

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS MULTIMODAL DATA-DRIVEN SCIENTIFIC DISCOVERY POWERED BY LLM AGENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have enabled agents that automate scientific discovery by interpreting data, generating analysis pipelines, and executing them with computational tools. However, existing benchmarks remain largely limited to unimodal datasets and slice-level tasks, overlooking the fact that real discovery requires multimodal integration, modeling, and hypothesis-driven reasoning. To address this gap, we introduce **MoSciBench**, the first benchmark for multimodal scientific discovery constructed from peer-reviewed studies through a principled four-stage pipeline. **MoSciBench** spans six scientific domains, seven data modalities, and five categories of discovery questions, yielding 88 individual, end-to-end, data-driven tasks. Each task is designed as a cross-modal hypothesis verification workflow, requiring agents to align and integrate heterogeneous datasets before modeling and reasoning. We further evaluate four representative agent frameworks across multiple LLM families. Results show that multimodal discovery is substantially harder than unimodal tasks: even the strongest agents achieve only 48.94% accuracy, with over 60% of failures due to cross-modal alignment. Lightweight workflow scaffolding consistently improves performance, reducing alignment errors by 5–10% and raising accuracy by 5.7% on average. Our benchmark and evaluation framework thus establish a rigorous testbed for advancing LLM agents toward realistic, multimodal scientific discovery. Our code and data are available at https://anonymous.4open.science/r/MoSciBench_Main-7F0F

1 INTRODUCTION

Scientific discovery is increasingly data-driven, requiring integration of multimodal data (e.g., satellite imagery, climate time series, and tabular measurements), building models to uncover patterns (e.g., predicting extreme climate events or identifying molecular interactions), and validating hypotheses through iterative analysis [Li et al. \(2025\)](#). Traditionally, constructing such end-to-end workflows, from data preparation to model validation, has been manual and expertise-intensive, limiting scalability [Zheng et al. \(2025a;b\)](#). Recent advances in LLMs suggest a new paradigm: agents that can interpret diverse data types, automatically generate analysis pipelines, and execute them with scientific tools [Guo et al. \(2024\)](#); [Liu et al. \(2025c\)](#). Realizing this vision, however, systematic evaluation is needed on realistic multimodal scientific tasks.

Existing benchmarks (e.g., ScienceAgentBench [Chen et al. \(2024b\)](#), DiscoveryBench [Majumder et al. \(2024\)](#)) have advanced LLM-based discovery by formalizing workflows [Zhang et al. \(2025\)](#); [Tang et al. \(2023\)](#); [Lu et al. \(2024\)](#) (e.g., dataset preparation, analysis, model design, and validation). In these benchmarks, however, each task is tied to a single type of dataset, for instance, tabular records or a single time series, so agents are only evaluated within isolated modalities [Gu et al. \(2024\)](#). As a result, they remain restricted to unimodal data (e.g., image, time series, or tabular formats). In addition, many tasks are defined at the level of individual points or slices, where agents handle small fragments, lacking the realism of repository-level discovery [Tian et al. \(2024\)](#). By contrast, real scientific discovery is inherently multimodal, requiring agents to access full repositories, integrate heterogeneous files, and reason across them to generate insights, as illustrated in Figure 1. For instance, climate studies combine satellite imagery with spatiotemporal metadata [Liu & Yao \(2024\)](#), and health research links physiological signals with environmental measures [Anders et al. \(2024\)](#). Capturing this complexity in benchmarks is challenging [Zheng \(2025\)](#), as it requires evaluating

agents on cross-modal alignment, modeling, and reasoning capabilities that are essential for practical scientific discovery but largely absent from current benchmarks.

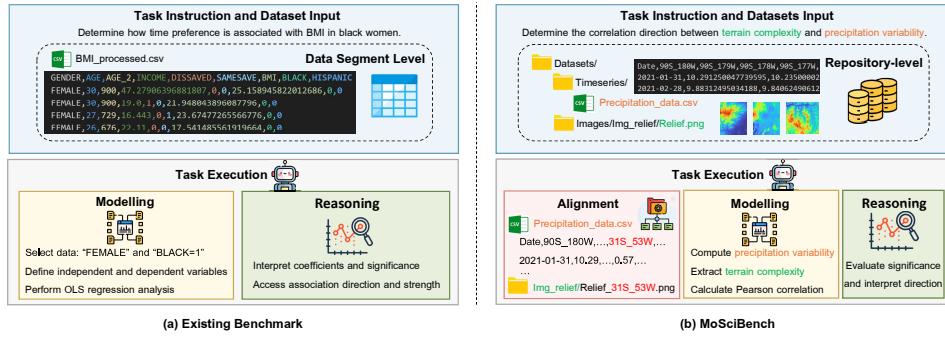


Figure 1: Previous benchmarks vs. MoSciBench (ours). **Left:** Existing benchmarks focus on unimodal, small-scale tasks (e.g., single tables or short sequences), offering only fragmented evaluations. **Right:** MoSciBench supports end-to-end multimodal discovery by letting agents access full repositories, integrate heterogeneous data, generate and run code, and reason over results to verify scientific hypothesis.

In this work, we introduce **MoSciBench**, the first benchmark for multimodal data-driven scientific discovery. To ensure realism, we construct tasks from peer-reviewed studies through a principled four-stage pipeline: (1) raw data extraction from published repositories, (2) multimodal processing and alignment to clean, standardize, and integrate heterogeneous datasets, (3) task instruction formulation and annotation to encode discovery objectives in executable and verifiable forms, and (4) human verification and quality control to guarantee consistency and reliability. Each task is designed around a scientific discovery goal that requires agents to perform cross-modal alignment, modeling, and reasoning, rather than isolated slice-level predictions. For example, a climate task integrates satellite imagery with numerical storm tracks to assess cyclone intensity, while a health task combines physiological and environmental signals to identify risk factors for cardiac stress. Overall, MoSciBench covers six scientific domains (climate science, biomedical engineering, cheminformatics, health psychology, population genomics, and earth science), five categories of discovery questions (descriptive analysis, correlation, causal inference, prediction, and pattern discovery), and seven data modalities (multi-sensor time series, tabular data, satellite imagery, mass spectra, molecular structures, genotype matrices, and HDF matrices), yielding 88 individual tasks in total.

To systematically evaluate LLM agents on scientific discovery, we present MoSciBench and a comprehensive evaluation framework. Our contributions are threefold:

- ① **Benchmark.** We introduce MoSciBench, the first benchmark for *multimodal scientific discovery*, spanning six domains, seven modalities, and 88 individual tasks. Built from peer-reviewed studies through a principled pipeline (data acquisition, multimodal processing, task annotation, and multi-pass verification), MoSciBench explicitly targets multimodal, repository-level discovery, making tasks substantially more complex and realistic than prior unimodal benchmarks.
- ② **Task formalization.** Each task is defined as a *cross-modal hypothesis verification workflow*, where agents must load, preprocess, align, and integrate heterogeneous datasets before modeling and reasoning. Tasks cover five categories central to discovery, descriptive analysis, correlation testing, causal inference, predictive modeling, and pattern discovery, explicitly enforcing multimodal alignment (e.g., linking imagery with time series, or genotype matrices with phenotypes).
- ③ **Evaluation.** We systematically evaluate four representative agent frameworks, combined with both open- and closed-source LLM families, on all 88 tasks. Results reveal three findings: (i) **multimodal discovery is significantly harder than unimodal tasks**, with even the strongest agents achieving only 48.4 % accuracy; (ii) **cross-modal alignment is the dominant bottleneck**, accounting for over 60% of errors; and (iii) **lightweight workflow scaffolding consistently boosts performance**, reducing alignment errors by 5–10% and raising accuracy by 5.7% on average.

2 MOSCIBENCH CONSTRUCTION

In this section, we introduce MoSciBench, a benchmark designed to evaluate LLM agents on multimodal data-driven scientific discovery tasks. These tasks require integrating information from

108 **Table 1:** Representative examples of the five task categories in MoSciBENCH. Each example highlights a
 109 distinct reasoning type required for multimodal scientific discovery.

110 Category	111 Representative Task Instruction	112 Success Criteria (Example Output from 113 Benchmark)
114 Descriptive Analysis	115 Compute the average precipitation in 2021–2023 116 across all stations and identify the wettest region.	117 Output: <code>[(3, -78)]</code>
118 Correlational Study	119 Test the time series correlation between air temperature and shortwave radiation (2021–2023).	120 Output: <code>p-value = 0.174</code> (not significant)
121 Causal Inference	122 Assess whether a reduction in shortwave radiation leads to decreased precipitation.	123 Output: <code>answer: {false}</code>
124 Predictive Modeling	125 Predict future daily temperature using the past 30 days of data.	126 Output: <code>Best RMSE = 3.8208</code> (Ridge Regression)
127 Pattern Discovery	128 Determine the global trend in heatwave-affected areas during 2021–2023.	129 Output: <code>Trend = upward</code>

130 multiple modalities through multimodal data exploration, scientific computation, and reasoning with
 131 LLM agents, ultimately aiming to validate scientific hypotheses.

132 2.1 PROBLEM FORMULATION

133 **MoSciBench** evaluates LLM agents on multimodal data-driven discovery tasks, each framed as an end-to-end workflow requiring cross-modal alignment, scientific modeling, and hypothesis verification.
 134 Each task is instantiated with three components: (i) a *task instruction* derived from a peer-reviewed study, specifying the scientific background and hypothesis to be tested; (ii) one or more *multimodal datasets* (e.g., imagery, time series, tabular records, molecular structures) providing the evidence base; and (iii) an *evaluation protocol* that checks whether the agent’s output is consistent with the gold-standard hypothesis. To solve a task, the agent must autonomously align and fuse heterogeneous data sources, build models, perform computations, and reason over the results to test the hypothesis.

135 **Task Instructions.** Each task is framed as a scientific question with three elements: the *background* (e.g., the role of precipitation analysis in climatology), the *hypothesis* to be verified (e.g., identifying the region with the highest average precipitation during 2021–2023), and the expected *answer format*, as shown in Table 1. The answer format provides the key anchor for evaluation, specifying how the hypothesis should be expressed and verified, for instance, categorical outputs (e.g., true/false, class labels), numerical values (e.g., averages, coefficients), short strings, or structural patterns. Instructions are concise and open-ended to encourage agents to autonomously decide on exploration, preprocessing, analysis, or modeling steps. Some tasks include optional *domain knowledge* (e.g., definitions, formulas, methodological hints) to reduce ambiguity without prescribing solutions.

136 **Multimodal Datasets.** Tasks are grounded in datasets spanning seven modalities: (1) time series from multi-sensor streams (e.g., physiological or climate records), (2) tabular data (e.g., survey results or experimental measurements), (3) satellite imagery (e.g., remote sensing products), (4) mass spectra (e.g., metabolomics or proteomics assays), (5) molecular structures (e.g., chemical compounds), (6) genotype matrices (e.g., population genomics data), and (7) HDF matrices (e.g., high-dimensional simulation outputs). Each dataset is released in a structured directory with previews to expose available variables and formats. Because the dataset is multimodal, agents must not only load and preprocess data but also align heterogeneous modalities, for example, linking satellite imagery with spatiotemporal metadata or integrating physiological signals with environmental variables, before conducting scientific analysis.

137 **Evaluation.** MoSciBench adopts a hypothesis-centered evaluation: an agent is judged by whether 138 its output correctly verifies the hypothesis. The ground-truth hypotheses and answers are derived 139 from peer-reviewed publications, ensuring objectivity and scientific validity. Each task specifies an 140 expected *answer format*, which defines how correctness is assessed. Performance is measured by 141 *exact match accuracy*: a prediction is correct only if it exactly matches the reference answer. For 142 categorical outputs (e.g., strings, integers, class labels), exact identity is required. For numerical 143 values, lists, or coordinates, task-specific tolerances are applied (e.g., numeric precision or ordering) 144 to ensure fairness. This setup makes evaluation automatic, objective, and reproducible. Results are 145 aggregated across tasks and reported as overall accuracy.

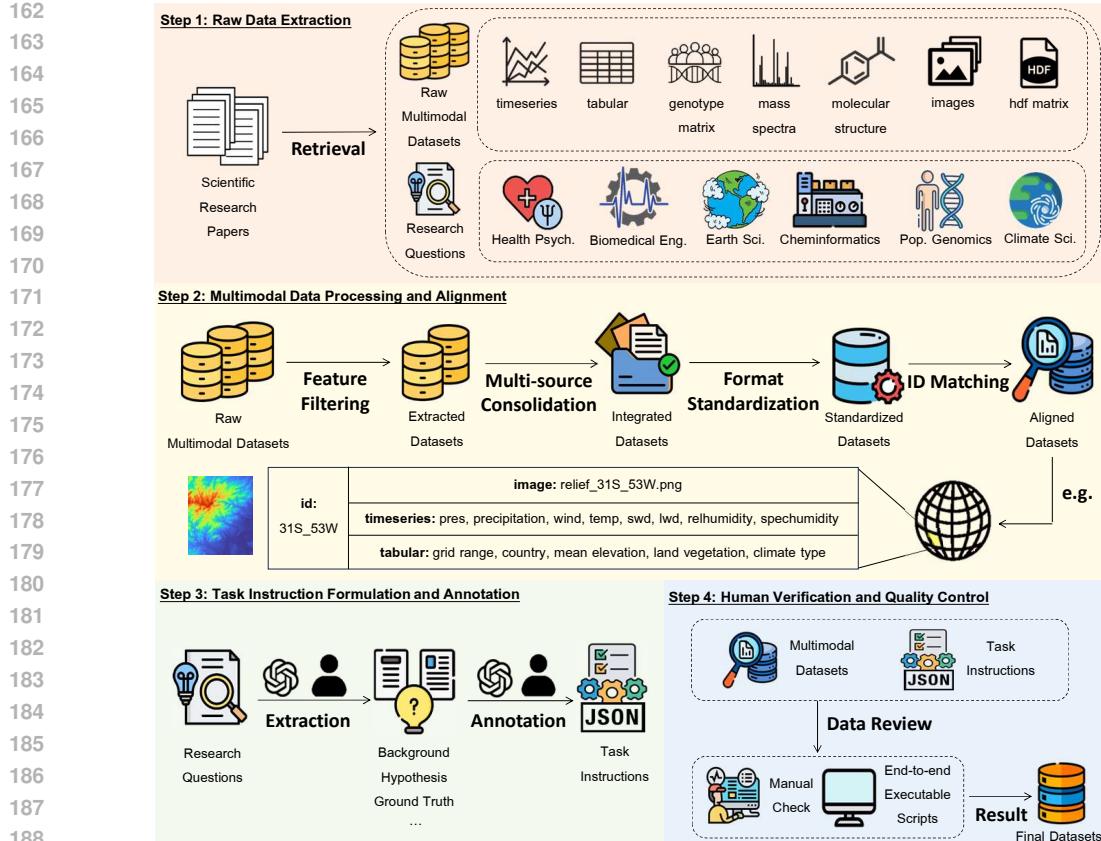


Figure 2: Overview of pipeline construction in MoSciBench.

2.2 DATA COLLECTION AND TASK ANNOTATION

MoSciBench is constructed directly from peer-reviewed scientific publications spanning six domains (e.g., climate science, biomedical engineering, and cheminformatics). Each benchmark instance follows a principled four-stage pipeline: (i) raw data extraction, (ii) multimodal processing and alignment, (iii) task instruction formulation and annotation, and (iv) human verification and quality control. The overall pipeline construction of MoSciBench is illustrated in Figure 2.

Raw Data Extraction. Papers releasing datasets under permissive licenses and posing explicit data-driven scientific questions suitable for hypothesis verification are first selected. From these sources, multimodal datasets, such as imagery, time series, and tabular measurements, are extracted, along with dataset provenance, licensing information, and concise summaries of the associated scientific questions. Dataset descriptors, including variable names and spatial and temporal coverage, are registered in a metadata sheet to support downstream processing. The details of the data collection source and license can be seen in Appendix A.1.

Multimodal Data Processing and Alignment. The processing pipeline begins with feature filtering to remove missing or anomalous values and extract a consistent subset of samples from raw multimodal datasets. Next, multi-source consolidation integrates heterogeneous inputs, which are then standardized to ensure comparability by harmonizing units, timestamps, and spatial references. Finally, multimodal alignment is achieved through shared indices: for example, linking individual attributes with physiological time series via subject IDs, or aligning satellite imagery with environmental variables using geographic grids. This step yields aligned datasets, enabling the verification of scientific hypotheses through data-driven downstream tasks.

Task Instruction Formulation and Annotation. Each research question is translated into a concise task instruction that preserves the original scientific intent while avoiding overly prescriptive steps. Tasks are paired with verifiable hypotheses, gold answer specifications, and explicit answer formats (e.g., slot-filling, true/false, categorical label). Minimal domain knowledge snippets, such as defini-

216 tions, formulas, or methodological pointers, are added where necessary to clarify terminology without
 217 revealing solutions. Further details of the instructions’ composition are provided in Appendix A.1.
 218

219 **Human Verification and Quality Control.** To ensure task quality, each task instance in MoSciBench
 220 undergoes multi-pass verification. Verification relies solely on released datasets, ensuring hypotheses
 221 can be tested without external resources and multimodal alignments remain correct. In addition
 222 to manual checks, annotators implement end-to-end executable scripts that reproduce workflows
 223 and automatically check consistency with gold hypotheses, for example validating numerical results
 224 within tolerance, checking correlations or causal directions, and assessing predictive performance.
 225 Tasks in which human verification conflicted with the original gold-standard hypotheses were filtered
 226 out, ensuring that the final benchmark maintains perfect consistency between verified annotations
 227 and ground-truth hypotheses (100% agreement).

228 2.3 STATISTICS INFORMATION

229 **Overall Coverage.** MoSciBench is designed around
 230 five fundamental categories of data-driven scientific dis-
 231 covery questions, with a total of 88 instantiated subtasks.
 232 To highlight the breadth of coverage, we summarize do-
 233 mains, modalities, and task counts in Table 2. These
 234 subtasks span six major scientific domains, climate sci-
 235 ence, biomedical engineering, cheminformatics, health
 236 psychology, population genomics, and earth science and
 237 incorporate seven complementary data modalities, in-
 238 cluding multi-sensor time series, tabular data, satellite
 239 imagery, molecular structures, mass spectra, genotype
 240 matrices, and HDF matrices.

241 **Task Categories.** The five categories in MoSciBench
 242 capture the major reasoning needs of data-driven science:
 243 (1) *descriptive analysis* (e.g., summary statistics), (2) *cor-
 244 relational studies* (e.g., correlation tests), (3) *causal in-
 245 ference* (e.g., causal relationship analysis), (4) *predictive
 246 modeling* (e.g., regression or classification), and (5) *pat-
 247 tern discovery* (e.g., clustering or factor analysis), as il-
 248 lustrated in Figure 3. Each of the 88 tasks is grounded in
 249 one of these categories, providing a relatively balanced
 250 distribution across reasoning types. The six domains are
 251 evenly integrated, ensuring broad coverage of scientific
 252 modalities such as time series, tabular data, molecular
 253 structures, and remote sensing imagery. The scale of 88
 254 tasks is deliberately chosen to balance breadth and fea-
 255 sibility: each task is framed as an *end-to-end, repository-
 256 level workflow*, where agents must independently perform
 257 data-driven computation and reasoning. Given that even a
 258 single predictive modeling task can require hours to com-
 259 plete, this design ensures the benchmark remains both
 260 challenging and practically executable.

261 3 EXPERIMENTS

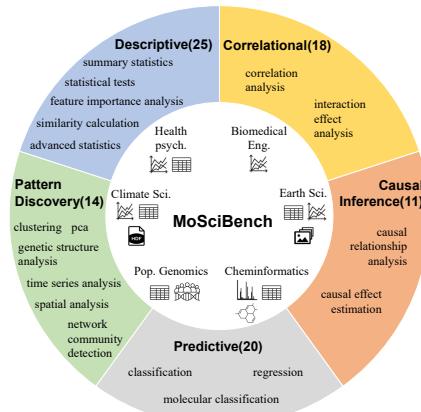
262 In this section, we conduct experiments to address the following research questions: (RQ1): How
 263 well do current LLM agents perform end-to-end multimodal data-driven discovery on MoSciBench?
 264 (RQ2): What are the main error sources in multimodal scientific discovery, and how can LLM agents
 265 be enhanced to address them? (RQ 3): What factors influence the performance–efficiency trade-offs
 266 of LLM agents in multimodal scientific discovery?

267 3.1 DISCOVERY AGENT

268 **LLMs and Setup.** We evaluate both open and closed-source models, including Qwen 3–30B–A3B,
 269 DeepSeek–V3.1, gpt–5–mini, and o4–mini. All models are run under a unified configuration

270 **Table 2: Summary of domains, modalities,**
 271 **and task numbers in MoSciBench.** Each
 272 domain contains multiple modalities, reflect-
 273 ing the diversity of scientific problems in the
 274 benchmark.

Domain	Modalities	Task Num.
Climate Science	HDF (matrix), Tabular, Timeseries	14
Biomedical Eng.	Timeseries, Text	17
Cheminformatics	Mass spectra, Mol. structures, Tabular	15
Health Psych.	Timeseries, Tabular	15
Pop. Genomics	Genotype matrix, Tabular	13
Earth Sci.	Image, Tabular, Timeseries	14



275 **Figure 3: Distribution of task categories**
 276 and domains in MoSciBench.

270 with temperature set to 0.0 and zero-shot prompting via API. To prevent excessive computation, the
 271 maximum code execution time of each individual task is limited to 1 hour, after which the process is
 272 automatically terminated. We report the results of additional model experiments in Appendix A.2.2.
 273

274 **Agent Frameworks.** Since there are currently no multimodal discovery agents, we follow widely
 275 used single-domain discovery agents Majumder et al. (2024); Chen et al. (2024b) and adapt them to
 276 the multimodal scientific discovery setting: (1) NoDataGuess: A naive baseline without data-driven
 277 methods. It only provides task descriptions and relies entirely on the LLM’s internal memory and
 278 reasoning ability. (2) ReAct Yao et al. (2023): Alternates between reasoning steps and code execution
 279 in an iterative loop to refine hypotheses. (3) DataVoyager: Employs a modular pipeline with planner,
 280 code generator, analysis, and critic components to orchestrate discovery. (4) Reflexion (Oracle):
 281 Extends CodeGen with oracle feedback and iterative retries (up to three times) for self-improvement.

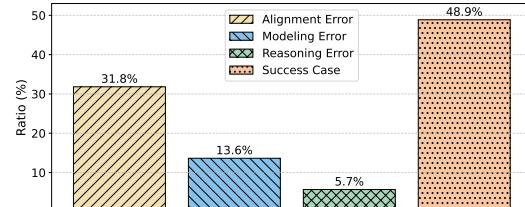
282 **Metrics.** Across all experiments, performance is measured using exact match accuracy. A prediction
 283 is considered correct only if it exactly matches the reference answer. For categorical outputs (e.g.,
 284 numerical values, strings, integers, lists, or coordinates), identical matches are required, particularly
 285 for answers to key research questions.

286 3.2 MAIN EXPERIMENTS (RQ1)

287 Table 3 summarizes the performance of four LLM agents across six domains and 88 tasks. Our
 288 observations (Obs.) are as follows: **Obs.❶ LLM agents perform poorly on multimodal data-289
 290 driven discovery.** Overall accuracy remains modest across all settings, rarely exceeding 50%. Even
 291 the strongest configuration, o4-mini with ReAct (48.4%) and Reflexion (45.8%), fails to achieve
 292 reliable performance. Accuracy is particularly low for smaller models such as Qwen3-30B-A3B
 293 (best 23.3%) and gpt-5-mini (best 17.4%), underscoring the fundamental difficulty of multimodal
 294 reasoning and the limitations of current agents in handling multimodal data at scale. **Obs.❷ Data-295
 296 driven approaches are indispensable.** The non-data-driven baseline (NODATAGUESS) consistently
 297 collapses to near-zero accuracy: 0.0% for Qwen3-30B-A3B and 2.6% for DeepSeek-V3.1, and
 298 only 10.5% for o4-mini. By contrast, data-grounded frameworks achieve substantially higher
 299 scores, with improvements of 20-40 % across six domains. For example, DeepSeek-V3.1 with
 300 ReAct reaches 36.5% and o4-mini with Reflexion 45.8%. These results confirm that pure reasoning
 301 without access to underlying data is ineffective, while explicit data grounding is critical for meaningful
 302 discovery. **Obs.❸ Stronger base models yield stronger agents.** Performance scales directly with
 303 the underlying LLM’s capability. The strongest model, o4-mini, achieves the best overall averages
 304 (48.9% with ReAct, 46.6% with Reflexion), while DeepSeek-V3.1 delivers mid-tier performance
 305 (36.5% with ReAct), and gpt-5-mini lags far behind (17.4%). This consistent trend indicates
 306 that advances in LLM translate directly into more capable downstream scientific discovery agents,
 307 reinforcing the tight coupling between base model strength and effective multimodal reasoning.

308 3.3 ERROR ANALYSIS AND AGENT ENHANCEMENT (RQ 2)

309 **Error Analysis.** To characterize agent failures
 310 in multimodal scientific discovery, we classify
 311 errors into three categories: *alignment* (conceptual
 312 or implementation misalignments), *modeling*
 313 (representation, planning, or computation
 314 errors), and *reasoning* (statistical or logical
 315 inference errors). These categories collectively
 316 span the entire LLM agent workflow. We
 317 conduct a detailed analysis to uncover underlying
 318 causes and common failure modes, as summa-
 319 rized in Figure 4. Our analysis focuses on the
 320 best-performing agent, ReAct with the base model o4-mini. **Obs.❹ Alignment errors domi-321
 322 nate.** The majority of errors are alignment-related (31.8 %), including issues such as information
 323 mismatches and data processing failures. The fundamental cause lies in the difficulty of cross-data
 324 fusion, linking datasets across domains and transforming diverse forms, distributions, scales, and
 325 resolutions into shared, computable representations while preserving domain-specific information. In
 326 comparison, modeling errors account for 15.9% and reasoning errors represent only 3.4%. Further
 327 details are provided in Appendix A.2.3.

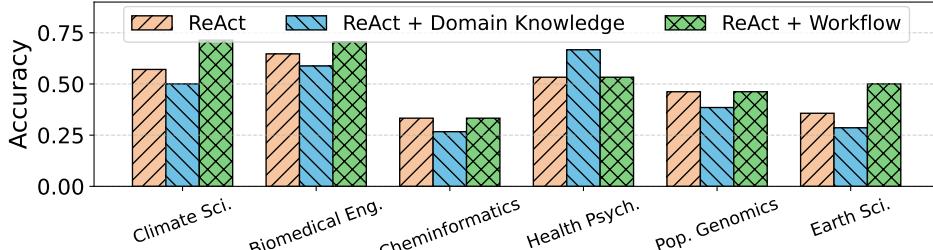


328 **Figure 4: Error analysis of ReAct.** Distribution of
 329 alignment, modeling, and reasoning errors across the
 330 multimodal scientific discovery.

331 **Obs.❹ Alignment errors dominate.** The majority of errors are alignment-related (31.8 %), including issues such as information
 332 mismatches and data processing failures. The fundamental cause lies in the difficulty of cross-data
 333 fusion, linking datasets across domains and transforming diverse forms, distributions, scales, and
 334 resolutions into shared, computable representations while preserving domain-specific information. In
 335 comparison, modeling errors account for 15.9% and reasoning errors represent only 3.4%. Further
 336 details are provided in Appendix A.2.3.

324 **Table 3: Performance comparison of LLM agents across domains.** We report results for six scientific
 325 domains. “Overall Avg” refers to the macro average across domains.

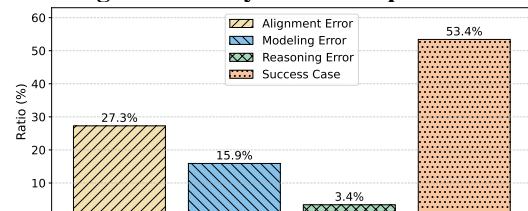
Method	Climate Sci.	Biomedical Eng.	Cheminformatics	Health Psych.	Pop. Genomics	Earth Sci.	Overall Avg
Qwen3-30B-A3B							
NoDataGuess	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ReAct	0.143	0.412	0.333	0.133	0.308	0.071	0.233
DataVoyager	0.000	0.529	0.067	0.067	0.154	0.071	0.148
Reflexion	0.143	0.000	0.133	0.133	0.154	0.071	0.106
DeepSeek-V3.1							
NoDataGuess	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ReAct	0.429	0.647	0.400	0.267	0.308	0.143	0.365
DataVoyager	0.286	0.529	0.333	0.267	0.154	0.143	0.285
Reflexion	0.357	0.471	0.267	0.133	0.231	0.143	0.267
gpt-5-mini							
NoDataGuess	0.000	0.088	0.033	0.000	0.000	0.036	0.026
ReAct	0.071	0.324	0.167	0.033	0.269	0.179	0.174
DataVoyager	0.000	0.176	0.000	0.000	0.154	0.179	0.085
Reflexion	0.000	0.118	0.067	0.000	0.077	0.107	0.062
o4-mini							
NoDataGuess	0.143	0.000	0.200	0.067	0.077	0.143	0.105
ReAct	0.571	0.647	0.333	0.533	0.462	0.357	0.484
DataVoyager	0.357	0.588	0.133	0.333	0.231	0.286	0.321
Reflexion	0.429	0.706	0.400	0.467	0.462	0.286	0.458



351 **Figure 5: Performance comparison of ReAct with domain knowledge and workflow scaffolding.** We
 352 evaluate three ReAct variants across six domains. Task-provided domain knowledge shows limited gains,
 353 whereas lightweight workflow scaffolding enhances, or at least maintains, the capabilities of LLM agents through
 354 explicit task decomposition.

355 **Agent Enhancement.** We further attempt to enhance LLM agents from two angles: task-
 356 provided domain knowledge and lightweight human workflow scaffolding. Specifically, both
 357 task-specific domain knowledge and human workflow scaffolding are explicitly incorporated
 358 into the agent’s context as executable guidance. We evaluate two ReAct variants (ReAct
 359 + Domain Knowledge and ReAct + Workflow) across six domains, with results summa-
 360 rized in Figure 5. **Obs. 6** Task-provided domain knowledge yields limited or even nega-
 361 tive gains, whereas lightweight workflow scaffolding consistently enhances performance.

362 On average, ReAct achieves 48.4% across six
 363 domains. Incorporating task-provided domain
 364 knowledge reduces the average to 44.9%, a de-
 365 cline of 3.5%, with notable drops in climate
 366 science (from 57.1% to 50.0%) and cheminfor-
 367 matics (from 33.3% to 26.7%). This suggests
 368 that naively injecting domain knowledge may
 369 introduce noise or misalignment, thereby hin-
 370 dering effectiveness in automated multimodal
 371 discovery. In contrast, lightweight workflow
 372 scaffolding increases the average to 54.1%, an
 373 overall improvement of 5.7%, with the largest
 374 relative gains observed in climate science (from
 375 57.1% to 71.4%) and earth science (from 35.7%
 376 to 50.0%). These results are consistent with our error analysis: since most failures stem from
 377 alignment issues, explicit task decomposition and validation checkpoints introduced by workflow
 378 scaffolding significantly improve alignment ability, thereby stabilizing agent performance in mul-
 379 timodal scientific discovery, as shown in Figure 6. Specifically, the proportion of alignment errors



374 **Figure 6: Error analysis of ReAct with workflow**
 375 **scaffolding.** Distribution of alignment, modeling,
 376 reasoning errors across multimodal scientific discovery
 377 tasks. Compared with the original ReAct, workflow
 378 scaffolding substantially reduces alignment errors, indi-
 379 cating improved consistency in task execution.

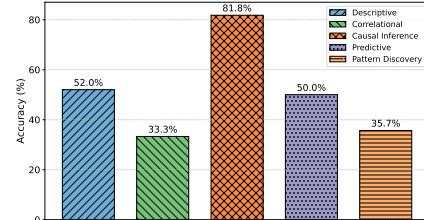
378 **Table 5: Cost comparison across agents with base model o4-mini .** The table reports agent-level costs
 379 for four representative agents (NoDataGuess, ReAct, DataVoyager, and Reflexion) over six scientific domains.
 380 Results highlight substantial cost differences between lightweight baselines and advanced agent strategies under
 381 the same base model configuration.

Agent	Clim.	Bio.	Chem.	Psych.	Gen.	Earth	Avg
NoDataGuess	\$0.04	\$0.05	\$0.04	\$0.05	\$0.04	\$0.04	\$0.04
ReAct	\$0.98	\$0.57	\$0.86	\$0.76	\$1.15	\$1.02	\$0.89
DataVoyager	\$0.94	\$0.54	\$0.50	\$0.78	\$0.90	\$0.92	\$0.77
Reflexion	\$1.63	\$1.06	\$0.83	\$1.21	\$2.41	\$0.92	\$1.34

387
 388 drops markedly compared with vanilla ReAct (e.g., from 31.8% to 27.3%), while the share of
 389 successful cases increases correspondingly (e.g., from 53.4% to over 60%). This shift shows that
 390 workflow scaffolding reduces misinterpretation and data-handling errors while promoting consistent
 391 reasoning, yielding more reliable outcomes across domains.
 392

393 3.4 PERFORMANCE-EFFICIENCY TRADE-OFFS (RQ 3)

394 **Performance by Problem Type.** We further break down
 395 performance across the five categories, as shown in Figure 7. **Obs.⑥ Performance varies substantially across**
 396 **problem types.** Agents achieve the highest accuracy on
 397 causal inference tasks (81.8%), likely because these tasks
 398 are explicitly defined and often reduce to structured hy-
 399 pothesis testing, which LLMs can reliably follow when the
 400 causal direction is clear. In contrast, descriptive (52.0%)
 401 and predictive tasks (50.0%) show moderate accuracy:
 402 while agents handle summarization and straightforward
 403 supervised modeling, they struggle with maintaining consistency and mitigating error propagation in
 404 extended workflows. The sharp drop in correlational (33.3%) and pattern discovery tasks (35.7%)
 405 reflects deeper limitations, detecting weak associations or latent structures requires sensitivity to faint
 406 statistical signals, robustness to noisy inputs, and inductive generalization beyond observed patterns,
 407 areas where current LLM agents remain fragile. Overall, these results suggest that LLMs excel when
 408 reasoning steps are well-specified and rule-based, but falter in exploratory tasks that demand subtle
 409 statistical rigor, resilience to noise, and open-ended inference.
 410



411 **Figure 7: Performance across problem**
 412 **types.**

413 **Cost Analysis.** We further analyze API costs
 414 across both domains and agents. Table 4 sum-
 415 marizes domain-level results, while Table 5 re-
 416 ports agent-level breakdowns. **Obs.⑦ Cost-
 417 effectiveness varies substantially across do-
 418 mains.** Biomedical Engineering achieves the high-
 419 est cost-effectiveness (1.1), benefiting from rela-
 420 tively low cost (\$0.57) and high task scores (0.65),
 421 likely due to the structured nature of biomedical
 422 datasets. In contrast, Population Genomics and
 423 Earth Science both incur high costs (above \$1.0)
 424 yet deliver low accuracy (0.46 and 0.36), yielding
 425 the lowest CE (0.4). This highlights that domains
 426 with large, noisy, or high-dimensional modalities (e.g., genotype matrices or geoscientific data)
 427 are less efficiently handled by current agents. **Obs.⑧ Agents exhibit distinct cost-performance**
 428 **trade-offs.** As shown in Table 5, NoDataGuess achieves the lowest cost (\$0.04) but offers negligible
 429 utility. Reflexion is the most expensive agent (\$1.34 on average), driven by repeated trial-and-error
 430 loops, yet its performance gains are often marginal relative to the extra cost. ReAct (\$0.89) and
 431 DataVoyager (\$0.77) lie between these extremes: ReAct generally provides higher accuracy but at
 432 higher cost, while DataVoyager achieves more balanced efficiency, avoiding Reflexion’s overhead
 433 while still improving over naive baselines. These results suggest that improving workflow-level
 434 efficiency may yield greater gains than simply scaling model size or computation budgets.

435 **Table 4: Domain-level cost, score, and cost-
 436 effectiveness (CE) of Agent ReAct with o4-mini .** The table reports results across six scientific domains,
 437 highlighting substantial variations in both absolute
 438 cost and cost-effectiveness.

Domain	Cost	Score	CE
Climate Sci.	\$0.98	0.57	0.6
Biomedical Eng.	\$0.57	0.65	1.1
Cheminf.	\$0.86	0.33	0.4
Health Psych.	\$0.76	0.53	0.7
Pop. Gen.	\$1.15	0.46	0.4
Earth Sci.	\$1.02	0.36	0.4

432 **Inference Time Computation.** We investigate whether
 433 increasing inference-time computation improves agent per-
 434 formance through two strategies. First, *Best-of-N* with
 435 ReAct (DeepSeek-V3.1) shows gains up to $N = 3$
 436 but declines thereafter, as additional generations increas-
 437 ingly amplify erroneous outputs. Second, Reflexion (Or-
 438 acle) with $\textcircled{4}$ -mini also improves with limited retries but
 439 quickly plateaus. **Obs. 9** **Inference-time scaling yields**
 440 **diminishing returns.** Because data-driven scientific dis-
 441 covery tasks are inherently complex, each rollout carries
 442 a high risk of errors. With a small number of rollouts
 443 (e.g., best-of-3), self-consistency helps reduce variance
 444 and improve reliability. However, as the number of roll-
 445 outs increases, low-quality generations accumulate and
 446 begin to outweigh the correct ones, while inference time grows almost linearly with the rollout count.
 447 This creates a clear trade-off: limited rollouts can stabilize performance and boost accuracy, but
 448 excessive repetition ultimately degrades both efficiency and reliability, making adaptive allocation
 449 strategies essential for practical deployment.

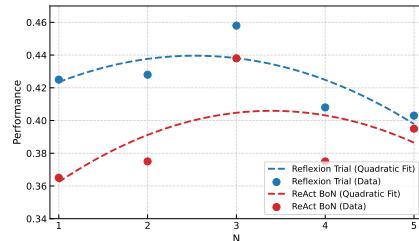
4 RELATED WORKS

450 **LLM Agents for Scientific Discovery.** Recent advances in LLM agents have demonstrated capa-
 451 bilities such as advanced reasoning Liu et al. (2025b), code-based tool use Ren et al. (2025), and
 452 iterative strategies like reflection and planning Liu et al. (2025a). Building on these abilities, early
 453 prototypes such as the AI Scientist Lu et al. (2024) and Agent Laboratory Schmidgall et al. (2025)
 454 explored end-to-end research automation, from hypothesis generation and experimental design to
 455 code execution and report writing. However, these systems were evaluated primarily within machine
 456 learning subfields and offered limited validation against real scientific studies. In particular, current
 457 work rarely tests agents on realistic multimodal workflows. **MoSciBench** addresses this gap by
 458 introducing a principled, domain-diverse benchmark for systematically evaluating LLM agents in
 459 multimodal, data-driven scientific discovery.

460 **Benchmarks for Data-Driven Scientific Discovery.** A growing body of work has introduced bench-
 461 marks to evaluate LLM agents in scientific and data-driven workflows Liu et al. (2025c). Early efforts
 462 focused on statistical analysis and AutoML benchmarks Chan et al. (2024), or on code generation
 463 from structured tasks Liu et al. (2024). More recently, DiscoveryBench Majumder et al. (2024) and
 464 ScienceAgentBench Chen et al. (2024b) have formalized the workflow of data-driven discovery,
 465 providing structured tasks, annotated programs, and graded evaluation criteria. ScienceBoard Sun
 466 et al. (2025) further extends this line by creating a realistic multi-domain environment where agents
 467 interact with professional software to complete end-to-end scientific workflows. While these contrib-
 468 utions mark important progress, most tasks remain either unimodal (e.g., tabular data) or centered
 469 on system-level interactions. In contrast, realistic scientific discovery requires integrative reasoning
 470 over diverse modalities such as imagery, time series, metadata, and text. *Our MoSciBench addresses*
 471 *this gap by introducing the first benchmark explicitly designed for multimodal, data-driven scientific*
 472 *discovery with hypothesis verification grounded in peer-reviewed studies.*

5 CONCLUSION

473 In this work, we introduced **MoSciBench**, the first benchmark for multimodal data-driven scientific
 474 discovery, constructed from peer-reviewed studies across five scientific domains. **MoSciBench**
 475 formalizes tasks as end-to-end workflows that require cross-modal alignment, scientific computation,
 476 and reasoning to verify hypotheses. Through systematic evaluation, we show that current LLM
 477 agents struggle with multimodal synthesis, highlighting fundamental gaps in their ability to integrate
 478 heterogeneous evidence. By providing scientifically grounded tasks and reproducible evaluations,
 479 **MoSciBench** establishes a new challenge space for advancing LLM agents toward more reliable and
 480 impactful roles in scientific discovery.



481 **Figure 8: Impact of inference-time com-
 482 putation on agent performance.** We
 483 compare ReAct with a Best-of- N strategy
 484 (DeepSeek-V3.1) and Reflexion with it-
 485 erative retries ($\textcircled{4}$ -mini).

486 REFERENCES
487

488 Christoph Anders, Sidratul Moontaha, Samik Real, and Bert Arnrich. Unobtrusive measurement
489 of cognitive load and physiological signals in uncontrolled environments. *Scientific Data*, 11(1):
490 1000, 2024.

491 Cezar Anicai and Muhammad Zeeshan Shakir. A multimodal dataset of cardiac, electrodermal, and
492 environmental signals. *Scientific Data*, 12(1):844, 2025.

493 Roman Bushuiev, Anton Bushuiev, Niek de Jonge, Adamo Young, Fleming Kretschmer, Raman
494 Samusevich, Janne Heirman, Fei Wang, Luke Zhang, Kai Dührkop, et al. Massspecgym: A
495 benchmark for the discovery and identification of molecules. *Advances in Neural Information
496 Processing Systems*, 37:110010–110027, 2024.

497 Francesc Calafell and Simone Andrea Biagini. France dataset, 2019. URL <https://doi.org/10.6084/m9.figshare.10008689.v1>.

498 Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
499 Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning
500 agents on machine learning engineering. *arXiv preprint arXiv:2410.07095*, 2024.

501 Wei Chen, Xixuan Hao, Yuankai Wu, and Yuxuan Liang. Terra: A multimodal spatio-temporal
502 dataset spanning the earth. *Advances in Neural Information Processing Systems*, 37:66329–66356,
503 2024a.

504 Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi Liao,
505 Chen Wei, Zitong Lu, et al. Scienceagentbench: Toward rigorous assessment of language agents
506 for data-driven scientific discovery. *arXiv preprint arXiv:2410.05080*, 2024b.

507 Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao, Youran
508 Pan, Teng Wu, Jiaqian Yu, et al. Blade: Benchmarking language model agents for data-driven
509 science. *arXiv preprint arXiv:2408.09667*, 2024.

510 Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Automated
511 data science by empowering large language models with case-based reasoning. *arXiv preprint
512 arXiv:2402.17453*, 2024.

513 Seyedmajid Hosseini, Raju Gottumukkala, Satya Katragadda, Ravi Teja Bhupatiraju, Ziad Ashkar,
514 Christoph W Borst, and Kenneth Cochran. A multimodal sensor dataset for continuous stress
515 detection of nurses in a hospital. *Scientific Data*, 9(1):255, 2022.

516 Asanobu Kitamoto, Erwan Dzik, and Gaspar Faure. Machine learning for the digital typhoon dataset:
517 Extensions to multiple basins and new developments in representations and tasks. *arXiv preprint
518 arXiv:2411.16421*, 2024.

519 Yifei Li, Hanane Nour Moussa, Ziru Chen, Shijie Chen, Botao Yu, Mingyi Xue, Benjamin Burns,
520 Tzu-Yao Chiu, Vishal Dey, Zitong Lu, et al. Autosdt: Scaling data-driven discovery tasks toward
521 open co-scientists. *arXiv preprint arXiv:2506.08140*, 2025.

522 Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun
523 Zhang, Kaitao Song, Kunlun Zhu, et al. Advances and challenges in foundation agents: From
524 brain-inspired intelligence to evolutionary, collaborative, and safe systems. *arXiv preprint
525 arXiv:2504.01990*, 2025a.

526 Fan Liu, Wenshuo Chao, Naiqiang Tan, and Hao Liu. Bag of tricks for inference-time computation
527 of llm reasoning. *arXiv preprint arXiv:2502.07191*, 2025b.

528 Fan Liu, Zherui Yang, Cancheng Liu, Tianrui Song, Xiaofeng Gao, and Hao Liu. Mm-agent: Llm as
529 agents for real-world mathematical modeling problem. *arXiv preprint arXiv:2505.14148*, 2025c.

530 Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai,
531 Xinyi Liu, Hanlin Zhao, et al. Visualagentbench: Towards large multimodal models as visual
532 foundation agents. *arXiv preprint arXiv:2408.06327*, 2024.

540 Zhong Liu and Tian Yao. Strategizing earth science data development. *Scientific Data*, 11(1):693,
 541 2024.

542

543 Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
 544 Towards fully automated open-ended scientific discovery. *arXiv preprint arXiv:2408.06292*, 2024.

545 Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhi-
 546 jetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.
 547 Discoverybench: Towards data-driven discovery with large language models. *arXiv preprint*
 548 *arXiv:2407.01725*, 2024.

549

550 Shuo Ren, Pu Jian, Zhenjiang Ren, Chunlin Leng, Can Xie, and Jiajun Zhang. Towards scientific
 551 intelligence: A survey of llm-based scientific agents. *arXiv preprint arXiv:2503.24047*, 2025.

552

553 Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
 554 Michael Moor, Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research
 555 assistants. *arXiv preprint arXiv:2501.04227*, 2025.

556

557 Qiushi Sun, Zhoumianze Liu, Chang Ma, Zichen Ding, Fangzhi Xu, Zhangyue Yin, Haiteng Zhao,
 558 Zhenyu Wu, Kanzhi Cheng, Zhaoyang Liu, et al. Scienceboard: Evaluating multimodal autonomous
 559 agents in realistic scientific workflows. *arXiv preprint arXiv:2505.19897*, 2025.

560

561 Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
 562 Hu, Kaikai An, Ruijun Huang, et al. Ml-bench: Evaluating large language models and agents for
 563 machine learning tasks on repository-level code. *arXiv preprint arXiv:2311.09835*, 2023.

564

565 Minyang Tian, Luyu Gao, Shizhuo Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland Haas, Pan
 566 Ji, Kittithat Krongchon, Yao Li, et al. Scicode: A research coding benchmark curated by scientists.
 567 *Advances in Neural Information Processing Systems*, 37:30624–30650, 2024.

568

569 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 570 React: Synergizing reasoning and acting in language models. In *International Conference on*
 571 *Learning Representations (ICLR)*, 2023.

572

573 Yanbo Zhang, Sumeer A Khan, Adnan Mahmud, Huck Yang, Alexander Lavin, Michael Levin,
 574 Jeremy Frey, Jared Dunnmon, James Evans, Alan Bundy, et al. Exploring the role of large language
 575 models in the scientific method: from hypothesis to discovery. *npj Artificial Intelligence*, 1(1):14,
 576 2025.

577

578 Tianshi Zheng, Zheye Deng, Hong Ting Tsang, Weiqi Wang, Jiaxin Bai, Zihao Wang, and Yangqiu
 579 Song. From automation to autonomy: A survey on large language models in scientific discovery.
 580 *arXiv preprint arXiv:2505.13259*, 2025a.

581

582 Yizhen Zheng, Huan Yee Koh, Jiaxin Ju, Anh TN Nguyen, Lauren T May, Geoffrey I Webb, and
 583 Shirui Pan. Large language models for scientific discovery in molecular property prediction.
 584 *Nature Machine Intelligence*, pp. 1–11, 2025b.

585

586

587

588

589

590

591

592

593

594
595
596
597
598
599
A APPENDIX600
601
602
603
604
605
606
A.1 MoSciBench DATA607
608
609
610
611
Data Source. Our dataset is curated from peer-reviewed scientific papers across six domains:
climate science, biomedical engineering, cheminformatics, health psychology, population genomics,
and earth science. Specifically, we replicate workflows and hypotheses from prior works in each
domain, including climate science [Kitamoto et al. \(2024\)](#), biomedical engineering [Anicai & Shakir \(2025\)](#), cheminformatics [Bushuiev et al. \(2024\)](#), health psychology [Hosseini et al. \(2022\)](#), population
genomics [Calafell & Biagini \(2019\)](#), and earth science [Chen et al. \(2024a\)](#). All datasets and associated
assets are released under CC or other permissive open licenses, ensuring accessibility and compliance
with data-sharing standards.612
613
614
615
616
617
618
619
620
621
Composition of Instructions. To illustrate how each task is represented in our benchmark, we
provide a detailed explanation of the task instruction schema. Each field defines a specific aspect
of the scientific problem, from context and hypothesis to workflow, expected answer format, and
evaluation criteria, as shown below:

Task Instruction Schema	
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 id – Unique identifier of the task instance.	613
background – Contextual description of the scientific motivation for the task.	
hypothesis – The scientific hypothesis to be tested.	
workflow – Step-by-step instructions outlining the expected analysis procedure.	
gold_hypothesis – Ground-truth scientific conclusion derived from the data.	
scientific_domain – The disciplinary area where the task belongs (e.g., biomedical engineering).	
problem_type – The reasoning category of the task (e.g., descriptive, predictive, causal).	
task_type – Specific methodological type (e.g., statistical tests).	
domain_knowledge – Key domain knowledge or definitions needed to perform the task.	
modality – The data modality used (e.g., time series, tabular, image).	
answer_format – The expected format of the answer, ensuring consistency across outputs.	
evaluation – The reference numerical value for evaluation (e.g., percentage of outliers).	
judge_type – The evaluation criterion (e.g., exact match “=”, range-based).	

A.2 EXPERIMENTS

A.2.1 EXPERIMENTAL SETUP

638
639
640
641
642
643
644
645
646
647
Agent Frameworks. At present, there are no dedicated multimodal discovery agents. Existing
multimodal foundation models, such as vision–language models or pretrained fusion
architectures, are not suitable baselines, as they primarily target images and text. In contrast,
MoSciBench covers a far richer set of modalities, including long multivariate time series,
tabular data, satellite imagery, molecular structures, mass spectra, genotype matrices, and HDF
simulation outputs. These formats exceed the input constraints of current models, making direct
application infeasible. Consequently, end-to-end LLM agents with tool use remain the only
practical approach for executing repository-level discovery workflows in this setting. To ensure
fairness and coverage, we benchmark four representative frameworks: (1) **NoDataGuess**. A
naive baseline that provides only task descriptions and relies entirely on the LLM’s internal
memory and reasoning. (2) **ReAct** [Yao et al. \(2023\)](#): Alternates between reasoning and code
execution in an iterative loop to refine hypotheses. (3) **DataVoyager**. A modular pipeline with
planner, code generator, analysis, and critic components to orchestrate discovery. (4) **Reflexion**

648 **Table 6: Performance comparison of Qwen-based LLM agents across domains.** We report accuracy for six
 649 scientific domains. “Overall Avg” refers to the macro average across domains.

Method	Climate Sci.	Biomedical Eng.	Cheminformatics	Health Psych.	Pop. Genomics	Earth Sci.	Overall Avg
Qwen3-235B							
NoDataGuess	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ReAct	0.500	0.529	0.133	0.267	0.385	0.357	0.361
DataVoyager	0.500	0.588	0.200	0.200	0.231	0.357	0.346
Reflexion	0.286	0.471	0.133	0.200	0.231	0.143	0.244
Qwen3-Coder							
NoDataGuess	0.000	0.000	0.067	0.067	0.000	0.000	0.022
ReAct	0.500	0.529	0.200	0.333	0.462	0.429	0.408
DataVoyager	0.429	0.471	0.300	0.267	0.192	0.214	0.312
Reflexion	0.500	0.588	0.200	0.133	0.154	0.143	0.286

650
 651 (Oracle). Extends CodeGen with oracle feedback and up to three iterative retries for self-improvement.
 652
 653 (5) **SelfDebug**. A program-execution agent that iteratively debugs itself by inspecting execution
 654 traces, detecting failure symptoms, and rewriting code based on internal error hypotheses. (6) **RAG-
 655 ReAct**. A retrieval-augmented variant of ReAct that supplements the agent’s reasoning trajectory
 656 with external domain knowledge retrieved from research paper.

657
 658 **Metric.** We evaluate agent performance using three complementary metrics. (1) **Accuracy**. (*Acc*)
 659 A prediction is considered correct only when it exactly matches the reference answer. This strict
 660 criterion applies to all categorical outputs, such as numbers, strings, lists, and coordinates. (2) **Code
 661 Execution Success Rate** (*Exec*). Measures whether the agent-generated code executes without errors.
 662 (3) **Modeling Rationality** (*MR*). A 1–5 LLM-as-judge score assessing the scientific soundness of the
 663 workflow, including variable selection, model design, and analytical reasoning. In practice, we use
 664 gpt-4o-mini as the judge model.

665 A.2.2 FURTHER EXPERIMENTS ON OTHER BASE MODEL

666 We further conduct experiments to evaluate the performance of Qwen-based LLM agents across
 667 six scientific domains. As shown in Table 6, the ReAct framework consistently outperforms all
 668 other methods for both Qwen3-235B and Qwen3-Coder. For Qwen3-Coder, ReAct achieves the
 669 highest overall average of 0.408, demonstrating strong effectiveness in climate science (0.500) and
 670 biomedical engineering (0.529), while also maintaining competitive results in earth science (0.357).
 671 Similarly, for Qwen3-235B, ReAct again leads with an overall average of 0.361, showing notable
 672 robustness in population genomics (0.385) and earth science (0.357). These results highlight ReAct
 673 as the most reliable framework across domains, underscoring its ability to generalize effectively in
 674 complex multimodal scientific settings.

685 A.2.3 ERROR ANALYSIS AND AGENT ENHANCEMENT

686
 687
 688 **Error Analysis.** To characterize agent failures in multimodal scientific discovery, we classify
 689 errors into three categories: alignment (conceptual or implementation misalignments), modeling
 690 (representation, planning, or computation errors), and reasoning (logical or statistical inference
 691 errors). Alignment errors include concept misalignments (e.g., selecting the wrong variable, lead–lag
 692 mismatches, or entity mismatching) and implementation misalignments (e.g., faulty joins, missing
 693 keys, or unit conversion failures). Modeling errors arise from flawed representations or plans
 694 that fail to capture essential scientific relationships, as well as from training or implementation
 695 issues, including coding mistakes, unstable optimization, or feature misordering. Reasoning errors
 696 encompass logical or statistical inference mistakes (e.g., conflating correlation with causation or
 697 misusing significance thresholds) and reporting or output parsing errors (e.g., incorrect answer
 698 formats or failed result extraction). This taxonomy clarifies why agents may generate outputs
 699 that appear plausible yet deviate from correct multimodal reasoning, and collectively spans the
 700 entire agent workflow. We adopt the LLM-as-judge framework to classify each failure instance
 701 into these categories, ensuring systematic and reproducible evaluation. Our analysis centers on
 the best-performing agent, ReAct with the base model o4-mini, as summarized in Figure 4.

702 **Table 7: Performance comparison of LLM-based agents across domains.** We report Accuracy / Code
 703 Execution Success / Modeling Rationality (MR) for six scientific domains. “Overall” refers to the macro-average
 704 across domains.

705 Method	706 Climate Sci. (Acc / Exec / MR)	706 Biomedical Eng. (Acc / Exec / MR)	706 Cheminformatics (Acc / Exec / MR)	706 Health Psych. (Acc / Exec / MR)	706 Pop. Genomics (Acc / Exec / MR)	706 Earth Sci. (Acc / Exec / MR)	706 Overall (Acc / Exec / MR)
Qwen3-30B-A3B							
NoDataGuess	0.000 / - / -	0.000 / - / -	0.000 / - / -	0.000 / - / -	0.000 / - / -	0.000 / - / -	0.000 / - / -
ReAct	0.143 / 1.000 / 3.64	0.412 / 1.000 / 3.41	0.333 / 1.000 / 3.67	0.133 / 1.000 / 3.20	0.308 / 1.000 / 3.77	0.071 / 1.000 / 3.77	0.233 / 1.000 / 3.58
DataVoyager	0.000 / 0.364 / 3.58	0.529 / 0.600 / 3.62	0.067 / 0.875 / 3.79	0.067 / 0.909 / 3.47	0.154 / 0.091 / 3.85	0.071 / 0.778 / 3.55	0.148 / 0.603 / 3.64
Reflexion	0.143 / 0.800 / 3.82	0.000 / 1.000 / 4.00	0.133 / 1.000 / 3.40	0.133 / 0.833 / 3.64	0.154 / 0.545 / 4.00	0.071 / 0.500 / 3.82	0.106 / 0.780 / 3.78
SelfDebug	0.429 / 0.286 / 3.50	0.588 / 0.857 / 3.59	0.267 / 0.800 / 3.67	0.133 / 1.000 / 3.40	0.385 / 0.125 / 3.85	0.286 / 0.500 / 3.57	0.348 / 0.595 / 3.60
RAG-ReAct	0.500 / 1.000 / 3.86	0.471 / 1.000 / 3.53	0.400 / 1.000 / 3.47	0.267 / 1.000 / 3.27	0.385 / 1.000 / 4.00	0.214 / 1.000 / 3.71	0.373 / 1.000 / 3.64
DeepSeek-v3.1							
NoDataGuess	0.000 / - / -	0.000 / - / -	0.000 / - / -	0.000 / - / -	0.000 / - / -	0.000 / - / -	0.000 / - / -
ReAct	0.429 / 1.000 / 3.64	0.647 / 1.000 / 3.71	0.400 / 1.000 / 3.73	0.267 / 1.000 / 3.33	0.308 / 1.000 / 3.69	0.143 / 1.000 / 3.64	0.365 / 1.000 / 3.63
DataVoyager	0.286 / 0.600 / 3.71	0.529 / 1.000 / 3.82	0.333 / 0.750 / 3.60	0.267 / 1.000 / 3.67	0.154 / 0.545 / 3.69	0.143 / 0.625 / 3.50	0.285 / 0.753 / 3.67
Reflexion	0.357 / 0.833 / 3.67	0.471 / 1.000 / 3.53	0.267 / 1.000 / 3.62	0.133 / 1.000 / 3.50	0.231 / 0.833 / 3.67	0.143 / 1.000 / 3.57	0.267 / 0.944 / 3.59
SelfDebug	0.643 / 1.000 / 3.64	0.529 / 1.000 / 3.71	0.200 / 1.000 / 3.73	0.333 / 1.000 / 3.67	0.308 / 1.000 / 3.62	0.357 / 1.000 / 3.57	0.395 / 1.000 / 3.66
RAG-ReAct	0.500 / 1.000 / 3.86	0.529 / 1.000 / 3.71	0.100 / 1.000 / 3.87	0.333 / 1.000 / 3.67	0.308 / 1.000 / 3.77	0.286 / 1.000 / 3.79	0.343 / 1.000 / 3.78
gpt-5-mini							
NoDataGuess	0.000 / - / -	0.088 / - / -	0.033 / - / -	0.000 / - / -	0.000 / - / -	0.036 / - / -	0.026 / - / -
ReAct	0.071 / 1.000 / 3.86	0.324 / 1.000 / 3.94	0.167 / 1.000 / 3.93	0.033 / 1.000 / 3.93	0.269 / 1.000 / 3.92	0.179 / 1.000 / 3.93	0.174 / 1.000 / 3.92
DataVoyager	0.000 / 1.000 / 4.00	0.176 / 1.000 / 4.00	0.000 / 1.000 / 4.00	0.000 / 1.000 / 4.00	0.154 / 1.000 / 4.00	0.179 / 1.000 / 4.00	0.085 / 1.000 / 4.00
Reflexion	0.000 / 1.000 / 3.86	0.118 / 1.000 / 3.89	0.067 / 1.000 / 4.00	0.000 / 1.000 / 4.00	0.077 / 1.000 / 4.00	0.107 / 1.000 / -	0.061 / 1.000 / 3.95
SelfDebug	0.143 / 1.000 / 3.92	0.353 / 1.000 / 3.94	0.000 / 1.000 / 4.00	0.000 / 1.000 / 4.00	0.154 / 1.000 / 3.85	0.214 / 1.000 / 4.00	0.144 / 1.000 / 3.95
RAG-ReAct	0.357 / 1.000 / 3.93	0.118 / 1.000 / 4.00	0.067 / 1.000 / 4.00	0.000 / 1.000 / 4.00	0.154 / 1.000 / 4.00	0.071 / 1.000 / 4.00	0.128 / 1.000 / 3.99
o4-mini							
NoDataGuess	0.143 / - / -	0.000 / - / -	0.200 / - / -	0.067 / - / -	0.077 / - / -	0.143 / - / -	0.105 / - / -
ReAct	0.571 / 1.000 / 3.50	0.647 / 1.000 / 3.76	0.333 / 1.000 / 3.93	0.533 / 1.000 / 3.80	0.462 / 1.000 / 3.92	0.357 / 1.000 / 3.57	0.484 / 1.000 / 3.75
DataVoyager	0.357 / 0.375 / 3.50	0.588 / 1.000 / 3.59	0.133 / 0.714 / 3.79	0.333 / 0.667 / 3.67	0.231 / 0.200 / 3.75	0.286 / 0.600 / 3.50	0.321 / 0.593 / 3.63
Reflexion	0.429 / 0.690 / 3.50	0.706 / 0.880 / 3.50	0.400 / 0.609 / 3.77	0.467 / 0.565 / 3.80	0.462 / 0.289 / 3.67	0.286 / 0.500 / 3.67	0.458 / 0.589 / 3.65
SelfDebug	0.429 / 0.864 / 3.57	0.647 / 0.833 / 3.71	0.333 / 0.600 / 3.87	0.400 / 0.571 / 3.93	0.385 / 0.125 / 3.77	0.429 / 0.667 / 3.79	0.437 / 0.610 / 3.77
RAG-ReAct	0.643 / 1.000 / 3.86	0.588 / 1.000 / 3.76	0.333 / 1.000 / 3.80	0.400 / 1.000 / 3.64	0.462 / 1.000 / 3.92	0.214 / 1.000 / 3.93	0.440 / 1.000 / 3.82

723 Alignment errors dominate. The majority of errors are alignment-related (31.8%), such as information
 724 mismatches and data processing failures. The root cause lies in the difficulty of integrating datasets
 725 across domains and transforming heterogeneous forms, distributions, scales, and resolutions into
 726 unified, computable representations while retaining domain-specific information. In comparison,
 727 modeling errors account for 15.9% and reasoning errors represent only 3.4%.

A.2.4 EXTENDED EVALUATION WITH ADDITIONAL AGENTS AND METRICS

728 To broaden the experimental coverage, we additionally include two baselines that stress code reliability
 729 and external knowledge usage: Self-Debug, a code-execution agent with iterative repair capabilities,
 730 and RAG-ReAct, a retrieval-augmented variant of ReAct tailored for scientific discovery. Table 7
 731 reports their performance across six scientific domains. Overall, ReAct-style agents continue to
 732 excel in producing executable analyses, Self-Debug improves robustness through stepwise correction,
 733 and RAG-ReAct shows mixed gains, suggesting that naively incorporating external knowledge does
 734 not consistently benefit data-driven scientific inference. Table 7 reveals several noteworthy patterns
 735 across the six scientific domains. First, although most agents achieve nearly perfect Code Execution
 736 Success Rates, their Accuracy (Acc) can be substantially lower. For instance, under gpt-5-mini,
 737 RAG-ReAct reaches Exec = 1.000 yet its accuracy in Cheminformatics is only 0.067, indicating
 738 that the generated code is syntactically valid but scientifically misaligned. Similar trends appear
 739 under Qwen3-30B-A3B, where DataVoyager attains Exec = 0.875 in Cheminformatics but produces
 740 only 0.067 correct answers—showing that executable workflows can still follow incorrect modeling
 741 assumptions. Second, Self-Debug illustrates the limits of execution-focused agents. It consistently
 742 fixes runtime errors (e.g., Exec = 1.000 in Climate Science under o4-mini) yet achieves only
 743 moderate accuracy (0.333), because robustness to code failures does not guarantee that the analytical
 744 pipeline is conceptually sound. Its strength lies in error recovery rather than hypothesis refinement.
 745 Third, ReAct-style agents demonstrate the most balanced performance. Across models, ReAct
 746 achieves both high execution reliability (often Exec = 1.000) and competitive accuracy—for example,
 747 0.571 in Climate Science and 0.647 in Biomedical Engineering under o4-mini. This suggests that
 748 interleaving reasoning with incremental code generation helps maintain scientific coherence and
 749 reduces modeling drift. Finally, retrieval-augmented RAG-ReAct exhibits mixed benefits. Although
 750 retrieval improves Exec uniformly, its accuracy can drop sharply when external knowledge conflicts
 751 with the dataset. For example, under gpt-5-mini, RAG-ReAct achieves Exec = 1.000 but accuracy
 752 falls to 0.000–0.067 in multiple domains, revealing that naively retrieval may introduce noise rather
 753 than useful inductive priors.

756
757

A.3 ETHICS AND REPRODUCIBILITY

758
759
760
761
762
763

All datasets included in our benchmark are selected from peer-reviewed papers that release data under permissive licenses and explicitly pose data-driven scientific questions suitable for hypothesis verification. This ensures that our benchmark builds upon openly available and ethically sourced resources. Furthermore, to facilitate transparency and reproducibility, we release both the benchmark datasets and the associated code under an open-source license. Our full codebase and data are available at https://anonymous.4open.science/r/MoSciBench_Main-7F0F.

764
765

A.4 LLM USAGE

766
767
768

In preparing this manuscript, we used large language models (LLMs) solely for language-related assistance, including polishing grammar, improving readability, and refining clarity of expression.

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809