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Abstract
During the last few years, the field of dynami-
cal systems has been developing innovative tools
to study the asymptotic behavior of different op-
timizers in the context of neural networks. In
this work, we redefine an extensively studied opti-
mizer, employing classical techniques from hyper-
bolic geometry. This new definition is linked to
a non-linear differential equation as a continuous
limit. Additionally, by utilizing Lyapunov stabil-
ity concepts, we analyze the asymptotic behavior
of its critical points.

1. Introduction
Classical optimization algorithms like gradient descent are
commonly used, and their connection to dynamical sys-
tems is evident when viewing the weight updates as the
evolution of a system state over iterations (Narendra &
Parthasarathy, 1991). If θ represents the parameters, and
L(θ) the loss function, the weight updates in each itera-
tion, θt+1 = θt − η∇L(θt), resemble the dynamics of a
discrete-time dynamical system, where η is the learning
rate and ∇L(θt) is the gradient of the loss function. The
optimization process aims to locate minima within the loss
landscape, analogous to identifying equilibrium points in
the energy landscape of a dynamical system. This can be
expressed as θ∗ = argminθ L(θ), where θ∗ signifies the
optimal parameters.

Recall that hyperbolic spaces are homogeneous spaces of
constant curvature equal to −1. The more relevant and cru-
cial theoretical property of hyperbolic spaces and of spaces
of negative curvature (Bridson & Haefliger, 2013) in general
is that they can embed graphs such as trees with arbitrar-
ily low distortion of the natural metrics. Gromov has first
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Universidad Católica de Chile. Correspondence to: Nico Alvarado
<nfalvarado.mat@uc.cl>, Hans Lobel <halobel@uc.cl>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

observed this (Gromov, 1987a), who introduced a much
larger class of spaces, called δ-hyperbolic spaces, which
are shown to be almost isometric to trees (Gromov, 1987b),
including cases of graphs with control on the diameter of
cycles (Sarkar, 2012). In contrast, euclidean and positively
curved spaces do not allow to embed trees with bounded
distortion of the metric (Bourgain, 1985; Indyk et al., 2017;
Chami, 2021; Aggarwal et al., 2001; Rodrı́guez-Flores &
Papadopoulos, 2020; Borassi et al., 2015). Hyperbolic em-
beddings have also shown promise for routing (Cvetkovski
& Crovella, 2009), clustering (Chami et al., 2020; Lamping
et al., 1995), biological networks (Albert et al., 2014), phy-
logenetic trees (Billera et al., 2001; Matsumoto et al., 2021),
neuroscience (Allard & Serrano, 2020), text embedding
(Dhingra et al., 2018; Balazevic et al., 2019), knowledge
graphs (Sun et al., 2020).

Hyperbolic Neural Networks (HNN) leverage hyperbolic
geometry for representing data in a more natural way, espe-
cially for capturing hierarchical relationships (Chami et al.,
2019; Ganea et al., 2018; Yang et al., 2022). However, the
non-Euclidean nature of hyperbolic spaces poses challenges
for classical optimizers. In the hyperbolic setting, if g(θt)
represent the Riemannian gradient, accounting for the cur-
vature of the hyperbolic space, then the update rule becomes
θt+1 = Expθt(−ηg(θt)), where Expθt

is the exponential
map in the hyperbolic space.

Optimizers tailored for hyperbolic geometry, such as Rie-
mannian optimization methods, play a crucial role. They
efficiently navigate the unique curvature of the hyperbolic
space, ensuring stable convergence. Proper optimization
allows hyperbolic neural networks to exploit their intrinsic
geometry fully, leading to enhanced performance in captur-
ing hierarchical relationships and complex data structures.

In this work, we present an optimizer based on ADMM
(Boyd et al., 2011), but tailored to work in hyperbolic geom-
etry, particularly within the Poincaré ball model. Establish-
ing a connection between this optimizer and a non-linear
ordinary differential equation (ODE) enriches our compre-
hension of the dynamics. The novel contribution lies in
delving into stability through ODE linearization, offering
valuable insights for practically implementing the hyper-
bolic optimizer in real-world applications.
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1.1. Related work

The Alternating Direction Method of Multipliers (ADMM)
can be seen as a dynamic process, whether we consider
it as a continuous-time or discrete-time evolution. In the
continuous case, ADMM updates are likened to the gradual
transformation of states in a dynamical system ci. The al-
gorithm employs an augmented Lagrangian function, and
the iterative updates of Lagrange multipliers resemble the
dynamics of continuous-time systems. Analyzing the con-
tinuous limit involves studying the algorithm’s behavior
through differential equations, shedding light on stability
and convergence properties.

In practice, ADMM is often implemented as a discrete-
time algorithm. Each iteration corresponds to a step in the
evolution of a discrete-time dynamical system. This dis-
crete nature allows us to understand ADMM through the
framework of difference equations, capturing the recursive
relationship between consecutive updates. The convergence
of ADMM, akin to stability in dynamical systems, is of-
ten analyzed to provide assurances about the algorithm’s
reliability (Boyd et al., 2011). The fixed points or equilib-
ria of ADMM correspond to solutions of the optimization
problem, and understanding these points is analogous to
analyzing stable states in a dynamical system.

The method often converges well for a wide range of convex
optimization problems (França et al., 2018).

The scaled form of ADMM is given by (Boyd et al., 2011)

xk+1 = argmin
x∈Rn

f(x) +
ρ

2
∥Ax− zk + uk∥2

zk+1 = argmin
z∈Rm

g(z) +
ρ

2
∥Axk+1 − z + uk∥2

uk+1 = uk +Axk+1 − zk+1,

where ρ > 0 is a penalty parameter and uk ∈ Rm is the kth
Lagrange multiplier estimate for the constrain z = Ax.

Let f : Rn → R and g : Rm → R be a continuously dif-
ferentiable convex functions and A ∈ Rm×n an invertible
matrix.

Theorem 1.1. (França et al., 2018) Consider the optimiza-
tion problem given by

min
x,z

{V (x, z) = f(x) + g(z) subject to z = Ax}

and the associated function V (x) = f(x) + g(Ax). Then,
the continuous limit associated with the ADMM updates,
with time scale t = k/ρ, corresponds to the initial value
problem

X ′ + (ATA)−1∇V (X) = 0

with X(0) = x0.

1.2. Paper contributions

Empirical evidence widely supports the effectiveness of
low-dimensional hyperbolic spaces in learning hierarchical
datasets. Despite a longstanding historical connection to
embedding theory, as far as our knowledge extends, no
theoretical investigations have been conducted on dynamical
systems and hyperbolic optimizers. This article addresses
and fills this gap in the literature, presenting the following
key contributions:

• We proved the existence of a non-linear differential
equation linked to the continuous limit of the Hyper-
bolic ADMM flow. This enables us to explore the
asymptotic behavior of critical points and provides
insights for conducting numerical analyses in future
studies.

• We also proved that if a specific critical point X∗ re-
mains at a low value under small perturbations, it sig-
nifies stability over time. This is advantageous as it
indicates the optimization process is effective, steadily
converging toward the best solution. The result offers a
form of assurance that our optimization will ultimately
settle at this optimal point and not deviate elsewhere.

2. Preliminaries
Riemannian manifolds basics (see also (Petersen, 2016)).
We recall that a d-dimensional manifold X is roughly a
topological space that is locally parameterized by open sets
of Rd. A differentiable manifold has parametrizations such
that the change of parametrization is a differentiable map.
This allows us to define infinitesimal directions at each
point p ∈ X , forming the tangent space TpX of X at p. A
differentiable manifold X with an inner product gp(·, ·) on
each tangent space TpX ≃ Rd (called a Riemannian metric)
is a Riemannian manifold. By integrating the gγ(t)-norm
of the tangent vectors along a curve γ(t), we can define
the Riemannian length of a curve and the minimum length
required to connect two points gives a Riemannian distance
on X . A geodesic is a curve on a Riemannian manifold that
locally minimizes the length between its endpoints.

The sectional curvature k of a Riemannian manifold at a
point x in the tangent space TxM in the direction of two
linearly independent tangent vectors x, y is given by:

k(x, y) =
⟨R(x, y)y, x⟩

∥x∥2∥y∥2 − ⟨x, y⟩2
,

where R(x, y)y is the Riemann curvature tensor.

Hyperbolic spaces. Unlike Euclidean geometry, hyper-
bolic geometry rejects the parallel postulate, which leads
to intriguing geometric properties. To fully understand this
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geometry, one must become familiar with the hyperbolic
parallel postulate and the concept of curvature. Further-
more, understanding how hyperbolic space is represented
and visualized using models, such as the Poincaré disk or
the hyperboloid model, is crucial.

κ = 0 κ > 0 κ < 0

Figure 1. Example of different curvatures. On the right hand, we
have negative curvature, thus a hyperbolic manifold.

The only Riemannian manifold of constant negative curva-
ture −1 and dimension d is the hyperbolic space Bd, which
can be identified (in the so-called Poincaré model) with the
unit ball of Rd with the non-euclidean distance:

γ(x, y) = arccosh

(
1 + 2

∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
.

Note that this distance is the Riemannian distance on the
unit ball, associated with the Riemannian metric for which
the norm of an infinitesimal vector v at point x is given by
∥v∥2x = 2∥v∥/(1− ∥x∥2).

Figure 2. Poincaré model with d = 2. The curves are geodesics
(i.e., coincide with the minimum-γ-length paths between any two
points on the curve) and have infinite γ-length.

Hyperbolic convexity. In hyperbolic geometry, the con-
cept of hyperbolic convexity plays a crucial role in under-
standing the properties of sets and functions. A set is hy-
perbolically convex if, for any two points within the set,
the geodesic connecting them lies entirely within the set.
Geodesics in hyperbolic space are represented by hyperbolic
lines, the analogs of straight lines in Euclidean geometry.

Hyperbolically convex sets have unique properties, such as
stability under hyperbolic isometries. This means that if
a set is hyperbolically convex and undergoes a hyperbolic
isometry, the transformed set remains hyperbolically convex.

This property is essential in various applications, including
understanding hyperbolic reflections and symmetry.

Moreover, the notion of hyperbolic convexity extends to
functions. A function is considered hyperbolically convex
if the region below its graph is a hyperbolically convex set.
Hyperbolically convex functions have significant implica-
tions in optimization problems and variational principles in
hyperbolic geometry.

The study of hyperbolically convex sets and functions pro-
vides valuable insights into the geometry and structure of
hyperbolic space. It allows us to explore the relationships
between geometric objects and transformations, offering a
deeper understanding of the fundamental principles under-
lying hyperbolic geometry and its applications in diverse
fields.

Convex sets in hyperbolic spaces, Hn, are closely related to
convex cones belonging to the interior of the Lorentz cone

L :=

{
x ∈ Rn+1 : xn+1 ≥

√
x2
1 + · · ·+ x2

n

}
.

Definition 2.1. We say that the set C ⊆ Hn is hyperbolically
convex if for any p, q ∈ C the geodesic segment joining p to
q is contained in C.

The hyperbolically convex sets are intersections of the hy-
perboloid with convex cones that belong to the interior of
L.

Proposition 2.2. Let C be an open hyperbolically convex
set and f : C → R be a differentiable function. The function
f is hyperbolically convex if and only if f(q) ≥ f(p) +
⟨∇f(p), logp q⟩, for all p, q ∈ C and p ̸= q.

Proposition 2.3. Let C ⊆ Hn be an open hyperbolically
convex set and f : C → R a differentiable function. The
function f is hyperbolically convex if and only if ∇f satisfies

⟨∇f(p), logp q⟩+⟨∇f(q), logq p⟩ ≤ 0, ∀p, q ∈ C, p ̸= q.

Gyrovector spaces.

Definition 2.4. Let V be a real inner product space and Vs

the ball centered in 0, of radius s. We define the Möbius
addition as

u⊕sv =
(1 + 2/s2u · v + 1/s2∥v∥2)u+ (1− 1/s2∥u∥2)v

1 + 2/s2u · v + 1/s4∥u∥2∥v∥2
.

Also we can define the Möbius subtraction as u ⊖ v :=
u⊕ (−v).

Remark 2.5. Note that if s → ∞, then we can recover the
Euclidean vector space sum.

In this work, we fix s = 1.
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Definition 2.6. We define the Möbius scalar multiplication
on Bn \ {0} by

r ⊗ x = tanh(rarctanh(∥x∥)) x

∥x∥

= tanh

(
r

2
ln

(
1 + ∥x∥
1− ∥x∥

))
x

∥x∥
.

We say that a set of gyrovectors {αi}li=1 is linearly indepen-
dent in a gyrovector space if r1 ⊗ α1 ⊕ · · · ⊕ rl ⊗ αl = 0
when r1 = r2 = · · · = rl = 0.

Given a matrix M and a vector x we define

M ⊗ x = tanh

(
∥Mx∥
∥x∥

arctanh(∥x∥)
)

Mx

∥Mx∥
.

See Appendix A for more details.

3. Hyperbolic Optimization
3.1. Hyperbolic convex functions

We can extend the notion of hyperbolically convex functions
to any hyperbolic model. Specifically, in the Poincaré ball
model, we define

logx : Bn → TxBn

y 7→ (1− ∥x∥2) ln
(
1 + ∥ − x⊕ y∥
1− ∥ − x⊕ y∥

)
· −x⊕ y

∥ − x⊕ y∥

and

expx : TxBn → Bn

y 7→ x⊕
(
tanh

(
∥y∥

1− ∥x∥2

)
y

∥y∥

)
If we take the tangent space in x = 0, we have

log0(x) = ln

(
1 + ∥x∥
1− ∥x∥

)
x

∥x∥

exp0(x) = tanh (∥x∥) x

∥x∥

=
e2∥x∥ − 1

e2∥x∥ + 1
· x

∥x∥
.

Definition 3.1. A subset S of a Riemannian manifold M
is geodesically convex if, for every x, y ∈ S, there exists
a geodesic segment c : [0, 1] → M such that c(0) = x,
c(1) = y and c(t) is in S for all t ∈ [0, 1].

In a geodesically convex set S, any two points are connected
in S by at least one geodesic segment c. Composing a

function f : S → R with c yields a real function on [0, 1].
If all of these compositions are convex in the usual sense,
we say f is convex in a geometric sense.

Definition 3.2. A function f : S → R is geodesically
(strictly) convex if S is geodesically convex and f ◦
c : [0, 1] → R is (strictly) convex for each geodesic segment
c : [0, 1] → M whose image is in S (with c(0) ̸= c(1)).

In other words, for S a geodesically convex set, we say
f : S → R is geodesically convex if for all x, y ∈ S and
all geodesics c connecting x to y in S the function f ◦
c : [0, 1] → R is convex, that is,

∀t ∈ [0, 1], f(c(t)) ≤ (1− t)f(x) + tf(y).

It can be shown that if gx ∈ TxM we have an equivalent
definition of geodesically convex function:

f(x) ≥ f(x) + ⟨gx + exp−1
x (y)⟩x, ∀x, y ∈ M.

If M is a hyperbolic manifold, we have

f(y) ≥ f(x) + ⟨∇f(x), logx y⟩, ∀x, y ∈ M.

If f satisfies the previous condition and M is a hyperbolic
manifold, we say that f is a hyperbolic convex function.

Definition 3.3. A function f : M → R is geodesically
(hyperbolically) µ-strongly convex if for any x, y ∈ M,

f(y) ≥ f(x) + ⟨gx, exp−1
x y⟩x +

µ

2
d2(x, y),

where d(·, ·) is the Riemannian distance.

If M = Bn we have

f(y) ≥ f(x) + ⟨∇f(x), logx y⟩

+
µ

2

(
arccosh

(
1 +

2∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

))2

,

for any x, y ∈ M.

It is clear that if f is a hyperbolically µ-strongly convex
function, then it is hyperbolically strictly convex.

Proposition 3.4. Let{
min f(x)

s.t. x ∈ Bn,

where f is hyperbolically convex. If η ∈ Bn satisfies
∇f(η) = 0, then η is a global minimum,

Proof. From the definition of being hyperbolically convex,
we have

f(y) ≥ f(x) + ⟨∇f(x), logx y⟩, ∀x, y ∈ Bn.
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In particular, if we choose x = η, then

f(y) ≥ f(x) + ⟨∇f(x), logx y⟩, ∀x, y ∈ Bn

f(y) ≥ f(η) + ⟨∇f(η), logη y⟩, ∀y ∈ Bn.

f(y) ≥ f(η), ∀y ∈ Bn.

A necessary and sufficient condition for η to be a global
minimum is that ∇f(η) = 0.

Proposition 3.5. Let{
min f(x)

s.t. x ∈ Ω,

be an optimization problem where f : Ω ⊂ Bn → R is
hyperbolically strictly convex on Ω, a convex set. Then, the
optimal solution is unique.

Proof. Suppose that x, y ∈ Bn are different and both are so-
lutions to the optimization problem. Then, f(x) = f(y) ≤
f(z), for any z ∈ Ω. But since

f(y) > f(x) + ⟨∇f(x), logx y⟩,

and ∇f(x) = 0 we have a contradiction. So, the solution
must be unique.

3.2. Hyperbolic ADMM

ADMM is an algorithm intended to blend the decompos-
ability of dual ascent with the convergence properties of the
method of multipliers. The algorithm solves problems in
the form: {

min f(x) + g(z)

s.t. Ax+Bz = c,

Let f : Bn → R and g : Bm → R be two continuously
differentiable and hyperbolically convex functions. Now,
choose a matrix A ∈ Bm×n with full column rank, i.e., the
columns vectors form a linearly independent set. Let ⊕ and
⊗ be the Möbius addition and multiplication defined in the
Poincaré ball model.

Consider a function V defined by:

V : Bn → R
x 7→ f(x) + g(A⊗ x).

The following equations are the scaled form of ADMM in
the gyrovector space version:

xk+1 = argmin
x∈Bn

f(x) +
ρ

2
∥A⊗ x⊖ zk ⊕ uk∥2 (1)

zk+1 = argmin
z∈Bm

g(z) +
ρ

2
∥A⊗ xk+1 ⊖ z ⊕ uk∥2 (2)

uk+1 = uk ⊕A⊗ xk+1 ⊖ zk+1. (3)

Unfortunately, the operations within gyrovector spaces
present a challenging task due to their intricate nature. The
inherent complexities make handling these spaces demand-
ing and require a thoughtful approach. Due to this complex-
ity, a better way to study ADMM in a hyperbolic space is
by using a classical technique that identifies the Euclidean
structure with the hyperbolic one.

Let f : Bn → R and g : Bm → R be two continuously
differentiable and hyperbolically convex functions. Now,
choose a matrix A ∈ R(m−1)×(n−1) with full column rank,
i.e., the columns vectors form a linearly independent set.

V : Bn → R
x 7→ f(x) + g(expy(A(logy x))).

We define the scaled form of ADMM in the hyperbolic
version:

xk+1 = argmin
x∈Bn

f(x) +
ρ

2
∥(A⊗

y x⊖ zk)⊕ uk∥2 (4)

zk+1 = argmin
z∈Bm

g(z) +
ρ

2
∥(A⊗

y xk+1 ⊖ z)⊕ uk∥2 (5)

uk+1 = uk ⊕ (A⊗
y xk+1)⊖ zk+1), (6)

where A⊗
y x = expy(A(logy x)).

In Riemannian Geometry, the choice of the tangent space
at a particular point, often taken to be the zero point, is a
convention that simplifies many calculations and allows for
a more intuitive geometric interpretation. So,

xk+1 = argmin
x∈Bn

f(x) +
ρ

2
∥(A⊗

0 x)⊖ zk)⊕ uk∥2 (7)

zk+1 = argmin
z∈Bm

g(z) +
ρ

2
∥(A⊗

0 xk+1)⊖ z)⊕ uk∥2 (8)

uk+1 = uk ⊕ (A⊗
0 xk+1)⊖ zk+1). (9)

We have the main result of the paper:

Theorem 3.6. Consider the hyperbolic optimization prob-
lem given by{

minx,z{V (x, z) = f(x) + g(z)},
subject to z = exp0(A(log0 x))

and the function V (x) = f(x) + g(exp0(A(log0 x))). The
continuous limit associated with the Hyperbolic ADMM
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updates, with t = k/ρ, corresponds to the initial value
problem

(ATA)−1∇V (X) + (ATA)−1Ω1 + (ATA)−1Ω2X+

((ATA)−1AΩ3 +Ω4X)X ′ = 0 (10)

with X(0) = x0

where Ωi depends implicitly on X for all i = 1, 2, 3, 4.

Sketch of the proof. Define Lρ as

Lρ : Bn × Bm × Bm → R
(x, z, u) 7→ f(x) + g(z)

+ ut(exp0(A(log0 x))⊖ z)

+
ρ

2
∥ exp0(A(log0 x))⊖ z∥2

Now, from Proposition 3.5, we have that if
(xk+1, zk+1, uk+1) satisfies equations 7, 8 and 9,
then the solution is unique and then

0 = ℓzk+1
∇f(xk+1)− ℓxk+1

∇g(zk+1)

+ ρℓxk+1
ℓzk+1

νk+1(zk+1 − zk),

for certain terms ℓzk+1
, ℓxk+1

and νk+1.

Following the idea of (França et al., 2018) we choose t = δk,
xk = X(t), zk = Z(t), uk = U(t) and νk = N(t). Using
the Mean Value Theorem on the ith component of zk+1 we
have that

zk+1,i = Zi(t+ δ) = Zi(t) + δZ ′
i(t+ ζiδ),

for some ζi ∈ [0, 1]. Thus

lim
δ→0

zk+1,i − zk,i
δ

= Z ′
i(t).

Since this hold for every i, we can choose ρ = 1/δ and get

0 = ℓZ(t)∇f(X(t))− ℓX(t)∇g(Z(t))

+ ℓX(t)ℓZ(t)N(t)Z ′(t)

Under the same idea, we can get (exp0 A log0 X)i(t) =
Zi(t) and since this holds for every component i we have:

Z(t) = exp(A0(log0 X(t)))

Z ′(t) = η(t) + ι(t)X(t) + κ(t)AX ′(t)

+ ω(t)ATAX(t)X ′(t),

for certain terms η(t), ι(t), κ(t) and ω(t).

Finally, since nor ℓX(t) or ℓZ(t) vanishes at any point, we
have the result.

For more proof details, see Appendix B.

This theorem provides a way to understand the continuous
version of the optimization process. In other words, it helps
us predict how our variables will evolve smoothly over time
as we try to find the best values to minimize the function
V (x, z). The initial value X(0) = x0 gives us the starting
point for this process.

4. Stability
Recall that γ is the metric given in Bn. Note that (Bn, γ) is
a complete metric space. Fix y ∈ Bn and then,

lim
∥x∥→1

γ(x, y) = lim
τ→∞

ln(τ +
√
τ2 − 1)

= ∞,

where τ = 1 + 2 ∥x−y∥2

(1−∥x∥2)(1−∥y∥2) .

This implies that any Cauchy sequence is included in a set

Kr := {r : ∥y∥ ≤ r < 1}.

Clearly, Kr is compact in the Euclidean topology. Also, the
metrics are equivalent in Kr. Then we have convergence
in the Euclidean sense if, and only if, we converge in the
hyperbolic sense. Thus, (Bn, γ) is a complete metric space.

Now consider

X ′ = F (X, t), X(t0) = X0 (11)

a first order dynamical system with F : Bn × R → Bn,
X = X(t) ∈ Bn, X0 ∈ Bn and t ∈ R. .

Let F be a L-Lipschitz continuous function on X , i.e.

γ(F (X1, t), F (X2, t)) ≤ Lγ(X1, X2)

for a fixed t, L > 0 and for all X1, X2 ∈ Bn.

Let Ω ⊆ Bn×R, (X0, t0) ∈ Ω and suppose that F is contin-
uously differentiable on Ω. Since (Bn, γ) is a complete met-
ric space, 11 has a unique solution X(t) on t ∈ (t0−ε, t+ε)
for any ε > 0 and X(t0) = X0. We can extend the solution
throughout Ω and furthermore, due to (Hirsch et al., 2012).
the solution is a continuous function of (X0, t0), and if F
depends continuously on some set of parameters, then it’s
also a continuous function of those parameters.

Definition 4.1. Let X∗ be a point such that F (X∗, t) = 0
for all t ≥ t0. Then X∗ is a critical point of the system 11.
Also:

1. The point X∗ is stable if for all neighborhood O ⊆ Bn

of X∗, there exists a neighborhood O′ ⊆ O of X∗
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such that every solution X(t) with initial condition
X(t0) = X0 ∈ O′ satisfies F (O′, t) ⊆ O for all
t > t0;

2. The point X∗ is asymptotically stable if is stable and,
lim
t→∞

X(t) = X∗, for all X0 ∈ O′;

3. The point X∗ is unstable if it is not stable.

The given definition indicates that a critical point X∗ is
considered stable if, within a small neighborhood, there
exists an even smaller neighborhood O′ where all solutions
starting from points within O′ remain within the original
neighborhood O for all future times. If this stability condi-
tion also involves the system approaching X∗ as time goes
to infinity, then it is termed asymptotically stable. Con-
versely, if X∗ is not stable, it is classified as unstable. This
categorization provides insights into the long-term behavior
and stability characteristics of the dynamic system centered
around the critical point X∗.

The following result characterizes the critical points of the
Hyperbolic ADMM flow 10.

Proposition 4.2. Let X∗ be a strict local minimizer on
V (X). If ∥X∗(t)∥ → 1 when t → ∞, then X∗ is a critical
point on the Hyperbolic ADMM flow 10.

Proof. Since X∗ is a strict local minimizer for V (X), then
there exists a set O such that X∗ ∈ O and V (X) > V (X∗)
for all X ∈ O \ {X∗}. Due to the first-order optimality
conditions, we have that ∇V (X∗) = 0. Using this fact, and
the fact that ∥X∗(t)∥ → 1 when t → ∞ we can conclude
that X∗ is a critical point of the dynamical system 10.

We can use the Lyapunov stability to check the stability of a
system. In fact, we can determine if a dynamic system will
stay in a particular state over time. Furthermore, we can
extend to the Poincaré ball model a classical result (Hirsch
et al., 2012).

Theorem 4.3. (Hirsch et al., 2012) Let X∗ be a critical
point of the dynamical system 11. Also, let O ⊆ Bn be an
open set containing X∗ and L : O → R be a continuously
differentiable function. We have the following:

1. if L(·) satisfies

• L(X∗) = 0,
• L(X) > 0 for all X ∈ O \ {X∗},
• L′(X) ≤ 0 for all X ∈ O \ {X∗},

then X∗ is stable and L is called a Lyapunov function;

2. If we have a strict inequality in the last point, then
X∗ is asymptotically stable, and L is called a strict
Lyapunov function.

The statement means that as a system evolves over time
according to certain equations, a strict Lyapunov function
can be used to show that the system’s solutions decrease
or get closer to a specific condition (see Figure 3). The
level sets here refer to sets of points where the Lyapunov
function takes constant values. The term strict implies that
the Lyapunov function consistently decreases, emphasizing
a clear trend towards stability in the system.

L−1(c3)

L−1(c1)

L−1(c2)

Figure 3. Solution decreases through the level sets of a strict Lya-
punov function.

Theorem 4.4. Let X∗ be a critical point (and a strict local
minimizer of V (X)) of the linearized Hyperbolic ADMM
flow. If A is a positive definite matrix, ∇V (X) > 0 near
X∗ and X(t) > 0 for all t > t0, where t0 ∈ [0,∞), then
X∗ is asymptotically stable.

Proof. For this result, we need to assume that n = m, i.e.,
A is a square matrix.

Recall that the flow of the Hyperbolic ADMM is given by

0 = (ATA)−1∇V (X) + (ATA)−1Ω1 + (ATA)−1Ω2X

+ ((ATA)−1AΩ3 +Ω4X)X ′.

This is a non-linear differential equation. Then, if we take a
small perturbation X = X∗ + δX implying X ′ = δX ′ and
replacing in the flow of the Hyperbolic ADMM, we have

0 = (ATA)−1∇V (X∗ + δX)

+ (ATA)−1Ω1 + (ATA)−1Ω2(X
∗ + δX)

+ ((ATA)−1AΩ3 +Ω4(X
∗ + δX))δX ′.

Now, if we linearize the non-linear terms by neglecting the

7
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high-order terms involving δX and δX ′, we have

0 = (ATA)−1∇2V (X∗)δX + (ATA)−1δX

+ ((ATA)−1AΩ3 +Ω4X
∗)δX ′.

0 = (ATA)−1(∇2V (X∗) + In×n)︸ ︷︷ ︸
=Ã

δX

+ ((ATA)−1AΩ3 +Ω4X
∗)︸ ︷︷ ︸

=B̃

δX ′.

Thus, we have a dynamical system of the form

ÃX + B̃X ′ = 0. (12)

Note that in 12, we’re omitting δ.

Finally, defining L(X) = XTPX , where P is a positive
definite matrix, we can show using Theorem 4.3, and the
fact that A is a positive definite matrix, that the critical point
X∗ is asymptotically stable.

This result states that if we have a specific critical point
X∗ and this point stays low when we make small changes
around it, then it is stable over time.

In the context of the Hyperbolic ADMM flow, this means
that if we start at X∗ and the conditions mentioned in the
result are satisfied, then as time goes on, we will stay close
to the critical point. This is good because it indicates that
the optimization process works effectively, converging to
the best solution. The result provides a kind of guarantee
that our optimization will eventually settle at this optimal
point and not wander away.

5. Conclusions and future work
In this study, we introduce a novel optimizer using hyper-
bolic geometry. Specifically, we connect the Poincaré ball
model to a non-linear differential equation. The complexity
arises when the equation is not linearized, necessitating nu-
merical analysis for stability studies. Linearizing the ODE
reveals crucial insights into system behavior.

Looking forward, we propose a more general exploration
of the optimizer, incorporating exponential and logarithmic
operations at arbitrary points. This broadens our understand-
ing of its behavior. We also pose questions about extending
the optimizer to other hyperbolic models and the impact of
isometries on stability and convergence.

Comparing our hyperbolic ADMM with the original, we
find increased complexity in the hyperbolic version, advanc-
ing our understanding of why Hyperbolic Neural Networks
perform well. We anticipate a numerical comparison with
ADMM in gyrovector space, suggesting our hyperbolic ver-
sion’s potential superiority. While Möbius operations are
computationally expensive, their optimization may be task-
dependent, offering a balance between cost and efficiency.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Use of Möbius operations
Definition A.1. Two vectors x, y ∈ Bn are linearly dependent if for some a ∈ R we can write x = a⊗ y.

Consider the set {(1/2, 0), (1/4, 0)}. Now,

(
1/2
0

)
= a⊗

(
1/4
0

)
= tanh

(
a

2
ln

(
1 + 1/4

1− 1/4

))
4

(
1/4
0

)
=

(
(5/3)a − 1

(5/3)a + 1

)(
1
0

)
Then we have

1

2
=

(5/3)a − 1

(5/3)a + 1

(5/3)a + 1 = 2(5/3)a − 2

a =
ln 3

ln(5/3)
.

Thus, the vectors (1/2, 0), (1/4, 0) are linearly dependent.

More generally, if we have (
x
0

)
,

(
y
0

)
∈ B2,

then

(
x
0

)
= a⊗

(
y
0

)

x =


(

1+|y|
1−|y|

)a
− 1(

1+|y|
1−|y|

)a
+ 1

 y

|y|

a =
ln x+y/|y|

y/|y|−x

ln 1+|y|
1−|y|

∈ R

Proposition A.2. A set A is linearly dependent in Rn if and only if is linearly dependent in Bn

In Bn, choose {(1/2, 0), (0, 1/2)} and suppose that a, b ̸= 0, then

a⊗
(
1/2
0

)
⊕ b⊗

(
0
1/2

)
= 0(

2 · 32b + 2

(3b + 1)2

)(
1
0

)
+

(
4 · 3a

(3a + 1)2

)(
0
1

)
= 0

Thus,

32b + 1 = 0

3a = 0.

10
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The previous system has no solutions. Thus, the set {(1/2, 0), (0, 1/2)} is l.i.

Now, if we choose {(1/2, 0), (1/2, 0)} and again a, b ̸= 0 we will have

1 + 2

(
3a − 1

3a + 1

)(
3b − 1

3b + 1

)
+

(
3b − 1

3b + 1

)2

+ 1−
(
3a − 1

3a + 1

)2

= 0

2− 2

(
3a − 1

3a + 1

)2

+

((
3a − 1

3a + 1

)
+

(
3b − 1

3b + 1

))2

= 0((
3a − 1

3a + 1

)
+

(
3b − 1

3b + 1

))2

= 2

(
3a − 1

3a + 1

)2

− 2

(x+ y)2 = 2x2 − 2,

where

x =
3a − 1

3a + 1
, y =

3b − 1

3b + 1
.

This equation has no solutions. Note that

(x+ y)2 = 2x2 − 2

y = ±
√
2
√

x2 − 1− x

and x2 − 1 < 0. In fact, it is easy to note that (
1/2
0

)
= 1⊗

(
1/2
0

)
Proposition A.3. Let Bn = (Bn,⊕,⊗). If a set of two vectors x, y are orthogonal in Rn, then x, y are linearly independent
in Bn.

Proof. Consider a, b ∈ R \ {0} and {x, y} ⊆ Bn such that ⟨x, y⟩ = 0. Then,

a⊗ x⊕ b⊗ y = 0

tanh

(
a

2
ln

(
1 + ∥x∥
1− ∥x∥

))
x

∥x∥
⊕ tanh

(
b

2
ln

(
1 + ∥y∥
1− ∥y∥

))
y

∥y∥
= 01 +

((
1+∥y∥
1−∥y∥

)b
− 1

)2

((
1+∥y∥
1−∥y∥

)b
+ 1

)2


︸ ︷︷ ︸

=r1

x+

1 +

((
1+∥x∥
1−∥x∥

)a
− 1
)2

((
1+∥x∥
1−∥x∥

)a
+ 1
)2


︸ ︷︷ ︸
=r2

y = 0

It is easy to see that r1 and r2 can’t be zero. So, the orthogonal set {x, y} is linearly independent.

For a matrix multiplication, we will use the following example.

Take

M =

(
1/2 0
0 1/2

)
, N =

(
1/3 0
0 1/3

)
.

Then

M ⊗N =

(√
2−1√
2+1

0

0
√
2−1√
2+1

)

11



Hyperbolic Optimizer as a Dynamical System

If M,N ∈ Bn×m where M = [M1| . . . |Mm] and N = [N1| . . . |Nm] we define

M ⊕N = [M1 ⊕N1| . . . |Mm ⊕Nm].

As an example, choose

M =

(
1/2 0
0 1/2

)
, N =

(
1/3 0
0 1/3

)
.

Then

M ⊕N =

(
1/2 0
0 1/2

)
⊕
(
1/3 0
0 1/3

)
=

(
2/3 0
0 2/3

)

Let x ∈ Bn. We’re searching for a matrix M such that

M ⊗ x = x.

If we choose M as the n-dimensional identity matrix (i.e. diagonal entries are 1s and the rest 0s) we have

M ⊗ x = x

tanh

(
ln

(
1 + ∥x∥
1− ∥x∥

))
x

∥x∥
= x(

2

1 + ∥x∥2

)
x = x

then,

2x1

1 + x2
1 + x2

2

= x1

2x2

1 + x2
1 + x2

2

= x2.

This equation has no solutions (assuming that x1 ̸= x2 ̸= 0) because ∥x∥ < 1. Thus, M cannot be the n-identity matrix.

To solve M ⊗ x = x for M , we have to compute when

tanh

(
∥Mx∥
∥x∥

arctanh(∥x∥)
)

= ∥Mx∥.

Then

2
∥Mx∥
∥x∥

ln

(
1 + ∥x∥
1− ∥x∥

)
= ln

(
1 + ∥Mx∥
1− ∥Mx∥

)
.

This equation has solutions only by numerical approximation.

B. Proof of Theorem 3.6
Theorem B.1. Consider the hyperbolic optimization problem given by{

minx,z{V (x, z) = f(x) + g(z)},
subject to z = exp0(A(log0 x))

12
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and the function V (x) = f(x) + g(exp0(A(log0 x))). The continuous limit associated with the Hyperbolic ADMM updates,
with t = k/ρ, corresponds to the initial value problem

(ATA)−1∇V (X) + (ATA)−1Ω1 + (ATA)−1Ω2X + ((ATA)−1AΩ3 +Ω4X)X ′ = 0 (13)

with X(0) = x0

where Ωi depends implicitly on X for all i = 1, 2, 3, 4.

Proof. Define Lρ as

Lρ : Bn × Bm × Bm → R

(x, z, u) 7→ f(x) + g(z) + ut(exp0(A(log0 x))⊖ z) +
ρ

2
∥ exp0(A(log0 x))⊖ z∥2

Differentiating Lρ w.r.t u we have

∂Lρ

∂u
= uk ⊕ (exp0(A(log0 xk+1))⊖ zk+1)

uk+1 = uk ⊕
(
exp0 A

(
ln

(
1 + ∥xk+1∥
1− ∥xk+1∥

)
xk+1

∥xk+1∥

)
⊖ zk+1

)
= uk ⊕

(
exp0 ln

(
1 + ∥xk+1∥
1− ∥xk+1∥

)
Axk+1

∥xk+1∥
⊖ zk+1

)

= uk ⊕

e
2 ln

(
1+∥xk+1∥
1−∥xk+1∥

) ∥Axk+1∥
∥xk+1∥ − 1

e
2 ln

(
1+∥xk+1∥
1−∥xk+1∥

) ∥Axk+1∥
∥xk+1∥ + 1

· Axk+1

∥Axk+1∥
⊖ zk+1



= uk ⊕


(

1+∥xk+1∥
1−∥xk+1∥

)2 ∥Axk+1∥
∥xk+1∥ − 1(

1+∥xk+1∥
1−∥xk+1∥

)2 ∥Axk+1∥
∥xk+1∥

+ 1

· Axk+1

∥Axk+1∥
⊖ zk+1

 .

Now define

αk+1 =

(
1+∥xk+1∥
1−∥xk+1∥

)2 ∥Axk+1∥
∥xk+1∥ − 1(

1+∥xk+1∥
1−∥xk+1∥

)2 ∥Axk+1∥
∥xk+1∥

+ 1

· Axk+1

∥Axk+1∥
.

Then,

uk+1 = uk ⊕ (αk+1 ⊖ zk+1)

= uk ⊕
(
(1− 2⟨αk+1, zk+1⟩+ ∥zk+1∥2)αk+1 − (1− ∥αk+1∥2)zk+1

1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2

)
= uk ⊕

(
1− 2⟨αk+1, zk+1⟩+ ∥zk+1∥2

1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2
αk+1 −

1− ∥αk+1∥2

1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2
zk+1

)
.

In the right hand of the equality, we have two constants multiplying two vectors, call it µk+1 and νk+1 respectively. Thus,

uk+1 =
(1 + 2⟨uk, µk+1αk+1 − νk+1zk+1⟩+ ∥µk+1αk+1 − νk+1zk+1∥2)uk + (1− ∥uk∥2)(µk+1αk+1 − νk+1zk+1)

1− 2⟨uk, µk+1αk+1 − νk+1zk+1⟩+ ∥uk∥2∥µk+1αk+1 − νk+1zk+1∥2
.
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Using the previous notation we can redefine equations 7 and 8 as:

xk+1 = argmin
x∈Bn

f(x) +
ρ

2
∥(µα− νkzk)⊕ uk∥2 (14)

zk+1 = argmin
z∈Bm

g(z) +
ρ

2
∥(µk+1αk+1 − νz)⊕ uk∥2 (15)

Now, from Proposition 3.5, we have that if (xk+1, zk+1, uk+1) satisfies equations 14, 15 and 9, then the solution is unique.
Thus, we have

0 = ∇f(xk+1) + ρ(µk+1αk+1 − νk+1zk + uk+1)

(
∂µk+1

∂xk+1
αk+1 +

∂αk+1

∂xk+1
µk+1 −

∂νk+1

∂xk+1
zk+1

)
︸ ︷︷ ︸

=ℓxk+1

0 = ∇g(zk+1) + ρ(µk+1αk+1 − νk+1zk+1 + uk+1)

(
∂µk+1

∂zk+1
αk+1 −

∂νk+1

∂zk+1
zk+1 − νk+1

)
︸ ︷︷ ︸

=ℓzk+1

Multiplying the first equality by ℓzk+1
, the second one by ℓxk+1

and subtracting both we have

0 = ℓzk+1
∇f(xk+1)− ℓxk+1

∇g(zk+1) + ρℓxk+1
ℓzk+1

νk+1(zk+1 − zk).

Following the idea of (Boyd et al., 2011) we choose t = δk, xk = X(t), zk = Z(t), uk = U(t) and νk = N(t). Using the
Mean Value Theorem on the ith component of zk+1 we have that

zk+1,i = Zi(t+ δ) = Zi(t) + δZ ′
i(t+ ζiδ), for some ζi ∈ [0, 1].

Thus

lim
δ→0

zk+1,i − zk,i
δ

= Z ′
i(t).

Since this hold for every i, we can choose ρ = 1/δ and get

ℓzk+1
∇f(xk+1)− ℓxk+1

∇g(zk+1) + ρℓxk+1
ℓzk+1

νk+1(zk+1 − zk) = 0

→
ℓZ(t)∇f(X(t))− ℓX(t)∇g(Z(t)) + ℓX(t)ℓZ(t)N(t)Z ′(t) = 0

Now, on the i−th component of 9 we have

Ui(t+ δ) = Ui(t) + (exp0(A(log0 X)))i(t+ δ)− Zi(t+ δ).

Again, by the Mean Value Theorem there exists ζi ∈ [0, 1] such that

δU ′
i(t+ ζiδ) = (exp0 A log0 X)i(t+ δ)− Zi(t+ δ)

so, (exp0 A log0 X)i(t) = Zi(t). Since this holds for every component i, we have:
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Z(t) = exp0(A(log0 X(t)))

Z ′(t) = −2

(
1+∥X(t)∥
1−∥X(t)∥

)2 ∥AX(t)∥
∥X(t)∥

(
log
(

1+∥X(t)∥
1−∥X(t)∥

)
2∥AX(t)∥

∥X(t)∥
∥A∥

∥X(t)∥ +
2

∥AX(t)∥
∥X(t)∥

( 1+∥X(t)∥
1−∥X(t)∥ )

−2X(t)
(1−∥X(t)∥)2

)
((

1+∥X(t)∥
1−∥X(t)∥

)2 ∥AX(t)∥
∥X(t)∥ − 1

)2

+


(

1+∥X(t)∥
1−∥X(t)∥

)2 ∥AX(t)∥
∥X(t)∥

+ 1(
1+∥X(t)∥
1−∥X(t)∥

)2 ∥AX(t)∥
∥X(t)∥ − 1

(A∥AX(t)∥ −ATAX(t)

∥AX(t)∥2

)
X ′(t)

= η(t) + ι(t)X(t) + κ(t)AX ′(t) + ω(t)ATAX(t)X ′(t),

where

η(t) = −4

(
1+∥X(t)∥
1−∥X(t)∥

)2 ∥AX(t)∥
∥X(t)∥

log
(

1+∥X(t)∥
1−∥X(t)∥

)
λmax(A

TA)
∥X(t)∥((

1+∥X(t)∥
1−∥X(t)∥

)2 ∥AX(t)∥
∥X(t)∥ − 1

)2

ι(t) = 8

(
1 + ∥X(t)∥
1− ∥X(t)∥

)2
∥AX(t)∥
∥X(t)∥

∥AX(t)∥
(1−∥X(t)∥2)∥X(t)∥((

1+∥X(t)∥
1−∥X(t)∥

)2 ∥AX(t)∥
∥X(t)∥ − 1

)2

κ(t) =


(

1+∥X(t)∥
1−∥X(t)∥

)2 ∥AX(t)∥
∥X(t)∥

+ 1(
1+∥X(t)∥
1−∥X(t)∥

)2 ∥AX(t)∥
∥X(t)∥ − 1

 1

∥AX(t)∥

ω(t) = −


(

1+∥X(t)∥
1−∥X(t)∥

)2 ∥AX(t)∥
∥X(t)∥

+ 1(
1+∥X(t)∥
1−∥X(t)∥

)2 ∥AX(t)∥
∥X(t)∥ − 1

 1

∥AX(t)∥2
.

Since nor ℓX(t) or ℓZ(t) vanishes at any point, we have

∇f(X(t))−
ℓX(t)

ℓZ(t)
∇g(Z(t)) + ℓX(t)N(t)Z ′(t) = 0

∇V (X(t)) + ℓX(t)N(t)η(t)︸ ︷︷ ︸
=Ω1(t)

+ ℓX(t)N(t)ι(t)︸ ︷︷ ︸
=Ω2(t)

X(t) + ℓX(t)N(t)κ(t)︸ ︷︷ ︸
=Ω3(t)

AX ′(t) + ℓX(t)N(t)ω(t)︸ ︷︷ ︸
=Ω4(t)

ATAX(t)X ′(t)) = 0

∇V (X(t)) + Ω1(t) + Ω2(t)X(t) + Ω3(t)AX ′(t) + Ω4(t)A
TAX(t)X ′(t)) = 0

(ATA)−1∇V (X(t)) + (ATA)−1Ω1(t) + (ATA)−1Ω2(t)X(t) + (ATA)−1AΩ3(t)X
′(t) + Ω4(t)X(t)X ′(t) = 0

(ATA)−1∇V (X(t)) + (ATA)−1Ω1(t) + (ATA)−1Ω2(t)X(t) + ((ATA)−1AΩ3(t) + Ω4(t)X(t))X ′(t) = 0,

which is equivalent to 10 since A is invertible.

Finally, since 10 is a non-homogeneous first-order linear equation, the dynamics is specified by X(0) = x0, where x0 is the
estimate of the initial solution of B.1.
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C. Closed forms.
Due the Theorem 3.6 we have explicit forms for the derivatives of αk+1, µk+1 and νk+1 w.r.t. xk+1 and zk+1. This will be
useful to run experiments in the future.

Recall

uk+1−
(1 + 2⟨uk, µk+1αk+1 − νk+1zk+1⟩+ ∥µk+1αk+1 − νk+1zk+1∥2)uk + (1− ∥uk∥2)(µk+1αk+1 − νk+1zk+1)

1− 2⟨uk, µk+1αk+1 − νk+1zk+1⟩+ ∥uk∥2∥µk+1αk+1 − νk+1zk+1∥2
= 0

For αk+1 define

βk+1 =
1 + ∥xk+1∥
1− ∥xk+1∥

, γk+1 = 2
∥Axk+1∥
∥xk+1∥

and δk+1 =
Axk+1

∥Axk+1∥

this implies that

αk+1 =

(
β
γk+1

k+1 + 1

β
γk+1

k+1 − 1

)
δk+1

Then,

∂βk+1

∂xk+1
=

−2xk+1

(1− ∥xk+1∥)2
,

∂γk+1

∂xk+1
= 2

∥Axk+1∥
∥xk+1∥

∥A∥
∥xk+1∥

and
∂δk+1

∂xk+1
=

A∥Axk+1∥ −ATAxk+1

∥Axk+1∥2

and

∂αk+1

∂xk+1
=

β
γk+1

k+1

(
log βk+1

∂γk+1

∂xk+1
+ γk+1

βk+1

∂βk+1

∂xk+1

)
(β

γk+1

k+1 − 1)

(β
γk+1

k+1 − 1)2

−
β
γk+1

k+1

(
log βk+1

∂γk+1

∂xk+1
+ γk+1

βk+1

∂βk+1

∂xk+1

)
(β

γk+1

k+1 + 1)

(β
γk+1

k+1 − 1)2

+

(
β
γk+1

k+1 + 1

β
γk+1

k+1 − 1

)
∂δk+1

∂xk+1

= −2
β
γk+1

k+1

(
log βk+1

∂γk+1

∂xk+1
+ γk+1

βk+1

∂βk+1

∂xk+1

)
(β

γk+1

k+1 − 1)2
+

(
β
γk+1

k+1 + 1

β
γk+1

k+1 − 1

)
∂δk+1

∂xk+1

= −2

(
1+∥xk+1∥
1−∥xk+1∥

)2 ∥Axk+1∥
∥xk+1∥

(
log
(

1+∥xk+1∥
1−∥xk+1∥

)
2∥Axk+1∥

∥xk+1∥
∥A∥

∥xk+1∥ +
2

∥Axk+1∥
∥xk+1∥(

1+∥xk+1∥
1−∥xk+1∥

) −2xk+1

(1−∥xk+1∥)2

)
((

1+∥xk+1∥
1−∥xk+1∥

)2 ∥Axk+1∥
∥xk+1∥ .

− 1

)2

+


(

1+∥xk+1∥
1−∥xk+1∥

)2 ∥Axk+1∥
∥xk+1∥

+ 1(
1+∥xk+1∥
1−∥xk+1∥

)2 ∥Axk+1∥
∥xk+1∥ − 1

(A∥Axk+1∥ −ATAxk+1

∥Axk+1∥2

)

Now,
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µk+1 =
1− 2⟨αk+1, zk+1⟩+ ∥zk+1∥2

1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2

∂µk+1

∂xk+1
=

∂

∂xk+1

(
1− 2⟨αk+1, zk+1⟩+ ∥zk+1∥2

1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2

)
=

∂
∂xk+1

(1− 2⟨αk+1, zk+1⟩+ ∥zk+1∥2)(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)
(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)2

−
(1− 2⟨αk+1, zk+1⟩+ ∥zk+1∥2) ∂

∂xk+1
(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)

(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)2

=
2∂αk+1

∂xk+1
zk+1(∥αk+1∥2∥zk+1∥2 − ∥zk+1∥2)− 2∂αk+1

∂xk+1
∥αk+1∥∥zk+1∥2(1− 2⟨αk+1, zk+1⟩+ ∥zk+1∥2)

(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)2
.

So now we have a closed form for
∂µk+1

∂xk+1
.

Recall that

νk+1 =
1− ∥αk+1∥2

1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2
,

then,

∂νk+1

∂xk+1
=

∂

∂xk+1

(
1− ∥αk+1∥2

1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2

)

=
−2∂αk+1

∂xk+1
∥αk+1∥

(
1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2

)
(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)2

−
(1− ∥αk+1∥2)

(
−2∂αk+1

∂xk+1
zk+1 +

∂αk+1

∂xk+1
2∥αk+1∥∥zk+1∥2

)
(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)2

.

Now we need the derivatives w.r.t. zk+1:

µk+1 =
1− 2⟨αk+1, zk+1⟩+ ∥zk+1∥2

1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2

∂µk+1

∂zk+1
=

∂

∂zk+1

(
1− 2⟨αk+1, zk+1⟩+ ∥zk+1∥2

1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2

)
=

∂
∂zk+1

(1− 2⟨αk+1, zk+1⟩+ ∥zk+1∥2)(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)
(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)2

−
(1− 2⟨αk+1, zk+1⟩+ ∥zk+1∥2) ∂

∂zk+1
(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)

(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)2

=
−2(αk+1 − ∥zk+1∥)(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)

(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)2

+ 2
(1− 2⟨αk+1, zk+1⟩+ ∥zk+1∥2)(αk+1 − ∥αk+1∥2∥zk+1∥)

(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)2

=
2∥zk+1∥(1− ∥αk+1∥∥zk+1∥ − 2⟨αk+1, zk+1⟩ − ∥αk+1∥2 + 2∥αk+1∥2⟨αk+1, zk+1⟩+ αk+1∥zk+1∥)

(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)2
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∂νk+1

∂zk+1
=

∂

∂zk+1

(
1− ∥αk+1∥2

1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2

)
=

− ∂
∂zk+1

(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)(1− ∥αk+1∥2)
(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)2

=
(2αk+1 + 2∥αk+1∥2∥zk+1∥)(∥αk+1∥2 − 1)

(1− 2⟨αk+1, zk+1⟩+ ∥αk+1∥2∥zk+1∥2)2
.
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