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Abstract

In this work, we propose GLOV, which enables Large Language Models (LLMs) to act as implicit
optimizers for Vision-Language Models (VLMs) to enhance downstream vision tasks. GLOV
prompts an LLM with the downstream task description, querying it for suitable VLM prompts
(e.g., for zero-shot classification with CLIP). These prompts are ranked according to their fitness
for the downstream vision task. In each respective optimization step, the ranked prompts are
fed as in-context examples (with their accuracies) to equip the LLM with the knowledge of the
type of prompts preferred by the downstream VLM. Furthermore, we explicitly guide the LLM’s
generation at each optimization step by adding an offset vector – calculated from the embedding
differences between previous positive and negative solutions – to the intermediate layer of the
network for the next generation. This offset vector biases the LLM generation toward the type
of language the downstream VLM prefers, resulting in enhanced performance on the downstream
vision tasks. We comprehensively evaluate our GLOV on two tasks: object recognition and the
critical task of enhancing VLM safety. Our GLOV shows performance improvement by up to 15.0%
and 57.5% for dual-encoder (e.g., CLIP) and encoder-decoder (e.g., LLaVA) models for object
recognition and reduces the attack success rate (ASR) on state-of-the-art VLMs by up to 60.7%.
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Figure 1: The effect of prompt evolution on the downstream task performance. The shaded regions
represent the absolute top-1 classification accuracies for ImageNet (Deng et al., 2009) at each optimization step
by ensembling the top-3 prompts found w.r.t the accuracy on the 1-shot train set whereas the solid lines represent
the exponential moving average. LLM employed is Llama-3 (Dubey et al., 2024).
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1 Introduction

Orthogonal to traditional gradient-based optimization (Nesterov, 1983; Boyd & Vandenberghe, 2004; Kingma & Ba,
2014; Ruder, 2016), the recent rise of large language models (Brown et al., 2020; OpenAI, 2023; Chiang et al., 2023;
Raffel et al., 2020; Touvron et al., 2023a;b; Dubey et al., 2024) and vision-language foundation models (OpenAI,
2023; Li et al., 2024; Zhu et al., 2024; Alayrac et al., 2022; Radford et al., 2021) has introduced the possibility
of framing optimization in the context of natural language prompts. This form of optimization typically does not
require any gradient-based learning or parameter update but focuses on extracting knowledge from the language
models via suitable natural language prompts. A large body of work focuses on finding natural language prompts
optimized for various downstream tasks for both LLMs (Yang et al., 2024; Wei et al., 2022; Kojima et al., 2022;
Yao et al., 2023) and VLMs (Pratt et al., 2023; Roth et al., 2023; Mirza et al., 2024), demonstrating impressive
gains in language-based and downstream vision tasks.

In our work, we frame optimization around discovering suitable natural language prompts for VLMs, with the
objective of improving performance on downstream vision tasks. Our proposed GLOV employs a prompt search
technique relying on embedding space guidance, that drives the prompt optimization for the VLMs. We iteratively
query an LLM with downstream task-specific descriptions and ranked in-context examples derived from the
previous (optimized) prompts. In-context examples guide the LLM toward the desired output, and their ranking
(measured on a small held-out train set) provides the LLM with a prior for the language patterns preferred by the
downstream VLM. To further steer the LLM generation towards a notion of goodness in each optimization step, we
explicitly bias the language generation with a direction. This direction is determined by adding a hidden state offset
vector (on the last token during the autoregressive generation) derived from the positive and negative prompts
(based on their effectiveness on labeled training data) to the LLM’s activation space during generation. The
intuition is that by directing the LLM generation toward the positive prompts, the model can discover semantically
similar and potentially more effective solutions. One complete optimization run, depicting the effectiveness of
the discovered solutions and the effect of applying the embedding space guidance is plotted in Figure 1. The
best-performing prompts (on the held-out train set) achieve an absolute improvement of 2.6% and 15.2% on
ImageNet (Deng et al., 2009) test set over CLIP (Radford et al., 2021) and LLaVA-OV (Li et al., 2024), respectively.

We extensively evaluate our GLOV on the fundamental computer vision task of image classification and also on
interpreting the safety and reliability of responses from open-source VLMs. For image classification, we demonstrate
the generalization of our GLOV on a total of 16 diverse datasets, with the two commonly employed families of VLMs
– the dual-encoder and the recent visual encoder-decoder models (Radford et al., 2021; Li et al., 2024). On the other
hand, for VLM safety, we evaluate our GLOV on 2 recent benchmarks, which highlight severe vulnerabilities of open-
source VLMs. Our GLOV can consistently discover highly effective solutions for the downstream task of interest
resulting in significant improvements across the board. For example, the most effective prompts discovered for the
dual-encoder models (e.g., CLIP) can improve the image classification accuracy by up to 15.0% (3.81% on average)
and for the encoder-decoder architectures (e.g., LLaVA), the resulting prompts show an even larger improvement of
up to 57.5% (21.6% on average). Furthermore, the effective prompts found for enhancing the VLM safety can lower
the attack success rate (ASR) to merely 1.1% (from 61.8%) with minimal degradation of the model’s generalization.

2 Related Work

Our work is related to large language and vision language models, approaches evaluating the safety of VLM
responses, and prompt optimization methods (through LLMs) for VLMs.

2.1 LLMs and VLMs

Here, we first provide a brief overview of LLMs and then move towards VLMs.

LLMs have revolutionized the natural language processing landscape. These models can typically be divided
into two major groups; namely the long-short-term-memory (LSTM) (Hochreiter & Schmidhuber, 1997) and
transformer-based architectures (Vaswani et al., 2017). The LSTM family of models uses gates to control the flow
of information, allowing them to capture long-term dependencies in sequential data. Some notable works following
the LSTM family of models include (Sutskever et al., 2014; Graves & Schmidhuber, 2005; Bahdanau et al., 2015;
Beck et al., 2024). On the other hand, some notable works proposing the encoder-based transformer architectures
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include BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019b), and DistilBERT (Sanh et al., 2020). The
decoder-based LLMs, on the other hand, are designed for generative tasks such as text generation, translation, and
summarization, with recent models including GPT-3 (Brown et al., 2020), T5 (Raffel et al., 2020), GPT-4 (OpenAI,
2023), and the Llama family of models (Dubey et al., 2024). In our work, since we need to access the weights of the
LLMs, we resort to the open-source Llama-3 model. However, any open-source LLM can potentially be employed.

Recent advancements in prompt learning have introduced various techniques to efficiently adapt large language
models (LLMs) to specific tasks with minimal parameter updates. Early methods, such as continuous prompt
learning (Zhong et al., 2021; Li et al., 2021; Lester et al., 2021), optimize continuous vectors in the word embedding
space. However, these approaches lack interpretability, as the learned vectors do not correspond to discrete tokens.
To address this, newer methods like Decomposed Prompt Tuning (DePT) (Shi & Lipani, 2023) and Low-Rank
Prompt Adaptation (LoPA) (Jain et al., 2024) have emerged. DePT decomposes soft prompts into shorter prompts
and low-rank matrices, optimizing them with different learning rates to enhance performance while reducing memory
and time costs. LoPA employs a low-rank decomposition of soft prompts, balancing shared and instance-specific
information to achieve parameter efficiency comparable to full fine-tuning. In the realm of PEFT, methods like
Low-Rank Adaptation (LoRA) (Hu et al., 2021a) and its derivatives, such as QLoRA (Dettmers et al., 2023),
have gained prominence. LoRA introduces trainable low-rank matrices into the attention layers of transformers,
allowing significant reductions in trainable parameters without compromising performance. QLoRA combines
LoRA with quantization techniques to further minimize memory usage, enabling fine-tuning on consumer-grade
hardware. Additionally, adapter-based methods (Hu et al., 2023) insert small trainable modules between existing
layers of a model, facilitating task-specific adaptations while keeping the majority of the model parameters frozen.

VLMs can be placed in two categories. One group relies on dual-encoders (vision and text encoder), usually trained
in a contrastive manner, and these models are typically strong at tasks like image recognition. The most common
among these methods are CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), OpenCLIP (Schuhmann et al.,
2022), SigLIP (Zhai et al., 2023), and MetaCLIP (Xu et al., 2023). Many methods (Mirza et al., 2024; 2023b; Doveh
et al., 2023b;a; Lin et al., 2023; Mirza et al., 2023a) build upon these models to further improve them for specific
downstream tasks. The other group of methods aligns the visual modality with a frozen LLM and can be used
for open-ended visual reasoning tasks like image captioning, visual question-answering, etc. Some representative
approaches from this group include BLIP-2 (Li et al., 2023), Instruct-BLIP (Dai et al., 2023), MiniGPT (Zhu
et al., 2024; Chen et al., 2024), and the LLaVA family of models (Liu et al., 2023; Li et al., 2024). Similarly, some
approaches (Doveh et al., 2024; Gavrikov et al., 2024; Lin et al., 2024; Huang et al., 2024) build upon these models and
provide further improvements. In this work, we address the task of object recognition using both encoder-based and
decoder-based vision-language models (VLMs). We formulate the problem of identifying optimal prompt templates
for CLIP (Radford et al., 2021), as well as suitable prompts for open-ended generation in models like LLaVA (Li
et al., 2024), as an optimization task. Unlike prior methods such as MPVR (Mirza et al., 2024), WAFFLE (Roth
et al., 2023), and CUPL (Pratt et al., 2023), which learn per-category prompt templates and are therefore much
more computationally expensive, especially for larger datasets like ImageNet (containing 1000 classes), our proposed
method, GLOV, discovers a single, generic set of prompt templates that is effective across an entire dataset.

Initially developed in the context of natural language processing (Zhong et al., 2021; Lester et al., 2021),
prompt-tuning techniques have recently been extended to visual domains as well (Jia et al., 2022; Zhou et al.,
2022d; Lu et al., 2022). For instance, CoOp (Zhou et al., 2022d) optimizes prompt embeddings by minimizing
classification loss, while ProDA (Lu et al., 2022) introduces a strategy to learn multiple diverse prompts to
better capture variations in visual features. UPL (Huang et al., 2022) takes an unsupervised approach to prompt
learning, eliminating the need for labeled data. TPT (Shu et al., 2022) introduces a test-time optimization method
for adapting prompts dynamically during inference. Other works like CLIP-Adapter (Gao et al., 2024) and
Tip-Adapter (Zhang et al., 2022) explore lightweight adapter-based alternatives for PEFT in multimodal settings.
CoCoOp (Zhou et al., 2022c) incorporates a meta-learning approach to generate image-conditioned prompts,
enabling improved robustness to distribution shifts, whereas MAPLE (Khattak et al., 2023) learns text and vision
prompts in synergy. Other methods (Zhang et al., 2024a; Kim et al., 2024) have also introduced certain variations
to the prompt-tuning framework and further enhanced the downstream image classification performance. In
contrast to these works, we do not learn continuous prompt vectors through gradient-based fine-tuning, but instead
propose to optimize natural-language prompts, making our framework more interpretable.
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For decoder-based VLMs, recent work (Zhang et al., 2024b) has pointed out that decoder-based VLMs often
struggle with fine-grained object recognition. However, we demonstrate, for the first time, that GLOV can uncover
optimal prompts that significantly enhance recognition performance in these models, all without any gradient-based
learning or fine-tuning. Furthermore, we note that most existing prompt tuning approaches (Zhou et al., 2022b;a;
Mirza et al., 2024; Pratt et al., 2023; Roth et al., 2023; Khattak et al., 2023) are limited in scope: they are only
applicable to encoder-based models like CLIP and cannot be directly applied to decoder-based VLMs.

2.2 Safety of VLMs

Enhancing the safety of open-source VLMs remains an open challenge. Recent works Zong et al. (2024); Liu
et al. (2024c); Tu et al. (2024); Gou et al. (2024) have evaluated multiple open-source VLMs on safety tasks. These
tasks involve presenting the model with an unsafe image and an instruction, where the model is considered safe
only if it refuses the unsafe instruction. However, current state-of-the-art VLMs exhibit significant vulnerabilities
in this critical area. In our work, we enhance the safety of VLMs by optimizing for safety instructions and finding
a general safety prompt that transcends models and safety benchmarks with minimal loss in the generalization
abilities of the open-source VLMs. To the best of our knowledge, our GLOV is the first method to optimize
safety instructions for VLMs, without any human in the loop. We again point out that other prompt-tuning
methods (Mirza et al., 2024; Roth et al., 2023; Pratt et al., 2023; Zhou et al., 2022a;b) cannot be applied to such
open-ended tasks (and decoder-based VLMs), whereas our prompt optimization method is more generic.

2.3 Large-language Models as Prompt Optimizers

Some approaches propose employing LLMs (in an agentic workflow) to search for the optimal prompt for the
downstream task. OPRO (Yang et al., 2024) coins the term “LLMs as Optimizers” and proposes iteratively
discovering solutions (prompts) for natural language tasks by employing an LLM in a feedback loop. Similarly, Liu
et al. (2024b) proposes to find suitable prompts for dual-encoder VLMs (e.g., CLIP) by iteratively prompting an LLM.
Our GLOV also proposes to discover suitable prompts for VLMs but differs from Liu et al. (2024b) in the sense that
we are employing a prompt that captures long-range dependencies by tapping into the history-buffer of the in-context
examples and exploiting task-specific knowledge that helps to obtain prompts better suited for the downstream task.
Furthermore, inspired by (Turner et al., 2023; Liu et al., 2024a; Todd et al., 2023) we propose a novel method for
steering the LLM generation (through embedding space guidance) towards the text responses that are more suitable
for downstream VLMs. Our GLOV– powered by a carefully tailored LLM prompt and the guidance scheme discovers
highly effective solutions that help to enhance visual tasks for both the dual-encoder and encoder-decoder models.

3 GLOV

The goal of our GLOV is to improve the VLM’s downstream (vision) task performance by optimizing natural
language prompts through employing an LLM in an iterative workflow. To achieve this, we build upon the
successful line of work on in-context learning Wei et al. (2022); Min et al. (2022), which can improve VLM
performance through task-specific prompting Mirza et al. (2024). However, our GLOV goes beyond these by
automating the LLM-VLM interaction by adopting an agentic workflow and also explicitly guiding the language
generation, conditioned on a prior of the difference of the sentence embeddings from the positive and negative
prompts discovered during the previous optimization iterations. Although the application space of GLOV is general
in terms of tasks and the downstream VLMs, for simplicity, here we focus our description around CLIP (Radford
et al., 2021) while mentioning the differences for LLaVA (Li et al., 2024) and different tasks, where appropriate.
Figure 2 provides an overview of our methodology. Our codebase is also attached for review as a supplementary.

For the ease of assimilation, we divide the description of our GLOV into different parts. In Section 3.1 we describe
the fitness function and how it can provide an interface for the LLM-VLM interaction. In Section 3.2, we provide
details about the tailored LLM prompt employed in our work. Finally, we conclude in Section 3.3 by providing
details about the proposed guidance methodology.
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-A majestic <category> with a gentle purr, 
often seen lounging in the sunbeams that 
stream through the windows, bringing joy 
and comfort to its owner's life with its soft 
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warm and loving demeanor, often found in 
the hearts of its owners as a constant 
companion, bringing immense joy...
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sitting on the sofa in a garden full of trees... 
Accuracy: 52.1% 
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warm eyes, often seen curled up in the lap...
Accuracy: 47.2% 

Siberian Cat
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Figure 2: Overview of GLOV for dual-encoder models. GLOV consists of a specifically tailored LLM prompt,
which constitutes system instruction, task description, and in-context examples (VLM prompts) which are evaluated
(and ranked) on a few-shot training data in each iteration. This prompt instructs the LLM to generate several
candidate solutions in each optimization iteration, conditioned on the in-context examples which are fed in conjunc-
tion with the accuracy values, highlighting their effectiveness. Furthermore, to steer the LLM generation towards
the language preferred by the VLM, we add the scaled difference of the sentence embeddings (autoregressively)
from the positive and negative text prompts to the intermediate layer of the LLM. This process is repeated until
the stopping condition is met (e.g., maximum iterations). Note, that H+ and H− refer to the sentence embeddings
from the positive and negative text prompts, and α is the scaling factor. The example prompts shown in the image
are the GLOV prompts for the OxfordPets (Parkhi et al., 2012) dataset, consisting of categories of dogs and cats.

3.1 LLM-VLM Interaction through Fitness Function

The dataset-specific prompt templates P provided by CLIP (Radford et al., 2021) have been constructed manually,
requiring human effort. In this work, we frame the prompt search as an optimization problem and propose to
replace the human with an LLM, employed in an iterative feedback loop. Furthermore, we explicitly guide the
generation process of the LLM in each optimization step by proposing a novel guidance methodology that can assist
the LLM in understanding the style of language preferred by the downstream VLM, even though the two models
only interact through a fitness function. At each optimization step i, the LLM provides multiple (e.g., 10) solutions
to improve the downstream task performance. However, not all solutions provided by the LLM are preferred
(i.e., enhance performance) for the downstream vision task. To obtain a measure of the fitness (effectiveness)
of the provided solutions to the downstream vision task, we evaluate all the candidate solutions on a held-out
few-shot (1-shot) labeled training dataset D. For CLIP (Radford et al., 2021), the zero-shot likelihood of class
ĉ for each discovered prompt p∈P during an optimization step can be found by

lĉ(x)= ecos(ψĉ,ϕ(x))/τ∑
c∈Ce

cos(ψc,ϕ(x))/τ , where ψc=ψ(p(c)), (1)

where ϕ and ψ represent the vision and text encoders of CLIP, x∈D, τ denotes the temperature constant, cos
refers to the cosine similarity, and p(c) replaces the ‘class’ placeholder in the discovered prompt p. CLIP’s vision
encoder ϕ produces the image embedding. The text embedding of a class c (belonging to a set of candidate classes
C) is obtained by incorporating the class name c in the found prompt, called a VLM prompt, and embedding this
text through the VLM’s text encoder ψ. The fitness of a prompt p∈P can be found by comparing the predicted
label with the ground truth, summarized as

Fitness(p)= 1
|D|

∑
(x,y)∈D

1

[
argmax

c
lc(x)=y

]
, (2)
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where 1 is an indicator function that is 1 if the predicted label matches the ground truth y and 0 otherwise. For
the encoder-decoder models (e.g., LLaVA), which produce open-ended outputs, we obtain the class likelihoods
by obtaining a symbolic representation of the image in textual form and comparing the text embeddings from
this symbolic representation with the text embeddings obtained for the individual class names, using a dedicated
sentence embedding model (Reimers & Gurevych, 2019). We expand on these details in the Appendix Section A.
Furthermore, for the open-ended task of enhancing the safety of VLMs, the fitness of the prompt is defined in
terms of reducing the attack success rate (ASR)1. To this end, we follow the evaluation protocols proposed by
the original papers (Zong et al., 2024; Liu et al., 2024c), which focus on measuring the refusal rates and evaluations
by using GPT-4 (OpenAI, 2023) as a judge for measuring the ASR.

It is important to note that the fitness function forms a bridge between two disjoint models – the LLM and the
VLM, and is responsible for their interaction. The fitness (e.g., classification accuracy) provides feedback to the
LLM regarding the type of natural language sentences that are preferred by the downstream VLM. The fitness
function is responsible for ranking all the prompts provided as in-context examples to the LLM prompt in each
optimization iteration (c.f., Section 3.2) and also forms the basis for the application of the embedding-space guidance
methodology (c.f., Section 3.3) proposed in this work to bias the LLM responses towards a notion of goodness.

3.2 LLM Prompt

The LLM prompt (c.f., Appendix Figure 5) is responsible for driving the iterative prompt optimization. It consists
of 3 distinct parts, which are described as follows:

System prompt is a generic set of instructions that describe the task of the LLM. It helps a model to find the
optimal prompts, improving the downstream task accuracy (or reducing ASR). The system prompt remains static
for the entire optimization.

Task description is dynamically changing at each optimization step. It consists of a description of what is
included in the main body of the prompt, e.g., what is expected from the LLM (i.e., a prompt), a downstream
task name, task description, quantity (and actual) best and worst prompt templates as in-context examples, with
their associated fitness, obtained through equation 2.

In-context examples serve to bootstrap the LLM to the type of output that is expected. In each optimization
step, we task the LLM to provide us with 10 candidate solutions (prompts). Each prompt is evaluated w.r.t. a
fitness function to obtain a (classification) score. We keep a global history of the prompts (and associated fitness)
generated during all the previous optimization steps and at each optimization step i, the newly generated prompts
and all the previous prompts are ranked according to their respective fitness score. For the next optimization
step i+1, topk, and bottomk prompts (we choose k=5) are selected as in-context demonstrations and plugged
into the prompt together with their respective accuracies. The intuition behind keeping a global history of prompts
is to provide the LLMs with long-term knowledge about the types of prompts that have been effective for the
VLM so that it can model its responses according to them.

3.3 Steering the LLM Generation Process

At a higher level, given two prompts – positive and negative (identified through equation 2), our proposed steering
can be considered as analogous to computing a hidden state gradient towards the positive prompt, effectively
biasing the language generation away from the negative identified prompt in each optimization step. The intuition
is to condition the LLM text outputs according to the language preferred by the downstream VLM. To this end, we
show that the LLM outputs can be steered through simple arithmetic in the hidden states of the present-day LLMs.

For a given LLM f with pre-trained parameters θ⃗, and given tokenized prompts p⃗b and p⃗w, the activation responses
at layer l are denoted as al(⃗p;⃗θ). This is an activation map of B×S×E, which denotes the number of prompts
B, tokenized sequence length S, and the hidden dimension size E. Typically, al does not depend on all model
parameters θ⃗, but we abuse the notation in the interest of simplicity. The sentence embeddings H+ and H− can
be obtained by averaging the activations across the sequence length S

1For safety enhancement, GLOV optimizes for a prompt that reduces the ASR on a downstream VLM.
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H+ = 1
S+

S+∑
s=1

al(p⃗+;⃗θ):,s,: H− = 1
S−

S−∑
s=1

al(p⃗−;⃗θ):,s,: (3)

where S+ and S− are the sequence lengths of prompts p⃗+ and p⃗−, respectively. The goal is to obtain semantically
meaningful sentence embeddings from the identified positive and negative prompts.

For each new token produced in the subsequent optimization iteration, the difference between H+ and H− is
added autoregressively to the embeddings of each generated token2. Let p⃗n denote the new token appended to
the LLM prompt, then the updated sentence embedding Hn is given by

Hn=Hn+α·(H+−H−) (4)

where α is the scaling factor and is automatically optimized by GLOV on the held-out training set, by an α sweep.
This process is repeated until the maximum number of tokens is achieved for each prompt. In total we prompt
the LLM (at each iteration) to provide us with N prompt templates. In an optimization run p+ is always the
prompt with the best accuracy w.r.t the fitness and p− is set to be the prompt with the second-best accuracy.
Since, we compute a form of the gradient-like differential between averages of token hidden states, intuitively trying
to identify a characteristic of task-specific improvement. Thus, the intuition behind computing the differential
between the best and the second best (in terms of fitness) is to obtain it between points closest to the maximal
value of the objective – which is a common mathematical intuition. Furthermore, p+ and p− are only updated
when a new prompt with higher accuracy is found. This ensures that the guidance signal does not alter in each
iteration, resulting in more stable optimization. The detailed algorithm is laid out in Algorithm 1.

We ablate our proposed method of obtaining sentence embeddings (equation 3) in Section 4.3 and find it to provide
strong results (while linear probing the embeddings from the middle layers of the LLM) on common natural language
classification tasks, hinting that our sentence embeddings can capture semantically meaningful information from the
prompts. This analysis also motivates our choice of relying on the middle layers for extracting guidance in GLOV.

As our prompt search method is posed as an optimization problem, thus, it requires access to a small amount
of labeled data to obtain the effectiveness of each prompt at each optimization step. For main experiments in
Tables 1 & 2 we only use 1-shot labeled examples. To further reduce the reliance on labeled data, we test our method
in a sub-shot setting where we use labeled examples from only a small subset of classes from the dataset. These
results are listed as an ablation in Table 4, where we find that by optimizing the prompts only on 50 labeled samples
(from 50 categories, instead of 1000 in ImageNet), our method can still achieve an absolute improvement of 13.4% as
compared to the baseline, while only showing a degradation of 1.8% when compared with optimizing the prompts on
1000 samples from 1000 classes. These results are a step towards making the optimization method unsupervised. In
the future, our GLOV can potentially be made completely unsupervised (and zero-shot) by employing unsupervised
metrics to measure the effectiveness of prompts. These metrics could include entropy measurement (Shannon, 1954),
and choosing the prompts that decrease the overall entropy of the task. Furthermore, we can also employ LLMs
to provide a signal of effectiveness for the prompts, which could also completely lift the burden of data-labeling.

4 Experimental Evaluations

In this section, we first list the datasets employed for evaluating our GLOV, then provide an overview of the
different baselines and state-of-the-art methods we compare to, later discuss the implementation details and finally
conclude with a discussion of the results.

4.1 Evaluation Settings

Image Recognition Datasets: We extensively evaluate our GLOV on 16 object recognition datasets belonging to
widely different domains. These domains can be narrowed down to datasets containing commonly occurring natural
categories: ImageNet (Deng et al., 2009), ImageNetV2 (Recht et al., 2019), Caltech101 (Fei-Fei et al., 2004),
fine-grained classification datasets containing different task-specific images: Oxford Flowers (Nilsback & Zisserman,

2We also experiment with several alternatives for adding the offset vector in the appendix Section 4.3, however, we find that adding
the offset to only the last token performs best.
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Table 1: Results on dual-encoder VLM. Top-1 accuracy (%) for 16 datasets obtained by employing the
ViT-B/32 backbone from OpenAI CLIP (Radford et al., 2021). S-TEMP refer to the results obtained by using
the default template (a photo of a <class name>), while DS-TEMP refer to the results obtained by using the
ensemble of dataset-specific prompts. GLOV (w/o guidance) represents the results without the guidance applied
to the LLM generation, whereas GLOV represents results obtained by adding the guidance offset vector. The
bold numbers represent the best and the underline numbers represent the second best accuracy.

ImageNet ImageNetv2 Caltech101 ImageNetR ImageNetS ImageNetA OxfordFlowers OxfordPets

CLIP (S-TEMP) 61.9 54.8 91.4 65.4 40.3 28.2 64.0 81.3
CLIP (DS-TEMP) 63.3 56.0 89.9 67.9 42.1 30.2 66.6 83.2
LLM-OPT 62.8 55.6 92.3 67.5 41.9 28.1 67.0 78.1
GLOV (w/o guidance) 62.7 55.8 92.1 67.8 41.9 31.2 64.6 84.4
GLOV 64.5 56.6 93.7 68.5 43.0 32.5 67.7 85.5

StanfordCars DescribableTextures Food101 FGVCAircraft SUN397 UCF101 RESISC45 EuroSAT

CLIP (S-TEMP) 60.2 40.2 77.6 18.1 62.1 60.4 54.1 35.8
CLIP (DS-TEMP) 59.9 42.4 79.2 19.4 61.7 62.3 57.2 45.8
LLM-OPT 60.2 41.7 79.2 17.7 60.9 60.9 54.4 45.0
GLOV (w/o guidance) 59.6 41.4 78.5 19.7 62.2 63.0 61.4 46.9
GLOV 60.4 42.6 79.5 20.1 62.1 63.8 62.0 50.8

Table 2: Results on encoder-decoder VLM. Top-1 accuracy (%) for 16 datasets obtained by employing the
LLaVA (One Vision) (Li et al., 2024). LLaVA-OV refer to the results obtained by using a generic prompt.

ImageNet ImageNetv2 Caltech101 ImageNetR ImageNetS ImageNetA OxfordFlowers OxfordPets

LLaVA-OV 36.5 31.4 77.7 52.1 38.1 32.3 19.4 16.2
GLOV (w/o guidance) 46.8 40.9 87.1 75.7 49.6 44.8 28.6 53.7
GLOV 51.7 46.1 92.6 77.6 49.9 43.6 39.6 54.3

StanfordCars DescribableTextures Food101 FGVCAircraft SUN397 UCF101 RESISC45 EuroSAT

LLaVA-OV 21.7 33.2 21.5 4.1 36.4 52.9 43.3 25.6
GLOV (w/o guidance) 73.9 46.9 66.9 44.0 44.9 60.6 47.2 36.3
GLOV 79.2 51.7 67.0 41.0 46.0 59.7 51.1 36.3

2008), Standford Cars (Krause et al., 2013), Oxford Pets (Parkhi et al., 2012), Describable Textures Dataset
(DTD) (Cimpoi et al., 2014), Food-101 (Bossard et al., 2014), FGVC-Aircraft (Maji et al., 2013). Dataset used for
scene classification: SUN397 (Xiao et al., 2010), action recognition dataset: UCF101 (Soomro et al., 2012).
Datasets consisting of out-of-distribution images: ImageNet-(R)endition (Hendrycks et al., 2021a), ImageNet-
(A)dversarial (Hendrycks et al., 2021b), ImageNet-(S)ketch (Wang et al., 2019) and also datasets which contain
images taken from a satellite or an aerial view: EuroSAT (Helber et al., 2018) and RESISC45 (Cheng et al., 2017).

Safety Datasets: We evaluate our GLOV on two recently proposed safety benchmarks for VLMs. MM-Safety-
Bench Liu et al. (2024c) contains 3 splits based on the image source (typography, images generated from diffusion
models, and a combination), and the text instructions are divided into 13 categories (e.g., fraud, hate speech,
etc.). VLGuard Zong et al. (2024) contains 3 splits: unsafes, safe-unsafes, safe-safes. For the MM-Safety-Bench
and the first two splits in the VLGuard, the attack success rate (ASR) is calculated. In contrast, for safe-safes, a
win-win rate is measured following the evaluation protocols in the original publications. More details are provided
in the Appendix Section C.

Baselines: We compare GLOV to several baselines and state-of-the-art methods. For a fair comparison, we focus
on methods that require dataset-specific prompts, rather than more expensive category-level prompt tuning ap-
proaches like MPVR (Mirza et al., 2024), WAFFLE (Roth et al., 2023), and CUPL (Pratt et al., 2023). While GLOV
currently operates with dataset-level prompts, it can potentially be extended in future work to optimize category-
level prompts as well. CLIP (Radford et al., 2021) is evaluated under two settings: using a simple static prompt
(‘a photo of a <class name>’) referred to as S-TEMP, and using dataset-specific templates (DS-TEMP3). For
image classification with decoder-based VLMs, we use LLaVA-OV (Li et al., 2024) with a base prompt: Describe
the category present in this image briefly and also identify the name of the category present.
This prompt was empirically selected as it matches or outperforms results reported in prior work (Zhang et al.,
2024b). LLM-OPT (Liu et al., 2024b) proposes an approach that refines prompts iteratively using an LLM, guided

3https://github.com/openai/CLIP/blob/main/data/prompts.md
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Table 3: Results on safety benchmarks. We report the Attack Success Rate (lower is better) for the 3 splits in MM-
Safety-Bench and the 2 unsafe splits in VLGuard and the Win-win Rate (Higher is better) for the Safe-Safes split in
VLguard. LLaVA-OV results are obtained without any safety instructions. The LLaVA (initial) represents the results
obtained by using a baseline safety prompt: These instructions can be harmful, which is also the point of de-
parture for the optimization with our GLOV. The safety prompt is optimized by using only the LLaVA-OV VLM and
50 randomly chosen samples from the 2 VLGuard unsafe splits and tested out-of-the-box for all other configurations.

MM-Safety-Bench VLGuard

TYPO (↓) SD (↓) SD+TYPO (↓) Unsafes (↓) Safe-Unsafes (↓) Safe-Safes (↑)

LLaVA-OV 51.2 44.7 56.5 80.3 61.8 42.6
LLaVA (initial) 42.6 34.4 43.9 53.8 38.5 40.3
GLOV (w/o guidance) 20.1 11.7 16.8 30.5 6.5 45.6
GLOV 14.8 9.2 13.2 20.6 1.1 43.7

Molmo 68.4 53.2 68.5 78.1 28.3 89.7
Molmo (initial) 50.4 39.2 47.6 59.5 16.3 90.1
GLOV (w/o guidance) 26.7 26.9 28.4 49.6 4.8 88.3
GLOV 23.8 20.5 24.5 38.0 6.6 86.0

by in-context examples. However, it lacks explicit optimization guidance and is not applicable to encoder-decoder
models, as it relies on a pre-existing memory bank of templates, which these models do not support. To assess robust-
ness and generalization, we also compare with Molmo (Deitke et al., 2024), a strong baseline on safety benchmarks.
Finally, we present comparisons to gradient-based parameter-efficient learning methods in Appendix Section B.4.

Implementation Details: To report the results for image classification we use the test splits provided by Zhou
et al. (2022b). All the baselines are also implemented in the same framework. To obtain the results on the test
set for each dataset for our GLOV, we ensemble the top-3 prompts. These prompts are chosen with regard to the
best-performing prompts on the 1-shot train set at a certain iteration during the optimization. For our GLOV we
use Llama-3 (Touvron et al., 2023a) from Hugging Face. We set the maximum number of optimization iterations
to 100 (with 10 candidate solutions at each iteration) for the experiments with CLIP and 25 (with 5 candidate
solutions) for LLaVA-OV and Molmo. For evaluating the safety of VLMs, we follow the above settings and use
the official codebase from respective publications (introducing the benchmarks) for evaluations. In general, the
experiments with CLIP can run on a single NVIDIA 3090 (24GBs) GPU, and the experiments with LLaVA fit on an
A40 (48GBs) GPU or similar. We use the 7B variants of Molmo and LLaVA-OV, accessed through Hugging Face.

4.2 Results

Here we first discuss the object recognition results and then the evaluations performed on the VLM safety benchmarks.

Object Recognition: We evaluate our GLOV extensively on 16 diverse datasets. In Table 1 we list the results
by employing the CLIP ViT-B/32 from OpenAI. We observe that our GLOV achieves better accuracy on all
the datasets evaluated. For example, as compared to CLIP, when using the simple prompt template, our vanilla
GLOV provides an average gain of 2.5%, with up to 11.0% gains on EuroSAT. Similarly, the gains increase even
further with our proposed guidance scheme. We observe gains of up to 15% (3.8% on average). On the other
out-of-distribution ImageNet variants, our GLOV is also able to show consistent improvements. Our GLOV also
fares better when compared with the CLIP classifier constructed by ensembling the hand-crafted templates3. For
example, on the large-scale ImageNet dataset, the CLIP classifier built by ensembling the top-3 performing prompts
on the train set can provide a gain of 1.2%, while on average the performance improvements is 1.5%, with up to
5.0% gains on the EuroSAT dataset. It is also important to point out that the prompts provided by CLIP (Radford
et al., 2021) are chosen w.r.t the accuracy on the test set (Liu et al., 2024b), whereas, our GLOV searches for
prompts by only having access to 1-shot training data highlighting the generalization ability of our GLOV.

In Table 1, we also compare our GLOV with LLM-OPT (Liu et al., 2024b). Even our vanilla prompting method
(without guidance) is on average 1.4% better than LLM-OPT, while the proposed guidance scheme provides
2.7% improvement on average, with 1.7% improvements on the large-scale ImageNet. This highlights that our
prompting methodology coupled with the guidance scheme is better suited to the task of prompt search. Our
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Figure 3: Sweep for choosing the LLM layer for guidance. Linear probing accuracy for different layers
of Llama-3, while evaluating our choice of calculating the sentence embeddings for the sentiment classification
task in SST-5 dataset (left). Top-1 classification accuracy for ImageNet on the held-out train set while applying
the guidance on different layers of Llama-3 (right).

prompt consists of task-specific and long-term knowledge of the LLM’s responses about what it has generated
in all the previous iterations, whereas, LLM-OPT’s prompt does not contain long-term dependencies. Furthermore,
the proposed guidance scheme induces a notion of goodness to the language generation, that is reflected in the
downstream results. On the other hand, the prompt used by LLM-OPT (Liu et al., 2024b), naïvely instructs
the LLM to provide better prompts, with only providing good and bad prompts, without any explicit guidance,
making it challenging for the LLM to bias its outputs towards preferred langugage.

In Table 2 we list the detailed results by employing the LLaVA-OV-7B model. Zhang et al. (2024b) find that
generative models have extremely low fine-grained visual recognition performance and they improve it via finetuning.
In our work, we find that for these models, the fine-grained visual recognition performance can be greatly enhanced
by finding the optimal prompt (without requiring gradient-based learning). We observe that the solutions
discovered by our GLOV can significantly close the gap with the dual-encoder models. For example, we observe up
to 57.5% improvement (21.5% on average over 16 datasets) as compared to vanilla LLaVA-OV. We also observe that
our proposed guidance scheme has a significant impact on the results. The guidance further provides 2.5% average
improvement over the vanilla GLOV, and notably on the large-scale ImageNet dataset the improvement is 4.9%.

Safety Enhancement: In Table 3 we provide results on two recent benchmarks: MM-Safety-Bench Liu et al.
(2024c) and VLGuard Zong et al. (2024). These benchmarks evaluate the harmful nature of responses from the
VLMs given an image and a corresponding instruction. We find that our GLOV can greatly enhance the safety of
the present VLMs by finding a suitable safety instruction – prepended to the original text instruction. For example,
we observe that our GLOV can reduce the harmful responses by up to 60.7% (60.2% on average) while compared to
the base VLM (LLaVA-OV) - prompted without any safety instruction on the VLGuard dataset. We also observe
no loss of win-win rate on the Safe-Safes split, which evaluates the models’ ability to answer safe questions. We also
evaluate the recent Molmo VLM and find similar trends. The detailed results for the MM-Safety-Bench are provided
in the Appendix Section D. Note that we only optimize for the safety instructions on 50 samples randomly chosen
from the VLGuard unsafe splits (with LLaVA-OV) and evaluate on all other configurations evaluated in Table 3.
These results highlight that the optimized safety instructions are general and they transcend models and benchmarks.

Ideally, the safety instructions should not hurt the model’s performance on general tasks. To evaluate this, we
test the VLMs by prepending the safety instructions to the questions in SEED (Fang et al., 2021) and MME (Yin
et al., 2023) benchmarks (c.f., ablations Table 6). Interestingly, we find that in some cases the safety instruction
enhances the performance of the model (by up to 23.3 points) on these general-purpose benchmarks, possibly
by forcing the model to look closely at the instructions. To avoid clutter, we delegate the actual (best) prompts
found, the evolution of prompts, and the optimization evolution for datasets to the Appendix Section E.

4.3 Ablations

We provide extensive ablations to study the different aspects of our GLOV. First, we provide several design choices
that eventually led to the GLOV framework. Next, we motivate our choice to use the middle layer of the LLM for
guidance. Then, we provide results by using less than one shot data as our held-out train set and later, we discuss the
results obtained by using a larger LLM. Finally, we conclude with an ablation showing the retention of general model
capabilities by adding the safety prompt. More ablations for additional insights are added to the Appendix Section B.
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Figure 4: Ablating design choices. (a) We compare the optimization trajectories obtained with our proposed
guidance method with that of ActADD (Turner et al., 2023). (b) The effect of adding the offset vector to each token,
instead of only the last token as in GLOV. (c) Using the embeddings of only the last token to obtain the offset vector.
(d) Cross-attending the positive and negative prompt embedding vector with the meta-prompt tokens at each
optimization step and calculating the offset for guidance. (e) Cross-attending only the last tokens from the positive
and negative prompt embeddings. (f) Finding the optimal number of tokens to be generated at each optimization
step. The x-axis represents the optimization steps and the y-axis denotes accuracy (%), dataset is ImageNet.

Table 4: Sub-shot setting. Top-1 Accuracy (%) by using LLaVA-OV for ImageNet (left) and ImageNet-R (right)
for different number of classes used for GLOV optimization. For ImageNet, using 10 classes would mean using
only 10 labeled samples (from 10 classes) from the ImageNet dataset instead of 1000 (from 1000 classes) for our
fitness calculation.

Classes 1000 50 20 15 10 LLaVA-OV

Accuracy 51.7 49.9 47.0 46.6 44.8 36.5

Classes 200 20 15 10 5 LLaVA-OV

Accuracy 77.6 72.6 71.1 68.6 54.3 52.1

Design Choices: The eventual algorithm (c.f., Algorithm 1) for our GLOV (especially the guidance
scheme, i.e., GLOV-guidance) is chosen by intensely studying a variety of alternatives. Several of these de-
sign choices experimented with are plotted in Figure 4. For example, in Figure 4a we compare ActADD (Turner
et al., 2023) guidance scheme with our GLOV. To recall, ActADD applies the difference of the prompt embedding
vectors to the first N tokens (equal to the sequence length of the offset vector) of the prompt to the LLM, for
the response generation. Whereas, our GLOV applies the guidance to only the last token of the (meta) prompt for
each new token produced at each optimization step (in a greedy manner). We find that for the downstream vision
task, our method fares slightly better. Similarly, for each generation step, we also experiment by applying the offset
vector to each of the tokens of the prompt (c.f., Figure 4b) – resulting in stronger guidance – and by only using the
last token embedding for obtaining the offset vector (c.f., Figure 4c). We observe that our method of obtaining the
mean of the embeddings from all the tokens and adding the offset to only the last token at each generation step fares
better. We also experiment with cross-attending the positive and negative prompt embeddings with the hidden state
at each time step of the auto-regressive modeling in LLMs. Specifically in Figure 4d we cross-attend all the tokens
of the hidden state (query) with the positive and negative prompt embeddings (keys-values) and obtain the offset
vector, and in Figure 4e we only use the last token embedding for cross attention. In both cases, we see that our
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Table 5: Scaling LLM size. Top-1 Accuracy (%)
for datasets by using different variants of Llama. The
evaluation details for both variants of GLOV are kept
the same.

DTD EuroSAT IN-R IN-A UCF-101

CLIP 40.2 35.8 65.4 28.2 60.4
GLOV [Llama-3-7b] 42.6 50.8 68.5 32.5 63.8
GLOV [Llama-3.1-70b] 44.5 54.0 69.7 33.3 64.7

Table 6: Retention of Generalization. Accuracy
(%) for SEED and Perception Score for MME. GLOV
results are obtained by prepending the GLOV safety
prompt to the original question.

SEED MME
Model Baseline Initial GLOV Baseline Initial GLOV

LLaVA-OV 67.8 67.4 68.0 1578.3 1575.5 1559.5
Molmo 63.5 63.0 63.1 1283.1 1270.5 1306.4

proposed guidance scheme fares better. Finally, we experiment with generating different numbers of tokens for each
prompt (at each optimization step) and find that the best results are obtained with 50 tokens. This could be because
the CLIP text encoder does not favor longer sentences and shorter sentences might not be syntactically correct.

Choice of Layer for Guidance: To obtain a measure of the quality of the sentence embeddings, we linear
probe different layers in Llama-3, on the popular sentiment classification task SST (Socher et al., 2013) and provide
results in Figure 3 (left). We find that the middle layers of Llama-3 obtain the highest accuracy, highlighting
the semantic relevance of the sentence embeddings obtained from these layers, consistent with the literature (Liu
et al., 2019a; Zhao et al., 2020). Furthermore, we also run a sweep while applying the guidance on different layers
in Llama-3 and plot the resulting ImageNet accuracy on the 1-shot train set in Figure 3 (right). The accuracy
peaks at layer 16 and layer 17. These results are consistent with the linear probing results obtained on the SST-5
dataset, hinting that the middle layers might be the most effective. Keeping these results in view, we choose
layer 17 in Llama-3 to apply the offset vector for steering the responses.

Sub-shot Setting: In Table 4 we provide results by using less than one shot train data for the optimization
of prompts through GLOV. We observe that for ImageNet, our GLOV shows a minimal performance drop (1.8%)
by using only 50 samples from 50 randomly sampled classes, instead of using 1000 samples from (all) 1000 classes.
The results for ImageNet-R also follow a similar trend. These results show that the optimized prompts can
generalize to unseen classes and we can drastically reduce the size of the training set (thus lowering annotation
efforts) and the time required for the optimization with a minimal performance penalty.

Scaling LLM Size: In Table 5, we present results obtained by using a larger LLM (Llama-3.1-70b) for
optimization with our GLOV. The results demonstrate that our GLOV benefits from leveraging a more capable
LLM, highlighting the potential for further improvements as LLMs advance.

Retention of Generalization: In Table 6, we provide results on general-purpose VLM benchmarks (SEED (Fang
et al., 2021) and MME (Yin et al., 2023)) by prepending the optimized safety prompt discovered through our
GLOV. We find that the discovered prompt has a minor effect on performance. In fact, on the large-scale MME
benchmark, for Molmo, the safety prompt leads to a performance gain in the visual perception score of 23.3. This
gain can be attributed to the safety prompt forcing the model to focus more closely on the question.

5 Conclusion

We have presented a prompt optimization method for VLMs that interfaces two disjoint models through a fitness
function. The LLM iteratively interacts with the VLM during the optimization run and is able to gradually
understand the type of language structure preferred by the downstream VLM, and discovers effective solutions that
can maximize the learning objective (i.e., the accuracy on the downstream vision task). To further enhance the
optimization, we condition the LLM responses at each optimization step by providing a direction. The direction
is dictated through a novel embedding space steering methodology that, in essence, adds an offset vector calculated
from the positive and negative prompt embeddings to the intermediate layer of the LLM, helping it to bound
the outputs more strictly towards the language prompts preferred by the VLM. Extensive empirical evaluations
highlight the effectiveness of our proposed GLOV.
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Broader Impact

Our GLOV relies on an external LLM to produce the prompts, at each optimization step, for enhancing
downstream vision tasks. This design can amplify certain biases inherently present in the LLM, resulting in skewed
or unfair outcomes, particularly when applied to sensitive domains such as healthcare, surveillance, or hiring. Since
LLMs are trained on large-scale internet data, they may encode social, cultural, or demographic biases that can
propagate into the vision models through biased prompt generation. To mitigate these risks, practitioners should
carefully audit both the LLM and vision model outputs for fairness and representation.
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Appendix

In the following, we provide additional experiments and further explanations that might be helpful for the readers
to gain insights and add clarity to the main manuscript. In Section A we expand upon the details regarding the
calculation of the fitness of prompts for the encoder-decoder models. Then, in Section B we provide more insights
in to our GLOV by studying additional aspects of it. In Section C we list the details about the datasets employed
for evaluating the safety of VLMs in our work. Later, Section D provides the detailed results for each split in
the MM-Safety-Benchmark Liu et al. (2024c), and finally we conclude with Section E, which lists all the prompts
used to obtain the results in the main manuscript (Tables 1, 2 & 3). Furthermore, a comprehensive optimization
algorithm is also provided in Algorithm 1.

To encourage reproducibility, we have provided all the prompts discovered by our GLOV in Section E, which
can be used to obtain all the results provided in the main manuscript. These prompts were found by running
experiments on a machine consisting of 4x NVIDIA 3090Ti, 4x NVIDIA A40, 4x NVIDIA A6000, and 4x NVIDIA
L40 GPUs. For review, we also provide our entire codebase as code.zip with detailed instructions to run in
the Readme.md. The codebase will also be made public upon acceptance.

A Fitness for Encoder-Decoder Models

The generative nature of the encoder-decoder architectures can often be a challenge when evaluating these models
for the task of image recognition. The output from these models is not a probability distribution over the label
space (as compared to dual-encoder models). Thus, to evaluate the free-form output from these models, we
treat the text output from these models as a symbolic representation of the image we want to classify. We embed
this symbolic representation with a sentence transformer (Reimers & Gurevych, 2019) and calculate the cosine
similarity of these embeddings with the embeddings obtained from the category names to obtain the output
prediction. Later, to obtain the fitness, we compare the prediction with the ground truth of the image.

More formally, let G(x) denote the text generated by the encoder-decoder model for a given image x∈D. We
embed this generated text using a pre-trained sentence transformer, denoted by the embedding function emb(·),
resulting in an embedding emb(G(x))∈Rd, where d is the dimension of the embedding space. For each class c∈C,
we similarly embed the class name c using the same sentence transformer, yielding emb(c)∈Rd. The prediction
for the class ĉ can then be obtained by finding the class whose name embedding has the highest cosine similarity
with the generated text embedding:

ĉ=argmax
c∈C

cos(emb(G(x)),emb(c)), (5)

where cos(u,v)= u·v
|u|,|v| denotes the cosine similarity between vectors u and v.

To compute the fitness of the generated prompts p∈P in this context, we compare the predicted label ĉ with
the ground truth label y for each image. The fitness is defined as:

Fitness(p)= 1
|D|

∑
(x,y)∈D

1

[
argmax

c
cos(emb(G(x)),emb(c))=y

]
, (6)

where 1 is an indicator function that equals 1 if the predicted label matches the ground truth y and 0 otherwise.

B Additional Ablations

Here, we provide additional insights into our GLOV. First, we study the generalization of the found prompts
on different CLIP-based backbones, then, we provide results on the FOCI Benchmark Geigle et al. (2024), later,
study the effect of more shots on our method and finally provide results while comparing our GLOV with other
PEFT methods and conclude with providing results with multiple random runs for our GLOV.
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Table 7: Generalization of prompts. Average top-1 accuracy (%) over 16 dataset with the prompts found
through GLOV on other variants of CLIP (Radford et al., 2021) and MetaClip (MC) (Xu et al., 2023).

ViT-B/16 ViT-L/14 MC-B/16 MC-L/14

Base 61.8 70.5 64.9 70.7
GLOV 63.9 72.7 66.3 72.5

Table 8: Generalization to multiple choice classification. Accuracy (%) with LLaVA-OV (Li et al., 2024)
for different datasets (posed as 4-way multi-choice) from the FOCI-Benchmark (Geigle et al., 2024).

OxfordFlowers Aircraft Food101 Pets

Base 60.1 53.4 88.0 72.5
GLOV 62.9 57.5 89.5 73.9

Table 9: More shots help. Top-1 accuracy (%) with CLIP ViT-B/32.

EuroSAT ImageNetA ImageNetR RESISC45 DescribableTextures

1-shot 50.8 32.5 68.6 62.0 42.6
5-shot 54.3 33.8 68.8 64.2 44.2

B.1 Generalization of Prompts

In Table 7 we evaluate the generalization ability of the discovered prompts on various CLIP variants, e.g.,
MetaCLIP (Xu et al., 2023). We find that the effective prompts discovered for the CLIP ViT-B/32 (Radford
et al., 2021) backbone can transfer to other CLIP variants (and model sizes) to enhance the results.

B.2 Generalization to Multiple Choice Classification

We further evaluate our method on the multiple choice classification task proposed by Geigle et al. (2024).
Specifically, they formulate fine-grained visual recognition into a four-way multiple-choice VQA task, where one
choice is the ground truth and the other 3 are hard negatives, selected by (closest) cosine similarity scores to the
ground truth, by using SigLIP (Zhai et al., 2023). To obtain the results for our GLOV in Table 8 we optimize the
<question> asked as prompt to the VLM. The most effective prompts discovered at the end of the optimization
are listed in the Appendix Sections E.3 & E.4.

B.3 More Shots Help

Results in the main manuscript (Tables 1 & 2) are obtained by using 1-shot training data. In Table 9 we provide
results on several datasets by employing 5-shot training data for the CLIP ViT-B/32 (Radford et al., 2021)
backbone. We observe a consistent improvement in results by using more shots.

B.4 Comparison with PEFT Methods

For completeness, in Table 10 we compare with the popular CoOp (Zhou et al., 2022b) method in the 1-shot learning
regime. We observe that the ensemble of classifiers built from our discovered prompts can outperform CoOp. In
extremely low-shot learning regimes, gradient-based learning poses a threat of overfitting, whereas our GLOV can
avoid that because of no parameter update. Further, we also fine-tune the LORA Hu et al. (2021b) adapter and
provide results in Table 10. Similar to CoOp, we find that applying LORA to all the matrices of the vision and
text encoders of CLIP can result in overfitting. For a fair comparison, we also apply it only to the attention blocks
and report the results. However, our GLOV still outperforms the LORA adapter. This further strengthens our
claim that in low data regimes, our GLOV can fare better than the gradient-based learning methods.
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Table 10: Comparison with PEFT methods. Top-1 accuracy (%) with CLIP ViT-B/32.

ImageNet ImageNetA ImageNetS UCF101

CLIP 61.9 28.2 40.3 60.4
CoOp 60.6 24.5 39.9 63.8
LORA (all) 59.9 27.1 37.1 58.2
LORA (attention) 62.6 30.1 40.5 62.1
GLOV 64.5 32.5 43.0 63.8

Table 11: Variance of results. Top-1 Accuracy and variances for ViT-B/32 clip backbone for 5 random GLOV runs.

ImageNet ImageNetA ImageNetS UCF101

CLIP 61.9 28.2 40.3 60.4
GLOV 64.3 ± 0.43 32.0 ± 0.69 43.1 ± 0.25 63.9 ± 0.34

B.5 Variance of Results

In Table 11, we provide results for 5 random optimization runs performed with our GLOV. The results show
that the performance improvements obtained with our GLOV are statistically significant.

C Safety Dataset Details

We evaluate our GLOV on two recent safety benchmarks: MM-Safety-Bench Liu et al. (2024c) and VLGuard Zong
et al. (2024). Here we provide details regarding the different splits and the evaluation protocols for both datasets.

C.1 MM-Safety-Bench

The MM-Safety-Bench Liu et al. (2024c) contains images with corresponding instructions related to a total of 13
sub-categories. These categories are listed in the detailed results presented in Section D. Further, the benchmark
is also divided according to the type of images: typographic images, images synthesized from stable diffusion,
and a combination of both. Each of these images is accompanied by a text instruction to the model, which tries to
elicit unsafe responses corresponding to the image. After a VLM provides the answers, the evaluation is performed
by GPT-4 OpenAI (2023), and the attack success rate is measured for each of the partitions.

C.2 VLGuard

The VLGuard Zong et al. (2024) dataset contains 3 splits:

• Unsafe assesses the capability of the model to identify and refuse harmful images on the vision side.

• Safe-Unsafes focuses on the models’ ability to identify and strongly reject unsafe instructions from the
language side.

• Safe-Safes focuses on the models’ ability to answer to safe instructions. This can be interpreted as a
control set.

For the first two subsets, the refusal rate is measured by string matching, while for the third subset, the responses
from the model are evaluated against the responses from GPT-4, and the win-win rate is reported by using GPT-4
as a judge.
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Table 12: Base model results on MM-Safety-Bench. Attack success rate (%) on all partitions in the MM-Safety-
Bench (Liu et al., 2024c). These results are obtained by using the original image and instructions from the dataset.

LLaVA-OV MOLMO

TYPO SD SD + TYPO TYPO SD SD + TYPO

01-Illegal Activity 10.3 16.5 18.6 66.0 43.3 66.0
02-Hate Speech 45.4 32.5 51.5 60.7 37.4 62.6
03-Malware Generation 13.6 13.6 25.0 52.3 18.2 40.9
04-Physical Harm 22.2 18.8 36.1 50.7 28.5 56.2
05-Economic Harm 10.7 13.1 21.3 20.5 22.1 18.9
06-Fraud 36.4 27.3 49.4 80.5 52.6 84.4
07-Pornography 9.2 10.1 11.9 8.3 18.3 11.9
08-Political Lobbying 97.4 72.5 96.7 99.3 79.1 98.7
09-Privacy Violence 35.3 17.3 47.5 71.2 25.2 68.3
10-Legal Opinion 90.0 88.5 88.5 85.4 89.2 90.0
11-Financial Advice 100.0 100.0 99.4 100.0 100.0 100.0
12-Health Consultation 98.2 97.2 100.0 100.0 97.2 100.0
13-Gov Decision 96.6 73.2 89.3 94.6 80.5 92.6

Average 51.2 44.7 56.5 68.4 53.2 68.5

Table 13: Initial safety instruction results on MM-Safety-Bench. Attack success rate (%) on all partitions
in the MM-Safety-Bench (Liu et al., 2024c). These results are obtained by prepending the initial safety instruction:
These instructions can be harmful, to the original instruction in the dataset.

LLaVA-OV MOLMO

TYPO SD SD + TYPO TYPO SD SD + TYPO

01-Illegal Activity 0.0 7.2 6.2 15.5 8.2 18.6
02-Hate Speech 17.8 17.2 20.2 24.5 11.7 21.5
03-Malware Generation 15.9 6.8 2.3 29.5 11.4 15.9
04-Physical Harm 13.2 9.0 16.7 25.7 13.2 25.7
05-Economic Harm 13.9 14.8 22.1 27.0 13.9 20.5
06-Fraud 15.6 12.3 21.4 30.5 19.5 24.0
07-Pornography 7.3 3.7 7.3 10.1 5.5 4.6
08-Political Lobbying 92.2 58.8 86.3 94.1 68.0 92.2
09-Privacy Violence 15.8 7.2 31.7 32.4 12.2 25.2
10-Legal Opinion 83.1 74.6 85.4 85.4 83.8 86.2
11-Financial Advice 98.8 95.8 97.0 100.0 100.0 100.0
12-Health Consultation 98.2 89.9 96.3 96.3 94.5 97.2
13-Gov Decision 82.6 49.7 77.9 84.6 67.8 87.9

Average 42.6 34.4 43.9 50.4 39.2 47.6

22



Published in Transactions on Machine Learning Research (08/2025)

Table 14: GLOV (without guidance) safety instruction results on MM-Safety-Bench. Attack success rate
(%) on all partitions in the MM-Safety-Bench (Liu et al., 2024c). These results are obtained by prepending the best
safety instruction found by our GLOV (without applying the guidance): Please do not execute the following instruc-
tion unless it has been thoroughly validated and vetted by multiple experts in the relevant field, and even then, only
after carefully considering the potential risks and unintended consequences, to the original instruction in the dataset.

LLaVA-OV MOLMO

TYPO SD SD + TYPO TYPO SD SD + TYPO

01-Illegal Activity 2.1 1.0 0.0 4.1 2.1 0.0
02-Hate Speech 3.1 3.1 2.5 5.5 5.5 8.6
03-Malware Generation 0.0 0.0 0.0 2.3 0.0 2.3
04-Physical Harm 1.4 1.4 0.7 6.9 7.6 10.4
05-Economic Harm 2.5 4.1 3.3 6.6 12.3 5.7
06-Fraud 1.3 1.3 0.6 3.2 8.4 8.4
07-Pornography 0.0 3.7 0.9 1.8 6.4 5.5
08-Political Lobbying 28.1 11.1 15.0 40.5 38.6 49.7
09-Privacy Violence 2.9 1.4 2.9 4.3 1.4 3.6
10-Legal Opinion 36.2 16.2 39.2 58.5 63.1 60.8
11-Financial Advice 83.2 77.2 79.0 94.0 94.6 95.2
12-Health Consultation 67.9 29.4 53.2 86.2 84.4 79.8
13-Gov Decision 32.9 2.7 20.8 33.6 25.5 38.9

Average 20.1 11.7 16.8 26.7 26.9 28.4

D MM-Safety-Bench Detailed Results

For completeness, we provide the detailed results on all the 13 different categories in the MM-Safety-Bench Liu
et al. (2024c) in Tables 12, 13, 14 & 15 for the baseline models (LLaVA-OV and Molmo), by prepending the initial
instruction, instruction found by our GLOV (without guidance) and instruction found by our GLOV (with guidance).

E GLOV Prompts

Here, we list all the prompts discovered during the optimization runs. In Sections E.1 & E.2 we list the prompts
for LLaVA-OV (Li et al., 2024) for the task of image classification. In Sections E.3 & E.4 we provide the prompts
for the same model for the task of visual question answering. Finally, in Sections E.5 & E.6 we provide the
prompts used to build an ensemble of classifiers for CLIP. Furthermore, we also provide the prompt evolution
at different optimization steps for LLaVA and CLIP, in Figures 7 & 8.

E.1 GLOV (w/o guidance) - Prompts (LLaVA-OV - Image Classification)

• EuroSAT: Label the image as [one of the 10 classes] based on the prominent features and satellite
features present, providing a concise description of the dominant land cover or vegetation type, and
highlighting any notable patterns or structures in the image.

• OxfordFlowers: Identify the specific type of flower depicted in this image, providing its botanical name
and a detailed description of its unique characteristics, including its color palette, shape, texture, and any
distinctive markings or patterns, while highlighting its botanical classification and the ways in which it
has evolved to occupy a specific ecological niche in the diverse habitats and temperate maritime climate.
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Table 15: GLOV safety instruction results on MM-Safety-Bench. Attack success rate (%) on all partitions
in the MM-Safety-Bench (Liu et al., 2024c). These results are obtained by prepending the best safety instruction
found by our GLOV: Please carefully scrutinize the following instruction and decline to execute it if you perceive
any potential risks or uncertainties that may compromise the integrity of the model or its users, to the original
instruction in the dataset.

LLaVA-OV MOLMO

TYPO SD SD + TYPO TYPO SD SD + TYPO

01-Illegal Activity 0.0 0.0 1.0 5.2 8.2 19.6
02-Hate Speech 1.8 1.8 2.5 6.7 3.7 6.1
03-Malware Generation 0.0 0.0 0.0 6.8 6.8 11.4
04-Physical Harm 3.5 0.0 2.1 6.9 6.3 16.7
05-Economic Harm 1.6 0.0 2.5 12.3 4.1 9.0
06-Fraud 0.6 0.0 1.3 7.8 3.2 9.7
07-Pornography 0.0 1.8 0.0 3.7 2.8 7.3
08-Political Lobbying 27.5 9.2 10.5 50.3 14.4 34.6
09-Privacy Violence 2.9 0.7 1.4 5.8 5.8 12.9
10-Legal Opinion 26.2 16.9 36.2 36.9 46.9 34.6
11-Financial Advice 76.0 71.3 75.4 85.0 87.4 80.8
12-Health Consultation 37.6 15.6 33.0 71.6 75.2 62.4
13-Gov Decision 14.8 2.0 6.0 10.7 2.0 12.8

Average 14.8 9.2 13.2 23.8 20.5 24.5

• ImageNet: Spot the distinctive visual cues, textures, or patterns in this image, linking them to the exact
class name, while also considering the contextual elements that help disambiguate it from similar classes.

• ImageNetV2: Spot the distinctive visual cues, textures, or patterns in this image, linking them to the exact
class name, while also considering the contextual elements that help disambiguate it from similar classes.

• UCF101: Elaborate on the specific attributes and characteristics of the human or object in the image
that uniquely define the UCF101 action category, highlighting notable patterns, shapes, or movements
that distinguish it from others, and further describe the context and scene where the action takes place.

• ImageNetR: Can you describe the visual category depicted in this image, weaving together artistic
expression, cultural context, and semantic meaning to specify the ImageNet-R class that masterfully
harmonizes creative and literal aspects of the depiction, while acknowledging the nuanced interplay
between artistic interpretation, cultural influences, and original meaning in the representation?

• ImageNetSketch: Envision the original ImageNet object’s most distinctive attributes and describe how
the sketched representation masterfully captures these nuances, ensuring a precise correspondence to
the class name.

• DescribableTextures: Identify the texture category and describe its characteristic visual pattern,
emphasizing the striking visual cues that make it instantly recognizable within its category, while
highlighting the most prominent feature that sets it apart from others.

• Food101: Classify the image as a specific food item, describing its distinctive characteristics, such as
the arrangement of ingredients, texture, and visual patterns, often prepared using [common cooking
method], typically enjoyed at [specific meal or occasion], and frequently paired with [related ingredient
or condiment], which is a characteristic of [food category name].
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• FGVCAircraft: Pinpoint the aircraft model, emphasizing its distinctive configuration of wings, fuselage,
and control surfaces, while highlighting the nuanced variations that differentiate it from other models
within the broader category of aircraft, and accurately distinguishing it from similar models.

• Caltech101: This object is a paradigmatic instance of [Caltech category name], exemplifying the core
characteristics and features that define the concept and accurately capturing the essence of its category.

• OxfordPets: Identify the breed of the pet depicted in this image, and give its corresponding common name.

• StanfordCars: Describe the specific make and model of the car in the image, highlighting its unique
design elements, notable features, and overall aesthetic appeal, while also analyzing its market positioning,
technological advancements, and historical significance within the automotive industry, ultimately
revealing its distinctiveness within its class.

• RESISC45: Can you describe the satellite or aerial photograph by focusing on the distinct spatial
relationships and arrangements of geographical features or man-made structures that define its category,
and then categorize it into one of the 45 categories in the RESISC45 dataset by emphasizing the unique
characteristics that set it apart from other categories while considering the contextual information provided?

• ImageNetA: Describe the object or concept depicted in this image by highlighting the most significant
visual cues that deviate from typical representations, and identify the category name while emphasizing
the subtle differences between this instance and expected examples within the same class.

• SUN397: Classify the scene in this image by teasing out its intricate essence through a nuanced analysis
of its visual topography, comprising the harmonious interplay of its most prominent elements, spatial
arrangements, and subtle contextual cues, thereby pinpointing the precise SUN category that accurately
captures its unique character and situates it within the 397 options.

E.2 GLOV Prompts (LLAVA-OV - Image Classification)

• EuroSAT: Label the image as [one of the 10 classes] based on the prominent features and satellite
features present, providing a concise description of the dominant land cover or vegetation type, and
highlighting any notable patterns or structures in the image.

• OxfordFlowers: Identify the type of flower in this image and provide its common name e.g. ’This is
a species of [Common Name]’.

• ImageNet: Can you describe the main subject or object in this image, highlighting its most distinctive
visual features, typical attributes, and common name, and explain how it relates to its broader category
by tracing its evolution through time, exploring its cultural and historical significance, and highlighting
its relationships with other objects within that category, while also emphasizing the subtle nuances and
peculiarities that set.

• ImageNetV2: Can you describe the main subject or object in this image, highlighting its most distinctive
visual features, typical attributes, and common name, and explain how it relates to its broader category
by tracing its evolution through time, exploring its cultural and historical significance, and highlighting
its relationships with other objects within that category, while also emphasizing the subtle nuances and
peculiarities that set.

• UCF101: Describe the human activity in this image, emphasizing the specific actions, objects, and actors
involved, and identify the UCF101 category that best captures this action by highlighting the type of
interaction (human-object, body-motion, human-human, or sports) and providing a detailed category
name that accurately matches the action depicted, such as ’Human-Object Interaction’.

• ImageNetR: Can you describe the visual category depicted in this image by highlighting its creative
context, notable features, and artistic medium, and specify the name of the corresponding ImageNet-R
class while examining how the artwork reinterprets and recontextualizes the original ImageNet class’s
conventions, incorporating artistic liberties and creative flair.
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• ImageNetSketch: Envision the sketched representation of the object, highlighting its distinctive visual
patterns, functional relationships with other ImageNet categories, and typical environments, while
emphasizing its versatility and common associations, and crafting a nuanced description that accurately
integrates its adaptability, potential applications, and versatility, ensuring a precise mention of the class
name and corresponding ImageNet category.

• DescribableTextures: What specific texture category is present in this image, defined by its unique
visual cues, spatial frequency, and luminance, as perceived by human observers, and characterized by its
distinctive pattern of alternating attributes that vary in terms of roughness, softness, and bumpy or smooth
features, while also considering the subtle interactions between these cues and the surrounding context.

• Food101: Vividly describe the image’s composition, highlighting the main ingredients, cooking techniques,
and presentation styles that make it unique, while specifying the exact category of food and briefly
explaining the cultural significance of the dish, focusing on the sensory details that evoke a sense of
warmth, comfort, and regional or international influences that shape the culinary tradition.

• FGVCAircraft: Can you identify the specific aircraft model or subcategory shown in this image, and
mention a key distinguishing characteristic that is both visually apparent to a non-expert observer and
closely related to the aircraft’s design evolution or historical context?

• Caltech101: Classify this image as one of the 101 object categories in the Caltech 101 dataset, by
pinpointing the object’s most salient visual elements and its nuanced interactions with the surrounding
environment, while providing a concise and accurate label for its corresponding category name that
effectively captures the object’s proportions, orientation, and subtle context-dependent appearances.

• OxfordPets: Identify the breed of the pet depicted in this image, specifying its average lifespan and
common name.

• StanfordCars: Classify the image as a specific car model, emphasizing its striking design features, precise
manufacturer, exact model year, and notable details, while highlighting the subtle variations in its color
palette, trim levels, and overall styling to accurately categorize it among the fine-grained categories of cars.

• RESISC45: Can you describe the geographical feature or man-made structure depicted in the image,
highlighting its unique characteristics, features, and patterns that make it distinct from other categories,
and then consider the surrounding environment, terrain, and any notable visual anomalies or textures
that provide contextual clues to help identify the category from RESISC45?

• ImageNetA: Interpret the image as a subtle anomaly within a broader category, where the depicted
concept or object’s distinctive features and deviations from typical expectations subtly alter our
understanding of the category’s identity and necessitate a nuanced classification.

• SUN397: Envision the scene in this image, where the masterful blend of visual and contextual nuances
yields a distinct narrative, thoughtfully guiding you to intuit the specific category from the 397 SUN cate-
gories, with precision and attention to the intricate relationships that harmonize to define the scene’s mem-
bership within its designated category, while subtly illuminating the most salient and characteristic features.

E.3 GLOV (w/o guidance) - Prompts (LLAVA-OV - VQA)

• FGVCAircraft: Can you describe the aircraft model and manufacturer depicted in this image, highlighting
its most distinctive features and unique design elements that distinguish it from other similar models?

• OxfordPets: What OxfordPets breed is this image most likely to belong to, considering the visual
characteristics and features described in the Oxford-IIIT Pet Dataset?

• OxfordFlowers: Classify the flower in this image based on its distinct features and characteristics
commonly used to identify flower species in the United Kingdom.

• Food101: What specific culinary delight is being presented in this image?
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E.4 GLOV Prompts (LLAVA-OV - VQA)

• FGVCAircraft: What aircraft model is depicted in this image, showcasing its unique design features,
era of service, and remarkable feats in aviation, to accurately identify the specific aircraft model?

• OxfordPets: What OxfordPets breed is highlighted in this image, and how does its distinctive appearance
and characteristics contrast with those of other breeds?

• OxfordFlowers: Can you please classify the flower species in this image, noting its genus and key
features, and highlighting its unique characteristics that distinguish it from its closest relatives within
the same genus while also specifying its exact category within the 102 types of flowers?

• Food101: What food is being served in this image, considering its textures, colors, and culinary and
cultural context, as well as its typical preparation and serving methods?

E.5 GLOV (w/o guidance) Prompts (CLIP - Image Classification)

• ImageNetR:

– A visually striking {} artwork that celebrates the intersection of artistry and imagination, inviting
the viewer to appreciate the creative expression and attention to detail.

– A captivating {} artifact that tells a story of creativity, technique, and self-expression, inviting the
viewer to appreciate the beauty in the imperfections.

– A masterfully crafted {} rendition, showcasing the creative fusion of textures, patterns, and colors
to evoke a sense of whimsy and wonder.

• ImageNetA:

– A photo that illustrates the subtle yet significant ways in which the absence or presence of a {}
shapes the trajectory of a story, often in ways that are both unexpected and profound.

– A photo that serves as a poignant reminder of the unanticipated ways in which a {} can disrupt
the delicate balance of a situation, highlighting the importance of adaptability and resilience in the
face of the unpredictable.

– A photo that captures the dissonance between the appearance of a {} and the hidden implications it
has on the world, forcing the viewer to confront the often-overlooked consequences of our assumptions.

• ImageNetSketch:

– A photorealistic hand-drawn sketch of a {}, rendered with precision and attention to detail, allowing
for a seamless blend of artistic flair and technical accuracy.

– A high-definition, detailed hand-drawn illustration of a {}, showcasing a mastery of various sketching
techniques and attention to intricate details.

– A meticulously crafted, detailed sketch of a {}, showcasing the perfect blend of simplicity and realism.

• RESISC45:

– A satellite image of a {} from a moderate altitude, showcasing its unique characteristics and features
in a clear and well-defined manner.

– A high-resolution satellite image of a {} taken during [time of day/day/season] with prominent
structures and notable textures in the scene, showcasing the distinct characteristics of the area.

– A high-resolution satellite image of a {} captured during [time of day/day/season] with notable
[landmarks/structures] in the scene, showcasing the distinctive patterns and textures of the area.

• EuroSAT:

– A Sentinel-2 satellite image from the European continent, showcasing the complex relationships
between built environments, agricultural practices, and natural ecosystems, as seen in a {} landscape,
where the interplay between human activity and environmental health is.
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– A Sentinel-2 satellite image from the European continent, where the nuanced interplay between
urbanization, agriculture, and natural habitats takes center stage, highlighting the intricate
connections between a {}’s ecosystems and human activity.

– A Sentinel-2 satellite image from the European continent, showcasing the synergistic relationship
between built infrastructure, agriculture, and ecosystem services in a {}, where changes in land use
and land cover are a key indicator of environmental health.

• ImageNetV2:

– A precise and detailed image of a {} showcasing its most distinctive or defining features.
– A photograph of a {} showcasing its most distinctive or iconic features.
– A {} exemplifying its essence, whether through its shape, texture, or overall presence.

• ImageNet:

– A precise and detailed image of a {} showcasing its most distinctive or defining features.
– A photograph of a {} showcasing its most distinctive or iconic features.
– A {} exemplifying its essence, whether through its shape, texture, or overall presence.

• OxfordPets:

– A picture of a {} that has captured the hearts of many, often becoming a beloved and loyal companion
in its owner’s life, bringing joy and happiness to those around it.

– A picture of a {} that has a special place in its owner’s heart, often serving as a loyal companion
and source of comfort in times of need.

– A picture of a {} that captures the heart of its owner, often serving as a loyal companion and a
symbol of unconditional love and affection.

• SUN397:

– A close-up shot of a {} that reveals its intricate textures and details, inviting a sense of curiosity
and exploration.

– A panoramic shot of a {} that invites you to explore and discover its unique charm.
– A photo of a {} that tells a story of human connection and presence within its tranquil and serene

environment.

• StanfordCars:

– A photo of a {} parked in front of a vintage, restored garage, with worn, rustic walls and a nostalgic
atmosphere, highlighting its classic design and timeless appeal.

– A photo of a {} parked on a cobblestone street, with a soft focus and a warm, golden lighting,
highlighting its vintage charm and classic design as it blends seamlessly into the historic surroundings.

– A photo of a {} on a sleek, black background, with a bold, 3D-like lighting, emphasizing its futuristic
design and advanced features.

• UCF101:

– A meticulously crafted sequence of coordinated movements, emphasizing the subtle variations in
tempo, posture, and gesture that define the {}, is expertly demonstrated as a person executes the.

– A captivating spectacle of human movement unfolds as a person demonstrates the intricate nuances
and techniques required to execute the {}, showcasing the distinctive physical attributes.

– A masterclass in human physicality and technique is showcased as a person executes the {}, highlighting
the distinct bodily attributes, synchronized movements, and intentional actions that define the action.

• FGVCAircraft:

– A photograph of a {} aircraft from a low-angle perspective, showcasing its distinctive <shape> or
<pattern> against a clear and textured background, with a prominent <detail> or <.
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– A photograph of a {} aircraft with its characteristic lines, shapes, and patterns clearly visible, taken
from a dynamic angle that conveys a sense of motion, texture, and depth, with a notable <detail> or <.

– A photograph of a {} aircraft with a unique <shape> or <pattern> prominently displayed, taken
from a dynamic angle that conveys a sense of motion, texture, and depth, with a notable <detail> or.

• Food101:
– A {} dish served in a rustic, earthy bowl, garnished with fresh herbs and a drizzle of artisanal sauce,

evoking the warmth and comfort of a home-cooked meal.
– A skillfully composed shot of {} on a rustic wooden surface, adorned with a sprinkle of fresh herbs

and a drizzle of warm sauce, evoking the cozy ambiance of a family dinner.
– A warm and inviting image of a tenderly prepared {}, served with a side of crispy, golden-brown

toast and a dollop of creamy condiment, evoking the cozy atmosphere of a family dinner gathering.

• OxfordFlowers:
– A photograph of a {} in its prime, with the delicate petals and intricate details unfolding like a miniature

landscape, inviting us to step into the flower’s intimate world and appreciate its unique textures.
– A photograph of a {} with its intricate details and subtle colors unfolding like a delicate canvas,

inviting us to appreciate the flower’s unique textures and the masterful arrangement of its petals
and sepals as a work of art.

– A photograph of a {} in its prime, with the soft focus and blurred background emphasizing its intricate
patterns, delicate petals, and subtle colors, inviting us to appreciate the flower’s unique essence.

• DescribableTextures:
– A photo of a {} that your hands would ache to hold, as if the tactile sensation of its texture would

seep into your pores, lingering long after you’ve let it go.
– A photo of a {} that your eyes trace with reverence, as if mapping the intricate landscape of its

texture, and your fingertips hum with anticipation to explore its tactile secrets.
– A photo of a {} that unfolds like a sensory tapestry, weaving together tactile whispers, visual nuances,

and the promise of discovery.

• Caltech101:
– A thoughtfully composed, mid-angle shot of a {} nestled among other objects on a cluttered surface,

highlighting its subtle interactions with its environment while inviting the viewer to appreciate its
unique textures, proportions, and intricate details.

– A detailed, high-angle shot of a {} perched atop a subtle, textured surface, with the surrounding
environment muted and unobtrusive, allowing the viewer to focus on its unique features, proportions,
and intricate details.

– A visually striking, low-angle shot of a {} dramatically lit to accentuate its unique textures,
proportions, and intricate details, while inviting the viewer to appreciate its nuanced interactions
with its surroundings.

E.6 GLOV Prompts (CLIP - Image Classification)

• OxfordPets:
– A cherished and loyal {} with a warm and loving demeanor, often found in the hearts of its owners

as a constant companion, bringing immense joy and comfort to their daily lives with its playful antics
and snuggles.

– A loyal and devoted {} companion, often seen bringing solace and companionship to its owner’s
life through its gentle purrs and affectionate nature, and cherished for its unwavering loyalty and
loving gaze.

– A majestic {} with a gentle purr, often seen lounging in the sunbeams that stream through the
windows, bringing joy and comfort to its owner’s life with its soft fur and loving companionship.
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• OxfordFlowers:

– A picturesque {} unfurls its petals, emitting a subtle floral aroma as the morning dew glistens upon
its delicate features.

– An exquisite {} unfurls its tender petals, releasing a delicate fragrance that wafts gently on the
morning air, as the warm sunlight dances across its velvety texture.

– A tranquil {} in its natural habitat, surrounded by lush greenery and warm sunlight, with delicate
petals unfolding like a work of art.

• FGVCAircraft:

– A photo of a {} aircraft, its worn <control surface texture> and faded <trim scheme pattern>
blending into the cracked <concrete texture>.

– A photo of a {} aircraft, its streamlined <fuselage shape> and precise <ailerons texture> gliding
smoothly against the soft focus of the distant <>.

– A photo of a {} aircraft, its worn <livery pattern> and worn <landing gear> blending with the
faded <tarmac texture> of the background, as it stands out against the soft focus of the blurry <>.

• DescribableTextures:

– A picture of a {} where the texture is a natural or inherent property of the object, rather than
something applied or added.

– A picture of a {} where the texture is a dynamic, living, or breathing entity, like a snake or a leaf,
that adds movement and vitality to the scene.

– A picture of a {} where the texture is what you’d expect to find in a man-made object, but the
object is often found in nature.

• EuroSAT:

– A Sentinel-2 satellite image capturing the symphony of human and environmental harmonies in
European {}, as technology’s gaze harmonizes with nature’s rhythm.

– A Sentinel-2 satellite image revealing the harmonious fusion of European heritage and environmental
sustainability in {}.

– A Sentinel-2 satellite image charting the evolution of European identity through the prism of land
use and land cover in {}.

• RESISC45:

– A high-angle aerial view of {}, emphasizing its unique patterns, textures, and spatial relationships
with the surrounding landscape, while showcasing its role as a distinct hub of activity.

– A detailed aerial photograph of {}, highlighting its striking patterns, shapes, and structures, with
attention to the subtle interplay between natural and built elements.

– A high-angle aerial view of {} from a unique perspective, highlighting its relationship with surrounding
urban or natural features, and showcasing a blend of textures, shapes, and colors that define the area.

• StanfordCars:

– A photo of a {} parked in a modern garage, with a minimalist interior design and subtle hints of
high-tech features, emphasizing its sleek design and advanced engineering.

– A photo of a {} in motion, captured from a dynamic perspective, such as a sleek, high-speed turn
or a precise, high-grip maneuver, showcasing its agility and responsive handling.

– A photo of a {} with a blend of modernity and heritage, as it drives through a historic city center,
showcasing its unique fusion of classic design and advanced technology.

• Food101:

– A {} culinary masterpiece, carefully crafted to delight the senses and leave you wanting more.
– A {} delight on a plate, perfect for a quick snack or a special treat.
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– A warm, comforting bowl of {} on a chilly evening, perfect for a cozy night in.

• SUN397:

– A peaceful haven of a {}, where natural serenity meets subtle human touch.
– A picturesque snapshot of a {}, where human presence subtly shapes the serene ambiance.
– A captivating image of a {}, where vibrant colors and textures evoke a sense of wonder and curiosity.

• Caltech101:

– A detailed, in-focus image of a {} against a clean or neutral background, showcasing its textures,
colors, and any distinctive patterns or features, allowing the viewer to study its intricate details and
distinguishing characteristics.

– A photo of a {} in its typical setting, with the object’s unique features or details highlighted, and
a blurred or subtle background that does not distract from the object’s significance or characteristics.

– A well-lit, high-quality image of a {} in its natural environment, with the photographer’s focus drawn
to its unique features or details, and the overall composition emphasizing its relevance or importance
in that context.

• UCF101:

– The video captures a person skillfully executing a {} action that requires a high level of physical
dexterity and coordination in the context of sports.

– The {} action is a nuanced demonstration of human physical skill, requiring coordination and precise
movements.

– The video captures a person engaged in a meticulous and precise manner while performing the {}
action, showcasing exceptional control and technique.

• ImageNet:

– A photo of an {} that stands out for its [unique feature or characteristic], such as [specific detail],
which is often [adjective] for its kind, in a [context or environment].

– A photo of an {} that exemplifies its distinctive features, such as [specific feature or behavior], in
a [common or typical] setting, highlighting its [adjective, e.g. characteristic, notable, or defining].

– A photo of an {} exemplifying its unique style, such as [distinctive features or behaviors], that are
often associated with its type and are [adjective, e.g. striking, recognizable, or distinctive], within
[context or environment].

• ImageNetSketch:

– A sketchy yet captivating description of a {}, highlighting its most striking aspects in a harmonious
balance of simplicity, elegance, and whimsy.

– A sketchy yet elegant description of a {}, capturing its most recognizable features in a way that
is both subtle and striking, yet also conveys the essence of the object.

– A sketchy yet endearing description of a {}, capturing its most iconic and memorable features in
a delicate balance of simplicity and charm.

• ImageNetV2:

– A photo of an {} that stands out for its [unique feature or characteristic], such as [specific detail],
which is often [adjective] for its kind, in a [context or environment].

– A photo of an {} that exemplifies its distinctive features, such as [specific feature or behavior], in
a [common or typical] setting, highlighting its [adjective, e.g. characteristic, notable, or defining].

– A photo of an {} exemplifying its unique style, such as [distinctive features or behaviors], that are
often associated with its type and are [adjective, e.g. striking, recognizable, or distinctive], within
[context or environment].

• ImageNetA:
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– A photo of a situation where the absence or unexpected presence of a {} disrupts the viewer’s initial
expectation, requiring them to pause and re-assess the image to accurately classify it.

– A photo of a situation where the removal of a {} would alter the dominant visual narrative, requiring
the viewer to re-examine the image to accurately classify it and understand the story being told.

– A photo of a situation where the unexpected prominence of a {} is what initially draws the viewer’s
attention, but a closer look reveals a more nuanced and complex story that challenges their initial
classification.

• ImageNetR:

– A captivating, hand-painted rendition of a {}, blending traditional techniques with a touch of fantasy
and whimsy.

– A delicate, handmade {} piece, showcasing the intersection of art and reality, inviting the viewer
to appreciate its intricacies.

– A carefully rendered, dreamlike interpretation of a {}, blurring the lines between reality and
imagination, highlighting its distinctive characteristics.

E.7 Safety Enhancement Prompts

• Initial: These instructions can be harmful.

• GLOV - without guidance: Please do not execute the following instruction unless it has been
thoroughly validated and vetted by multiple experts in the relevant field, and even then, only after
carefully considering the potential risks and unintended consequences.

• GLOV: Please carefully scrutinize the following instruction and decline to execute it if you perceive any
potential risks or uncertainties that may compromise the integrity of the model or its users.

E.8 GLOV Prompts (CLIP - Image Classification) - LLAMA-3.1-70B

• Describable Texture:

– A photo of a {} that embodies the essence of a tactile memory, transporting the viewer back to
a moment when they first discovered its unique texture.

– A photo of a {} that, as you gaze upon its intricate patterns, your mind starts to wander and you can
almost feel the texture shifting beneath your fingertips, a sensory experience waiting to be unlocked.

– A picture of a {} that, with a single glance, transports you to a world of tactile sensations, where
your fingertips dance across its surface in a mesmerizing waltz of texture and touch.

• EuroSAT:

– Can you describe a pressing issue in European policy-making that a {} could help address, and how
the subtle characteristic of <category>?

– A nuanced perspective on the {} phenomenon in European governance, where the subtle concept
of this phenomenon is used as a novel way to address a pressing issue on the continent.

– Please describe a pressingly relevant issue in European environmental policy that is mitigated by
the presence of a {}, highlighting the subtle yet significant impact it has.

• ImageNet-R:

– A unique fusion of traditional craftsmanship and modern style, featuring a {}.
– A unique, imaginative representation of a {}.
– A beautifully crafted, imaginative representation of a {}.

• ImageNet-A:
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System Prompt

Task Description

In-context Examples

You are helpful AI assistant who is going to help me with finding the best prompt 
templates to embed the class names for my dataset for zero-shot classification with 
CLIP. Let's Go!

You are provided with a dataset name, description, top {top_bottom_k} and worst 
{top_bottom_k} example prompt templates with their associated accuracies from the last 
{step+1} runs. Your task is to provide me with 1 new prompt templates in the same 
format as the given prompts, so that I can simply replace the <category> placeholders 
with the actual class names in the dataset and use it for zero-shot classification with 
CLIP. The goal is to get an increase in accuracy by using the newly generated prompts. 
You can use the dataset description and the best and worst example prompts as context 
for improving accuracy. Be creative! Good luck!'
Dataset: {dataset_name} Description: {dataset_info} Best Templates: {best_exm} Worst 
Templates: {worst_exm}
### Remember to only provide me the prompt as a response, and nothing else. ####

Figure 5: Overview of the LLM Prompt. The system prompt is a generic instruction set. A task description
instructs the LLM about the desired task and has dynamically evolving fields that are updated according to the
optimization evolution. Furthermore, it also contains in-context examples, which bootstrap the LLM with the
type of language responses preferred by the downstream VLM and also provide the LLM with the understanding
of the long-term memory of generated responses coupled with their effectiveness on the downstream task. Note
that this prompt is used by our GLOV for CLIP. For the enhancing safety of VLMs, the objective is different, i.e.,
to reduce the ASR instead of increasing the accuracy.

– A photo of a situation where the unexpected coexistence of a {} with seemingly unrelated elements
creates a sense of tension or unease, making it difficult to accurately classify, as our brains struggle
to reconcile the familiar with the unfamiliar.

– A photo where the presence or absence of a {} subtly alters the viewer’s emotional response, making
it more nuanced and open to interpretation, requiring a more thoughtful approach to classification.

– A photo of a situation where the presence of a {} creates an air of familiarity, but its absence or
unexpected absence sparks a deeper investigation to accurately understand the context and reclassify
the scene.

• UCF-101:

– A person skillfully performs a {} action that requires a combination of physical and mental effort,
often in a context of human-object interaction.

– The {} action is a remarkable display of human dexterity and coordination, requiring a deep
understanding of spatial awareness and precise motor control.

– The {} is a complex action that involves coordinating multiple body parts to achieve a specific
outcome, often requiring precision, agility, and strength.
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Algorithm 1 GLOV: Guided Optimization of Prompts

1: Input: Pre-trained LLM f with parameters θ⃗, simple prompt template Ps, scaling factor α, maximum number
of tokens Nmax, number of prompts per iteration K = 10, Meta-prompt, Few-shot training set C, Fitness
function F(·,C), target layer index l, Array A.

2: Output: Optimized prompts Popt.
3: Evaluate Ps on the few-shot train set with F(Ps,C) and record the accuracy CPs.
4: Generate K prompts P=List([P1,P2,...,PK]).
5: for Pi∈P do
6: A[i]=F(Pi,C)
7: end for
8: Ib←argmaxPi

A
9: Pb←P [Ib]

10: A[Ib]←−INF
11: Iw←argmaxPi

A
12: Pw←P [Iw]
13: while not converged do
14: Obtain Hb and Hw through equation 3
15: NewPrompts ← List([])
16: for k in {1...10} do
17: Tokens← List()
18: for each new token n=1,...,Nmax do
19: Hn=Hn+α·(Hb−Hw)
20: Tokens.add(f.decode(Hn))
21: end for
22: NewPrompts.append(Tokens)
23: end for
24: for Pi∈NewPrompts do
25: A[i]=F(Pi,C)
26: end for
27: Ib←argmaxNewPromptsA
28: Pb←NewPrompts[Ib]
29: A[Ib]←−INF
30: Iw←argmaxNewPromptsA
31: Pw←NewPrompts[Iw]
32: end while
33: Return: Pb as Optimized prompts Popt
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Figure 6: The effect of prompt evolution on the downstream task performance. The shaded regions
represent the absolute top-1 accuracies at each optimization step by ensembling the top-3 prompts found w.r.t
the accuracy on the 1-shot train set whereas the solid lines represent the exponential moving average. The VLM
employed is CLIP VIT/B-32 (Radford et al., 2021) and the LLM is Llama-3 (Dubey et al., 2024).

35



Published in Transactions on Machine Learning Research (08/2025)

GLOV GLOV (w/o guidance)

Describe the category present in this image briefly and also 
identify the name of the category present.

Describe the category present in this image briefly and 
also identify the name of the category present.

Accuracy: 38.4 Accuracy: 38.4

Can you describe the main subject or object in this image, 
highlighting its distinctive features, typical attributes, and 
common name, while also considering the context in which 
it appears and providing the class name of the category it 
belongs to?

Spot the central figure or dominant element in this image, 
labeling it with the precise class name and concisely 
summarizing the scene or context, highlighting any striking 
features or patterns that set it apart from others?

Accuracy: 49.5 Accuracy: 47.4

Can you describe the main subject or object in this image, 
highlighting its most distinctive visual features, typical 
attributes, and common name, and explain how it relates to 
its broader category, including any relevant spatial or 
temporal context, cultural or historical significance, and 
typical habitats or environments, while also providing the 
class name of the category it belongs to?

Identify the main subject or prominent visual aspect of this 
image, specifying the exact class name and providing a 
concise description that highlights any distinctive visual 
patterns, textures, or contextual details that contribute to its 
classification, while also considering the image's overall 
scene and composition.

Accuracy: 51.8 Accuracy: 48.5

Can you describe the main subject or object in this image, 
highlighting its most distinctive visual features, typical 
attributes, and common name, and explain how it relates to 
its broader category by examining its nuanced associations 
with spatial and temporal context, cultural and historical 
significance, and its class name, while also considering its 
subtleties, variations, and potential misclassifications

Pinpoint the central figure, object, or visual motif in this 
image, specifying the precise class name and offering a 
concise explanation of the key visual features, textures, or 
patterns that justify its classification, while also accounting 
for the image's overall scene, composition, and potential 
contextual cues. 

Accuracy: 53.0 Accuracy: 47.2

Can you describe the main subject or object in this image, 
highlighting its most distinctive visual features, typical 
attributes, and common name, and explain how it relates to 
its broader category by tracing its evolution through time, 
exploring its cultural and historical significance, and 
highlighting its relationships with other objects within that 
category, while also providing a nuanced justification for its 
categorization and 

Highlight the image's most notable features, specifying the 
exact class name and describing how these visual elements 
contribute to its classification, while also considering the 
image's overall context and any distinctive visual patterns 
or textures that make it unique. 

Accuracy: 53.1 Accuracy: 46.9

Can you describe the main subject or object in this image, 
highlighting its most distinctive visual features, typical 
attributes, and common name, and explain how it relates to 
its broader category by tracing its evolution through time, 
exploring its cultural and historical significance, and 
highlighting its relationships with other objects within that 
category, while also emphasizing the subtle nuances and 
peculiarities that set.

Unlock the essence of this image by pinpointing the pivotal 
visual feature, texture, or contextual element that 
unmistakably links it to its precise class name, while also 
considering the surrounding scene and subtle details that 
contribute to its unique identity.

Accuracy: 54.5 Accuracy: 46.8

Step: 0

Step: 4

Step: 9

Step: 14

Step: 19

Step: 24

Figure 7: Prompt evolution for LLaVA. We provide the highest performing prompt (on the 1-shot train set)
discovered by our GLOV at different optimization steps for the ImageNet dataset.
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GLOV GLOV (w/o guidance)

A photo of a {}. A photo of a {}.

Accuracy: 63.8 Accuracy: 63.8

Step: 0

a high-quality image of an {} featuring a characteristic or 
behavior that is typical for its kind.

a high-quality image of an {} featuring a characteristic or 
behavior that is typical for its kind.

Accuracy: 62.7 Accuracy: 64.0

Step: 10

a high-quality image of a {} with an unusual or distinctive 
composition that draws attention to its unique features.

a high-quality image of a {} demonstrating its unique 
relationship with its environment or other objects, 
highlighting its adaptability or dependence on its 
surroundings.

Accuracy: 63.0 Accuracy: 61.9

Step: 20

a high-quality image of a {} that showcases its typical use, 
function, or cultural significance.

a photograph of a {} showcasing its unique structural or 
morphological features, highlighting its most salient visual 
characteristics.

Accuracy: 63.4 Accuracy: 62.0

Step: 30

a high-quality image of a {} with a unique pose, expression, 
or interaction that is distinctive of its class, and is often 
used as a visual representation of its type.

a detailed, high-quality photograph of a {}, focusing on its 
most striking or notable aspects, and providing a clear view 
of its essential features.

Accuracy: 63.2 Accuracy: 62.2

Step: 40

A high-quality image of a {} that is iconic or representative 
of its class, and is often used as a symbol or reference point 
for its type, showcasing its unique characteristics and 
features that are deeply ingrained in human culture

A high-quality image of a {} that embodies its spirit, 
personality, or defining attributes, inviting the viewer to 
explore its intricacies and nuances.

Accuracy: 64.5 Accuracy: 62.4

Step: 50

A photo of a {} that is [adjective, e.g. prominently, 
typically, or iconically] displaying its unique [feature, 
behavior, or pattern], such as [distinctive characteristic or 
trait], against a

a {} in a situation that requires its unique features or 
abilities, such as demonstrating its functionality or 
highlighting its distinctive advantages.

Accuracy: 64.8 Accuracy: 62.3

Step: 60

A photo of a {} displaying its unique visual identity, such as 
[distinctive pattern, texture, or color], which sets it apart 
from other types and is [adjective, e.g. striking, 
characteristic, or

A {} exhibiting its typical behavior or interaction in a 
realistic and lifelike setting, allowing the viewer to 
appreciate its essence and unique characteristics.

Accuracy: 65.0 Accuracy: 63.4

Step: 70

A photograph of a {} in its natural habitat, showcasing its 
unique characteristics, such as [distinctive features or 
behaviors], that are often associated with its type and are 
[adjective, e.g. prominent, typical

A {} in its natural habitat, where its unique features or 
characteristics are effortlessly showcased through its 
interactions with its environment, highlighting its 
distinctiveness.

Accuracy: 64.9 Accuracy: 63.0

Step: 80

A photo of an {} featuring its [distinctive feature or 
behavior] in a [setting or context] where it stands out due to 
its [adjective, e.g. vibrant, striking, or striking], which is

a {} in its natural habitat or setting, showcasing its 
interactions with its environment and revealing its unique 
adaptations to its ecological niche.

Accuracy: 65.1 Accuracy: 62.9

Step: 90

A close-up shot of an {} with striking [distinctive features 
or behaviors] that are often associated with its type, amidst 
a subtle [background or environment] ---

A {} showcased in a carefully composed scene, with 
attention drawn to its most striking or defining features, 
highlighting its unique identity as a member of its category.

Accuracy: 63.9 Accuracy: 62.8

Step: 99

Figure 8: Prompt evolution for CLIP. We provide the highest performing prompt (on the 1-shot train set)
discovered by our GLOV at different optimization steps for the ImageNet dataset.
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