quantization
artifacts. Their effectiveness is strongly tied to latent parameterization quality, as seen in recent
autoregressive models [24] and VA-VAE [7], which further align latent spaces with foundation
models (e.g., DINOv2 [[19])) for improved perceptual quality. However, such models jointly optimize
frequency components, leading to trade-offs and suboptimal preservation of low and high-frequency
details (Especially high frequency details). In contrast, our FA-VAE explicitly decouples low- and
high-frequency bands, enabling specialized representation learning and more precise reconstructions
of both global structures and fine details. FA-VAE nearly halves the reconstruction loss of the
strongest baseline while achieving the best overall performance across both low and high frequency
reconstructions, demonstrating the benefits of frequency-aware modeling. The consistent gap between
low- and high-frequency reconstructions across models further underscores the general difficulty of
capturing fine details effectively. The other metrics like LPIPS and rFID showcases the perceptual
quality of reconstructions of FA-VAE compared with other baselines.

4 Conclusion

In this work, we investigate frequency awareness in the latent embeddings of latent tokenizer models.
We find that jointly optimizing low- and high-frequency components leads to a frequency bias favor-
ing low-frequencies thereby degrading the reconstruction of fine-grained, high-frequency details and
overall perceptual quality. To address this limitation, we introduce FA-VAE, a frequency-aware VAE
framework that explicitly decouples low and high-frequency components using wavelet decompo-
sition, processes them independently, and fuses them into a unified latent representation. FA-VAE
achieves state-of-the-art performance across frequency-aware reconstruction metrics, demonstrating
improved fidelity and perceptual quality of the learned latent embeddings.
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Figure 3: Qualitative reconstructions using FA-VAE on ImageNet 256 x256.

A Architecture and Implementation Details

The architecture of our Frequency-Aware Variational Au- toencoder (FA-VAE) consists of two inde-
pendent encoder- decoder pairs, designed to separately process low- and high-frequency components
of the input data. The encoder- decoder pair architecture is inspired by VAVAE [7]. We further follow
a similar hyperparameter setup to [21} [7]] for implementing our latent reconstruction module. To
support distributed training across multiple nodes, we scale the learning rate and global batch size
to 1 x 10~* and 256, respectively, following the MAR setup [6]. We experiment with two f16
tokenizers for low and high frequency subbands: one trained without visual alignment VF loss for
high frequencies and one with VF loss using DINOv2 [19] for low frequencies. Here, f represents
the latent spatial resolution factor and d the latent dimensionality. Following [7], we set the VF
loss hyperparameters to m; = 0.5, mp = 0.25, and whyper = 0.1. FigureEl shows the qualitative
reconstructions of FA-VAE.



223

224

225
226

227

228

229

231

232

234

235

236

237
238
239

240

241

242

243
244
245

246

247

248
249

251

252

254

255

256

257
258
259

260

261

262
263

264

266
267

268

269

NeurlIPS Paper Checklist

1.

10.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Sec[Il

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Appendix [A]

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA|

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [NA|

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Abstract.


https://neurips.cc/public/EthicsGuidelines

270

271
272
273

274

275

276
277
278

279

280

281
282

283

284

285
286
287

288

289
290

291
292
293
294

295

297
298

300

301

11.

12.

13.

14.

15.

16.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:



	Introduction
	Method
	Frequency Evaluation of Latent Embeddings
	Frequency-Aware VAE (FA-VAE)

	Experiments
	Conclusion
	Architecture and Implementation Details

