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Abstract

Due to the trial-and-error nature, it is typically challenging to apply RL algorithms to safety-
critical real-world applications, such as autonomous driving, human-robot interaction, robot
manipulation, etc, where such errors are not tolerable. Recently, safe RL (i.e., constrained
RL) has emerged rapidly in the literature, in which the agents explore the environment while
satisfying constraints. Due to the diversity of algorithms and tasks, it remains difficult to
compare existing safe RL algorithms. To fill that gap, we introduce GUARD, a Generalized
Unified SAfe Reinforcement Learning Development Benchmark. GUARD has several
advantages compared to existing benchmarks. First, GUARD is a generalized benchmark
with a wide variety of RL agents, tasks, and safety constraint specifications. Second,
GUARD comprehensively covers state-of-the-art safe RL algorithms with self-contained
implementations. Third, GUARD is highly customizable in tasks and algorithms. We present
a comparison of state-of-the-art on-policy safe RL algorithms in various task settings using
GUARD and establish baselines that future work can build on.
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1 Introduction

Reinforcement learning (RL) has achieved tremendous success in many fields over the past decades. In RL
tasks, the agent explores and interacts with the environment by trial and error, and improves its performance
by maximizing the long-term reward signal. RL algorithms enable the development of intelligent agents that
can achieve human-competitive performance in a wide variety of tasks, such as games (Mnih et al., 2013;
Silver et al., 2018; OpenAI et al., 2019; Vinyals et al., 2019), manipulation (Popov et al., 2017; Chen et al.,
2023; Agostinelli et al., 2019; Shek et al., 2022), autonomous driving (Isele et al., 2019; Kiran et al., 2022;
Gu et al., 2022a), robotics (Kober et al., 2013; Brunke et al., 2022), and more. Despite their outstanding
performance in maximizing rewards, recent works (Garcıa & Fernández, 2015; Gu et al., 2022b; Zhao et al.,
2023) focus on the safety aspect of training and deploying RL algorithms due to the safety concern in
real-world safety-critical applications, e.g., human-robot interaction, autonomous driving, etc. As safe RL
topics emerge in the literature, it is crucial to employ a standardized benchmark for comparing and evaluating
the performance of various safe RL algorithms across different applications, ensuring a reliable transition
from theory to practice. A benchmark includes 1) algorithms for comparison; 2) environments to evaluate
algorithms; 3) a set of evaluation metrics, etc. There are benchmarks for unconfined RL and some safe RL,
but not comprehensive enough (Duan et al., 2016; Brockman et al., 2016; Ellenberger, 2018–2019; Yu et al.,
2019; Osband et al., 2020; Tunyasuvunakool et al., 2020; Dulac-Arnold et al., 2020; Zhang et al., 2022a).

To create a robust safe RL benchmark, we identify three essential pillars. Firstly, the benchmark must
be generalized, accommodating diverse agents, tasks, and safety constraints. Real-world applications
involve various agent types (e.g., drones, robot arms) with distinct complexities, such as different control
degrees-of-freedom (DOF) and interaction modes (e.g., 2D planar or 3D spatial motion). The performance of
algorithms is influenced by several factors, including variations in robots (such as observation and action space
dimensions), tasks (interactive or non-interactive, 2D or 3D), and safety constraints (number, trespassibility,
movability, and motion space). Therefore, providing a comprehensive environment to test the generalizability
of safe RL algorithms is crucial.

Secondly, the benchmark should be unified, overcoming discrepancies in experiment setups prevalent in
the emerging safe RL literature. A unified platform ensures consistent evaluation of different algorithms
in controlled environments, promoting reliable performance comparison. Lastly, the benchmark must be
extensible, allowing researchers to integrate new algorithms and extend setups to address evolving challenges.
Given the ongoing progress in safe RL, the benchmark should incorporate major existing works and adapt
to advancements. By encompassing these pillars, the benchmark provides a solid foundation for addressing
these open problems in safe RL research.

In light of the above-mentioned pillars, this paper introduces GUARD, a Generalized Unified SAfe
Reinforcement Learning Development Benchmark. In particular, GUARD is developed based upon the Safety
Gym (Ray et al., 2019b), SafeRL-Kit (Zhang et al., 2022a) and SpinningUp (Achiam, 2018). Unlike existing
benchmarks, GUARD pushes the boundary beyond the limit by significantly extending the algorithms in
comparison , types of agents and tasks, and safety constraint specifications. The code is available on Github1.
The contributions of this paper are as follows:

1. Generalized benchmark with a wide range of agents. GUARD genuinely supports 11 different
agents, covering the majority of real robot types.

2. Generalized benchmark with a wide range of locomotion tasks. GUARD comprehensively
supports 7 distinct robot locomotion task specifications, which can be combined to represent a wide
spectrum of real-world robot tasks that necessitate intricate locomotion for successful completion.

3. Generalized benchmark with a wide range of safety constraints. GUARD genuinely supports
8 distinct safety constraint specifications. These included constraint options comprehensively cover
the safety requirements encountered in real-world applications.

4. Unified benchmarking platform with comprehensive coverage of safe RL algorithms.
Guard implements 8 state-of-the-art on-policy safe RL algorithms following a unified code structure.

1https://github.com/intelligent-control-lab/guard
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5. Highly customizable benchmarking platform. GUARD features a modularized design that
enables effortless customization of new robot locomotion testing suites with self-customizable agents,
tasks, and constraints. The algorithms in GUARD are self-contained, with a consistent structure
and independent implementations, ensuring clean code organization and eliminating dependencies
between different algorithms. This self-contained structure greatly facilitates the seamless integration
of new algorithms for further extensions.

2 Related Work

Open-source Libraries for Reinforcement Learning Algorithms Open-source RL libraries are code
bases that implement representative RL algorithms for efficient deployment and comparison. They often
serve as backbones for developing new RL algorithms, greatly facilitating RL research. We divide existing
libraries into two categories: (a) safety-oriented RL libraries that support safe RL algorithms, and (b) general
RL libraries that do not. Among safety-oriented libraries, Safety Gym (Ray et al., 2019b) is the most famous
one with highly configurable tasks and constraints but only supports three safe RL methods. SafeRL-Kit
(Zhang et al., 2022a) supports five safe RL methods while missing some key methods such as CPO (Achiam
et al., 2017). Bullet-Safety-Gym (Gronauer, 2022) offers support for CPO but is limited in its overall safe RL
support, encompassing a total of four methods. Compared to the above libraries, our proposed GUARD
doubles the support to eight methods in total, covering a wider spectrum of general safe RL research. General
RL libraries, on the other hand, can be summarized according to their backend into PyTorch (Achiam, 2018;
Weng et al., 2022; Raffin et al., 2021; Liang et al., 2018), Tensorflow (Dhariwal et al., 2017; Hill et al., 2018),
Jax (Castro et al., 2018; Hoffman et al., 2020), and Keras (Plappert, 2016). In particular, SpinningUp
(Achiam, 2018) serves as the major backbone of our GUARD benchmark on the safety-agnostic RL portion.

Benchmark Platform for Safe RL Algorithms To facilitate safe RL research, the benchmark platform
should support a wide range of task objectives, constraints, and agent types. Among existing work, the most
representative one is Safety Gym (Ray et al., 2019b) which is highly configurable. However, Safety Gym is
limited in agent types in that it does not support high-dimensional agents (e.g., drone and arm) and lacks
tasks with complex interactions (e.g., chase and defense). Moreover, Safety Gym only supports naive contact
dynamics (e.g., touch and snap) instead of more realistic cases (e.g., objects bouncing off upon contact) in
contact-rich tasks. Safe Control Gym (Yuan et al., 2022) is another open-source platform that supports very
simple dynamics (i.e., cartpole, 1D/2D quadrotors) and only supports navigation tasks. Bullet Safety Gym
(Gronauer, 2022) provides high-fidelity agents, but the types of agents are limited, and they only consider
navigation tasks. Safety-Gymnasium (Ji et al., 2023) provides a rich array of safety RL task categories.
However, it faces limitations in implementing / supporting modern safe RL algorithms and offering a flexible
testing suite for each category. These weaknesses are particularly notable in the context of locomotion tasks,
where there are very limited options for robots, constraints, and objectives. Compared to the above platforms,
our GUARD supports a much wider range of robot locomotion task objectives (e.g., 3D reaching, chase and
defense) with a much larger variety of eight agents including high-dimensional ones such as drones, arms,
ants, and walkers.

3 Preliminaries

Markov Decision Process An Markov Decision Process (MDP) is specified by a tuple (S, A, γ, R, P, ρ),
where S is the state space, and A is the control space, R : S × A → R is the reward function, 0 ≤ γ < 1 is the
discount factor, ρ : S → [0, 1] is the starting state distribution, and P : S × A × S → [0, 1] is the transition
probability function (where P (s′|s, a) is the probability of transitioning to state s′ given that the previous
state was s and the agent took action a at state s). A stationary policy π : S → P(A) is a map from states
to a probability distribution over actions, with π(a|s) denoting the probability of selecting action a in state s.
We denote the set of all stationary policies by Π. Suppose the policy is parameterized by θ; policy search
algorithms search for the optimal policy within a set Πθ ⊂ Π of parameterized policies.
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The solution of the MDP is a policy π that maximizes the performance measure J (π) computed via the
discounted sum of reward:

J (π) = Eτ∼π

[ ∞∑
t=0

γtR(st, at, st+1)
]

, (1)

where τ = [s0, a0, s1, · · · ] is the state and control trajectory, and τ ∼ π is shorthand for that the distribution
over trajectories depends on π : s0 ∼ µ, at ∼ π(·|st), st+1 ∼ P (·|st, at). Let R(τ) .=

∑∞
t=0 γtR(st, at, st+1) be

the discounted return of a trajectory. We define the on-policy value function as V π(s) .= Eτ∼π[R(τ)|s0 = s],
the on-policy action-value function as Qπ(s, a) .= Eτ∼π[R(τ)|s0 = s, a0 = a], and the advantage function as
Aπ(s, a) .= Qπ(s, a) − V π(s).

Constrained Markov Decision Process A constrained Markov Decision Process (CMDP) is an MDP
augmented with constraints that restrict the set of allowable policies. Specifically, CMDP introduces a set of
cost functions, C1, C2, · · · , Cm, where Ci : S × A × S → R maps the state action transition tuple into a cost
value. Similar to equation 1, we denote JCi(π) = Eτ∼π[

∑∞
t=0 γtCi(st, at, st+1)] as the cost measure for policy

π with respect to the cost function Ci. Hence, the set of feasible stationary policies for CMDP is then defined
as ΠC = {π ∈ Π

∣∣ ∀i, JCi
(π) ≤ di}, where di ∈ R. In CMDP, the objective is to select a feasible stationary

policy π that maximizes the performance: max
π∈Πθ∩ΠC

J (π). Lastly, we define on-policy value, action-value,
and advantage functions for the cost as V π

Ci
, Qπ

Ci
and Aπ

Ci
, which as analogous to V π, Qπ, and Aπ, with Ci

replacing R.

4 GUARD Safe RL Library

4.1 Overall Implementation

As a highly self contained safe RL benchmark, GUARD contains the latest methods that can achieve on-policy
safe RL: (i) end-to-end safe RL algorithms including CPO (Achiam et al., 2017), TRPO-Lagrangian (Bohez
et al., 2019), TRPO-FAC (Ma et al., 2021), TRPO-IPO (Liu et al., 2020), and PCPO (Yang et al., 2020b); (ii)
hierarchical safe RL algorithms including TRPO-SL (TRPO-Safety Layer) (Dalal et al., 2018) and TRPO-USL
(TRPO-Unrolling Safety Layer) (Zhang et al., 2022a). We also include TRPO (Schulman et al., 2015) as
an unconstrained RL baseline. Note that GUARD only considers model-free approaches which rely less on
assumptions than model-based ones. We highlight the benefits of our algorithm implementations in GUARD:

• GUARD comprehensively covers a wide range of on-policy algorithms that enforce safety in
both hierarchical and end-to-end structures. Hierarchical methods maintain a separate safety layer,
while end-to-end methods solve the constrained learning problem as a whole.

• GUARD provides a fair comparison among safety components by equipping every algorithm
with the same reward-oriented RL backbone (i.e., TRPO (Schulman et al., 2015)), implementation
(i.e., MLP policies with [64, 64] hidden layers and tanh activation), and training procedures. Hence,
all algorithms inherit the performance guarantee of TRPO.

• GUARD is implemented in PyTorch with a clean structure where every algorithm is self-contained,
enabling fast customization and development of new safe RL algorithms. GUARD also comes
with unified logging and plotting utilities which makes analysis easy.

4.2 Unconstrained RL

TRPO We include TRPO (Schulman et al., 2015) since it is state-of-the-art and several safe RL algorithms
are based on it. TRPO is an unconstrained RL algorithm and only maximizes performance J . The key idea
behind TRPO is to iteratively update the policy within a local range (trust region) of the most recent version
πk. Mathematically, TRPO updates policy via

πk+1 = arg max
π∈Πθ

J (π) s.t. DKL(π, πk) ≤ δ, (2)
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where DKL is Kullback-Leibler (KL) divergence, δ > 0 and the set {π ∈ Πθ : DKL(π, πk) ≤ δ} is called the
trust region. To solve equation 2, TRPO applies Taylor expansion to the objective and constraint at πk to
the first and second order, respectively. That results in an approximate optimization with linear objective
and quadratic constraints (LOQC). TRPO guarantees a worst-case performance degradation.

4.3 End-to-End Safe RL

4.3.1 Constrained Policy Optimization-based Algorithms

CPO Constrained Policy Optimizaiton (CPO) (Achiam et al., 2017) handles CMDP by extending TRPO.
Similar to TRPO, CPO also performs local policy updates in a trust region. Different from TRPO, CPO
additionally requires πk+1 to be constrained by Πθ ∩ ΠC . For practical implementation, CPO replaces the
objective and constraints with surrogate functions (advantage functions), which can easily be estimated from
samples collected on πk, formally:

πk+1 = arg max
π∈Πθ

E
s∼dπk

a∼π

[Aπk (s, a)] (3)

s.t. DKL(π, πk) ≤ δ, JCi
(πk) + 1

1 − γ
E

s∼dπk

a∼π

[
Aπk

Ci
(s, a)

]
≤ di, i = 1, · · · , m.

where dπk
.= (1 − γ)

∑H
t=0 γtP (st = s|πk) is the discounted state distribution. Following TRPO, CPO also

performs Taylor expansion on the objective and constraints, resulting in a Linear Objective with Linear
and Quadratic Constraints (LOLQC). CPO inherits the worst-case performance degradation guarantee from
TRPO and has a worst-case cost violation guarantee.

PCPO Projection-based Constrained Policy Optimization (PCPO) (Yang et al., 2020b) is proposed based on
CPO, where PCPO first maximizes reward using a trust region optimization method without any constraints,
then PCPO reconciles the constraint violation (if any) by projecting the policy back onto the constraint set.
Policy update then follows an analytical solution:

πk+1 = πk +

√
2δ

g⊤H−1g
H−1g − max

(
0,

√
2δ

g⊤H−1g
g⊤

c H−1g + b

g⊤
c L−1gc

)
L−1gc (4)

where gc is the gradient of the cost advantage function, g is the gradient of the reward advantage function,
H is the Hessian of the KL divergence constraint, b is the constraint violation of the policy πk, L = I for
L2 norm projection, and L = H for KL divergence projection. PCPO provides a lower bound on reward
improvement and an upper bound on constraint violation.

4.3.2 Lagrangian-based Algorithms

TRPO-Lagrangian Lagrangian methods solve constrained optimization by transforming hard constraints
into soft constraints in the form of penalties for violations. Given the objective J (π) and constraints
{JCi(π) ≤ di}i, TRPO-Lagrangian (Bohez et al., 2019) first constructs the dual problem

max
∀i,λi≥0

min
π∈Πθ

−J (π) +
∑

i

λi(JCi
(π) − di). (5)

The update of θ is done via a trust region update with the objective of equation 2 replaced by that of equation 5
while fixing λi. The update of λi is done via standard gradient ascend. Note that TRPO-Lagrangian does
not have a theoretical guarantee for constraint satisfaction.

TRPO-FAC Inspired by Lagrangian methods and aiming at enforcing state-wise constraints (e.g., preventing
state from stepping into infeasible parts in the state space), Feasible Actor Critic (FAC) (Ma et al., 2021)
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introduces a multiplier (dual variable) network. Via an alternative update procedure similar to that for
equation 5, TRPO-FAC solves the statewise Lagrangian objective:

max
∀i,ξi

min
π∈Πθ

−J (π) +
∑

i

Es∼dπk [λξi
(s)(JCi

(π) − di)] , (6)

where λξi(s) is a parameterized Lagrangian multiplier network and is parameterized by ξi for the i-th
constraint. Note that TRPO-FAC does not have a theoretical guarantee for constraint satisfaction.

TRPO-IPO TRPO-IPO (Liu et al., 2020) incorporates constraints by augmenting the optimization
objective in equation 2 with logarithmic barrier functions, inspired by the interior-point method (Boyd &
Vandenberghe, 2004). Ideally, the augmented objective is I(JCi(π) − di) = 0 if JCi(π) − di ≤ 0 or −∞
otherwise. Intuitively, that enforces the constraints since the violation penalty would be −∞. To make
the objective differentiable, I(·) is approximated by ϕ(x) = log(−x)/t where t > 0 is a hyperparameter.
Then TRPO-IPO solves equation 2 with the objective replaced by JIPO(π) = J (π) +

∑
i ϕ(JCi

(x) − di).
TRPO-IPO does not have theoretical guarantees for constraint satisfaction.

4.4 Hierarchical Safe RL

Safety Layer Safety Layer (Dalal et al., 2018), added on top of the original policy network, conducts
a quadratic-programming-based constrained optimization to project reference action into the nearest safe
action. Mathematically:

asafe
t = arg min

a

1
2∥a − aref

t ∥2 s.t. ∀i, ḡφi(st)⊤a + Ci(st−1, at−1, st) ≤ di (7)

where aref
t ∼ πk(·|st), and ḡφi(st)⊤at + Ci(st−1, at−1, st) ≈ Ci(st, at, st+1) is a φ parameterized linear model.

If there’s only one constraint, equation 7 has a closed-form solution.

USL Unrolling Safety Layer (USL) (Zhang et al., 2022b) is proposed to project the reference action into
safe action via gradient-based correction. Specifically, USL iteratively updates the learned QC(s, a) function
with the samples collected during training. With step size η and normalization factor Z, USL performs
gradient descent as asafe

t = aref
t − η

Z · ∂

∂aref
t

[QC(st, aref
t ) − d].

5 GUARD Testing Suite

5.1 Robot Options

In GUARD testing suite, the agent (in the form of a robot) perceives the world through sensors and interacts
with the world through actuators. Robots are specified through MuJoCo XML files. The suite is equipped
with 8 types of pre-made robots that we use in our benchmark environments as shown in Figure 1. The
action space of the robots are continuous, and linearly scaled to [-1, +1].

Swimmer consist of three links and two joints. Each joint connects two links to form a linear chain. Swimmer
can move around by applying 2 torques on the joints.

Ant is a quadrupedal robot composed of a torso and four legs. Each of the four legs has a hip joint and a
knee joint; and can move around by applying 8 torques to the joints.

Walker is a bipedal robot that consists of four main parts - a torso, two thighs, two legs, and two feet.
Different from the knee joints and the ankle joints, each of the hip joints has three hinges in the x, y and z
coordinates to help turning. With the torso height fixed, Walker can move around by controlling 10 joint
torques.

Humanoid is also a bipedal robot that has a torso with a pair of legs and arms. Each leg of Humanoid
consists of two joints (no ankle joint). Since we mainly focus on the navigation ability of the robots in
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Swimmer Ant Walker Humanoid Hopper Arm3 Arm6 Drone

Figure 1: Robots of our environments.

designed tasks, the arm joints of Humanoid are fixed, which enables Humanoid to move around by only
controlling 6 torques.

Hopper is a one-legged robot that consists of four main parts - a torso, a thigh, a leg, and a single foot.
Similar to Walker, Hopper can move around by controlling 5 joint torques.

Arm3 is designed to simulate a fixed three-joint robot arm. Arm is equipped with multiple sensors on each
link in order to fully observe the environment. By controlling 3 joint torques, Arm can move its end effector
around with high flexibility.

Arm6 is designed to simulate a robot manipulator with a fixed base and six joints. Similar to Arm3, Arm6
can move its end effector around by controlling 6 torques.

Drone is designed to simulate a quadrotor. The interaction between the quadrotor and the air is simulated
by applying four external forces on each of the propellers. The external forces are set to balance the gravity
when the control action is zero. Drone can move in 3D space by applying 4 additional control forces on the
propellers.

5.2 Task Options

We categorize robot tasks in two ways: (i) interactive versus non-interactive tasks, and (ii) 2D space versus 3D
space tasks. 2D space tasks constrain agents to a planar space, while 3D space tasks do not. Non-interactive
tasks primarily involve achieving a target state (e.g., trajectory tracking) while interactive tasks (e.g., human-
robot collaboration and unstructured object pickup) necessitate contact or non-contact interactions between
the robot and humans or movable objects, rendering them more challenging. On a variety of tasks that cover
different situations, GUARD facilitates a thorough evaluation of safe RL algorithms via the following tasks.
See Table 17 for more information.

Goal (Figure 2a) requires the robot to navigate towards a series of 2D or 3D goal positions. Upon reaching a
goal, the location is randomly reset. The task provides a sparse reward upon goal achievement and a dense
reward for making progress toward the goal.

Push (Figure 2b) requires the robot pushing a ball toward different goal positions. The task includes a
sparse reward for the ball reaching the goal circle and a dense reward that encourages the agent to approach
both the ball and the goal. Unlike pushing a box in Safety Gym, it is more challenging to push a ball since
the ball can roll away and the contact dynamics are more complex.

Chase (Figure 2c) requires the robot tracking multiple dynamic targets. Those targets continuously move
away from the robot at a slow speed. The dense reward component provides a bonus for minimizing the
distance between the robot and the targets. The targets are constrained to a circular area. A 3D version of
this task is also available, where the targets move within a restricted 3D space. Detailed dynamics of the
targets is described in Appendix B.5.1.

Defense (Figure 2d) requires the robot to prevent dynamic targets from entering a protected circle area.
The targets will head straight toward the protected area or avoid the robot if the robot gets too close. Dense
reward component provides a bonus for increasing the cumulative distance between the targets and the
protected area. Detailed dynamics of the targets is described in Appendix B.5.2.
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(a) Goal (b) Push (c) Chase (d) Defense

Figure 2: Tasks of our environments.

(a) 3D Hazards (b) Ghosts (c) 3D Ghosts

Figure 3: Constraints of our environments.

5.3 Constraint Options

We classify constraints based on various factors: trespassibility: whether constraints are trespassable
or non-trespassable. Trespassable constraints allow violations without causing any changes to the robot’s
behaviors, and vice versa. (ii) movability: whether they are immovable, passively movable, or actively
movable; and (iii) motion space: whether they pertain to 2D or 3D environments. To cover a comprehensive
range of constraint configurations, we introduce additional constraint types via expanding Safety Gym. Please
refer to Table 18 for all configurable constraints.

3D Hazards (Figure 3a) are dangerous 3D areas to avoid. These are floating spheres that are trespassable,
and the robot is penalized for entering them.

Ghosts (Figure 3b) are dangerous areas to avoid. Different from hazards, ghosts always move toward the
robot slowly, represented by circles on the ground. Ghosts can be either trespassable or non-trespassable. The
robot is penalized for touching the non-trespassable ghosts and entering the trespassable ghosts. Moreover,
ghosts can be configured to start chasing the robot when the distance from the robot is larger than some
threshold. This feature together with the adjustable velocity allows users to design the ghosts with different
aggressiveness. Detailed dynamics of the targets is described in Appendix B.5.3.

3D Ghosts (Figure 3c) are dangerous 3D areas to avoid. These are floating spheres as 3D versions of ghosts,
sharing the similar behavior with ghosts.

6 GUARD Experiments

In our experiments, we aim to answer these questions:

Q1 What are the overall benchmark results?

Q2 How does the difficulty of constraints impact the algorithm performance?

Q3 What is the detailed performance of different categories of safe RL algorithms?

Q4 How does task complexity impact algorithm performance?

Q5 How does adaptive multiplier impact Lagrangian-based methods?

Q6 How does feasibility projection impact CPO-based methods?

Q7 How does cost dynamics linearization impact Hierarchical-based methods?

Q8 What is the individual algorithm performance across all tasks?

8
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6.1 Experiment Setup

In GUARD experiments, our objective is to assess the performance of safe RL algorithms across a diverse
range of benchmark testing suites. These suites are meticulously designed, incorporating all available robot
options as detailed in Section 5.1 and all task options outlined in Section 5.2. Additionally, we offer seamless
integration of various constraint options into these benchmark testing suites, allowing users to select desired
constraint types, numbers, sizes, and other parameters. Considering the diversity in robots, tasks, constraint
types, and difficulty levels, we have curated 72 test suites. These predefined benchmark testing suites follow
the format {Task}_{Robot}_{Constraint Number}{Constraint Type}. For a comprehensive list of our
testing suites, please refer to Table 20.
Remark 1. Note that the ladder of constraint difficulty levels can be readily established by introducing varying
numbers, sizes, and types of constraints, as detailed in [Section 4.2, (Ray et al., 2019a)].

Figure 4: constraint difficulty ablation study with
Goal_Point_8{Constraint}

Comparison Group The methods in the compari-
son group include all methods in GUARD Safe RL Li-
braray: (i) unconstrained RL algorithm TRPO (Schulman
et al., 2015) (ii) end-to-end constrained safe RL algo-
rithms CPO (Achiam et al., 2017), TRPO-Lagrangian (Bo-
hez et al., 2019), TRPO-FAC (Ma et al., 2021), TRPO-
IPO (Liu et al., 2020), PCPO (Yang et al., 2020b), and (iii)
hierarchical safe RL algorithms TRPO-SL (TRPO-Safety
Layer) (Dalal et al., 2018), TRPO-USL (TRPO-Unrolling
Safety Layer) (Zhang et al., 2022a). For hierarchical safe
RL algorithms, we incorporate a warm-up phase (consti-
tuting 1/3 of the total epochs) dedicated to unconstrained
TRPO training. The data generated during this phase is utilized to pre-train the safety critic for subsequent
epochs. The target cost for all safe RL methods is set to zero, aligning with our objective of achieving zero
violations. To ensure consistency, shared configurations, including hidden layers, learning rate, and target KL,
are uniformly applied across all methods. Simultaneously, unique parameters such as Lagrangian learning
rate, IPO parameter, and Warmup ratio are fine-tuned to optimize the performance of each respective method.
Further details are provided in Table 19.

6.2 Evaluating GUARD Safe RL Library and Comparison Analysis

Overall Benchmark Results The summarized results can be found in Tables 21 to 25, and the learning
rate curves are presented in Figures 14 to 18. In Figure 5, we select 8 sets of results to demonstrate the
performance of different robots, tasks and constraints in GUARD. At a high level, the experiments show that
all methods can consistently improve reward performance.

Figure 6: Raw TRPO cost score
in Goal_{Robot}_8{Constraint} with
different constraint difficulty.

Different methods have different trade-offs between rewards and cost.
When comparing constrained RL methods to unconstrained RL methods,
the former exhibit superior performance in terms of cost reduction. By
incorporating constraints into the RL framework, the robot can navigate
its environment while minimizing costs. This feature is particularly crucial
for real-world applications where the avoidance of hazards and obstacles
is of utmost importance. However, current safe RL algorithms (i.e. CPO,
PCPO and Lagrangian methods) are hard to achieve zero-violation perfor-
mance even when the cost threshold is set as zero. Compared with them,
hierarchical RL methods (i.e., TRPO-SL and TRPO-USL) can perform
better at cost reduction. Nevertheless, although these methods excel at
minimizing costs, they may sacrifice some degree of reward attainment in
the process.

Impacts of Constraints Difficulty To gain an intuitive understanding
of constraint difficulty, we present a visual comparison in Figure 6. The
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(a) Goal_Point_8Hazards (b) Goal_Walker_8Hazards (c) Goal_Arm3_8Hazards (d) Goal_Drone_8Hazards

(e) Goal_Point_8Ghosts (f) Push_Point_8Hazards (g) Chase_Point_8Hazards (h) Defense_Point_8Hazards

Figure 5: Comparison of results from four representative tasks. (a) to (d) cover four robots on the goal task. (e) shows the
performance of a task with ghosts. (f) to (h) cover three different tasks with the point robot.
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figure illustrates the raw cost comparison for TRPO across different robot options on the testing suite
Goal_{Robot}_8{Constraint}, where we vary 8{Constraint} from 8Hazards to 8Ghosts. It is essential
to note that Hazards and Ghosts share the same cost computation rule, with the distinction that Ghosts
adversarially move towards the robot. The comparison reveals some significant increase in raw TRPO cost
when transitioning from 8Hazards to 8Ghosts for every robot option, indicating the escalating challenge
posed to safe RL algorithms.

(a) Goal_Point_8Hazards.

(b) Goal_Point_8Ghosts.

(c) Goal_Ant_8Hazards.

(d) Goal_Ant_8Ghosts.

Figure 7: Comparison of performance of different cat-
egories of algorithms in four representative test suites
across low-to-high dimensional robots and easy-to-hard
constraints. The scores of reward, cost and cost rate are
normalized with respect to TRPO. Red triangle serves as
the baseline TRPO performance. A higher normalized
reward score and lower normalized cost/cost rate scores
indicate better performance along each axis.

To assess the impact of constraint difficulty on the per-
formance of various safe RL algorithms, we analyze the
performance changes across different algorithms using
the Goal_Point_8{Constraint} testing suites. Specifi-
cally, we vary 8{Constraint} from 8Hazards to 8Ghosts,
with the former representing an easier constraint where
all hazards are static, and the latter indicating a more
challenging constraint where all hazards are adversarially
moving towards the robot. To ensure a fair comparison
across diverse tasks, we report the normalized reward and
normalized cost for each algorithm using the following
metric:

rewardnormalized = min
(rewardalgorithm

rewardT RP O
, 1

)
(8)

costnormalized = costalgorithm

costT RP O
(9)

where rewardnormalized are obtained from Tables 21 to 25.
Before applying Equation (8), in cases where negative
values exist for rewardnormalized in the results, we shift
all values to be above zero with respect to the minimum rewardnormalized observed within the same experiment.

The comparative results are succinctly presented in Figure 4. Notably, as the constraint difficulty transitions
from an easier to a more challenging level, majority algorithms within the Safe RL Library showcase safer
policy learning behaviors. Additionally, they manage to maintain roughly the same, and in some instances,
achieve higher reward performance. This observation underscores two key findings: (i) safe RL algorithms
exhibit resilience to the increased difficulty of constraints, and (ii) heightened constraint difficulty serves as
a more effective metric for distinguishing safety performance. Notably, the cost performance gap between
TRPO-Lagrangian and TRPO-IPO is magnified in the Ghost environment, where a more sophisticated safe
policy is in need to avoid adversarial hazards.

Figure 8: TRPO normalized performance metrics (Reward
and Cost) of three algorithm categories across varied diffi-
culty levels in Goal_{Robot}_8Hazards

Characteristics of Different Categories of Safe RL
Algorithms Within the Safe RL Library, three primary
categories of safe RL algorithms exist: (i) Lagrangian-
based methods (TRPO-Lagrangian, TRPO-FAC, TRPO-
IPO), (ii) constrained policy optimization-based methods
(CPO, PCPO), and (iii) hierarchical-based methods (Safe
Layer, USL). To investigate the performance character-
istics inherent in each category, we carefully select four
representative testing suites spanning high/low dimen-
sional robots and easy/hard constraints. Subsequently, we
chart the algorithm-wise averaged TRPO normalized re-
ward, cost, and cost rate. For example, the algorithm-wise
averaged score for hierarchical-based methods is computed
by taking the mean across Safe Layer and USL. Additionally, the TRPO normalized cost rate is defined as:

cost ratenormalized = cost ratealgorithm

cost rateT RP O
(10)
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Figure 9: TRPO normalized performance metrics (Reward
and Cost) of Lagrangian and FAC across varied difficulty
levels in Goal_{Robot}_8Hazards

The summarized comparison results are presented in fig. 7.
Generally, in terms of safety performance, Lagrangian-
based methods demonstrate the highest efficacy, followed
by CPO-based methods, while Hierarchical-based meth-
ods exhibit comparatively lower performance. Several key
observations emerge: (i) Lagrangian-based methods priori-
tize safety performance and are willing to make concessions
in reward performance when necessary, as evidenced by
significantly lower reward performance in high-dimensional
tasks. This behavior of Lagrangian-based methods have also been witnessed in [Figure 9, Doggo experiments,
(Ray et al., 2019a)] (ii) CPO-based methods tend to maintain a high standard of reward performance akin to
unconstrained RL, but this strategy compromises safe behavior, particularly in high-dimensional tasks. This
observation exactly matches the reported results [Figure 8, Figure 9 (Ray et al., 2019a)] [Figure 6, (Yang
et al., 2023)]. (iii) Hierarchical-based methods only demonstrate effectiveness in low-dimensional systems,
struggling to learn reasonable safe behavior in high-dimensional systems. This limitation is attributed to the
escalating complexity of cost function dynamics in high-dimensional systems, posing challenges for effective
cost function approximation. This finding aligns with the results reported in [Figure 3, Safety Layer, Recovery
RL, (Zhang et al., 2023)][Section 6.1, (Zhao et al., 2021)].

Effects of Task Complexity on Various Categories of Safe RL Algorithms To examine the impact
of increased task complexity, particularly in the context of higher degrees of freedom (DOF) in robots, we
summarize the TRPO normalized performance metrics (reward and cost) for three algorithm categories
across various difficulty levels in the Goal_{Robot}_8Hazards testing suites, with an incremental increase in
robot DOF, in Figure 8. The performance characteristics of different algorithm categories exhibit interesting
variations with heightened task complexity.

Surprisingly, there is no discernible trend in reward and cost performance across all algorithm categories
as task complexity increases. However, Lagrangian and Hierarchical-based methods each align better with
specific robot types. (i) For Arm robots, Lagrangian-based methods struggle to learn reward, whereas
Hierarchical-based methods perform well on both reward and safety. (ii) In the case of linked/legged robots,
Lagrangian-based methods maintain a consistent, albeit mediocre, reward performance, coupled with optimal
safety performance. Conversely, Hierarchical-based methods struggle to learn a safe policy, particularly on
the Ant robot.

Regarding CPO-based methods, their reward performance remains consistently high even with increased
task complexity. However, although CPO-based methods exhibit effective learning of safe policies with
low-dimensional robots, they encounter difficulties in learning optimal safe behavior as task complexity
exceeds a certain threshold.

Impacts of Adaptive Multiplier in Lagrangian-based Methods An essential differentiator between
TRPO-FAC and TRPO-Lagrangian lies in the incorporation of a multiplier network, i.e. an adaptive multiplier.
To gain a comprehensive understanding of this technique, we compare the normalized performance metrics
on Goal_{Robot}_8Hazards testing suites, both with and without this feature, as illustrated in Figure 9.
It is evident that the introduction of the adaptive multiplier results in consistently stable and favorable
performance across various difficulty levels of tasks. This reward behavior of adaptive multiplier has been
observed in [Fig 2, (Ma et al., 2021)] However, as a trade-off, the adaptive multiplier tends to compromise
safety performance, leading to higher costs, particularly evident in Swimmer and Ant. This cost behavior of
adaptive multiplier has been reported in [Fig 3, FAC w/ ϕ0, (Ma et al., 2022)].

Impacts of Feasibility Projection in CPO-based Methods The policy rule of PCPO enhances CPO
by projecting the reward-oriented policy back into the constraint set, ensuring a feasible policy update at
every iteration (feasibility projection). To assess the impact of this technique, we conduct a comparison
of normalized performance metrics on Goal_{Robot}_8Hazards testing suites, both with and without
this feature, as depicted in Figure 10. The figure indicates that feasibility projection is potent in trading
off performance for significantly safer behavior in specific tasks, such as the Drone task. This behavior
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of feasibility projection has been observed in [Fig 4(e), (Yang et al., 2020a)]. However, this may not be
universally applicable, as feasibility projection often leads to slightly less safe behavior and, in some cases,
adversely affects reward performance without corresponding improvements in safety, as observed in the Arm6
scenario.

Figure 10: TRPO normalized performance metrics (Re-
ward and Cost) of CPO and PCPO across varied difficulty
levels in Goal_{Robot}_8Hazards

Impacts of Linearized Cost Dynamics Hierarchical
methods offer the explicit projection of an unsafe reference
action into a safe action set, a process that involves deter-
mining the cost given a state-action pair. While one ap-
proach involves directly learning the cost function, as seen
in USL, SafeLayer streamlines the process by linearizing
the cost function dynamics and focusing solely on learning
the gradient. To assess the effectiveness of this method,
we conduct a comparison of normalized performance met-
rics on Goal_{Robot}_8Hazards testing suites, both with
and without this feature, as depicted in Figure 11. The
results reveal that the linearization is highly effective in
achieving robust safe behavior in low-dimensional robot
tasks, particularly evident in the cases of Drone and Arm3. However, the linear approximation of the cost
function in SafeLayer becomes less accurate in scenarios with highly nonlinear dynamics, such as the complex
Ant robot, leading to a significant increase in overall costs. Therefore, Linearization emerges as a powerful
technique for tasks with low complexity, especially those involving low-dimensional robots. The similar failure
of cost dynamics linearization on complex tasks has been observed in [Fig 6 (c), Fig 6 (d), (Zhao et al., 2021)].

Figure 11: TRPO normalized performance metrics (Re-
ward and Cost) of USL and SafeLayer across varied diffi-
culty levels in Goal_{Robot}_8Hazards

Comprehensive Evaluation of Algorithm Perfor-
mance Across All Tasks Lastly, for a holistic under-
standing of the performance exhibited by each algorithm
within the Safe RL Library across all tasks within the
GUARD Testing suites, we present spider plots in Fig-
ure 12. These plots illustrate the TRPO normalized re-
ward, cost, and cost rate for each algorithm across five task
options, with all performance metrics averaged over all
available robot options. TRPO is utilized as the baseline
in this figure, emphasizing its focus on maximizing reward
performance.

Within the category of CPO-based methods: (i) CPO
maintains reward levels comparable to TRPO across all tasks but struggles to learn a safe policy in the Chase
task. (ii) PCPO exhibits a lower performance in both reward and safety aspects, particularly in Chase and
Defense tasks.

Within the category of Lagrangian-based methods: (i) Lagrangian maintains a balance between good reward
and cost across all tasks, although its reward performance is not exceptional. (ii) FAC excels in achieving
higher reward across all tasks, with a slight sacrifice in safety performance in all tasks except Defense. (iii)
IPO performs the worst in both reward and safety metrics, although it still manages to learn viable safe
policies for all tasks.

Within the category of Hierarchical-based methods: (i) USL performs admirably in achieving satisfactory
rewards for all tasks but only learns mediocre safe policies and struggles with the Chase task. (ii) SafeLayer
demonstrates poor performance in reward performance and consistently fails to learn safe policies in most
tasks. However, it excels in achieving satisfactory safety performance, particularly in the Defense task.

7 Conclusions

This paper introduces GUARD, the Generalized Unified SAfe Reinforcement Learning Development Bench-
mark. GUARD offers several advantages over existing benchmarks. Firstly, it provides a generalized framework
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(a) TRPO

(b) CPO

(c) PCPO

(d) TRPO-Lagrangian

(e) TRPO-FAC

(f) TRPO-IPO

(g) TRPO-SL

(h) TRPO-USL

Figure 12: Algorithm performance over different tasks. The scores of reward, cost and cost rate are normalized with respect to
TRPO. The score for each task is averaged over all robots. Red boundary serves as the baseline TRPO performance. A higher
normalized reward score and lower normalized cost/cost rate scores indicate better performance along each axis.

with a wide range of RL agents, tasks, and constraint specifications. Secondly, GUARD has self-contained
implementations of a comprehensive range of state-of-the-art safe RL algorithms. Lastly, GUARD is highly
customizable, allowing researchers to tailor tasks and algorithms to specific needs. Using GUARD, we present
a comparative analysis of state-of-the-art safe RL algorithms across various task settings, establishing essential
baselines for future research.

Future work In our future endeavors, we aim to work on the following expansions: (i) To enhance the ease
of deploying Reinforcement Learning (RL) methods on real robots, we are actively incorporating additional
realistic robot models into GUARD. (ii) The current GUARD tasks primarily focus on robot locomotion;
however, we are planning to broaden the spectrum of available task types to empower users with a more
extensive testing suite, including options such as speed control and contact-rich safety. (iii) Lastly, we plan to
extend the range of safe RL libraries to include the latest algorithms such as off-policy methods.
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A Appendix

B Environment Details

B.1 Observation Space and Action space of different robots

The action space and observation space of different robots are summarized in Tables 1 to 16
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B.2 Observation Space Options and Desiderata

The observation spaces are also updated to match the new 3D tasks. The 3D compasses and 3D pseudo-lidars
are introduced for 3D robots to sensor the position of targets in 3D space. Different from the single lidar
system of the original environment, the Advanced Safety Gym allows multiple lidars on different parts of the
robot. For example, in Figure 13a the Arm robot is equipped with a 3D lidar and a 3D compass on each
joint to obtain more environment information. Figure 13b shows a drone equipped with two 3D lidars to
observe the 3D hazards and the 3D goal. The “lidar halos” of two lidars are distributed on two spheres with
different radii. The number of “lidar halos” is configurable for more dense observations.

(a) (b)

Figure 13: Visualizations of observation spaces

B.3 Layout Randomization Options and Desiderata

The layout randomization is inherited from the original Safety Gym. In order to generate 3D objects, the z
coordinate can be configured or randomly picked after the x and y coordinates are generated.

B.4 Task and Constraint Details

Table 17: Comparison between different tasks

GUARD Tasks SafetyGym Tasks
Goal Push Chase Defense Goal Button Push

Interactive task ✓ ✓ ✓ ✓
Non-interactive
task

✓ ✓ ✓

Contact task ✓ ✓ ✓ ✓ ✓
Non-contact task ✓ ✓ ✓ ✓
2D task ✓ ✓ ✓ ✓ ✓ ✓ ✓
3D task ✓ ✓ ✓

Movable target ✓ ✓ ✓ ✓
Immovable target ✓ ✓ ✓
Single target ✓ ✓ ✓ ✓ ✓ ✓ ✓
Multiple targets ✓ ✓
General contact tar-
get

✓ ✓ ✓ ✓
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Table 18: Comparison between different constraints

New Constraints Inherited Constraints
Ghosts Ghosts

3D
Hazards

3D
Hazards Vases Pillars Buttons Gremlins

Trespassable ✓ ✓ ✓ ✓ ✓ ✓
Untrespassable ✓ ✓ ✓ ✓
Immovable ✓ ✓ ✓ ✓
Passively movable ✓
Actively movable ✓ ✓ ✓
3D motion ✓ ✓
2D motion ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B.5 Dynamics of movable objects

We begin by defining the distance vector dorigin = xorigin − xobject, which represents the distance from the
position of the dynamic object xobject to the origin point of the world framework xorigin. By default, the
origin point is set to (0, 0, 0). Next, we define the distance vector drobot = xrobot − xobject, which represents
the distance from the dynamic object xobject to the position of the robot xrobot. We introduce two parameters:
r0, which defines a circular area centered at the origin point within which the objects are limited to move. r1,
which represents the threshold distance that the dynamic objects strive to maintain from the robot. Finally,
we have three configurable non-negative velocity constants for the dynamic objects: v0, v1, and v2.

B.5.1 Dynamics of targets of Chase task

ẋobject =


v0∗dorigin, if ∥dorigin∥ > r0

−v1∗drobot, if ∥dorigin∥ ≤ r0 and ∥drobot∥ ≤ r1

0, if ∥dorigin∥ ≤ r0 and ∥drobot∥ > r1

, (11)

B.5.2 Dynamics of targets of Defense task

ẋobject =


v0∗dorigin, if ∥dorigin∥ > r0

−v1∗drobot, if ∥dorigin∥ ≤ r0 and ∥drobot∥ ≤ r1

v2∗dorigin, if ∥dorigin∥ ≤ r0 and ∥drobot∥ > r1

, (12)

B.5.3 Dynamics of ghost and 3D ghost

ẋobject =


v0∗dorigin, if ∥dorigin∥ > r0

v1∗drobot, if ∥dorigin∥ ≤ r0 and ∥drobot∥ > r1

0, if ∥dorigin∥ ≤ r0 and ∥drobot∥ ≤ r1

, (13)
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C Experiment Details

The GUARD implementation is partially inspired by Safety Gym (Ray et al., 2019b) and Spinningup (Achiam,
2018) which are both under MIT license.

C.1 Policy Settings

The hyper-parameters used in our experiments are listed in Table 19 as default.

Our experiments use separate multilayer perceptrons with tanh activations for the policy network, value
network and cost network. Each network consists of two hidden layers of size (64,64). All of the networks are
trained using Adam optimizer with a learning rate of 0.01.

We apply an on-policy framework in our experiments. During each epoch the agent interacts B times with
the environment and then performs a policy update based on the experience collected from the current epoch.
The maximum length of the trajectory is set to 1000 and the total epoch number N is set to 200 as default.
In our experiments the Walker and the Ant were trained for 1000 epochs due to the high dimension.

The policy update step is based on the scheme of TRPO, which performs up to 100 steps of backtracking
with a coefficient of 0.8 for line searching.

For all experiments, we use a discount factor of γ = 0.99, an advantage discount factor λ = 0.95, and a
KL-divergence step size of δKL = 0.02.

For experiments which consider cost constraints we adopt a target cost δc = 0.0 to pursue a zero-violation
policy.

Other unique hyper-parameters for each algorithm are hand-tuned to attain reasonable performance.

Each model is trained on a server with a 48-core Intel(R) Xeon(R) Silver 4214 CPU @ 2.2.GHz, Nvidia RTX
A4000 GPU with 16GB memory, and Ubuntu 20.04.

For low-dimensional tasks, we train each model for 6e6 steps which takes around seven hours. For high-
dimensional tasks, we train each model for 3e7 steps which takes around 60 hours.

C.2 Experiment tasks

The experiment settings, detailed in Table 20, encompass a total of 72 combinations derived from 4 task
types, 9 robot types, and 2 constraint types. For the purpose of comprehensive comparison in this paper, we
have selected 36 experiments involving 8 hazards and 9 experiments featuring 8 ghosts.

C.3 Metrics Comparison

we report all the 45 results of our test suites by three metrics:

• The average episode returns Jr.

• The average episodic sum of costs Mc.

• The average cost over the entirety of training ρc.

All of the three metrics were obtained from the final epoch after convergence. Each metric was averaged over
two random seeds.
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Goal_Point_8Hazards
Goal_Point_8Ghosts

Goal_Swimmer_8Hazards
Goal_Swimmer_8Ghosts

Goal_Ant_8Hazards
Goal_Ant_8Ghosts

Goal_Walker_8Hazards
Goal_Walker_8Ghosts

Goal_Humanoid_8Hazards
Goal_Humanoid_8Ghosts
Goal_Hopper_8Hazards
Goal_Hopper_8Ghosts
Goal_Arm3_8Hazards
Goal_Arm3_8Ghosts
Goal_Arm6_8Hazards
Goal_Arm6_8Ghosts

Goal_Drone_8Hazards
Goal_Drone_8Ghosts

(a) Goal

Push_Point_8Hazards
Push_Point_8Ghosts

Push_Swimmer_8Hazards
Push_Swimmer_8Ghosts

Push_Ant_8Hazards
Push_Ant_8Ghosts

Push_Walker_8Hazards
Push_Walker_8Ghosts

Push_Humanoid_8Hazards
Push_Humanoid_8Ghosts
Push_Hopper_8Hazards
Push_Hopper_8Ghosts
Push_Arm3_8Hazards
Push_Arm3_8Ghosts
Push_Arm6_8Hazards
Push_Arm6_8Ghosts

Push_Drone_8Hazards
Push_Drone_8Ghosts

(b) Push

Chase_Point_8Hazards
Chase_Point_8Ghosts

Chase_Swimmer_8Hazards
Chase_Swimmer_8Ghosts

Chase_Ant_8Hazards
Chase_Ant_8Ghosts

Chase_Walker_8Hazards
Chase_Walker_8Ghosts

Chase_Humanoid_8Hazards
Chase_Humanoid_8Ghosts
Chase_Hopper_8Hazards
Chase_Hopper_8Ghosts
Chase_Arm3_8Hazards
Chase_Arm3_8Ghosts
Chase_Arm6_8Hazards
Chase_Arm6_8Ghosts

Chase_Drone_8Hazards
Chase_Drone_8Ghosts

(c) Chase

Defense_Point_8Hazards
Defense_Point_8Ghosts

Defense_Swimmer_8Hazards
Defense_Swimmer_8Ghosts

Defense_Ant_8Hazards
Defense_Ant_8Ghosts

Defense_Walker_8Hazards
Defense_Walker_8Ghosts

Defense_Humanoid_8Hazards
Defense_Humanoid_8Ghosts
Defense_Hopper_8Hazards
Defense_Hopper_8Ghosts
Defense_Arm3_8Hazards
Defense_Arm3_8Ghosts
Defense_Arm6_8Hazards
Defense_Arm6_8Ghosts

Defense_Drone_8Hazards
Defense_Drone_8Ghosts

(d) Defense

Table 20: Tasks of our environments
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Table 21: Metrics of nine Goal_{Robot}_8Hazards environments obtained from the final epoch.

Goal_Point_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 26.2296 7.4550 0.0067
TRPO-Lagrangian 25.4503 2.5031 0.0034

TRPO-SL 19.0765 3.5200 0.0056
TRPO-USL 24.6524 7.0004 0.0060
TRPO-IPO 20.3057 4.4037 0.0049
TRPO-FAC 26.9707 2.1581 0.0038

CPO 25.9157 3.2388 0.0036
PCPO 24.9032 3.7118 0.0048

Goal_Swimmer_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 31.5282 11.4067 0.0117
TRPO-Lagrangian 19.5685 4.3231 0.0074

TRPO-SL 9.2362 4.4453 0.0075
TRPO-USL 30.2756 10.2352 0.0100
TRPO-IPO 9.5714 7.9993 0.0079
TRPO-FAC 24.8486 7.8014 0.0085

CPO 26.6166 9.2452 0.0095
PCPO 24.4054 9.3452 0.0094

Goal_Ant_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 59.3694 7.9737 0.0097
TRPO-Lagrangian 35.0180 2.7954 0.0056

TRPO-SL 24.0752 45.9755 0.0355
TRPO-USL 59.2213 9.2237 0.0096
TRPO-IPO 2.6040 6.3006 0.0059
TRPO-FAC 48.2685 5.6736 0.0071

CPO 60.2093 8.1194 0.0092
PCPO 60.3654 8.9137 0.0091

Goal_Walker_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 56.7139 9.8112 0.0104
TRPO-Lagrangian 33.7839 3.3714 0.0053

TRPO-SL 39.9848 12.7370 0.0128
TRPO-USL 57.1097 9.9469 0.0097
TRPO-IPO 7.2728 6.7115 0.0068
TRPO-FAC 42.6250 4.4426 0.0062

CPO 51.9246 8.0409 0.0082
PCPO 55.0100 10.0377 0.0089

Goal_Humanoid_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 11.6758 8.2332 0.0079
TRPO-Lagrangian 6.1294 7.6847 0.0066

TRPO-SL 9.1517 10.1473 0.0091
TRPO-USL 10.9310 9.2950 0.0079
TRPO-IPO 2.5561 9.0792 0.0071
TRPO-FAC 10.0730 8.3481 0.0068

CPO 11.9573 6.0618 0.0074
PCPO 11.6731 6.8256 0.0074

Goal_Hopper_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 32.8406 7.3477 0.0082
TRPO-Lagrangian 24.2180 6.4342 0.0069

TRPO-SL 26.1236 8.9366 0.0098
TRPO-USL 32.5692 8.1526 0.0080
TRPO-IPO 4.0118 7.2667 0.0082
TRPO-FAC 28.1388 6.3430 0.0076

CPO 27.2544 8.0783 0.0076
PCPO 30.7637 6.4343 0.0076

Goal_Arm3_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 19.8716 23.8574 0.0293
TRPO-Lagrangian 6.0512 2.1411 0.0057

TRPO-SL 4.2161 0.4820 0.0115
TRPO-USL 15.6522 8.6754 0.0163
TRPO-IPO 2.4211 12.5567 0.0199
TRPO-FAC 10.0948 3.3072 0.0085

CPO 16.2682 22.1031 0.0210
PCPO 21.5110 16.2963 0.0211

Goal_Arm6_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 4.3703 15.0087 0.0206
TRPO-Lagrangian 1.2386 6.8767 0.0107

TRPO-SL 2.1136 14.1806 0.0136
TRPO-USL 2.5704 9.4493 0.0186
TRPO-IPO 0.8242 5.5569 0.0129
TRPO-FAC 2.4243 8.9828 0.0124

CPO 4.3885 13.0115 0.0171
PCPO 1.1528 13.8961 0.0141

Goal_Drone_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 19.6492 1.6839 0.0012
TRPO-Lagrangian 17.5182 1.0479 0.0010

TRPO-SL 11.0012 0.2030 0.0004
TRPO-USL 17.3535 1.1217 0.0008
TRPO-IPO 15.7189 0.8852 0.0007
TRPO-FAC 17.0156 1.0926 0.0005

CPO 18.3672 1.0204 0.0010
PCPO 5.0076 0.2334 0.0003

Table 22: Metrics of nine Goal_{Robot}_8Ghosts environments obtained from the final epoch.

Goal_Point_8Ghosts

Algorithm J̄r M̄c ρ̄c

TRPO 26.0478 6.8329 0.0073
TRPO-Lagrangian 26.3260 2.1498 0.0034

TRPO-SL 16.6548 4.0515 0.0058
TRPO-USL 22.1795 5.8895 0.0059
TRPO-IPO 20.1808 4.1169 0.0050
TRPO-FAC 25.9489 2.5654 0.0036

CPO 26.5064 2.6248 0.0034
PCPO 25.9672 3.8589 0.0054

Goal_Swimmer_8Ghosts

Algorithm J̄r M̄c ρ̄c

TRPO 30.3401 13.5808 0.0119
TRPO-Lagrangian 15.9952 2.1046 0.0061

TRPO-SL 7.8773 7.6875 0.0079
TRPO-USL 30.1229 8.9488 0.0105
TRPO-IPO 9.8646 10.0275 0.0091
TRPO-FAC 18.9950 4.4988 0.0069

CPO 26.6953 9.5202 0.0092
PCPO 26.2737 10.2204 0.0101

Goal_Ant_8Ghosts

Algorithm J̄r M̄c ρ̄c

TRPO 59.6760 10.3785 0.0099
TRPO-Lagrangian 28.5846 2.9654 0.0060

TRPO-SL 30.7285 41.2262 0.0342
TRPO-USL 61.2725 8.9165 0.0097
TRPO-IPO 2.9659 8.0972 0.0064
TRPO-FAC 44.2423 5.6508 0.0074

CPO 56.3422 9.8690 0.0095
PCPO 58.4684 9.8173 0.0095

Goal_Walker_8Ghosts

Algorithm J̄r M̄c ρ̄c

TRPO 63.2017 9.8771 0.0112
TRPO-Lagrangian 33.2534 2.5072 0.0054

TRPO-SL 37.8968 20.3758 0.0147
TRPO-USL 61.4547 9.6043 0.0105
TRPO-IPO 7.4640 9.1178 0.0080
TRPO-FAC 45.0094 4.9375 0.0071

CPO 60.1257 9.2117 0.0097
PCPO 43.8760 9.2932 0.0085

Goal_Humanoid_8Ghosts

Algorithm J̄r M̄c ρ̄c

TRPO 11.1891 9.9692 0.0098
TRPO-Lagrangian 5.0070 6.6812 0.0076

TRPO-SL 8.8939 17.0632 0.0107
TRPO-USL 10.6905 9.6248 0.0095
TRPO-IPO 1.0404 8.4966 0.0073
TRPO-FAC 9.2134 10.0716 0.0084

CPO 10.0778 10.3074 0.0092
PCPO 11.5003 9.0205 0.0093

Goal_Hopper_8Ghosts

Algorithm J̄r M̄c ρ̄c

TRPO 31.6643 8.1599 0.0100
TRPO-Lagrangian 14.1699 4.4744 0.0070

TRPO-SL 21.7761 12.4810 0.0122
TRPO-USL 31.2864 8.4550 0.0097
TRPO-IPO 5.4826 12.0015 0.0082
TRPO-FAC 28.8157 7.5453 0.0087

CPO 29.0408 7.5681 0.0086
PCPO 29.0858 8.0181 0.0090

Goal_Arm3_8Ghosts

Algorithm J̄r M̄c ρ̄c

TRPO 94.6660 35.7460 0.0348
TRPO-Lagrangian 15.4898 7.5123 0.0058

TRPO-SL 18.1207 10.7580 0.0174
TRPO-USL 62.1624 14.0682 0.0223
TRPO-IPO 4.0235 10.5251 0.0160
TRPO-FAC 37.9750 6.9701 0.0073

CPO 114.8705 15.1904 0.0159
PCPO 126.4001 10.1913 0.0143

Goal_Arm6_8Ghosts

Algorithm J̄r M̄c ρ̄c

TRPO 1.0157 49.0135 0.0466
TRPO-Lagrangian 0.5470 8.4307 0.0190

TRPO-SL 0.6078 20.5269 0.0356
TRPO-USL 0.9856 41.7054 0.0427
TRPO-IPO 0.7336 12.4453 0.0233
TRPO-FAC 0.7861 9.4493 0.0170

CPO 9.9993 22.5031 0.0234
PCPO 0.8845 15.9718 0.0162

Goal_Drone_8Ghosts

Algorithm J̄r M̄c ρ̄c

TRPO 17.9484 1.7287 0.0011
TRPO-Lagrangian 18.9773 0.9218 0.0008

TRPO-SL 12.1413 0.2500 0.0004
TRPO-USL 10.7517 0.9741 0.0011
TRPO-IPO 11.5210 0.6817 0.0006
TRPO-FAC 20.1014 0.7630 0.0006

CPO 18.4723 1.2188 0.0008
PCPO 6.5276 0.3859 0.0003
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Table 23: Metrics of nine Push_{Robot}_8Hazards environments obtained from the final epoch.

Push_Point_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 11.3060 7.2536 0.0084
TRPO-Lagrangian 4.1189 1.8268 0.0037

TRPO-SL 3.0553 6.6139 0.0058
TRPO-USL 9.1904 6.6179 0.0064
TRPO-IPO 1.3370 4.0476 0.0051
TRPO-FAC 6.0431 2.1250 0.0039

CPO 9.7522 5.6406 0.0066
PCPO 9.1434 6.5665 0.0066

Push_Swimmer_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 86.1557 11.9235 0.0102
TRPO-Lagrangian 52.0782 4.5645 0.0070

TRPO-SL 13.1869 7.7554 0.0057
TRPO-USL 64.0705 9.4963 0.0085
TRPO-IPO 6.3843 8.4329 0.0077
TRPO-FAC 48.2986 5.8675 0.0064

CPO 57.4370 6.9551 0.0072
PCPO 56.2598 6.1634 0.0076

Push_Ant_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 13.4378 9.4740 0.0091
TRPO-Lagrangian 1.1582 1.5948 0.0043

TRPO-SL 3.5622 47.7602 0.0217
TRPO-USL 11.2763 9.3930 0.0086
TRPO-IPO 1.1986 5.9120 0.0061
TRPO-FAC 2.5905 2.7927 0.0050

CPO 12.7081 7.5742 0.0082
PCPO 11.0161 8.7780 0.0087

Push_Walker_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 5.0574 10.8840 0.0089
TRPO-Lagrangian 1.5035 2.4237 0.0040

TRPO-SL 1.7263 17.5680 0.0082
TRPO-USL 2.8786 9.3900 0.0078
TRPO-IPO 0.7991 3.6377 0.0070
TRPO-FAC 1.5393 3.2465 0.0047

CPO 4.3412 7.8450 0.0075
PCPO 1.1548 9.2470 0.0075

Push_Humanoid_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 0.9545 10.6542 0.0096
TRPO-Lagrangian 0.7407 3.1758 0.0062

TRPO-SL 0.2992 9.0239 0.0092
TRPO-USL 0.8102 7.3410 0.0093
TRPO-IPO 0.8194 6.0952 0.0074
TRPO-FAC 0.9641 3.0034 0.0068

CPO 0.8147 8.6884 0.0080
PCPO 1.0445 8.1230 0.0084

Push_Hopper_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 3.6134 10.3693 0.0095
TRPO-Lagrangian 0.8384 2.0782 0.0052

TRPO-SL 1.5115 8.2643 0.0080
TRPO-USL 2.3949 11.2835 0.0088
TRPO-IPO 0.3718 7.4184 0.0083
TRPO-FAC 1.0928 3.8033 0.0069

CPO 2.3108 11.2012 0.0082
PCPO 0.9565 8.8373 0.0083

Push_Arm3_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 0.0438 37.7114 0.0414
TRPO-Lagrangian -194.8455 2.7071 0.0062

TRPO-SL 0.0906 7.3980 0.0176
TRPO-USL -42.2457 10.6065 0.0189
TRPO-IPO -420.0890 25.0669 0.0224
TRPO-FAC -114.8912 7.8944 0.0086

CPO 0.0249 11.3773 0.0128
PCPO -30.9294 10.4467 0.0207

Push_Arm6_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 1.1128 15.9080 0.0190
TRPO-Lagrangian 0.9490 7.1961 0.0110

TRPO-SL -220.2115 38.7175 0.0144
TRPO-USL -0.6530 16.7103 0.0182
TRPO-IPO 1.1291 8.3642 0.0113
TRPO-FAC 1.0648 9.4750 0.0152

CPO 1.1699 6.6375 0.0103
PCPO 1.1459 10.0104 0.0112

Push_Drone_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 0.9332 0.3324 0.0002
TRPO-Lagrangian 1.0967 0.3197 0.0003

TRPO-SL 1.0154 0.0783 0.0001
TRPO-USL 0.9410 0.0996 0.0001
TRPO-IPO 1.0394 0.4229 0.0002
TRPO-FAC 1.0820 0.2380 0.0002

CPO 1.1261 0.2409 0.0003
PCPO 0.9844 0.0049 0.0001

Table 24: Metrics of nine Chase_{Robot}_8Hazards environments obtained from the final epoch.

Chase_Point_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 1.3122 3.5553 0.0068
TRPO-Lagrangian 1.0879 2.8816 0.0046

TRPO-SL 0.8385 5.6000 0.0058
TRPO-USL 1.1433 5.7574 0.0080
TRPO-IPO 0.7959 8.5632 0.0061
TRPO-FAC 1.0333 3.0887 0.0053

CPO 1.2897 5.0677 0.0063
PCPO 1.0035 7.9018 0.0084

Chase_Swimmer_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 1.2491 7.0269 0.0100
TRPO-Lagrangian -0.2346 4.8860 0.0058

TRPO-SL 0.0518 9.2681 0.0071
TRPO-USL 1.2227 9.2911 0.0103
TRPO-IPO -1.0848 10.5546 0.0080
TRPO-FAC 0.6411 9.1446 0.0078

CPO 1.2540 8.1671 0.0082
PCPO 1.2152 8.2717 0.0090

Chase_Ant_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 1.3504 6.1101 0.0106
TRPO-Lagrangian -0.3563 2.5016 0.0040

TRPO-SL 0.7921 16.9846 0.0222
TRPO-USL 1.3841 8.0640 0.0096
TRPO-IPO -0.9314 2.5529 0.0048
TRPO-FAC -0.0258 3.5439 0.0048

CPO 1.4104 5.7863 0.0087
PCPO 1.3122 6.9139 0.0097

Chase_Walker_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 0.4890 7.6845 0.0088
TRPO-Lagrangian -0.0922 2.5167 0.0045

TRPO-SL -0.2116 10.7167 0.0094
TRPO-USL 0.4639 7.7035 0.0082
TRPO-IPO -0.8223 2.3954 0.0038
TRPO-FAC -0.0368 2.7105 0.0047

CPO 0.7406 10.4993 0.0086
PCPO 0.6347 8.8652 0.0080

Chase_Humanoid_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 0.2330 12.1455 0.0152
TRPO-Lagrangian -0.6855 3.4234 0.0047

TRPO-SL -0.2271 11.8001 0.0121
TRPO-USL -0.1503 18.6011 0.0149
TRPO-IPO -0.8074 6.4163 0.0054
TRPO-FAC -0.5826 3.6663 0.0050

CPO -0.3322 12.1665 0.0109
PCPO -0.0971 10.3441 0.0113

Chase_Hopper_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 0.6099 12.1675 0.0134
TRPO-Lagrangian -0.3641 3.2170 0.0039

TRPO-SL 0.4957 5.4355 0.0089
TRPO-USL 0.4819 11.0919 0.0123
TRPO-IPO -0.7766 6.1236 0.0061
TRPO-FAC -0.3651 3.7391 0.0055

CPO 0.4829 6.7117 0.0083
PCPO -0.1457 7.4290 0.0068

Chase_Arm3_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 0.7772 20.6230 0.0312
TRPO-Lagrangian -0.2739 5.1692 0.0079

TRPO-SL 0.0007 4.2869 0.0142
TRPO-USL 0.7825 14.1736 0.0284
TRPO-IPO -0.4137 10.6685 0.0223
TRPO-FAC 0.3648 3.3449 0.0127

CPO 0.8051 17.4917 0.0252
PCPO 0.7355 25.8202 0.0291

Chase_Arm6_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO -0.3969 60.5704 0.0598
TRPO-Lagrangian -0.4860 2.4602 0.0075

TRPO-SL -0.5420 12.1256 0.0237
TRPO-USL -0.5734 53.4455 0.0575
TRPO-IPO -0.2855 11.6769 0.0085
TRPO-FAC -0.3083 13.2429 0.0263

CPO -0.3278 16.9609 0.0247
PCPO -0.2883 45.6164 0.0463

Chase_Drone_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 1.0351 0.6939 0.0008
TRPO-Lagrangian 0.8211 1.3456 0.0008

TRPO-SL -1.3055 0.2603 0.0002
TRPO-USL 0.7461 1.2159 0.0006
TRPO-IPO 0.2518 0.5786 0.0005
TRPO-FAC 1.1192 0.2374 0.0006

CPO 0.7682 0.9075 0.0006
PCPO 0.6172 0.6374 0.0012
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Table 25: Metrics of nine Defense_{Robot}_8Hazards environments obtained from the final epoch.

Defense_Point_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 71.7851 37.5050 0.0308
TRPO-Lagrangian -12.2159 1.1776 0.0026

TRPO-SL -89.8828 3.1691 0.0070
TRPO-USL -109.7828 9.9285 0.0086
TRPO-IPO -330.4252 0.7309 0.0035
TRPO-FAC -269.0397 0.7334 0.0015

CPO 36.7643 7.1534 0.0071
PCPO 19.0943 1.9388 0.0048

Defense_Swimmer_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 119.9896 44.5965 0.0405
TRPO-Lagrangian -85.0177 0.2487 0.0031

TRPO-SL -41.8928 1.3295 0.0118
TRPO-USL 139.8915 13.5482 0.0150
TRPO-IPO -233.1962 7.6313 0.0070
TRPO-FAC -91.7454 0.8809 0.0032

CPO 34.3226 2.7346 0.0072
PCPO 91.1387 5.1068 0.0084

Defense_Ant_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 65.9815 46.1871 0.0214
TRPO-Lagrangian -190.9671 1.5799 0.0040

TRPO-SL -15.0035 14.7914 0.0143
TRPO-USL -9.1186 25.8625 0.0126
TRPO-IPO -205.8713 6.0119 0.0044
TRPO-FAC -204.4595 1.4105 0.0041

CPO -22.6369 17.9356 0.0132
PCPO -42.0119 17.1633 0.0120

Defense_Walker_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 63.0381 52.1661 0.0326
TRPO-Lagrangian -221.9464 0.8080 0.0032

TRPO-SL -28.2392 21.2179 0.0142
TRPO-USL 19.2097 23.4844 0.0182
TRPO-IPO -213.4079 2.7606 0.0045
TRPO-FAC -183.6202 1.6905 0.0035

CPO 32.0705 14.7761 0.0151
PCPO 43.8441 17.0562 0.0161

Defense_Humanoid_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO -279.6928 4.3248 0.0042
TRPO-Lagrangian -287.5846 3.0248 0.0035

TRPO-SL -325.6846 2.0650 0.0039
TRPO-USL -318.2901 3.5935 0.0043
TRPO-IPO -281.2530 4.3968 0.0038
TRPO-FAC -271.4645 2.0044 0.0034

CPO -246.6409 5.8980 0.0049
PCPO -317.0349 2.9953 0.0040

Defense_Hopper_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO -79.4386 26.9427 0.0202
TRPO-Lagrangian -304.2345 1.1963 0.0029

TRPO-SL -207.0506 8.9198 0.0138
TRPO-USL 57.7316 28.5037 0.0234
TRPO-IPO -248.0784 6.6735 0.0046
TRPO-FAC -233.1694 0.7496 0.0038

CPO -271.5419 8.3413 0.0077
PCPO -279.4999 7.2803 0.0077

Defense_Arm3_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 169.5352 22.0750 0.0301
TRPO-Lagrangian 151.7291 0.7971 0.0056

TRPO-SL 112.3637 1.1085 0.0160
TRPO-USL 164.4992 5.3212 0.0163
TRPO-IPO 94.1636 9.1085 0.0171
TRPO-FAC 180.9871 1.7731 0.0064

CPO 167.4984 16.4595 0.0162
PCPO 160.2841 22.2282 0.0189

Defense_Arm6_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO 183.9203 56.5334 0.0548
TRPO-Lagrangian 169.9900 1.0108 0.0045

TRPO-SL 171.8430 13.3277 0.0229
TRPO-USL 183.7060 52.3346 0.0528
TRPO-IPO 127.3447 3.8719 0.0051
TRPO-FAC 175.8257 2.3101 0.0109

CPO 174.7701 22.8158 0.0346
PCPO 174.4207 30.1276 0.0264

Defense_Drone_8Hazards

Algorithm J̄r M̄c ρ̄c

TRPO -241.5720 0.0771 0.0002
TRPO-Lagrangian -245.7311 0.2276 0.0002

TRPO-SL -371.7727 0.0000 0.0001
TRPO-USL -336.7727 0.2161 0.0001
TRPO-IPO -275.5550 0.2600 0.0002
TRPO-FAC -215.4844 0.0691 0.0001

CPO -212.1858 0.0236 0.0002
PCPO -219.4308 0.3358 0.0003
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Figure 14: Goal_{Robot}_8Hazards
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Figure 15: Goal_{Robot}_8Ghosts39



Published in Transactions on Machine Learning Research (03/2024)

Push_Point_8Hazards Push_Swimmer_8Hazards Push_Ant_8Hazards

Push_Walker_8Hazards Push_Humanoid_8Hazards Push_Hopper_8Hazards

40



Published in Transactions on Machine Learning Research (03/2024)

Push_Arm3_8Hazards Push_Arm6_8Hazards Push_Drone_8Hazards

Figure 16: Push_{Robot}_8Hazards
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Figure 17: Chase_{Robot}_8Hazards43
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Figure 18: Defense_{Robot}_8Hazards

45


	Introduction
	Related Work
	Preliminaries
	GUARD Safe RL Library
	Overall Implementation
	Unconstrained RL
	End-to-End Safe RL
	Constrained Policy Optimization-based Algorithms
	Lagrangian-based Algorithms

	Hierarchical Safe RL

	GUARD Testing Suite
	Robot Options
	Task Options
	Constraint Options

	GUARD Experiments
	Experiment Setup
	Evaluating GUARD Safe RL Library and Comparison Analysis

	Conclusions
	Appendix
	Environment Details
	Observation Space and Action space of different robots
	Observation Space Options and Desiderata
	Layout Randomization Options and Desiderata
	Task and Constraint Details
	Dynamics of movable objects
	Dynamics of targets of Chase task
	Dynamics of targets of Defense task
	Dynamics of ghost and 3D ghost


	Experiment Details
	Policy Settings
	Experiment tasks
	Metrics Comparison


