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Abstract—Building robotic prostheses requires a sensor-based
interface designed to provide the robotic hand with the control
required to perform hand gestures. Traditional Electromyogra-
phy (EMG) based prosthetics and emerging alternatives often
face limitations such as muscle-activation limitations, high cost,
and complex calibrations. In this paper, we present a low-cost
robotic system composed of a smart ankleband for intuitive,
calibration-free control of a robotic hand, and a robotic prosthetic
hand that executes actions corresponding to leg gestures. The
ankleband integrates an Inertial Measurement Unit (IMU) sensor
with a lightweight neural network to infer user-intended leg
gestures from motion data. Our system represents a significant
step towards higher adoption rates of robotic prostheses among
arm amputees, as it enables one to operate a prosthetic hand
using a low-cost, low-power, and calibration-free solution. To
evaluate our work, we collected data from 10 subjects and tested
our prototype ankleband with a robotic hand on an individual
with an upper-limb amputation. Our results demonstrate that this
system empowers users to perform daily tasks more efficiently,
requiring few compensatory movements.

Index Terms—Prosthetic Arms, Wearable Robotics, Deep
Learning Methods.

I. INTRODUCTION

People with upper-limb differences, especially amputees,
struggle with Activities of Daily Living (ADLs) [1] due to
the limitations of current prosthetics, which often lack func-
tionality, intuitive control, and can cause discomfort or pain.
Despite the dominance of muscle-based control technologies
like electromyography (EMG) [2], [3] and ultrasound (US) [4],
[5], their limitations, including muscle disuse, pain, and the
need for complex training, result in low adoption rates of
current prosthetics, decreased quality of life, and reluctance
to experiment with newer developments.

In recent years, researchers have begun to explore alterna-
tive control methods for prosthetic arms that do not involve
muscle activation. These include autonomous behaviors such
as predicting the action type using motion [6], [7], detecting
objects through vision sensing [8], [9], providing instruc-
tions using voice commands [10], and even control robotic
devices through the interpretation of brain activity via elec-
troencephalography (EEG) [11]. However, such methods face
various operational limitations. For example, environmental
factors such as lighting and motion may degrade the precision
of vision-based methods, and to process high-resolution data,
one will need expensive wearable hardware to allow precise
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Fig. 1: Our robotic system is comprised of two components:
C1 smart ankleband (left) and C2 robotic hand (right). An
IMU placed in the smart ankleband collects and stores signals
in a buffer which serves as an input to a machine-learning
model able to classify user leg gestures. The corresponding
action is transmitted to the robotic hand.
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prosthetic control. Addressing these limitations, including the
discomfort associated with muscle-based control, is crucial for
increasing the adoption of robotic prosthetic arms.

In response to these challenges, this paper presents an end-
to-end low budget, low power, wearable system that allow
upper-extremity amputees to seamlessly control a robotic hand
without calibration.! Our system (Fig. 1) is based on a smart
ankleband, composed of a lightweight microcontroller, a bat-
tery, and an IMU. The ankleband uses a pre-trained machine-
learning model to infer leg gestures that the user performs,
which correspond to predefined actions, given the motion
data generated from the IMU. These are then transmitted to
the robotic hand using a wireless interface which, in turn,
executes the relevant action. In our empirical evaluation, we
demonstrate the ability of our system to accurately infer
gestures for unseen individuals, by collecting data from 10
subjects. Finally, we demonstrate via a user study in the lab
how the system can be used by a user with an upper-limb
amputation and enhance the performance of ADL.

'Our code and dataset are at https:/github.com/deanzadok/ankleband.
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II. SYSTEM DESIGN
A. Overview

Our design choices aim to increase the adoption of assistive
devices for amputees are guided by three primary objectives:

O1 Affordability—the system cost should be minimized as
this is a significant barrier to adoption.

02 Reliability—the system should exhibit high performance
even under low-energy and cost constraints.

03 User independent—the system should be “plug and play”,
eliminating the need for calibration for new users.

To this end, we propose a robotic system (Fig. 1) consisting
of component Cl—a wearable device placed on the ankle
called the smart ankleband and component C2—a robotic
hand. The smart ankleband is designed to detect intended
leg gestures performed by the user and transmit them to the
robotic hand using a wireless interface which, in turn, exe-
cutes the corresponding action. The smart ankleband (Fig. 1,
left) includes an IMU motion sensor for motion detection, a
microcontroller for leg-gesture classification, Bluetooth Low-
Energy (BLE) command transmission, and a power source.
The robotic hand (Fig. 1, right) is designed to be generic and
can support a wide range of platforms. We based our choice
on an open-source project designed to make robotic hands
accessible and programmable?.

Based on user feedback, we define four robotic hand ac-
tions: grasp, point, rotate wrist left, and rotate wrist right
(Fig. 2). Accordingly, we define four different leg gestures
corresponding to each action. To return to an open-hand
state, the user should perform the last-performed gesture.
Importantly, the specific leg gestures were selected based
on the spatial displacement of the IMU sensor, with the
four distinct gestures designed to simplify the classification
process (Fig. 2). While the gestures are similar to those used
in previous papers adopting leg-gesture classification [12],
we require each gesture to be performed twice to minimize
unintended activations.

B. Smart-Ankleband Physical Design

The smart ankleband integrates a microcontroller, IMU,
and power source into a comfortable and compact wearable
design (Fig. 1, left) that requires no additional clothing or
user-specific adaptations. To optimize comfort and weight
distribution, the microcontroller and IMU are housed in one
component, with the power source in a separate one.

To achieve low cost (O1) while ensuring reliability (02),
we selected the ESP32 microcontroller for its balance of
processing power, varied interfaces, and energy efficiency,
and the Adafruit BNOO8X IMU for its cost-effectiveness and
ability to generate high-frequency 3D acceleration and angular
velocity data (up to 1 kHz). Finally, the power source is a 3.7V
battery with 950 mAh. The overall cost of the smart ankleband
is roughly 30 USD, requiring only standard 3D printing and
basic soldering.

2Full details on how to rebuild and program the hand are in
https://github.com/Haifa3D/hand-mechanical-design.
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Fig. 2: State machine depicting leg gestures and corresponding
hand actions. We start with an open hand, and the user can
either grasp (leg gesture g;), or pinch (leg gesture g»). To
rotate the hand clockwise (CW) or counterclockwise (CCW),
the user can use leg gestures g3 or g4, respectively. Rotation

is available regardless of the state.
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C. Leg-Gesture Classification

Recall that we predefine a set of leg gestures to control
the robotic hand. Specifically, at time ¢ the IMU outputs
a vector z; = [it,yt,ét,ég,éf,éﬂ. Here, iy,ij:, 2 are the
accelerations in the z, 3, and z axes, and 9{ , 9f , éf are the roll,
pitch, and yaw angular velocities. The input z, is a sequence
of k consecutive IMU signals recorded between times ¢ and
t+k — 1.3 Namely Z; := (x4,...,2¢4r_1). The output p;
is a vector of gesture probabilities at time t. Specifically,
pe = (pY,...,p}), where p? is the probability for no gesture
and p! for i € {1,...4} represents the probability of gesture
g; being performed at time ¢.

As the user can perform a leg gesture at any given time and
its length varies, we need to carefully associate the input Z; to
our classifier and the continuous time interval [tJ,¢9] duration
during which leg gesture g was performed. With a slight abuse
of notation, given the time interval [t9,t9] for leg gesture g
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and the input sequence Z;, we define g(Z:,t9,t9) to be the
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proportion of time where gesture g lies in the interval. Namely,
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Now, given a threshold o (chosen empirically as we detail
in Sec. III-A), we label gesture ¢ in interval [t9,t9] if
9(Z¢,t9,t9) > o. Notice that g(Z,t9,t9) = 1 if g is fully
present within Z; (i.e, ¢ < t9 and t9 < t+ k — 1), and
g(Z,t9,t9) = 0 if ¢ is not present at all (ie., t9 < t or
t+k—1 < t9). Our compact neural network includes a 1D
convolutional layer for temporal feature extraction, followed
by batch normalization to enhance performance for unseen
users, and a multi-layer perceptron to generate the gesture
probability vector p;. Additional technical details can be found

in the extended version of this paper [13].

3The value k is a hyper parameter discussed in Sec. IIL. It should be large
enough to capture leg gestures which typically take between 0.5 to 1 seconds
but small enough to be processed in real time and include at most one gesture.
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Fig. 3: (a) Performance as a function of the duration of the input vector in seconds. (b) Performance as a function of o (the
minimum percentage of gesture overlap with the input window, Sec. II-C). (c) Evaluation of popular classification methods in
comparison to the chosen method. (d) Confusion matrix for the five classes: a no-gesture class and the four gestures. Rows
and columns represent true labels and predictions, respectively. All experiments are averaged over 10 folds, with one subject
left out for test set in each fold. Vertical segments denote one standard deviation.

III. EVALUATION

We collected data from 10 subjects (five men, five women,
average age 27) free of neurological leg disorders. All subjects
wore the smart ankleband on their right leg, while a Vicon
motion-capture system monitored foot motion to compute
label intervals after recordings. Subjects repeatedly performed
each gesture for 1-2 minutes, both while sitting and standing,
with each session repeated twice. In addition, we collected
two minutes of “noise” data (no specific leg gesture) to im-
prove model robustness. This process resulted in 8-16 labeled
minutes of leg gestures and four minutes of regular activity
per subject. The process was approved by the institution’s
Ethics Committee. The overall dataset includes a total of 2.5
million x; samples. For each sample, we create the input vector
Z and label it to receive the tuple (&, p;) defined in Sec. II-C.
On feedforward, our model receives a sequence of k = 60
IMU samples Z;, and output the gesture probabilities p;. For
technical details regarding model training and architecture,
please refer to the extended version of this paper [13].

A. Model Study

For all experiments, we evaluated our models using 10-fold
cross-validation to simulate testing on a new, unseen user. In
this setup, data from a single subject is reserved for testing,
while the remaining data from the nine subjects is used for
training. This process is repeated for each subject, and the
results are the average of the 10 training sessions.

What is the duration for the input window? Our classifier
takes a vector = of £ IMU signals as input, designed to capture
leg gestures lasting 0.5 to 1 second. Thus, we evaluated model
performance for different durations of z ranging from 0.1
to 1.5 seconds (Fig. 3a), and found the optimal results to be
between 0.6 and 1.0 seconds. Considering memory constraints,
which limit the size of the tensors during inference, we set the
sensor frequency to 100 Hz and chose a 0.6-second duration,
resulting in £ = 60 IMU samples.

How should we determine the existence of labels in input
windows? We optimized the threshold o, determining whether
a leg gesture that partially exists in the input window should be
labeled as present or not (Eq. (1)). Here, we evaluated o values

between 0.1 and 1.0 (Fig. 3b), and found that higher values
significantly decreased performance. However, to ensure that
each input window contains only one prominent gesture, we
require g(Z¢,t9,t9) > 0.5. Thus, we set 0 = 0.5.

How do we choose the best model? The modular design
of our system allows for classifier substitution. Our model
is constrained by a dynamic memory limit of 90kB due to
our limited hardware. Therefore, larger deep-learning (DL)
models adopted in previous studies were not feasible [6],
[7]. We evaluated classical data-driven approaches such as
Linear Discriminant Analysis (LDA) [14], Support Vector
Machine (SVM) [12], [15], and Random Forest (RF) [16]
(Fig. 3c). Additionally, we experimented with Dynamic Time
Warping (DTW) [15], [17] for feature extraction, followed by
a classifier to perform gesture recognition. Consequently, our
proposed DL model outperformed the other methods, despite
its limited size. A possible explanation is that, unlike high-
end sensors, our IMU sensor produces noisy data, requiring
denoising capabilities which DL methods excel at [18], [19].
We also explored advanced optimization techniques like do-
main adaptation [20] and contrastive learning [21] to improve
generalization to unseen subjects. However, supervised learn-
ing proved most effective in our setting.

We generated the confusion matrix of the entire dataset to
see how the model classifies each gesture compared to the
ground truth (Fig. 3d). While gesture g, presented the most
challenge, the model effectively predicted all four gestures.
Crucially, the model avoided misclassifying gestures as other
gestures, which ensures safety for tasks requiring reliable
recognition. For a comprehensive evaluation of our model,
please refer to the extended version of this paper [13].

B. Robotic System Study

To evaluate our system in ADL, we conducted an in-
lab user study with a participant who had left transradial
amputation 12 years ago and had experience with prosthetics.
The experiment consisted of two tests. First, the participant
performed each leg gesture ten times to familiarize himself
with the smart ankleband, without using the robotic hand.
Second, the participant completed the “Activities Measure for
Upper-limb Amputees” (AM-ULA) test [22], which consists



to perform continuous hand motions. (iii) Enabling typing
motions through our smart ankleband. We aim to provide users
with disabilities the full capability to operate digital devices.

Fig. 4: Examples of tasks completed as part of the AM-ULA
test. (Top) The user reaches the soda can (1) and grasps it
using leg gesture g; (2 and 3). Then, the user lifts and rotates
CW using leg gesture g3 to pour the beverage (4). Finally, the
user rotates CCW using g4 (5) and opens the hand using g;
to leave the soda can on the table (6). (Bottom, from left to
right) pushing a door knob, hammering a nail, writing on a
blank paper, and folding a towel.

of 18 listed activities requiring the operation of a prosthetic
hand (Fig. 4). This test evaluates not only the functionality of
our ankleband but also the user’s proficiency and interaction
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