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ABSTRACT

Model merging is a powerful training-free technique for integrating the capa-
bilities of multiple fine-tuned models, yet prevailing approaches—parameter-
statistical (e.g., Average, TIES, DARE) and spectral/SVD-based (e.g., iso c,
KnOTS)—arise from disparate philosophies without a unifying account. We
present a unified SVD-centric framework grounded in four principles—energy
preservation, cross-task interference, spectral entropy, and information loss—that
provides a consistent lens for analyzing merging algorithms. Guided by
this framework, we introduce ORTHO-MERGE, a sign-aware deconflict-then-
harmonize method. For each layer and task vector, we perform SVD and use
signed similarities between leading singular directions to detect both redundant
(> τ ) and oppositional (< −τ ) interference across tasks. The weaker singu-
lar component in each interfering pair is removed from its source task vector;
the deconflicted vectors are then aggregated and harmonized via iso c-style spec-
tral averaging (SVD with mean-singular-value equalization). This training- and
data-free pipeline resolves geometric conflicts before aggregation and controls the
merged spectrum, preserving informative mid-rank structure while avoiding over-
flattening. Across three CLIP backbones (ViT-B/32, ViT-B/16, ViT-L/14) and task
suites of size 8/14/20, ORTHO-MERGE achieves state-of-the-art or competitive
results on both average absolute and normalized accuracy. Spectrum diagnostics
further show reduced spectral entropy and lower information loss, aligning the
observed gains with our framework.

1 INTRODUCTION

Model merging is an increasingly pivotal technique that creates a single, powerful model by com-
bining the weights of multiple, independently fine-tuned neural networks. This approach directly
addresses a fundamental challenge in the current AI landscape: how to efficiently consolidate the
specialized knowledge scattered across a vast ecosystem of expert models. The primary advantage
of model merging lies in its remarkable efficiency. As a training-free process, it entirely bypasses
the need for costly retraining, saving immense computational resources and time (Yang et al., 2024).
Furthermore, its data-free nature makes it exceptionally valuable, and often the only viable option,
in real-world scenarios where access to original training datasets is restricted due to privacy, propri-
etary, or logistical constraints (Ruan et al., 2025). By offering a pragmatic method to fuse diverse
capabilities without relying on underlying data, model merging provides a scalable and robust solu-
tion for enhancing model performance and versatility across numerous applications.

Despite the empirical success of model merging, the field has evolved along two philosophically dis-
tinct trajectories. The first, operating from a statistical view, focuses on the numerical properties of
model parameters. Methods such as simple weight averaging (Model Soup) (Wortsman et al., 2022),
TIES-Merging (Yadav et al., 2023), DARE (Yu et al., 2024), and Breadcrumbs merging (Davari &
Belilovsky, 2024) as a problem of mitigating destructive interference at the parameter level. They
employ heuristics like pruning low-magnitude weights or resolving sign conflicts to harmonize con-
flicting parameter updates. The second trajectory adopts a geometric view, leveraging techniques
like Singular Value Decomposition (SVD) in methods such as iso c (Marczak et al., 2025)and
KnOTS (Stoica et al., 2024). These approaches prioritize the preservation of structural geometry
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within the weight space, aiming to align the underlying structure of task vectors before fusion (Ruan
et al., 2025). However, these two schools of thought have progressed largely in isolation. The field
critically lacks a unified theoretical framework to connect them, causing progress to appear ad-hoc
and preventing a systematic understanding of why certain methods succeed or fail. Consequently,
significant performance bottlenecks remain, as existing techniques are unable to holistically resolve
both parameter-level conflicts and structural-geometric incompatibilities.

To bridge this theoretical gap and address the aforementioned performance bottlenecks, we first
propose a unified analytical framework for model merging. This framework is founded on four prin-
ciples—energy preservation, cross-task interference, spectral entropy, and information loss—that
provide a consistent lens for systematically evaluating the strengths and weaknesses of merging al-
gorithms. By quantifying these aspects, our framework moves beyond ad-hoc heuristics and supplies
principled guidance for designing more robust techniques.

Motivated by these insights, we introduce ORTHO-MERGE, a deconflict-then-harmonize algorithm
that matches our implementation. For each layer and each task vector, we perform SVD and use
signed similarities between leading singular directions to detect both redundant (> τ ) and oppo-
sitional (< −τ ) interference across tasks. Whenever an interfering pair is identified, the weaker
singular component is removed from its source task vector, yielding a deconflicted set of task vec-
tors. We then aggregate these deconflicted vectors and apply an iso c-style spectral harmoniza-
tion—SVD followed by mean–singular-value equalization—to control the merged spectrum with-
out over-flattening. This deconflict before aggregate, then harmonize design preserves informative
mid-rank structure and directly addresses the limitations of prior art that aggregate on conflict-laden
inputs.

Contributions

• We present a unified SVD-centric framework that links the statistical and geometric views
of model merging via four quantitative lenses: energy preservation, cross-task interference,
spectral entropy, and information loss.

• Using this framework, we diagnose why existing methods degrade—showing that aggre-
gation on misaligned task vectors induces both parameter-level interference and geometric
conflicts.

• We propose ORTHO-MERGE, a deconflict-then-harmonize algorithm: per layer, we per-
form sign-aware SVD deconfliction by removing the weaker singular component whenever
the signed similarity between leading directions exceeds a threshold, then aggregate the de-
conflicted vectors and apply iso c-style spectral harmonization (SVD with mean–singular-
value equalization).

• Extensive experiments across CLIP backbones (ViT-B/32, ViT-B/16, ViT-L/14) and
8/14/20-task suites show state-of-the-art or competitive results: ORTHO-MERGE im-
proves average absolute and normalized accuracy while reducing spectral entropy and in-
formation loss.

2 RELATED WORK

A prominent and direct class of model merging techniques operates on the core assumption that the
magnitude of a parameter change correlates with its importance to a specific task. These methods
aim to mitigate interference by pruning or resetting less significant parameters before aggregation.
Among the simplest of these is random pruning, exemplified by DARE (Drop And Rescale) (Yu
et al., 2024). The core idea of DARE is to randomly drop a certain proportion of the delta param-
eters—the differences between fine-tuned and pre-trained weights—and then rescale the remaining
ones to preserve their original collective magnitude. While this approach is straightforward and ef-
fective at moderate pruning rates, its performance can degrade significantly under extreme sparsity
conditions. More deterministic, threshold-based pruning methods have also been proposed. TIES-
Merging, for instance, first prunes parameters with low magnitudes and subsequently resolves sign
conflicts among the remaining parameters across different models. Similarly, Breadcrumbs (Davari
& Belilovsky, 2024) employs a dual masking strategy that simultaneously removes both small, noisy
perturbations and large outliers from the task vectors, offering a more balanced approach to param-
eter selection.
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Despite their effectiveness in reducing certain types of parameter conflicts, these magnitude-based
methods share a fundamental limitation. They operate from an inherently statistical perspective, fo-
cusing on the numerical values of individual parameters while largely ignoring the deeper geometric
and structural relationships within the task vectors. This oversight can lead to the disruption of the
model’s intrinsic functional structure during the merging process, creating a performance ceiling
that motivates the exploration of alternative, structure-aware approaches.

In contrast to methods that focus on parameter magnitudes, a second approach model merging from
a geometric perspective (Gargiulo et al., 2025). These techniques leverage spectral methods, such
as Singular Value Decomposition (SVD), to analyze and combine models. The central idea is that
the functional behavior of a model is better captured by the geometric structure and orientation of
its weight matrices, rather than by the raw values of its parameters. A representative example of
this approach is Isotropic Merging (iso c) (Marczak et al., 2025). Its core mechanism involves first
aggregating multiple task vectors, typically by summing them into a single representative vector.
SVD is then performed on this combined vector, and its singular values are subsequently averaged
or equalized. This process can be understood as a form of ”spectral harmonization,” where the
principal geometric directions are preserved while the associated energy is uniformly distributed
across them. Another prominent direction is seen in methods like KnOTS (Stoica et al., 2024),
which is specifically designed for merging LoRA modules. KnOTS first maps the weight updates
from multiple LoRA modules into an aligned, common subspace. Within this shared space, standard
merging strategies like averaging or Task Arithmetic can then be applied more effectively. The
development of such methods underscores the growing importance of structure-aware merging.

While these SVD-based methods are more adept at preserving the geometric integrity of the models,
they possess a critical underlying limitation. They typically perform aggregation on task vectors that
may already be in conflict. This means that if two task vectors are geometrically oppositional or
incompatible, a simple averaging or harmonization process may neutralize or severely weaken the
important signals from both tasks. This failure to resolve conflicts before aggregation creates a clear
need for a more sophisticated approach that can deconflict task-specific knowledge prior to merging.

In summary, training-free merging has evolved along two tracks: magnitude-based (statistical) and
spectral (geometric). What has been missing is a unified account that addresses both parameter-level
interference and geometric incompatibility within one procedure. Our SVD-based framework pro-
vides this link and motivates ORTHO-MERGE: a mediate-then-harmonize pipeline that matches our
implementation. Instead of pruning or discarding singular directions, ORTHO-MERGE performs a
lightweight geometric mediation that optimizes small corrections to task vectors to reduce pairwise
inner-product conflicts before aggregation. We then aggregate the mediated vectors and apply iso-C
style spectral harmonization (SVD with mean singular-value equalization). This optimization-based
deconfliction preserves informative mid-rank structure and creates favorable conditions for the sub-
sequent spectral step, systematically overcoming the limitations observed in prior work.

3 DECONSTRUCTING MODEL MERGING: A UNIFIED SVD FRAMEWORK

3.1 THE CENTRAL CHALLENGE OF MODEL MERGING: CROSS-TASK CONFLICT

A central challenge underpinning all model merging endeavors is the resolution of cross-task con-
flicts. These conflicts arise because independently fine-tuned models, starting from the same pre-
trained initialization, learn distinct sets of parameter adjustments to solve their respective tasks.
When naively combined, these adjustments can interfere with or destructively cancel each other out,
leading to a merged model with degraded performance. This phenomenon manifests in both the
parameter space and the geometric space of the model weights.

From a statistical viewpoint, conflict is observable at the individual parameter level. For any given
weight in a neural network, the corresponding changes encoded in two different task vectors, ∆ΘA

and ∆ΘB , may exhibit sign opposition (e.g., one positive and the other negative) or significant
magnitude discrepancy.

The detrimental effect of such conflicts is most evident in simple averaging. Define the averaged
update

∆Θavg =
∆ΘA +∆ΘB

2
, (1)
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whose squared Frobenius norm (total energy) is∥∥∆Θavg

∥∥2
F

= 1
4

(∥∥∆ΘA

∥∥2
F
+

∥∥∆ΘB

∥∥2
F
+ 2 Tr

(
∆Θ⊤

A∆ΘB

))
. (2)

The term 2 Tr
(
∆Θ⊤

A∆ΘB

)
captures the interference between the two updates. When sign conflicts

are prevalent, the inner product becomes negative, inducing destructive interference that reduces the
total energy and thus erodes learned information. This observation is consistent with loss-landscape
analyses: independently trained networks often lie in different re-basins(Rinaldi et al., 2025), and
linear interpolation between their parameters (as in averaging) can cross a high-loss region, breaking
Linear Mode Connectivity (LMC)(Ito et al., 2025) and yielding suboptimal merged performance.

Statistical methods attempt to mitigate conflicts by manipulating parameter values under the as-
sumption that statistics like magnitude are reliable proxies for importance. However, this approach
is inherently “blind” to the underlying geometric structure of the task vectors. The core ideas of
prominent methods include:

• TIES-Merging(Yadav et al., 2023) attempts to denoise task vectors by pruning low-
magnitude weights and then mitigates direct opposition by resolving sign conflicts among
the remaining parameters.

• DARE (Drop And Rescale) (Yu et al., 2024)directly addresses the energy loss from spar-
sification. It randomly drops a fraction of parameters and then applies a compensatory
rescaling to the remainder to preserve the vector’s overall magnitude.

• Breadcrumbs(Davari & Belilovsky, 2024) employs a more sophisticated heuristic by re-
moving both the highest-magnitude outliers and the lowest-magnitude noise. This can be
interpreted as an attempt to flatten the spectral distribution of the weights to improve gen-
eralization.

Despite their increasing sophistication, these methods all operate indirectly on the model’s geometry,
lacking the surgical precision to control the structural components directly.

From a geometric perspective, where task vectors are analyzed via Singular Value Decomposition
(SVD), conflict manifests as a lack of orthogonality between the singular vector subspaces of the
task vectors. Each task vector can be decomposed into its constituent geometric components:

∆ΘA = UAΣAV
⊤
A , ∆ΘB = UBΣBV

⊤
B . (3)

Many merging methods operate on the sum of task vectors,

∆Θsum = ∆ΘA +∆ΘB . (4)

As shown in the block matrix formulation,

∆Θsum = [UA UB ]

[
ΣA 0
0 ΣB

] [
V ⊤
A

V ⊤
B

]
. (5)

Crucially, Equation 5 is not a valid SVD: a formal SVD requires the left and right factor matrices to
be orthogonal, i.e., their columns/rows form orthonormal bases. However, the concatenated matrix[
UA UB

]
is orthogonal only when the column spaces of UA and UB are mutually orthogonal—an

exceptional case. In practice, nonzero subspace similarity between tasks indicates this condition
rarely holds. Therefore, summing task vectors before analysis amounts to operating on an entangled,
non-orthogonal basis, which mixes and distorts task-specific geometric structure and can lead to loss
of critical information.

To empirically demonstrate that cross-task conflict is a pervasive issue, we analyze the geomet-
ric similarity between the task vectors derived from a ViT-B/16 model fine-tuned on eight distinct
datasets: SVHN, MNIST, DTD, Cars, EuroSAT, GTSRB, RESISC45, and SUN397. Our analy-
sis focuses on a representative deep layer—the 10th MLP layer—and measures the alignment of its
most informative subspaces, which we define as the spaces spanned by the top-k left singular vectors
of the weight delta matrices ∆Θ. Formally, for this layer, we take the task vectors from two tasks,
∆ΘA and ∆ΘB , and perform SVD to obtain their respective top-k left singular vector bases, UA
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and UB . The similarity, avg sim, is calculated as the average of the singular values of the overlap
matrix S = U⊤

AUB .

The resulting similarity matrix is visualized as a heatmap in Figure 1. The heatmap clearly shows
that non-zero similarity exists between almost all task pairs, confirming their lack of orthogonality.
Most notably, we observe a high degree of similarity between semantically related tasks, such as
MNIST and SVHN (similarity = 0.37), both of which are digit recognition datasets. A significant,
albeit smaller, similarity is also observed between SVHN and GTSRB (similarity = 0.22). This
provides undeniable evidence that significant structural conflict and redundancy exist between task
vectors. Any merging method that naively aggregates these vectors without explicitly addressing
such high-similarity interference is likely to suffer from destructive interference and suboptimal
performance.

Figure 1: Top-5 subspace similarity across tasks for the ViT-B/16 block-10 MLP task vectors. For
each task vector at this layer, we compute its SVD and use the leading five singular vectors to span
a 5D representative subspace.

To investigate the effects of merging highly similar tasks, we can analyze the process from a vector
geometry perspective. To empirically validate our theory, we designed a selective integration exper-
iment. We first create a base model task vector, ∆θAC , by averaging the vectors for SVHN (Task A)
and the dissimilar texture dataset DTD (Task C):

∆ΘAC =
1

2
(∆ΘA +∆ΘC) (6)

Next, we decompose the vector for a similar task, MNIST (Task B), into a sum of its rank-1 singular
components using SVD:

∆ΘB = UBΣBV
T
B =

r∑
j=1

cj , where cj = σjujv
T
j (7)

Here, cj is the j-th singular component, composed of the j-th singular value σj and its corresponding
left and right singular vectors uj and vj . The task vector at each incremental injection step i, ∆Θ(i),
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is then defined by cumulatively adding these components to the base vector:

∆Θ(i) = ∆ΘAC +

i∑
j=1

cj (8)

At each step, the resulting model is evaluated on the validation sets for SVHN and DTD. The results,
plotted in Figure 2, provide a clear visualization of this duality. As the components of MNIST are
injected, the performance on the related task, SVHN (blue line), remains remarkably stable. In stark
contrast, the performance on the dissimilar task, DTD (orange line), degrades catastrophically. This
demonstrates that injecting a similar task vector reallocates the model’s capacity, reinforcing shared
capabilities (digit recognition) at the expense of unrelated ones (texture classification), effectively
“drowning out” the features required for Task C.

Figure 2: Accuracy vs. injection step on SVHN and DTD with components of MNIST injecting

3.2 AN SVD-BASED UNIFIED FRAMEWORK

Building on the established challenges of cross-task conflict, we now propose a unified framework
that uses Singular Value Decomposition (SVD) as a “universal language” to analyze and interpret
any merging operation. Any such operation can be fully characterized by its effect on a task vector’s
geometric structure (U, V ) and its energy spectrum (Σ). A primary observation from the cumulative
energy spectrum (Figure 3 ) is that task vectors exhibit a “low-rank head” structure, where a majority
of their total energy is concentrated in the top few dozen singular values. While this confirms
the importance of high-energy components, a deeper analysis reveals that the shape of the energy
spectrum, particularly the distribution of energy in its long tail, is critical for the generalization
capacity of the merged model.

To quantify this spectral flatness, we introduce the concept of spectral entropy. For a given spec-
trum Σ with singular values {σi}, we define the normalized energy of the i-th component as
pi = σ2

i /
∑

j σ
2
j . The spectral entropy is then given by:

H(Σ) = −
∑
i

pi log pi (9)

A low spectral entropy indicates a “peaky” spectrum where energy is concentrated in a few domi-
nant components, leading to a narrow subspace that struggles to accommodate multiple tasks. Con-
versely, a high spectral entropy signifies a flatter, “long-tail” distribution, which we hypothesize
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correlates with better generalization. Figure 4 visualizes this effect, showing how naive averaging
results in a collapsed, low-entropy spectrum, while more advanced methods produce spectra with
higher entropy.

This SVD-based perspective allows us to “translate” and critique existing methods with greater pre-
cision. Statistical methods like DARE, expressed as ∆ΘDARE = s · (∆Θ⊙Mmask), act as indirect
spectral editors; their operations in the parameter space constitute a complex, non-linear transforma-
tion that affects all SVD components (U,Σ, V ) imprecisely. In contrast, methods like iso c are direct
spectral editors, precisely modifying only the energy spectrum Σ of a pre-summed, conflict-ridden
vector. This framework thus reveals a unified insight: statistical methods are imprecise manipula-
tors of geometry and energy, while existing SVD methods are precise manipulators that operate on
a flawed input. Therefore, an ideal method must first resolve the structural conflicts (between the U
and V components of different tasks) before precisely harmonizing their energy spectra (Σ). This
provides the core theoretical motivation for our proposed ORTHO-MERGE algorithm.

Figure 3: Cumulative energy captured by singular values versus rank for each task-specific model
(ViT-B/16, block-10 MLP).

In model merging, different operational steps can lead to varying degrees of information loss. For
instance, while a method like iso c might excel in specific areas such as spectral flattening, the
fundamental process of aggregating task vectors can inherently cause a loss of nuanced, task-specific
information. While this loss can be measured in multiple ways, this work proposes using Kullback-
Leibler (KL) Divergence to precisely evaluate the change at each step, which is critical for the
rapid development of advanced merging techniques. This method defines information loss as the
divergence between the output probability distributions of a sub-model before the merge and the
new model after the merge.

Specifically, the information loss for a sub-model i is quantified as the expected KL Divergence over
a standard probe dataset, Dprobe. The formula is given by:

LKL(i) = Ex∼Dprobe

[
DKL(Pi(y|x) ∥P (y|x))

]
(10)

where the KL Divergence itself is calculated as:

DKL(Pi ∥P ) =
∑
y∈Y

Pi(y|x) log
Pi(y|x)
P (y|x)

(11)
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Figure 4: Log-scale singular-value spectra comparing merged methods on the same target layer
(ViT-B/16, block-10 MLP).

Here, Pi(y|x) is the original sub-model’s probability distribution over the outputs y ∈ Y for a given
input x, and P (y|x) is the distribution of the newly merged model. This metric asymmetrically
measures the information lost when approximating the original distribution Pi with the merged one
P , thus capturing subtle changes in model certainty and predictions. By applying this fine-grained
analysis at every stage, we can better understand and mitigate information loss in complex model
merging pipelines.

4 METHOD

For a given 2D weight layer, let the task vectors be {∆Θt}Tt=1, one per fine-tuned model. For each
task t, we take the compact SVD

∆Θt = Ut Σt V
⊤
t =

rt∑
s=1

σt,s ut,s v
⊤
t,s =

rt∑
s=1

ct,s, (12)

where rt = rank(∆Θt), Σt = diag(σt,1, . . . , σt,rt), ut,s and vt,s are the s-th left/right singular

vectors, and ct,s
def
= σt,s ut,s v

⊤
t,s is the s-th singular component of task t. We use ⟨·, ·⟩ for the

Euclidean inner product and consider the top-k left directions U (k)
t =

[
ut,1, . . . , ut,k

]
.

To prevent destructive aggregation on misaligned inputs, we first deconflict task vectors before sum-
mation. For any two tasks (i, j) and indices (m,n) ≤ k, define the signed similarity

smn
ij =

〈
ui,m, uj,n

〉
∈ [−1, 1]. (13)

When |smn
ij | > τ (redundant if > τ , oppositional if < −τ ), we remove the weaker of the two

interfering components from its source task vector:

if σi,m < σj,n ⇒ ∆Θi ← ∆Θi − ci,m else ∆Θj ← ∆Θj − cj,n. (14)

After scanning all task pairs and (m,n)≤k, we obtain a deconflicted set {∆̂Θt}Tt=1.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

We then aggregate the deconflicted task vectors and apply a single spectral smoothing step:

∆Θsum =

T∑
t=1

∆̂Θt = U ΣV ⊤, (15)

σ̄ =
1

r

r∑
q=1

σq, ∆Θnew = U diag(σ̄ 1)V ⊤, (16)

where r = rank(∆Θsum). Eq. equation 16 corresponds to iso c-style harmonization (SVD followed
by mean–singular-value equalization), which controls the spectrum without over-flattening. Non-2D
tensors (e.g., biases, embeddings, text projection) are averaged.

5 EXPERIMENTS AND RESULTS

We evaluate our approach on three CLIP visual backbones (ViT-B/32, ViT-B/16, ViT-L/14) and three
task suites with cardinality 8, 14, and 20, following the training-free merging protocol of prior work.
Baselines include Weight Averaging, Task Arithmetic, TIES/Consensus TA, TSV-M, and recent
spectral methods (iso c/iso cts); for reference we also report the zero-shot model (lower bound)
and the average of individually fine-tuned models (upper bound). Performance is summarized by
average absolute accuracy and average normalized accuracy. Across all backbones and task suites,
our method delivers the best or tied-best results.

Table 1: Average absolute accuracy (%) and normalized accuracy (%) for 8/14/20-task suites across
three backbones.

6 CONCLUSION

We presented a unified SVD view of training-free model merging and proposed ORTHO-MERGE,
a sign-aware deconflict-then-harmonize pipeline. Per layer, we perform SVD on each task vector,
identify redundant/oppositional interference via signed similarities of leading directions, remove the
weaker singular component, and then aggregate and apply iso c-style spectral harmonization. Spec-
tral diagnostics (spectral entropy, information loss) indicate that ORTHO-MERGE preserves infor-
mative mid-rank structure while avoiding over-flattening. Across three CLIP backbones (ViT-B/32,
ViT-B/16, ViT-L/14) and 8/14/20-task suites, it achieves state-of-the-art or competitive accuracy
under both absolute and normalized metrics, narrowing the gap to individually fine-tuned models
without training or data. Future work includes adaptive, data-free criteria for interference detection
(e.g., learned or layer-wise thresholds), soft reweighting in place of hard removals, and extending
analysis to right-singular alignments and non-2D tensors.
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