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Abstract

Latent generative models have shown remarkable progress in high-fidelity image1

synthesis, typically using a two-stage training process that involves compressing2

images into latent embeddings via learned tokenizers in the first stage. The quality3

of generation strongly depends on how expressive and well-optimized these latent4

embeddings are. While various methods have been proposed to learn effective5

latent representations, the reconstructed images often lack realism, particularly in6

textured regions with sharp transitions, due to loss of fine details governed by high7

frequencies. We conduct a detailed frequency decomposition of existing state-of-8

the-art (SOTA) latent tokenizers and show that conventional objectives inherently9

prioritize low-frequency reconstruction, often at the expense of high-frequency10

fidelity. Our analysis reveals these latent tokenizers exhibit a bias toward low-11

frequency information, when jointly optimized, leading to over-smoothed outputs12

and visual artifacts that diminish perceptual quality. To address this, we propose13

a wavelet-based, frequency-aware variational autoencoder (FA-VAE) framework14

that explicitly decouples the optimization of low- and high-frequency components.15

This decoupling enables improved reconstruction of fine textures while preserving16

global structure. Our approach bridges the fidelity gap in current latent tokenizers17

and emphasizes the importance of frequency-aware optimization for realistic image18

representation, with broader implications for applications in content creation,19

neural rendering, and medical imaging.20

1 Introduction21

Latent generative modeling [1, 2, 3, 4] has emerged as a cornerstone of modern content creation,22

with recent advances demonstrating remarkable capabilities in synthesizing high-fidelity visual23

content. These models typically operate in compressed latent spaces learned via autoencoders such24

as VAEs [5, 6], where generation quality is directly influenced by the expressiveness of these latent25

embeddings. While increasing latent dimensionality can enhance representational power, this often26

leads to diminishing visual outputs and increased computational cost. VAVAE [7] addresses this by27

aligning the latent space with pre-trained vision foundation models to further improve convergence and28

generative realism. However, despite such improvements, generated outputs or even the reconstructed29

outputs often lack sharp textures and fine details, particularly in regions dominated by the high-30

frequency information such as text on images. This limits perceptual realism and results in overly31

smooth outputs. Prior works [8, 9, 10] have explored architectural and spectral enhancements to32

inject high-frequency signals, but a systematic frequency-level analysis of how these current latent33

tokenizers influence reconstruction quality, especially in differentiating low- vs. high-frequency34

information remains absent.35

In this work, we conduct a comprehensive frequency-based analysis of the reconstruction behavior36

of state-of-the-art latent tokenizers used in generative pipelines [7, 6, 11, 12, 13], focusing on37

latent diffusion and autoregressive models, which represent the current forefront of high-quality38
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visual generation. These models typically follow a two-stage pipeline: (1) learning quantized or39

non-quantized latent embeddings using a latent tokenizer like VAE or its variant, and (2) training a40

probabilistic generative model in the latent embedding space. Our analysis reveals a consistent bias41

during the first stage of learning latent embeddings: while low-frequency components are on par well42

reconstructed, high-frequency signals such as textures are poorly preserved. This low frequency bias43

over high frequencies in optimization contributes significantly to perceptual degradation.44

Figure 1: Visual comparison of reconstruc-
tions. From left to right: example original image,
VAVAE reconstruction, and our approach (FA-
VAE). The red color highlighted regions empha-
size areas rich in textures, edges, and text. Our
method better preserves high-frequency details
and sharp structures, resulting in reconstructions
visually closer to the input.

To address this fidelity gap, we propose a novel45

Frequency-aware VAE (FA-VAE) latent tokenizer that46

explicitly decouples and separately optimizes low- and47

high-frequency components using wavelet decompo-48

sition. Our method learns distinct latent embeddings49

for low-high frequency subbands and later fuses them50

into a unified latent space representation. This simple51

design allows for better preservation of both global52

structure and fine details. Figure 1 presents a visual53

comparison between our method and the recent state-54

of-the-art VAVAE, highlighting improved preservation55

of fine details and sharp structures.56

Our main contributions are summarized as follows:57

✓ We provide a frequency-based analysis of58

latent tokenizers used in latent generative59

pipelines, showing that existing VAE variants60

disproportionately emphasize low-frequency61

components at the expense of fine detail.62

✓ We introduce FA-VAE, a frequency-aware63

VAE framework that decouples optimization64

of low- and high-frequency subbands using65

wavelet decomposition, resulting in frequency66

aware expressive latent representations.67

2 Method68

2.1 Frequency Evaluation of Latent Embeddings69

Latent tokenization models typically begin with a Variational Autoencoder (VAE) or its tokenizer70

variants, which learn compact embeddings z ∈ Z from input data x ∈ X . Reconstruction quality is71

often measured by the pixel-level error.72

Lrec = ∥x− x̂∥22, x̂ = D(E(x)),

where E and D are the encoder and decoder.73

To study fidelity across frequency bands, we apply a discrete wavelet transform (DWT) with Haar74

filter to decompose signals into low- and high-frequency bands with one decomposition level:75

W(x) = (xL,xH), W(x̂) = (x̂L, x̂H),

Then, we compute the frequency-aware reconstruction losses as follows:76

LL = ∥xL − x̂L∥22, LH = ∥xH − x̂H∥22.

Beyond pixel errors, perceptual similarity is captured by LPIPS [14], and distributional alignment77

by reconstruction FID (rFID) [15], computed from Inception features [16]. Together, combining78

frequency-aware losses (LL,LH), perceptual similarity (LPIPS), and rFID provides a more complete79

evaluation of reconstruction fidelity and expressiveness of the learned latent embeddings.80

2



Wavelet Transform
(Haar Filter)

Decoupling
Frequencies

Low Frequencies

High Frequencies

Coupling 
Frequencies Fused

Latents

Decoupling
Frequencies

Inverse Wavelet
Transform

(Haar Filter)

Latent Diffusion
Model

Figure 2: FA-VAE. The Overall pipeline of FA-VAE latent tokenizer.

2.2 Frequency-Aware VAE (FA-VAE)81

The overview of FA-VAE is shown in Fig. 2. To enhance the fidelity of latent embeddings, we82

extend the standard VAE formulation by decoupling the input image into low- and high-frequency83

components, which are then learned independently. Given an input image x ∈ X , we apply a discrete84

wavelet transform W(·) to obtain:85

W(x) = (xL,xH),
where xL and xH denote the low- and high-frequency representations, respectively. We use the Haar86

filter for wavelet transformation, and apply the normalization strategy proposed in [17] to normalize87

both low and high frequency components. We employ separate encoder–decoder pairs (EL, DL) and88

(EH , DH) to learn frequency-specific latent embeddings:89

zL = EL(xL), zH = EH(xH).

Low-Frequency Objective. To learn low-frequency latent embeddings, we adopt a VA-VAE-style90

objective [7], incorporating a vision foundation alignment loss LL
VF [7], adversarial regularization91

LL
GAN inspired by VQGAN [18], and an additional perceptual loss LL

LPIPS [14] to improve visual92

quality. The total low-frequency objective is defined as:93

Llow = LL
rec + β · LL

KL + λVF · LL
VF + λGAN · LL

GAN + λLPIPS · LL
LPIPS

where:94

LL
rec = Eq(zL|xL)

[
∥xL −DL(zL)∥22

]
,

LL
KL = DKL (q(zL | xL) ∥ p(zL)) ,

with q(zL | xL) being the encoder’s approximate posterior and p(zL) ∼ N (0, I), the standard95

gaussian prior. The vision foundation loss LL
VF aligns the latent codes with the feature space of a96

pretrained foundation model (e.g., DINOv2 [19]). The adversarial loss LL
GAN introduces a discrimina-97

tor to distinguish real from reconstructed low-frequency inputs. Finally, the perceptual loss LL
LPIPS98

encourages perceptual similarity between input and reconstruction using features from a pretrained99

Inception network [16]. All these loss components are commonly used in modern VAE frameworks.100

High-Frequency Objective. In contrast, high-frequency components are trained without super-101

vision from pretrained models, as they tend to be biased toward low-frequency content. We use102

a lightweight VAE objective focused on reconstructing fine-scale details, along with adversarial103

regularization:104

Lhigh = LH
rec + β · LH

KL + LH
GAN,

LH
rec = Eq(zH |xH) [∥xH −DH(zH)∥1] ,

LH
KL = DKL (q(zH | xH) ∥ p(zH))

At inference, both decoders reconstruct the respective frequency bands, and the final image is syn-105

thesized via inverse wavelet transform. This frequency-aware latent tokenization via FA-VAE yields106

more expressive embeddings by preserving details across the full spectrum of spatial frequencies.107

x̂L = DL(zL), x̂H = DH(zH), x̂ = W−1(x̂L, x̂H).
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Model (Tokenizer) Tokenizer Config Recon. Loss Low Freq. Loss High Freq. Loss LPIPS rFID

DC-AE f32c32 0.0194 0.0484 0.0097 0.1580 0.7450
DC-AE f64c128 0.0207 0.0527 0.0100 0.1667 0.7623
DC-AE f128c512 0.0225 0.0581 0.0106 0.1805 0.7912
SD-VAE f16c16 0.0180 0.0422 0.0100 0.1743 0.6213
KL-VAE f16c16 0.0148 0.0326 0.0089 0.1355 0.5318
MS-VQ-VAE f16c32v4096 0.0195 0.0549 0.0076 0.1890 0.6981
RQ-VAE f32c256v16384 0.0416 0.1219 0.0149 0.2712 0.9095
TiTok-VQ-VAE f256x2c64v8192 0.0226 0.0561 0.0114 0.2082 0.7550
TiTok-VQ-VAE f256x4c64v8192 0.0339 0.0947 0.0137 0.2657 0.8823
TiTok-VQ-VAE f256x8c64v8192 0.0450 0.1344 0.0152 0.2949 0.9416
TiTok-VAE f256x1c16 0.0332 0.0923 0.0134 0.2232 0.8640
TiTok-VAE f256x2c16 0.0461 0.1380 0.0155 0.2682 0.9187
TiTok-VAE f256x4c16 0.0617 0.1961 0.0170 0.3182 0.9761
VQ-VAE f16c256v1024 0.0492 0.1478 0.0163 0.3064 0.9102
VQ-VAE f16c256v16384 0.0438 0.1262 0.0164 0.2784 0.8826
VA-VAE f16c32 0.0105 0.0200 0.0074 0.0975 0.4884
FA-VAE (Ours) f16c32 0.0044 0.0114 0.0020 0.0940 0.4156

Table 1: Quantitative comparison of latent tokenizers. Configurations: f = latent spatial resolution, c = latent
dimensionality, v = vocabulary size (for quantized models). Lower is better.

3 Experiments108

To evaluate the reconstruction performance of latent tokenizers in both the spatial and spectral109

(frequency) domains, we consider a range of widely adopted visual tokenizers commonly used in110

modern latent generative models. These tokenizers are based on different variants of autoencoding111

architectures, each aiming to learn compact and informative latent embedding representations of the112

input data distribution. For a comprehensive analysis, we include recent representative tokenizers113

based on standard Autoencoders [20], Variational Autoencoders (VAEs) [21, 6, 22, 23, 7], and Vector114

Quantized Autoencoders (VQ-VAEs) [23, 18, 11]. We also include our proposed FA-VAE, which115

explicitly incorporates frequency-awareness into the latent embedding learning process. This selection116

enables a fair comparison across diverse tokenization strategies with varying latent dimensionalities117

(c) and latent feature resolutions (f) as shown in Table 1 with diverse tokenization configurations. We118

use the metrics discussed in method section 2.1 for our evaluation.119

Our analysis in Table 1 shows that KL-regularized VAEs with carefully designed parameterizations120

consistently outperform both standard VAEs and VQ-VAE baselines across all reconstruction metrics,121

achieving efficient performance at higher latent compression rates due to the absence of quantization122

artifacts. Their effectiveness is strongly tied to latent parameterization quality, as seen in recent123

autoregressive models [24] and VA-VAE [7], which further align latent spaces with foundation124

models (e.g., DINOv2 [19]) for improved perceptual quality. However, such models jointly optimize125

frequency components, leading to trade-offs and suboptimal preservation of low and high-frequency126

details (Especially high frequency details). In contrast, our FA-VAE explicitly decouples low- and127

high-frequency bands, enabling specialized representation learning and more precise reconstructions128

of both global structures and fine details. FA-VAE nearly halves the reconstruction loss of the129

strongest baseline while achieving the best overall performance across both low and high frequency130

reconstructions, demonstrating the benefits of frequency-aware modeling. The consistent gap between131

low- and high-frequency reconstructions across models further underscores the general difficulty of132

capturing fine details effectively. The other metrics like LPIPS and rFID showcases the perceptual133

quality of reconstructions of FA-VAE compared with other baselines.134

4 Conclusion135

In this work, we investigate frequency awareness in the latent embeddings of latent tokenizer models.136

We find that jointly optimizing low- and high-frequency components leads to a frequency bias favor-137

ing low-frequencies thereby degrading the reconstruction of fine-grained, high-frequency details and138

overall perceptual quality. To address this limitation, we introduce FA-VAE, a frequency-aware VAE139

framework that explicitly decouples low and high-frequency components using wavelet decompo-140

sition, processes them independently, and fuses them into a unified latent representation. FA-VAE141

achieves state-of-the-art performance across frequency-aware reconstruction metrics, demonstrating142

improved fidelity and perceptual quality of the learned latent embeddings.143
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Figure 3: Qualitative reconstructions using FA-VAE on ImageNet 256×256.

A Architecture and Implementation Details211

The architecture of our Frequency-Aware Variational Au- toencoder (FA-VAE) consists of two inde-212

pendent encoder- decoder pairs, designed to separately process low- and high-frequency components213

of the input data. The encoder- decoder pair architecture is inspired by VAVAE [7]. We further follow214

a similar hyperparameter setup to [21, 7] for implementing our latent reconstruction module. To215

support distributed training across multiple nodes, we scale the learning rate and global batch size216

to 1 × 10−4 and 256, respectively, following the MAR setup [6]. We experiment with two f16217

tokenizers for low and high frequency subbands: one trained without visual alignment VF loss for218

high frequencies and one with VF loss using DINOv2 [19] for low frequencies. Here, f represents219

the latent spatial resolution factor and d the latent dimensionality. Following [7], we set the VF220

loss hyperparameters to m1 = 0.5, m2 = 0.25, and whyper = 0.1. Figure 3 shows the qualitative221

reconstructions of FA-VAE.222
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