Published as a conference paper at ICLR 2025

A TRAINING-FREE SUB-QUADRATIC COST
TRANSFORMER MODEL SERVING FRAMEWORK WITH
HIERARCHICALLY PRUNED ATTENTION

Heejun Lee; Geon Park,” Youngwan Lee,* Jaduk Suh,” Jina Kim
Graduate School of Artificial Intelligence (AI)

Korea Advanced Institute of Science and Technology (KAIST)

Seoul, South Korea

{ainl, geon.park, ywlee88, jaduksuh, jinakim}@kaist.ac.kr

Wonyong Jeong, Bumsik Kim, Hyemin Lee Myeongjae Jeon

LLMOps Team Graduate School of Al
DeepAuto.ai POSTECH

Seoul, South Korea Pohang, South Korea
{young, liam, hailey}@deepauto.ai mj.jeon@postech.ac.kr
Sung Ju Hwang

Graduate School of Al

KAIST, DeepAuto.ai
Seoul, South Korea
sjhwang@kaist.ac.kr

ABSTRACT

In modern large language models (LLMs), increasing the context length is crucial
for improving comprehension and coherence in long-context, multi-modal, and
retrieval-augmented language generation. While many recent transformer models
attempt to extend their context length over a million tokens, they remain imprac-
tical due to the quadratic time and space complexities. Although recent works
on linear and sparse attention mechanisms can achieve this goal, their real-world
applicability is often limited by the need to re-train from scratch and significantly
worse performance. In response, we propose a novel approach, Hierarchically
Pruned Attention (HiP), which reduces the time complexity of the attention mech-
anism to O(T log T') and the space complexity to O(T'), where T is the sequence
length. We notice a pattern in the attention scores of pretrained LLMs where
tokens close together tend to have similar scores, which we call “attention local-
ity”. Based on this observation, we utilize a novel tree-search-like algorithm that
estimates the top-k key tokens for a given query on the fly, which is mathemat-
ically guaranteed to have better performance than random attention pruning. In
addition to improving the time complexity of the attention mechanism, we further
optimize GPU memory usage by implementing KV cache offloading, which stores
only O(log T') tokens on the GPU while maintaining similar decoding throughput.
Experiments on benchmarks show that HiP, with its training-free nature, signifi-
cantly reduces both prefill and decoding latencies, as well as memory usage, while
maintaining high-quality generation with minimal degradation. HiP enables pre-
trained LLMs to scale up to millions of tokens on commodity GPUs, potentially
unlocking long-context LLM applications previously deemed infeasible.

1 INTRODUCTION

Large Transformer-based generative language models (LLM) trained on huge datasets have recently
demonstrated remarkable abilities in various problem domains, such as natural language under-
standing (Touvron et al., 2023), code generation (Roziere et al., 2024), and multi-modal question
answering (Liu et al., 2023a). This is made possible by the effectiveness of the attention mecha-
nism, which learns T2 pairwise relationships between all tokens in a sequence of T tokens. Despite
their success, the quadratic complexity of the attention mechanism makes it increasingly challenging
to meet growing resource demands when processing longer sequences.

*Equal contributors

Published as a conference paper at ICLR 2025

Hierarchy of Language Hierarchically Pruned Attention (HiP) O(T'log T') HW-aware Block Sparsity

Information has locality Finding Imporatnt 64 Tokens
inside of each hierarchy Token Hierarchically o Divide Sequence into Chunks. In Sequence

African @ attracted | to | early | human |settlement
Dog Which cat is the - Y 16 key Blo
first house cat? '
= <(Q) :l 7y '
§ BRI ‘ QH'P @Select Representative Token in Chunks @
§> : E? Measure chunk importance by comparing o
Pruning Iteration between query and representative token

I Behavior of Cat |
@ Select Top-k Important Chunk

et |
=[is]12]-08 25

Queries™)

A
8lo.1]-07 |01 |32
v |

Distance
Sentence

Use Max Score
as Representation Score

Paragraph

Near

Thread Block
(1 TensorCore)

16 Query Blocks

Key
Color of Cat Tokens
-
Rat
— Active Blocks

A
Blocks Pruned by HiP

Far

Figure 1: HiP Attention. HiP dynamically prunes block sparse attention depending on a given query token in
sub-quadratic cost by utilizing the hierarchy and locality of natural language.

Various approaches have been suggested to handle longer sequences efficiently to overcome this
limitation. FlashAttention (Dao et al., 2022; Dao, 2023) has reduced the space complexity to O(T)
by fusing the component computations to avoid storing 7' attention scores at one time. However,
its time complexity remains O(7"?), making it less applicable to inference tasks with long contexts.
Many other methods (Lee et al., 2023; Beltagy et al., 2020; Zaheer et al., 2020b; Tay et al., 2020; Ki-
taev et al., 2019; Tay et al., 2021; Liu et al., 2021) tackle the issue by sparsifying the attention matrix
or approximate the attention mechanism using kernel methods to reduce its quadratic complexity.
However, these works are not widely employed in real-world LLM serving frameworks because
they often lead to performance degradation due to drastic changes in the computation flow and are
too complex to implement efficiently for actual speedups. Moreover, they often require extensive
fine-tuning or even pre-training from scratch, which can be prohibitively expensive and prevent the
timely deployment of production-ready pre-trained models.

In this paper, we define and achieve three fundamental objectives for frameworks tailored to long-
context transformer serving frameworks: (1) minimizing the algorithmic complexity of attention
mechanisms, (2) enhancing GPU compute efficiency, particularly through TensorCore utilization,
and (3) maximizing the effective use of limited GPU memory capacity.

First, to serve long sequence in a timely manner, we propose Hierarchically Pruned Attention (HiP),
an efficient training-free attention mechanism reducing the quadratic time complexity to O(T log T')
by approximating the top-k key tokens in a sequence. HiP exploits “attention locality”, where neigh-
boring tokens often have similar attention scores, as shown in Figure 1 (Left). Therefore, as shown
in Figure 1 (Center), HiP divides the input sequence into 2k chunks, and the center token in each
chunk is chosen to represent its neighbors, driven by the attention locality within the chunk. HiP
computes the attention scores of these representative tokens to approximate the importance of each
chunk for a given query. HiP iteratively refines its selection by starting with the top-k£ most impor-
tant chunks and progressively narrowing them down until each chunk contains a single token. This
hierarchical top-k key estimation takes O(T log T') time, which is used for sparse attention compu-
tation that costs O(T), making the overall complexity of our attention mechanism log-linear. We
provide mathematical proof demonstrating that our HiP outperforms random selection, supported
by empirical evidence from attention score statistics in Section 4.

Second, we introduce hardware-aware optimizations to enhance GPU compute efficiency for our HiP
through block-wise key sparsity, as illustrated in Figure 1 (Right). Specifically, our top-k approxima-
tion is implemented in a tiled manner (Tillet et al., 2019) so that it can fully utilize matrix multiplier
units (MMUs; e.g., TensorCores (Nvidia, 2024)) and achieve the highest possible token-processing
throughput. Additionally, we integrate our attention mechanism into throughput-optimized LLM
serving frameworks, such as vVLLM (Kwon et al., 2023) and SGlang (Zheng et al., 2024), further
enhancing deployment efficiency.

Lastly, to serve extremely long sequences within the limited GPU memory, we propose a KV cache
management strategy that stores only O(log T') tokens in GPU memory (HBM) and offloads the re-
maining tokens to host memory (DRAM). The O(log T') tokens stored in GPU memory are the ones
accessed most frequently and are meant to provide quick access for the GPU’s MMUs. In contrast,
other less frequently accessed tokens reside in main memory and are transferred to GPU memory
only upon token access misses. With a high access hit ratio in HiP, our memory management scheme
effectively meets the demand for limited HBM capacity while leveraging the larger DRAM capacity,
preventing token access from becoming a bottleneck.

We validate HiP on various benchmarks by applying it to Llama3.1-8B (Meta, 2024). In Long-
Bench (Bai et al., 2023), HiP maintains 96% of its relative performance while achieving almost
2.7x speedup in the prefill stage and 16.5% speedup attention computation in the decode stage with
32k context length compared to Flash Attention. Additionally, in passkey retrieval tasks such as

Published as a conference paper at ICLR 2025

Step 1. Efficient Mask Estimation

Step 2. Sparse Attention o(T)
with Hierarchical Top-k Key Selection

O(TlogT) (531 with HiP Attention Mask (§3.2)

Keys K| cantell | Key Block walk I'm (Keys)
3 Query (Values)]
(3a] | Block,
Queries [08 | ofF Attention Score 35 . —
(.
Estimated
Well you by the use my awom- |~ Attention
Top 2 Top3 Top4 g Mask
10.2 8.2 35 371)% =
SO || F m s
l l =3 8 2
Discard] o al
Well you| { can tell Bottom Keep Top-k F é _I_ 5
Chunks Chunks o
10.2 420) B7Al
k=4, by, = 2: Select 2 sections at each iteration O = softmax(M ® (Q}{T NV
Wellyou| | can tell by the way I usemy | |walkI'm| | awom- j r
J \J

Figure 2: Overview of our HiP attention mechanism. In HiP, the model dynamically decides which k& num-
ber of key tokens to attend to for each query by generating a sparse attention mask. The sparse attention mask
is generated in a tree search-like manner. At each iteration, the top-k blocks with the largest attention scores
are selected, and the rest of the branches are discarded. The final mask becomes an accurate approximation of
the top-k blocks of the true attention map. Please refer to Figure 19 for a more detailed illustration.

RULER (Hsieh et al., 2024), HiP preserves its original effective context length, while all baselines
fail to do so. We also evaluate the effectiveness of the proposed KV cache offloading framework. On
a machine capable of serving up to a 16k context length with Flash Attention, our method extends
the context length up to 64k by offloading the KV cache without significant throughput degradation.

In conclusion, by integrating the three proposed solutions, we present a single long-context serv-
ing framework that efficiently manages compute and memory resources while being transparent
and easily usable. This extension of serving context length, achieved within the constraints of lim-
ited space and compute budgets, delivers substantial benefits for long-context applications, such as
question answering with long texts (Kryscinski et al., 2022), multi-agent chatbots (Hu et al., 2024),
enhanced retrieval-augmented reasoning, and long video data summarization. Furthermore, since
our approach is training-free, HiP can be seamlessly applied to pretrained LLMs without requiring
additional training. As a result, we expect our method to be highly practical for a wide range of
long-context LLM applications.

Our contributions within the proposed framework can be summarized as follows:

* We propose a novel, training-free hierarchically pruned attention mechanism that uses hierarchi-
cal score-locality-aware top-k approximation to accelerate LLM serving, reducing the quadratic
cost of the attention mechanism to O(T log T') time and O(T") space complexity (Section 3.1).

* We further optimize our HiP mechanism with a hardware-aware block-wise tiled optimization
using OpenAl Triton, achieving up to speed up to 6.83x speedup in end-to-end decoding for
128k context. (Section 3.2, Table 5)

* We implement KV cache offloading to reduce GPU memory efficiency further, increasing serving
context from 16k up to 64k tokens in an RTX 4090 with 8B model (Section 3.3).

2 RELATED WORKS

Previous studies proposed several attention approximations with linear complexity using either ker-
nel methods or sparse attention. Low-rank approximations of softmax attention via kernel methods
(Choromanski et al., 2022; Qin et al., 2022) achieve faster inference speeds but significantly alter
the data flow, leading to performance degradation that is hard to mitigate. In contrast, sparse at-
tention methods, which use attention pruning to preserve trained attention scores, allow for simple
replacement of pre-trained mechanisms. However, they often require additional fine-tuning to adapt
to static attention patterns (Beltagy et al., 2020; Zaheer et al., 2020a; Xiao et al., 2024) or the training
of an attention estimator (Lee et al., 2023; Liu et al., 2021). These methods are generally less effi-
cient than fused attention techniques (Dao et al., 2022; Dao, 2023) due to their fine-grained sparsity,
which prevents optimal MMU utilization. For more details, see Appendix E.1.

3 METHODOLOGY

Given query, key, and value sequences @, K,V € RT*9, the conventional single-head attention
output O is computed as S = QK" € RT*T P = softmax(S) € RT™*T, O = PV € RT*4,
where d denotes embedding dimension, and softmax is applied row-wise. The causal masking and

Published as a conference paper at ICLR 2025

constant scaling are omitted for brevity. The .S and P matrices are respectively called the attention
scores and probabilities. We focus on the fact that, due to the nature of the softmax function, only
the highest attention scores significantly impact the output. Therefore, a promising approach to
approximating S in a sparse format and reducing the complexity from O(T"?) is to retain only its
top-k elements, as detailed in the following equations:

M = top_k_mask (QKT) e {0, 1}1xT ()
S = maskp (QK ") e RT*T, P =softmax(S) e R”*T, O =PV cRT* (2

Si; M ;=1

where [maskas (S)]; ; = {oo ifM; . =0’ @
1, T

where top_k_mask(-) denotes a binary mask which selects the top-k largest elements for each row

of the given matrix. Since Sisa sparse matrix with only k7 valid elements, Sand Oin Equation (2)
can be computed in O(T') time using sparse matrix operations.

However, obtaining the binary mask M in sub-quadratic time is no easy task. To address this chal-
lenging problem, we exploit what we call “attention locality”. Observation of attention scores reveal
that the scores tend to exhibit local similarity, a phenomenon we refer to as attention locality. We ex-
ploit this observation by performing a tree-based search for the top-k tokens. We divide the sequence
into 2k chunks, and then select a representative token from each chunk. Due to attention locality,
a representative token have similar scores to other tokens in its chunk - thereby “representing” that
chunk. We select the top-k most important chunks based on the attention scores of the representative
tokens. By repeating this process, we refine the tokens until we can no longer divide chunks. Exact
details of our method are shown in Section 3.1. We only cover the single-head non-causal case here,
but note that our method can easily be extended to causal multi-head attention.

3.1 HIERARCHICAL SCORE-LOCALITY-AWARE TOP-k ESTIMATION

As shown in Equation (1), our goal is to select the top-k largest elements of each row of pre-
trained attention score S without computing the entire matrix. To this end, we use a greedy binary
tree search algorithm, as illustrated in the left side of Figure 2. The complete algorithm for mask
estimation is presented in Algorithm 1.

For a given query ¢ € R?, at the first iteration, we divide the key sequence K € R”*¢ along

the time dimension into k equal-sized chunks (fl(l) : lﬁl)),(2(1) : lél)), N -, l(l)) where
f;l) = {W—‘ + 1 and lj(-l) = {%—‘ are the first and last indices of the jth chunk, each.' The

superscripts denote the iteration number. At each iteration ¢, we further divide each of the k chunks
into two equal-sized branches:

BY, = (10 m? — 1), BS) = (m? 1), wherem? = [(£9 + 19)2] , forj = 1. .

J J J 7

A representative key index rlgi) is the center key token index for each branch Bﬁi). We assume that
this representative key represents the entire branch. Thus, among the 2k branches, the top & branches

whose representative key’s scores are the highest are chosen for the next iteration:
(f(H'l l ZJrl)) B(D forj=1.. k, where {t1,...,tr} := argtop,, {q K i] 4)
JEL .. 2k]
We repeat the above iteration n;; := [log, T'] times, i.e., until the length of each branch all becomes

1. In the end, we obtain a set of indices Z = {fl("“), e ,gn“)}, which is our estimation of the
top-k indices of K which have the largest attention scores with the query g. Thus, we obtain 777, an
estimation of a row of the attention mask M?:

m = estimate_attn_masky (g, K) := [12(1),17(2),...,1z(d)]. (5)

In conclusion, this algorithm takes O(T log T') time in total because the total number of iterations is
log, T' where each iteration takes constant time O(k), and we do this for each of the T' queries.

'] denotes rounding to the nearest integer.
21 4(x), where A is a set, denotes the indicator function: 1 4(z) = 1 if z € A, and otherwise 1 4(z) = 0.

Published as a conference paper at ICLR 2025

3.2 BLOCK APPROXIMATION OF TOP-k ESTIMATION

Despite the log-linear complexity, obtaining competitive latency to the state-of-the-art implementa-
tions of dense attention on an accelerator (e.g., GPU) is difficult. This is because the matrix multi-
plier unit (MMU) inside accelerators is optimized for dense attention, where they compute fixed-size
blocks of matrix multiplication in a few clock cycles. In contrast, the attention score computation
in the top-k estimation of HiP cannot be performed with traditional matrix multiplication because a
different key matrix is used to compute the dot product for each query vector. To utilize MMU, we
use a technique called block approximation during top-k estimation, illustrated in Figure 2 (Right).

In top-k estimation, we replace K € RT*¢ with its tiled version K € R”7/0+*bxxd and Q with
its tiled version Q € R7/ba*baxd where by, and by are the size of a key block and a query block.
The top-k estimation iterations are done similarly to before, except that the division and branching
of the key sequence are done block-wise (using the first dimension of K). Importantly, instead of &,
k /by, chunks are maintained at each iteration in order to select k tokens, and the score calculation

in Equation (4) is replaced with max,,,e[1.6,],ne[1:5,] (qlw Ko,) , where g € Rb*4 is the given
G

query block. While this modification enables HiP to reduce the cost further, we internally sample
the blocks with stride b, in the query dimension and by, in the key dimension instead of using the
full b, x by, block.

As a result of this optimization, the estimated mask M\ becomes block-sparse. Therefore, each
(bg/bsq) x d-block of the query can be matrix-multiplied with the same (k/bsy) X d key matrix to

obtain (by/bsq) X (k/bsk) elements of S. Thus, by and by, are critical for the most efficient utilization
of the MMU: we can achieve a considerable latency reduction if we set b, /b, to a multiple of 16 or
32, as shown in Appendix E.4. While the choice of by, and by, is irrelevant to the MMU utilization,
it helps reduce the number of top-k estimation iterations.

3.3 KV CACHE OFFLOADING Decoding Steps with KV Offloading

Mask Refresh Step Cached Mask Step
Thanks to our top-k estimation algorithm, HiP) (e e
only accesses (k/bsy)log T key states per at- Masking || Attention Attention (SA
tention head. Moreover, the algorithm’s mem- —| Key T New P New © — New I=|
ory access pattern exhibits strong temporal lo- Access Log[| Mask [} Token Token
cality. Using this fact, we can further enhance o, || ey Tokensfor Masking O(klogT) | ‘=erirgs=s;
efficiency by exploiting the memory hierar- &
chy: v ifnd s ety oot K- [e s s 01~
memory. This involves caching frequently ac- _ p——0 R;d _______________________
cessed KV states (hot tokens) by tracking state g wite Store Every Key Value Tokens O(T')
access patterns of top-k estimation and sparse _—— Offioaded KV Cache
attention using the estimated HiP mask. Figure 3: Flow of KV Cache Offloading with HiP.

Our GPU cache that holds the hot tokens consists of two components: a token ~ TokenIndexTranslation
bank containing the actual KV states and a page table with the token-bank Foge ok

index mapping, as shown in Figure 4. One straightforward implementation
for the page table would be a vector map: a simple length-7" array of point-
ers. While this approach is practical for typical sequence lengths (e.g., 128k

Token Pages

EP—
abeyg

Access Statistics|

- IM), its space complexity is O(T"). We employ a linear probing hash table Back Refbrence o Tole
to reduce the space complexity, achieving O(log T') space complexity. How-

ever, empirical results show that GPU hash map lookups introduce additional Page Table
latency compared to using a simpler vector-based page table. TG = O

Given the distinct memory access patterns in top-k estimation and in sparse

attention, we maintain two separate offloading contexts, each containing a [requesteatorentnaer)
page table and a set of GPU-resident hot tokens, as illustrated as two separate
GPU loaded KV caches in Figure 3. For the top-k estimation stage, kcache := F1gure 4: KV Token
¢+ (k/bsk)log T key states are held in VRAM, where ¢ is a hyperparameter 1ndex Translation
determining the cache size. For sparse attention, k key and value states are held. In summary, we
need to hold (kcache/2 + k) tokens’ equivalent of KV states in the GPU. The kernel first queries

Published as a conference paper at ICLR 2025

the GPU cache when accessing key or value tokens. Upon a cache miss (which is unavoidable due
to the dynamic nature of the attention access pattern), the system attempts to retrieve tokens from
the main memory. By using our cache, we can significantly speed up memory access compared to
directly accessing CPU memory from the GPU.

In conclusion, we reduce the GPU memory footprint for KV tokens from O(T) to O(log T'), but this
comes with page table overhead that can range between O(T") and O(log T') depending on the data
structure used. The overall space complexity is thus determined by the type of page table, allowing
for a configurable trade-off between GPU memory efficiency and latency. However, we suggest
that users use vector maps in many practical long-context ranges (32-512k) to achieve competitive
latency compared to Flash attention. Please refer to Section 5.5 for detailed benchmarks.

4 THEORETICAL ANALYSIS

In this section, we justify the design choices of our HiP’s approximate top-k key selection algorithm
by answering the following questions: (1) Is HiP’s key selection algorithm better than the random
selection baseline at finding keys with the biggest scores? (2) How should the representative token
in each branch be chosen? We answer these questions by providing a probabilistic analysis of HiP’s
key selection algorithm in a simplified setting (k = 1), based on the assumption of attention locality.

Observation: keys closer together exhibit higher similarity in attention scores. In each atten-
tion head of a layer in an LLM, a key sequence K € RT*? is used for computing the attention
mechanism. Given a query vector ¢ € R?, the scores for each key s = K q € R” can be computed.
We investigate how much locality these scores exhibit by studying the correlation between their dis-
tance A := |¢ — j| and the score difference 6o := s; — s; for every ¢,j € [1..T], with a sample
natural language data. As shown in Figure 6, our empirical observation shows that 65 generally
follows a normal distribution, whose mean is almost zero and the standard deviation is an increasing
function of distance A. More details regarding this observation are provided in Appendix A.3.

Analysis. Based on this observa- °= A 0s g5

tion, we assume that we can ap- °” FON Lo § 2

proximate the difference in attention ™" g z.,

scores between two keys separatedby ./ A\ ' E

A tokens as a scalar random vari- ,, koo " ar

able 6A ~ N<O’0-(A)2), Whel‘e Atter}iions:o‘:'eDifferfience ’ zzzdefl:iiffs::en::u b ’ Z;Zdei(uudiffé::en:;m .

o(A) is an increasing function of A. Figure 6: Score Difference Distribution. We collect the attention
This can be interpreted as keys that gcore statistics from the 17" layer and second attention head of
are closer together are more likely to Llama3.1-8B. The left figure shows the raw distribution when A =
have a similar attention score, which 500. The middle and right figures show the mean and standard
fits well with our observation and at- deviation as a function of A.

tention locality assumption. With this assumption, the following Theorem | can be shown.

Theorem 1 (Informal). Consider the case of finding the location of the top-1 key token with the
maximum attention score in a context of I' tokens. Suppose that our locality assumption holds true.
We divide the context into two branches with T /2 keys each. Then, the branch whose center token
has the bigger attention score is more likely to contain the top-1 key token.

The above shows the effectiveness of one iteration of HiP’s key selection algorithm. By recursive
application of HiP’s key selection iterations, we can intuitively see that the probability of HiP’s key
selection algorithm finding the location of the top-1 key would be higher than that of uniform random
selection as well. Therefore, under the attention locality assumption, on average, HiP’s key selection
algorithm on average finds the best key tokens more often than random selection. This is also the
basis for choosing the center key token as the representative in our algorithm. See Appendix A.1 for
the proof sketch and Appendix A.2 for the formal statement and proof of the theorem.

5 EXPERIMENTS
5.1 EXPERIMENT SETTINGS
Large Language Models (LLMs) are one of the most prominent models that utilize the attention

mechanism. Thus, we first apply our proposed HiP to Llama3.1-8B (Touvron et al., 2023), a pre-
trained LLM that is reported to perform well on various long-context natural language understanding

Published as a conference paper at ICLR 2025

Prefill Latency Decode Latency PG19 Perplexity
300 888 80
400
250 300 70 Crashed
2 200 El f F-LE
? 150 ? 40 %_ Crashed
@ g8 o 10 W
b~ © o
3 100 rashed - 20
50 =—~00M g
0 0
25 50 75 100 125 25 50 75 100 125 25 50 75 100 125
Context length (x1024 tokens) Context length (x1024 tokens) Context length (x1024 tokens)
e=== Flash Attn === HiP Attn (Ours) BigBird == StreamingLLM === H20 H20 (stream) Hyper Attn /4=3 Hyper Attn /,=25

Figure 7: Latency and Perplexity Evaluation with Various Context Lengths. We evaluate our proposed
HiP and baselines in PG19 (Rae et al., 2019) with various context length on Llama3.1-8B (Meta, 2024). See
Appendix D for experiment details.

Table 1: Passkey Results. We evaluate our proposed HiP and baselines using passkey retrieval which is a
needle in a haystack style context utilization benchmark.

Dense Prefill Sparse Prefill

Dense Sparse Decode Dense Decode Sparse Decode

Ny
A

Attention
Method

uyysed
A1 pugsig
¢ pugsig
957 O%H
1S O%H
TS dH

A1 dTH
RTAY

A1 AV

A1 pugsig
¢ pugsig
TS IH
Al dTH
an+ NTdTH
prAY

AT AAY

A1 pugsig
Y pugsig
S dH
Al dIH
an+ N1dTH

128k
64k
Context 32k

—_
(=3
(=]

62.7 64.0 64.6 67.4 80.2 87.2 79.4 82.0 11.1 97.8 8.6 10.5 27.2 27.6 929 74 99 62 9.2 19.3 32.7 68.0
64.3 66.3 72.9 77.3 84.6 99.0 90.7 94.0 23.2 95.0 15.0 20.2 57.5 77.2 100 '18.4 12.7 16.7 16.7 50.0 68.2 80.4
64.5 65.3 82.2 87.1 91.2 98.0 99.7 99.6 16.5 100 26.8 42.8 96.9 100 100 /14.6 14.8 16.1 38.1 96.3 100 95.3
Length 16k 66.2 67.5 90.3 98.0 93.7 98.5 94.7 100 25.3 98.6 43.9 59.5 100 100 100 [19.0 13.9 29.8 55.6 98.7 100 91.3
8k 69.5 73.5 98.8 99.3 95.7 99.0 100 100 32.3 100 61.9 98.4 100 100 100 30.8 16.9 66.8 95.8 100 100 100
4k 100 77.3 83.1 100 100 98.6 99.7 100 100 56.8 100 90.4 100 97.8 100 100 56.8 24.7 94.1 100 98.0 100 100

Avg. 100 67.4 70.0 84.8 88.2 90.7 96.9 94.1 95.9 27.5 98.6 41.1 55.2 79.9 84.1 98.8 24.5 15.5 38.3 52.6 77.0 83.5 89.2

Speedup Prefill 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 14.6 12.1 153 84 9.1 49 85 14.6 121 153 84 9.1 49 85
(128k) Decode | 1.0 29.1 14.8 21.8 11.3 29.1 14.5 29.9 15.1 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 29.1 45.0 21.8 11.3 29.9 15.1 63.9

—
===
oo oo

tasks up to 128k context tokens, to evaluate the effectiveness of our HiP mechanism. We replace
all, but the initial /4 attention layers with HiP in the pretrained LLM, where L is the total number of
layers, and [; denotes the remaining dense attention layers. We choose [, through an ablation study
(Appendix E.5). During LLM decoding, we cache the sparse attention mask from the previous step
and refresh it every r,,, step to reduce the decoding latency. The latency-performance tradeoff of r,,
is discussed in Section 5.4. For a detailed description of HiP’s decoding process, see Algorithm 2 in
the appendix. Further details on the hyperparameters are in Appendix D.

Baselines. We use several sparse attention baselines: A, StreamingLLM (SLLM) (Xiao et al., 2024),
AVD (Jiang et al., 2024; Li et al., 2024), BigBird (Zaheer et al., 2020a), HyperAttention (Han et al.,
2024), and H2O (Zhang et al., 2023), chosen for their training-free and sub-quadratic properties.
Both StreamingL.LM and A use a combination of global sink tokens and sliding window (Beltagy
et al., 2020), with Streamingl.LLM additionally using rolling RoPE indexing (Xiao et al., 2024).
AVD retains key vertical and diagonal lines in the prefill attention mask based on snapshot scores on
top of A. As it is a prefill-oriented method, A is used for decoding. BigBird uses random masking
along with the A pattern. HyperAttention is a token-clustering-style (Kitaev et al., 2019) attention
mechanism. Finally, H5O retains the top-k high-scoring KV tokens for the next step’s KV cache.

5.2 LANGUAGE MODELING PERFORMANCE EVALUATION

We evaluate HiP on the PG19 (Rae et al., 2019) datasets. We measure latency in two stages: (1)
the initial pass (prefill), where the forward pass covers the entire prompt, and (2) subsequent passes
(decode), which process one token at a time with a KV cache. In Figure 7, HiP attention is 9.00x
faster in prompt latency and 29.99 x faster in decoding latency on Llama3.1-8B, with only a +0.5348
increase in perplexity on PG19 (8.1151 — 8.6499). Our method leverages block approximation to max-
imize MMU efficiency, outperforming quadratic baselines and achieving near-linear decoding la-
tency. Further details on experimental settings are in Appendix D.

Published as a conference paper at ICLR 2025

Table 3: LongBench Results. We evaluate HiP and baselines. We measure the speedup of prefill and decode
on 32k context length, the maximum context length of LongBench.

Dense Prefill Sparse Prefill

Dense Sparse Decode Dense Decode Sparse Decode
" I IZPEE>::2PZFEEZEL2>2z2EEEEEE
Atenon 2 0 0 ® @ 5 ® F oo @ ® X Foo@gg X F
Method 2 R @ & Z 2 = e d B S 7205 IEgs & & g o7 fog
g SN & = pi ey wn —_ T —_ = Y [T T = +
—_ ~ ~ ~ — =~ < S} e = - = <
8] (5] o %) = o

NarrativeQA 29.5 [15.8 15.3 25.9 26.0 29.0 28.9 20.2 22.0 25.5 23.5 21.4 23.9 26.8 27.1 [11.4 17.4 18.8 20.6 14.9 19.4 21.4 25.1 269 26.4
Qasper 443 19.4 21.6 32.3 35.6 42.1 432 28.6 41.4 429 44.3 39.8 45.1 44.2 43.1 | 7.8 21.4 26.2 26.3 26.9 34.9 41.7 43.6 43.9 43.0
HotpotQA 54.6 17.3 17.8 45.7 50.9 53.9 54.5 27.8 45.6 53.4 49.0 40.7 51.6 56.1 53.8 | 9.9 27.1 39.5 42.5 38.6 39.0 50.4 55.0 53.6 53.7
2WikiMQA 39.5 19.3 20.6 34.7 33.7 38.9 39.5 21.6 34.6 41.7 45.0 34.1 45.8 45.1 41.2 | 8.6 22.2 28.9 34.5 25.1 33.0 45.2 44.0 42.4 39.8
GovReport 35.0 26.7 28.2 24.9 27.3 30.3 32.4 33.8 34.2 35.0 34.5 34.0 34.6 34.4 34.6 23.2 259 23.2 23.1 25.2 27.3 30.1 31.2 34.9 31.7
MultiNews 27.4 25.1 25.6 24.1 26.4 26.5 26.8 27.1 27.2 27.4 27.1 27.0 27.1 27.1 27.2 22.6 25.5 22.8 22.5 24.9 26.1 26.0 26.7 27.9 26.7

Avg. Scores 38.4 20.6 21.5 31.3 33.3 36.8 37.6 26.5 34.1 37.7 37.2 32.8 38.0 38.9 37.8 [13.9 23.3 26.6 28.3 25.9 29.9 35.8 37.6 38.3 36.9
Rel. Scores (%) 100 | 53 56 81 87 96 98 69 89 98 97 86 99 101 99 [36 61 69 74 68 78 93 98 100 96

Speedup Prefill 1.0 1.0 1.0 1.0 1.0 1.0 1.0 56 32 21 85 46 3.0 1.7 27 0.1 56 32 21 85 46 3.0 1.7 17 2.7
(32k) Decode 1.0 7.3 3.7 104 56 85 43 10 10 10 1.0 1.0 1.0 1.0 1.0 10.6 12.8 12.8 64 104 56 85 43 43 165

Subset

5.3 LONG CONTEXT PERFORMANCE

In this section, we investigate the performance of our HiP, comparing its latency and accuracy against
baselines on various benchmarks. Mainly, we build two kinds of benchmark sets: (1) long-context
utilization to verify our method can retrieve the information in a given context using a needle in
a haystack (NIAH) and (2) long-context natural language understanding to show that our method
can preserve reasoning and text generation performance of original long-context LLM. We apply
the efficient attention method to mimic various deployment settings by replacing prefill, decode, or
prefill-decode flash attention. We can find our HiP performs robustly in every scenario compared to
baselines, by applying efficient attention methods in different phases separately.

Passkey and RULER. First, we analyze the Table 2: RULER Results. We compare the effective
result of long-context utilization performance context lengths of HiP and baselines with Llama3.1-8B.
using passkey retrieval in Tables 1 and 2. Our Accuracies surpassing 80% are marked with bold font.

passkey retrieval test is a simple test to find
a five-digit passkey in a repeated haystack
sentence. RULER (Hsieh et al., 2024) is a

Dense Prefill Sparse Prefill

Dense Sparse Dense Decode Sparse Decode

; 2 T 2 E wE2EE P =B B
more complex benchmark containing NIAH Atention 2. & % & 5 % % E 5 % %
tests, such as finding multiple passkeys and Method 2 & = d #8 = T d # % T
. ~ =~
tracking variable changes inside complicated - = == =
g g P Effective Length 32k 4k 32k 8k 16k 32k 32k 4k <4k 16k 16k

essay-style hayStaCk sentences. In Table 1, 128k 77.0 [13.9 389 313 19.1 52.0 58.2 [I1.0° 83 211 265
our method is the strongest in every deploy- 64k 847 [15.3 68.6 41.8 66.0 73.7 799 11.8 129 535 63.7

ment setting Dense preﬁll in general scores Context 32k 87.4 169 829 58.1 77.0 86.5 89.7 12.5 159 77.5 84.2
' Length 16k 91.6 27.2 92.4 76.3 89.5 92.1 94.1 24.0 22.6 90.0 93.9

high in this benchmark because the model has 8k 93.8 545 94.3 89.5 94.1 94.6 947 46.1 386 94.4 94.6
no chance of Overlooking the passkey tokens. 4k 95.5 88.3 959 95.3 95.9 95.9 96.0 87.1 65.1 95.7 95.9
HOWCVCI', interestingly, AVD shows an almost Avg. 88.3 36.0 78.8 65.4 73.6 82.5 85.4 32.1 27.2 72.0 72.6

Speedup Prefill [1.00° 1:00"1.00' 4.53 4.80 2.44 1.70| 4.53 4.80 2.44 1.70

perfeCt score with Sparse preﬁll + dense de- (128k) Decode |1.00| 5.90 7.05 [1.00 1.00 1.00 1.00, 5.90 27.01 7.05 7.75

code. We think this is because the snapshot
heuristic that captures important tokens during prefill is a perfect fit for this benchmark. However,
because of this aspect, it performs poorly on more complex tasks such as RULER and LongBench.
The combination of HiP and AVD slightly increases the performance from regular HiP, achieving
100% accuracy in passkey up to 64k context length.

LongBench. We then use the LongBench benchmark (Bai et al., 2023) to evaluate the long context
prompt and decoding performance of HiP in Table 3. We believe that this benchmark is the most
important because it shows both long context generation performance and knowledge retrieval per-
formance, which are critical in many LLLM applications, such as multi-turn assistants and in-context
learning. Compared to passkey, the dense decode setting scores higher because this benchmark
is much more decoding-heavy. This means that real-world natural language question answering
and long context text generation rely more on decoding accuracy rather than prefill. Therefore,
we can see non-decode-friendly baselines such as StreamingL.LM, AVD and A failing to recover
long-generation performance in GovReport and MultiNews subtasks, which decode 512 tokens. In-
terestingly, AVD completely fails on those two subsets while it works moderately well on some QA
tasks. We think this is because AVD fails to capture complex reasoning and long-term context due
to its restrictive attention mask patterns. In Appendix E.2, we illustrate this long context knowl-
edge retrieval ability by using an example from LongBench. HiP outperforms every baseline, and

Published as a conference paper at ICLR 2025

Table 4: Benchmark Performance on Long-Booksum Task. We evaluate the book summarization task.
2k tokens are generated for the summary of each book, whose lengths are between 32k-128k tokens. For the
‘Half” and ‘Quarter window’ settings, the context window size of each sparse attention method is adjusted
accordingly. The speedups are measured on the Normal setting.

Decoding Llama3.1-8B-Instruct
Method IE)VOEASELE \i‘l)r?(tiz)ii Normal Window (x 1) Half Window (x.5) Quarter Window (x.25) pecode
(tokens) ~ (tokens) ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L Speedup
. 22 FlashAttn 00 oo 41.63% 10.16% 23.58% 41.63% 10.16% 23.58% 41.63% 10.16% 23.58% 1.00x
= E& BigBird 4k 00 4K 36.05% 7.59% 19.81% 3420% 7.02% 18.90% 31.97% 6.23% 18.71% 5.90x
= Q FlashAttn TRUNC 8K 8K 36.62% 8.33% 2097% 36.62% 8.33% 20.97% 36.62% 8.33% 20.97% 15.68x
2 mﬁ BigBird 2k TRunc 8K 4K 3544% 1.57% 19.65% 34.60% 7.20% 19.32% 32.36% 6.46% 18.62% 5.90x
‘£ s AVDB8K+8k+8k 8K 8K 37.18% 828% 21.62% 36.07% 7.712% 20.60% 35.72% 7.67% 20.81% 7.51x
% S HiP 2k (Ours) 7K 3K 38.84% 9.11% 21.92% 3847% 8.57% 21.50% 37.34% 8.52% 21.53% 7.75x
&> HiP2k+V2kDik 7K ~4K 39.98% 9.61% 22.61% 39.44% 9.09% 22.05% 38.00% 8.70% 22.04% 7.05x
Latency Breakdown in Single Layer Decoding
Linear 163us 3036lus 5853lus Table 5: End-to-end Decoding Speedup and Quality
100 Flash Attention for each r,,,. We show the trade-off between end-to-end
a Masking decoding speedup and decoding quality using Long-
- 75 Sparse Attention e . :
- 5 Bench. Metrics are the comparison score to Flash At-
0 o . .
e IS S tention. In LongBench, we merge four tasks into ‘QA’
o 50 = . ¢ s .
2 E 5 s and merge two tasks into the ‘Summary’ column in the
= 75 = S 2 table. The latency is measured with [4=0.
ol B pos
0 I End-to-End Decoding Speedup LongBench
8 16 32 64 128 Seq. Length 8k 16k 32k 64k 128k QA Summary Avg.
Context length (x1024 tokens) HiP (r,,=1) [0:99 151 231 405 683 959 9.1 96.0

. . . HiP (r,,=2) [1.26 1.93 3.09 551 9.57 947 955 95.0
Figure 8: End-to-end Decoding Latency. We show 1 "~ 1'5g 54s 400 708 12.97 942 933 939

two phases of HiP decoding: mask refreshing step gip (,,=8) |1.65 255 4.31 7.89 14.30 934 90.5 92.4
triggered in every r,, decoding step and mask cached
sparse attention.

with a small amount of fine-tuning with an unrelated dataset, it even recovers the original model’s
performance (‘HiP HEAL’). See Appendix D for more details and discussion about healing.

BookSum. We use the BookSum benchmark (Krysciniski et al., 2022) to assess the long-context and
long-response generation capabilities of HiP. We report the average ROUGE F1-scores (Lin, 2004)
for the generated summaries in Table 4. To simulate a realistic long-context decoding scenario and
demonstrate the effectiveness of KV cache offloading, we put a limit on the GPU KV memory size
to 8K tokens. This represents a practical context length on a 24GB GPU with an 8B model without
KV offloading. Specifically, for FlashAttention and BigBird, we truncate the context to 8K tokens,
and AVD uses an 8K token length sliding window. With our method, with KV cache offloading,
we can expand the effective context length only limited by the main memory’s capacity, which is
much cheaper. HiP outperforms all other baselines in this VRAM-limited setting while maintaining
high decoding speed: over 7x faster than regular FlashAttention. Although FlashAttention with a
truncated context is faster, it suffers from significant performance degradation and, most importantly,
breaks the user’s expectation that the model can access the entire context. We observe that HiP with
a context window of only 512 still outperforms AVD with an 8k window.

5.4 LATENCY BREAKDOWN AND END-TO-END DECODING SPEEDUP

We evaluate the trade-off between attention latency and the model performance with HiP in Fig-
ure 7. We observe that our HiP’s latency-optimized setting shows about 9.00x speedup of attention
decoding latency but only increases the perplexity by 0.5348 in PG19 (Rae et al., 2019), compared
to FlashAttention2. In Figure 8, we show the latency breakdown of the HiP-applied transformer
model. Our proposed method contains two major components that contribute to the overall latency:
(1) top-k estimation iterations and (2) fused sparse attention. We observe that the HiP top-k estima-
tion kernel is the only scaling part as the sequence grows; the sparse attention and linear layer shows
constant time for each decoding step. Since the top-k estimation iteration results can be cached
and reused r,,, times, the latency of the HiP method is dominated by fused sparse attention in most
practical scenarios, as shown in Figure 8. On the other hand, the r,, hyperparameter trades off
the generation quality for latency, especially for long decoding, as shown in Table 5. HiP achieves
6.83 times end-to-end decoding speedup with 128k context while maintaining 96.0% relative per-
formance in LongBench. We can speed up further to 14.30x when we allow a moderate amount of
performance degradation (-3.6%p).

Published as a conference paper at ICLR 2025

Decode Throughput and GPU KV Memory Table 6: Detailed additional data of KV cache offloading

5000 performance on RTX 4090 24GB and A100 80GB.
L. = flash Aunw/o Offoad | <
iP w/o loa 4
B ouo- I i - RTX4090 24GB, T=64k A100 80GB, T=512k
= k2 H?P UVM w/o Cache E, Throughput VRAM VRAM
g 3000~ I ::: %m a; ‘:{cht:;m l:I;p -125 _é- (tok/s) Prefill Decode (MB) Prefill Decode (MB)
g TTEYY Ra2 OOM OOM OOM OOM OOM OOM
s 20007 =75 £ HiPnooffioad OOM OOM OOM OOM OOM OOM
£
2 1000 " @ FA2uw 5678 1.91 N/A 1382 0.18 N/A
& m 5§ HiPuwu 9002 2291 N/A 8225 20.94 N/A
o- -0 2 HiPwvecorMap 6386 9545 2283 4127 85.11 18404
10 20 30 40 50 60 HiP w/ HashMap 359 10.15 2104 48 2.74 10890

Context length (x1024 tokens)

Figure 9: KV Cache Offloading Performance (left). We measure batched prefill and decoding throughput
(tokens/s) with our novel KV cache offloading framework with an on-device offloading cache. Straight lines
show the latency, and dashed lines show the GPU memory usage by KV caches.

5.5 KV CACHE OFFLOADING BENCHMARK

In Figure 9, we evaluate the latency and memory usage of our KV offloading framework. The
UVM variants use the CUDA unified virtual memory API to offload the whole KV cache to the
main memory. Our HiP has two variants that depend on the type of cache implementation. We use
Llama3.1-8B with 16-bit weights, and the KV states are stored in 8-bit floats. We use a single RTX
4090 24GB for the graph on the left, and to additionally test our method up to 512k tokens, we also
test on a single A100 80GB GPU. We set [; = 0, and choose the last token for the representative
key to reduce the memory access in this test. See Appendix D for details.

As shown in Figure 9, with UVM, both ours and Flash Attention slow down decoding about 5 to 7
times compared to full GPU runtime. However, we could serve until 64k context, while the same
machine can serve only 16k at maximum. Since memory access is significantly more costly with
UVM, the trend of logarithmic scaling of decode throughput is clearer than when working with pure
GPU memory. So, at 64k context length, ours is more than 50 times faster than Flash Attention with
UVM. However, UVM slows down both methods too much compared to full GPU runtime.

We test two types of cache implementation: vector map and hash map. A vector map uses a T'-sized
vector of pointers pointing to the allocated bank to store the mapping between a token index and a
bank index. Our GPU-loaded KV offloading cache (Vector Map) shines by achieving 93% decoding
throughput compared to no KV offloading at all. Without a significant slowdown, we could extend
the serving context from 16k to 64k on an RTX 4090, which is 4.17x higher decoding throughput
compared to HiPyyy and 49.97 x higher decoding throughput compared to Flash Attentionyyy, as
shown in Table 6. However, with the vector map, the space complexity is O(T'). To reduce the space
complexity to O(logT), we use a linear probing hash map to store the index mapping. This way,
we can reduce the GPU memory consumption by 40.8% on 512k context length. However, since the
hash map lookup is not friendly to the GPU, it slows down token accesses more than naive UVM.

We present our KV offloading framework on a standard gaming PC equipped with a single RTX
4090. Our experiments confirm that the PCle 4.0x8 bandwidth is sufficient to manage offloading
traffic through KV accesses using UVM. Furthermore, when scaled up to a single A100 80GB, our
framework demonstrates its ability to extend serving context length, even on server-grade hardware.
We anticipate that our HiP’s KV offloading framework will effectively increase serviceable context
length across a wide range of deployments, from on-device setups to cloud-based environments.

6 CONCLUSION

In this study, we present HiP Attention, a novel framework for accelerating pretrained Transformer-
based models without any training, with a focus on the acceleration of LLMs for long-context tasks.
Our proposed HiP rapidly estimates the top-%k context keys for computing sparse attention, drasti-
cally reducing the computation required for long context inference and fine-tuning from O(7?) to
O(TlogT). Our HiP attention is a drop-in replacement for the core of any Transformer-based
model, such as language and multimodal models, and does not require modifying the existing
weights. This is a practical and meaningful improvement as it allows pre-trained models to be
fine-tuned and executed much more efficiently in long sequences without sacrificing quality. We
are looking forward to contributing to open-source LLM serving frameworks by combining various
efficient decoding strategies with HiP attention.

10

Published as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We provide every experiment code and kernel code in the attached supplementary file. We also
provide detailed instructions on how to run experiments in readme markdown files, so please
read those files. And we put detailed experiment settings in Appendix D. We will try our best
to resolve further reproducibility problems. Inside the HiP library, we have multiple versions
of HiP kernels, all written with OpenAl Triton. The upstream kernel path is hip / models
/ hip.attention / attention2.draft_prefetch.py. Additionally, you can see the evo-
lution of our HiP from the very first HiP implementation hip / models / hip.attention /
attentionl.py; please feel free to enjoy our codebases. We left them all for research purposes
when someone needs various settings, such as dynamic retention ratios, that are only supported
by old versions. Our main experiment entry file is hip / main / model_eval.py. Please
execute ——help option to gather further information. Our offloading experiment entry file is
hip / models / hip.attention / offload-runner / offload-runner.py. For Long-
bench and RULER, we modified the official code to run our method with vLLM. Please refer to
HiPAttentionArgs class to investigate full settings, including every subtle configuration. A,
AVD and BigBird are using the same HiP kernel since they are the same block sparse attention. We
just modify the block masks that passed to block sparse attention. Streamingl.LM is implemented in
hip/models/sink_attention/sink_attention.py. About HiP-related environment variables
of vLLM and SGlang, please refer to HiPAttentionEnvs in VLLM and SGlang attention backend
implementations.

ACKNOWLEDGEMENTS

This work was supported by Institute for Information & communications Technology Planning
& Evaluation(IITP) grant funded by the Korea government(MSIT) (RS-2019-11190075, Artifi-
cial Intelligence Graduate School Program(KAIST)) This work was supported by the IITP grant
(No.RS-2019-11191906, Artificial Intelligence Graduate School Program(POSTECH); No.RS-2024-
00459797, Development of ML compiler framework for on-device Al) and the NRF grant (RS-
2024-00354947) funded by the Korean government (MSIT). This work was supported by the Na-
tional Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.
RS-2023-00256259). This research was supported in part by the NAVER-Intel Co-Lab. The work
was conducted by KAIST and reviewed by both NAVER and Intel. Artificial intelligence industrial
convergence cluster development project funded by the Ministry of Science and ICT(MSIT, Korea)
& Gwangju Metropolitan City. This work was supported by Institute of Information & commu-
nications Technology Planning & Evaluation(II'TP) grant funded by the Korea government(MSIT)
(No.RS-2022-11220713, Meta-learning Applicable to Real-world Problems)

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023. 2,
8

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020. URL http://arxiv.org/abs/2004.05150. 2,3,7, 39

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024. 44

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger,
Lucy Colwell, and Adrian Weller. Rethinking attention with performers, 2022. URL http:
//arxiv.org/abs/2009.14794. 3,39

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama-Data. 38

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning, 2023.
URL http://arxiv.org/abs/2307.08691. 2,3, 38, 39

11

http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/2009.14794
https://github.com/togethercomputer/RedPajama-Data
http://arxiv.org/abs/2307.08691

Published as a conference paper at ICLR 2025

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness, 2022. URL http://arxiv.org/abs/
2205.14135.2,3,32

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm infer-
ence using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024. 44

Google. Our next-generation model: Gemini 1.5, 2024. URL https://blog.google/
technology/ai/google-gemini-next-generation-model-february-2024/.
46

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
Eh00d2BJIM. 7,38, 39, 40

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL http://arxiv.
org/abs/2009.03300. 33

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024. 3, 8

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435,2024. 3

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, and Madian Khabsa. Llama guard: Llm-
based input-output safeguard for human-ai conversations, 2023. 46

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhen-
hua Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Minference
1.0: Accelerating pre-filling for long-context llms via dynamic sparse attention. arXiv preprint
arXiv:2407.02490, 2024. 7

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan
Chen, and Xia Hu. LIm maybe longlm: Self-extend 1lm context window without tuning, 2024. 34

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In ICLR
2020, 2019. URL https://openreview.net/forum?id=rkgNKkHtvB. 2, 7, 33, 34,
39, 40

Wojciech KryScinski, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev.
BookSum: A collection of datasets for long-form narrative summarization, 2022. URL http:
//arxiv.org/abs/2105.082009. 3,9

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023. 2

Heejun Lee, Jina Kim, Jeffrey Willette, and Sung Ju Hwang. SEA: Sparse linear attention with
estimated attention mask, 2023. URL http://arxiv.org/abs/2310.01777. 2,3, 33,
34, 39, 40, 44

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.
44

Bo Li*, Peiyuan Zhang*, Kaichen Zhang*, Fanyi Pu*, Xinrun Du, Yuhao Dong, Haotian
Liu, Yuanhan Zhang, Ge Zhang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Accelerating
the development of large multimoal models, March 2024. URL https://github.com/
EvolvingLMMs—-Lab/lmms—eval. 33

12

http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=Eh0Od2BJIM
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
https://openreview.net/forum?id=rkgNKkHtvB
http://arxiv.org/abs/2105.08209
http://arxiv.org/abs/2105.08209
http://arxiv.org/abs/2310.01777
https://github.com/EvolvingLMMs-Lab/lmms-eval
https://github.com/EvolvingLMMs-Lab/lmms-eval

Published as a conference paper at ICLR 2025

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024. 7

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74-81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013.9

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023a. URL http://arxiv.org/abs/2310.03744. 1

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023b. 33

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL https://
llava-vl.github.io/blog/2024-01-30-1lava—-next/. 33

Liu Liu, Zheng Qu, Zhaodong Chen, Yufei Ding, and Yuan Xie. Transformer acceleration with
dynamic sparse attention, 2021. URL http://arxiv.org/abs/2110.11299.2,3

Llama Team Al @ Meta. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.2,7

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan
Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating large language model serv-
ing with tree-based speculative inference and verification. In Proceedings of the 29th ACM In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 3, ASPLOS *24. ACM, April 2024. doi: 10.1145/3620666.3651335. URL
http://dx.doi.org/10.1145/3620666.3651335. 44

Nvidia. Tensorcore: Nvidia, 2024. URL https://www.nvidia.com/en—-us/
data—-center/tensor—-cores/. 2

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models, 2023. URL https://arxiv.org/abs/2309.00071.
34

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosFormer: Rethinking softmax in attention, 2022. URL http://
arxiv.org/abs/2202.08791. 3,39

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. arXiv preprint, 2019. URL
https://arxiv.org/abs/1911.05507.7,9

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
SparQ attention: Bandwidth-efficient LLM inference, 2013. URL http://arxiv.org/abs/
2312.04985. 32,43,44

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL http://arxiv.org/abs/2308.12950. 1

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
Proceedings of the 37th International Conference on Machine Learning, pp. 9438-9447. PMLR,
2020. URL https://proceedings.mlr.press/v119/tay20a.html. ISSN: 2640-
3498. 2

13

https://aclanthology.org/W04-1013
http://arxiv.org/abs/2310.03744
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
http://arxiv.org/abs/2110.11299
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
http://dx.doi.org/10.1145/3620666.3651335
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://arxiv.org/abs/2309.00071
http://arxiv.org/abs/2202.08791
http://arxiv.org/abs/2202.08791
https://arxiv.org/abs/1911.05507
http://arxiv.org/abs/2312.04985
http://arxiv.org/abs/2312.04985
http://arxiv.org/abs/2308.12950
https://proceedings.mlr.press/v119/tay20a.html

Published as a conference paper at ICLR 2025

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer: Re-
thinking self-attention in transformer models, 2021. URL http://arxiv.org/abs/2005.
00743.2

Gemma Team. Gemma 2: Improving open language models at a practical size, 2024. URL https:
//arxiv.org/abs/2408.00118. 34

Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox. Triton: an intermediate language and
compiler for tiled neural network computations. Proceedings of the 3rd ACM SIGPLAN Inter-
national Workshop on Machine Learning and Programming Languages, 2019. URL https:
//api.semanticscholar.org/CorpusID:184488182. 2

tinygrad. tinybox, 2024. URL https://tinygrad.org/ftinybox. 46

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL http://arxiv.org/abs/2307.09288. 1,6

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF. 3, 7,
32,39

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Trans-
formers for longer sequences. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 17283—-17297. Curran
Associates, Inc., 2020a. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/c8512d142a2d849725f31a%a7a36lab9-Paper.pdf. 3,7

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Al-
berti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and
Amr Ahmed. Big bird: Transformers for longer sequences. In Advances in Neu-
ral Information Processing Systems, volume 33, pp. 17283-17297. Curran Associates,
Inc., 2020b. URL https://proceedings.neurips.cc/paper/2020/hash/
c8512d142a2d849725f31a%a7a36lab9-Abstract.html. 2

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. Hy0: Heavy-
hitter oracle for efficient generative inference of large language models, 2023. 7, 44

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs, 2024. URL https://arxiv.
org/abs/2312.07104. 2

14

http://arxiv.org/abs/2005.00743
http://arxiv.org/abs/2005.00743
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://api.semanticscholar.org/CorpusID:184488182
https://api.semanticscholar.org/CorpusID:184488182
https://tinygrad.org/##tinybox
http://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=NG7sS51zVF
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104

Published as a conference paper at ICLR 2025

Appendices

A Theoretical Analysis
A.1 Proof Sketch. e e e
A.2 Detailed Proofs e

A.3 Revisiting Assumptions in Theoretical Analysis

B Detailed Methodology Descriptions
B.1 Hierarchical Sparse Attention Mask Estimation Algorithm
B.2 HiP Decoding Algorithm L L
B.3 Detailed Flow-diagramof HiP
B.4 Additional Optimization Techniques

B.5 Training Downstream Tasks withHiP

C Additional Experimental Results
C.1 Large Multimodal Model withHiP
C.2 Massive Multitask Language Understanding MMLU)
C.3 Comparison with Reformerand SEA,
C.4 Context Extention with Self-Extend

C.5 Ensemble Hierarchical Top-k Approximation
D Detailed Experimental Settings

E Additional Analysis
E.1 More Discussion on Related Works
E.2 Analysis of Summarizing Result between StreamingLLM and HiP
E.3 Hierarchical Attention Mask Pruning Visualization
E.4 Ablation Studyon Block Size. e
E.5 Ablation Study on Dense Layer Choice
E.6 Ablation Study on Representative Token Location
E.7 Discussion about KV Cache Eviction and Compression Strategy
E.8 Discussion about Speculative Decoding
E.9 Remaining Challenges in HiP and Potential Solutions
E.10 Unique GPU Resource Demand Pattern of HiP Compared to Flash Attention

F Potential Negative Social Impact

15

16
16
18
23

31
31
31
32
32
32

33
33
33
33
34
35

37

39
39
40
41
41
43
43
44
44
44
45

46

Published as a conference paper at ICLR 2025

A THEORETICAL ANALYSIS

A.1 PROOF SKETCH

This section provides sketches of the proofs and derivations for the theorems and lemmas mentioned
in the main section of the paper. The full formal proofs are presented in the next subsection.

Using the insight obtained from our observations, we model the random variable §a as follows.

Axiom 1. The attention score difference between two tokens distance A apart is defined as a random
variable 6 o with the following distribution.

Sa ~N(0,0(A)2), A > 0.

Where the standard deviation o(A) is an increasing function of A, note that both 6 and o(A) are
defined only when A > 0, and cases when A = 0 will be dealt separately. We also need to define
the problem setting precisely in terms of math. Without losing generality, we model the tokens as a
list of indices of length 2n. For simplicity, we simplify the problem into the case of top-1 selection.
The indices of tokens range from 1 to 2n, where indices 1 to n belong to the first section, and indices
n+ 1 to 2n belong to the second section. The number k represents the location of the representative
token inside each section, and hence, indices k£ and n + k are the representative tokens of the first
and second sections, respectively. We visualize each token position in Figure 10.

Indi

T ¥

Ol IO L =TT
i p tative Tokens——

Figure 10: Visualization of Problem Setting.

For the ensuing theorems, we define the following random variables and events: t is the random
variable regarding the index of the maximum token, and it is assumed to be a uniform random
variable. A and B are the events where the maximum token is located in the first and second section,
respectively. X is the event where the first representative token is selected, due to the attention score
at index k being larger than the score at index n + k. The event Y is the exact opposite of X, where
the second representative token is selected.

What is the probability of a token whose distance from the maximum token is «, having a greater
attention score than a token distance 3 away from the maximum token? Using the random variable
da from earlier, since the tokens cannot have larger scores than the maximum token, the scores
can be calculated as Sp,qz — |0a| and Syqe — 0], Where s,,4, denotes the maximum attention
score. Thus, this problem is equivalent to calculating the probability P(|d,| < |d3|), which can be
calculated as follows.

P(16.] < 165]) :4/O°Oq> (ng[;x) . \/12?@% de—1.

A detailed derivation of the above lemma can be found in Appendix A.2. For convenience, in
the proofs to follow, we will abbreviate P(|d,] < [0g]) as ¢(o(a),o(B)). Please note that
¢(o(a),0(B)) is a decreasing function of «, and an increasing function of 5. Intuitively, this means
that the probability of the token with distance a being larger than one with distance /3 gets larger as
the first token gets closer and the second token gets further away from the maximum token. This
intuition agrees with the assumption of locality.

Lemma 1.

Using Lemma 1, we can calculate the probabilities for the following four cases — the case of the
first or second representative token is selected, either when the maximum token lies in the first or
section. The detailed derivation processes are provided in Appendix A.2.

Claim 1.

k—1 n
P(XNA)= % (Zw(a(kz—i),a(n+k—i))+1+ Z w(a(i—k),a(n—i—k—i))) ,

i=k+1

16

Published as a conference paper at ICLR 2025

Claim 2.

P(YNA) = % (k_lw(cr(n+k—i),a(k—i)) 1O+ zn: Wo(n+k—i),0(i — k))) ,
Claim 3. - o

P(XNB) = ;TL(kX:lw (n+i—k),o(k—1i))+0+ Z Y(o(n+i—)a(i—k))),
Claim 4. o

P(YNB) = - (Zw yo(n+i—))—|—1+‘ilzb(a(i—k),a(n—}—i—k))).

From these claims, we now appraise HiP’s ability to make the correct choice. In particular, if HiP
is indeed better than random token selection, then it should select the first representative token with
a higher probability if the maximum token is in the first section, and vice versa. The following
theorems specify the conditions in which HiP performs better than random selection. Similarly,
more detailed proof can be found in the appendix section.

Lemma 2. Ifk > n/2, then P(XNA) >P(YNA).

Proof (sketch). If k > n /2, then the following three inequalities hold.

k—1 k—1
. Y(o(k —1i),0(n+k—1i)) > Zw(a(n +k—i),o(k—1i)), 1>0,
Z Yot —k),ocn+k—1i)) > Z Y(on+k—1),00 —k)).
i=k+1 i=k+1
Therefore, if £ > n/2, P(XNA) >P(YNA). O

Lemma 3. Ifk <n/2+ 1, then P(Y NB) > P(XNB).

Proof (sketch). If k < n/2 + 1, then the three inequalities hold.

k—1 k—1
Ylo(k —i),o(n—+i—Fk) > Z¢(a(n +i—k),o(k—1i)), 1>0,
S plo(i—k),on+i—k)> Y v(on+i-k)oli—Fk).
i=k+1 i=k+1
Therefore, if k <n/2+1,P(YNB) > P(XNB). O

The final theorem follows directly from the above two lemmas.
Theorem 1. Ifk = n/2, then P(XNA) >P(YNA)and P(YNB) > P(XNB).

This theorem tell us that if k& = n/2, then HiP consistently outperforms random token selection in
terms of making the correct choice. Thus, just by setting the representative token as the middle token,
the hierarchical structure of HiP consistently outperforms random token selection! We now have the
answers for the questions mentioned at the beginning of section Section 4. Through mathematical
analysis, we have shown that by using the middle token as the representative token, the hierarchical
approach of HiP consistently guarantees better performance than random token selection. Therefore,
throughout our paper, we always use the middle token as the representative token of a section.

17

Published as a conference paper at ICLR 2025

A.2 DETAILED PROOFS

This section provides more detailed proofs and derivations for the theorems and lemmas mentioned
in the main section of the paper.

P(|6a] < |05]) = 4/:0@ ((‘;Ei;x) - \/1277@*% dr —1.

Lemma 1.

Proof.

ly|
P(15a] < 05]) = P(— 15| < 6o < |85]) // (6 = 2,65 = y)dady

lyl

Assuming that é,, and dg are independent, we can expand the equation as follows.

P(do =2,08 =y) =P (0o = 2)P(dp = y)

[y]
P(16,] < |65)) / / | P (55 = y)drdy

From Axiom 1, note that §,, ~ N(0,0(a)?) and 55 ~ N(0,0(53)?).
|yl

/ /)P (65 = y)dady
lyl

/ /'“' Joro(ar p— 557 dad
6 20()2 ¢ 208 xdy
ly| /270 (a V2o (B)?
o0

_ w2 (M 1 _ a2
e 20(5)2/ ————¢ 2@ dzdy

i V270 (a)?

N /_oo \/QWU(B)Q
:/00 ée_%ﬁé)z /Iy/d(a)l
—oo /270 (B)? —lyl/o(a) V2T
Y |yl 1 — 5
‘/m <2¢’ (o(a)>_1> e EN

[o(l)
N e T dy — 1
oo \o(@) 210 (B)?

Note that the symbol ® represents the cumulative distribution function (CDF) of the standard normal

distribution. -))
2/ c1><]) ¢ TR dy — 1
e \o(a) 2o ()2

z2
e 2 dxdy

= 4/ D < L ! ¢ 332 dy —1
0 (@) QWJ(ﬂ)Q
o a)
= (U (8)) _gdx—l
o(a)

O

As mentioned in the main section, for convenience, we will denote P (|6, | < [dg]) as ¢ (o (c), o (B)).
Please remember that ¢)(o (), o(8)) is a decreasing function of «, the first argument, and an increas-
ing function of /3, the second argument. Note that in our derivation, we assumed that d, and 63 are
independent. More discussion on this assumption will be provided in the ensuing subsections.

18

Published as a conference paper at ICLR 2025

Claim 1.

P(XNA) = <Z¢ Jo(n+k—i)+1+ Z Y(o)o(nJrki)))

i=k+1

Proof. Recall that t is a uniform random variable denoting the index of the maximum token. Since
the number of tokens is 2n, event A is actually the union of events t = 1. ..n. Therefore,

P(XNA) ZPXﬂt_z ZP(t DP(X[t=1i) = pru_z
1=1

Using Lemma 1, P(X|t = ¢) can be calculated as follows.

P(o(k—1i),o(n+k—1i)) ifi<k
PXt=4) =<1 ifi==k
PY(o(i—k),on+k—1)) ifi>k
A detailed explanation for the above derivation is as follows. When the maximum token index is
smaller than the first representative token (i.e. ¢ < k), the distances between the maximum token
and the two representative tokens are k — ¢ and n + k — 4. Thus, using Lemma 1, P(X|t = i) =
Y(o(k—1),0(n+k—1)). Similarly, P(X|t = i) = ¢)(c(i — k), o(n + k — 7)) when the maximum
token index is larger than the first representative token (i.e. ¢ > k). When the maximum token is the
first representative token (i.e. ¢ = k), we cannot use Lemma 1 as o(A) is defined only when A > 0.
However, if the maximum token is the first representative token, then it will always be larger than
the second representative token - hence, P(X|t = i) = 1.

Using the above derivation, we can rewrite the original summation as follows.

P(XNA) ZPX\t—z

21n<zw so(n+k—i)+1+ Z’I/J)a(n+kz’))>

1=k+1

Claim 2.

P(YNA) = zln <Zw (n+k—i)ok—i)+0+ > w(a(nJrki),a(ik)))

i=k+1

Proof. The derivation is almost the same as Claim 1, except that the second representative token
needs to have a larger attention score than the first one. Therefore, the arguments in the v function
are switched for cases ¢ < k and ¢ > k. When ¢ = k, the maximum token is the first representative
token, so P(X|t =) is zero. Therefore,

Y(on+k—1),0(k—1) ifi<k
P(Y[t=14) =140 ifi =k
Y(en+k—i),o(—k)) ifi>k

P(YNA) ZPY|t—Z

k—1 n
= % <Z¢(U(n+k—’i)70(k—i))+0+ Z Q/J(J(n+k_i),a(i_k))>

i=1 i=k+1

19

Published as a conference paper at ICLR 2025

Claim 3.

P(XNB) = (Zw (n+i—k),o(k—1i)+0+ Z Ylo(n+i—)a(ik)))

i=k+1

Proof. Recall that t is a uniform random variable denoting the index of the maximum token. Since
the number of tokens is 2n, event B is actually the union of events t = n + 1. .. 2n. Therefore,

P(XNB) ZPXﬂt—z ZP P(X|t=1i) = —ZPXH—Z

1=n+1 i=n+1 i=n+1
Similarly to Claim 1, using Lemma 1, P(X|t =) is derived as follows.
Yot —k),on+k—1i) fi<n+k
P(X|t=1)={0 ifi=n+k
Yot —k),oc(i—m—k)) ifi>n+k
2n

S PXNB) = Z (X[t =)
1=n+1

nik-l 2n
21n< > Wloli—k)on+k—i)+0+ zb(a(ik),a(ink)))

1=n+1 i1=n+k+1

k—1 n
= % (Z¢(U(n+i—k)70(k—i))+0+ Z 1/J(J(n+i_k)’a(i_k))>

=1 i=k+1

Claim 4.

P(YNB) = (Zw on+i—k)+1+ Z z/z(o(z’—k:),a(n—i—i—k)))

i=k+1

Proof. The derivation is similar to Claim 3, except that the second representative token needs to
have a larger attention score than the first one. Therefore, the parameters of the v function are
switched compared to Claim 3. Also, when ¢ = n + k, then the second representative token is the
maximum token. Therefore, P (Y|t = 4) is derived as follows.

Y(on+k—1i),0(i—k)) ifi<n+k
P(X[t=i) =41 ifi=n+k
Yot —n—k),o(i—k)) ifi>n+k

S P(YNB) = Z (Y|t = i)
1=n+1
n+k—1
(Z Y(o(n+k—i),o(i—k))+1+ Z Y(o(i —n —)a(z’k))>
1=n+1 1=n-+k+1

=3 (Zw on+i—k)+1+ Z @b(a(i—k),o(n—i—i—k)))

=1 i=k+1

Lemma 2. Ifk > n/2, then P(XNA) >P(YNA)

20

Published as a conference paper at ICLR 2025

Proof. From Claim 1 and Claim 2,

o(n+k—i)+1+ ij —k),o(n+k —1))
i=k+1

P(XNA) = (

k-
2.l
k—1 n
P(YNA)= (Zw (n+k—1i),ok—14)+0+ Z w(o(n+k—i),a(i—k))>

i=k+1
The following inequalities trivially hold.

k—1 k—1

Y ok —i),on+k—i) > v(on+k—i),olk—1i)

i=1 1=1
1>0

For the remaining two terms, the direction of the inequality depends on the relationship between
o(i—k) and o(n+k—1). In order for P(XNA) > P(YNA), we need to have o (i—k) < o(n+k—1),
ie.t—k<n+k—iforalli=k+1---n

i—k<n+k—i Vi=k+1---n
S 2k>2i—n, Vi=k+1---n
;kZi—g Vi=k+1l---n

k>

|3

Therefore, if k > n/2, then the inequality P(X N A) > P(Y N A) holds. O
Lemma 3. Ifk <n/2+ 1, then P(YNB) > P(XNB)

Proof. From Claim 3 and Claim 4,

k-1
PmmB)5;<§:¢ (n+i—k),o(k—1i) +m+§:w n+z)a@@0
i=k+1
P(YNB) = (Zw on+i—k))+1+ Z w(a(i—k),a(n—i—i—k:)))
i=k+1
The following inequalities trivially hold.
Z Y(o(i—k),o(n+1—k) Z¢ (n+i—k),o(i—k))
i=k+1 i=k+1
1>0

For the remaining two terms, the direction of the inequality depends on the relationship between
o(n+i—k)and o(k—1). In order for P(YNB) > P(XNB), we need to have o(k—i) < o(n+i—k),
ie.k—i<n+i—kforalli=1---k—1.

k—i<n+i1—k Vi=1---k—-1
Ok <2i4m, Viel--k—1
sk<ids Vi=lok-1
k<DL
Therefore, if k < n/2 + 1, then the inequality P(Y N B) > P(X N B) holds. O
Theorem 2. If o’ (k)o(k) < o’(k)?%, then P(X N A) + P(Y N B) is maximized when k = n /2.

21

Published as a conference paper at ICLR 2025

Proof. From Claim 1 and Claim 4,
P(XNA)+P(YNB)

k—1 n
:1< Y(o(k—1i),c(n+k—14)+1+ Z Y(o(i — k), (n—i—k:—z)))

i=k+1

™

|
[\
:‘“
VRS
™7

i=1 i=k+1

e

I
gl
7

@
Il
-

=

ok —i),on+k—i)+1+ > ¢loli—k),on+i—k

i=k+1

ok —i),on+i—k)+1+ > ¢(oli—k),on+i—k)

E
[

+1< blo(k—i)o(nti—k)+1+ 3 ¢(U(i—k),a(n+k—i))>

1 i=k+1

<.
I

For simplicity, we refer to the first term as 7'1, and the second term as 7'2. We now investigate which
value of k£ maximizes 7’1 and T°2.

For T2, suppose the value of k changes from k to k + 1.
T2p11 — T2 =Y(o(k),c(n—k)) —¢(c(n—k),a(k))

It can be easily seen that ¢)(c(k),o(n — k)) is a decreasing function of k, and ¢ (o (n — k), o(k))
is an increasing function of k. Therefore, 72,1 — T2}, is a decreasing function of %, and its value
goes from a positive value when £ = 1, and a negative value when k¥ = n — 1. Thus, T2 is
maximized when 17251 — T2;, = ¢(o(k),o0(n — k)) — ¥(o(n — k),o(k)) = 0. The value of k
where (o (k),o(n —k)) —¢(c(n — k), o(k)) = 0 is computed as follows.

Therefore, T2 is maximized when k = 3.

For T'1, suppose the value of k changes from k to k& + 1.
Tl — Tl = ¥(0(k), a(n + k) — ¥(o(n — k), o(2n — k)

Unlike T2, we cannot easily determine whether (o (k),o(n+k)) or¢(o(n—k),o(2n —k)) is an
increasing or decreasing function of k. Therefore, we turn to the definition of ¢ (o (), o(3)). From

Lemma 1,
vlote).o(@) =4 [0 (jgaz) =t

Thus, the positivity of 7151 — 71 depends on the characteristics of the function o(n+k)/o (k). If
o(n+k)/o(k) is a decreasing function of k, then ¢)(c(k), o(n+ k)) becomes a decreasing function
of k, and inversely, ¥(o(n — k),0(2n — k)) becomes an increasing function of k. In this case,
similarly to T'2, we can show that 7'1 is maximized when & = n/2. In order to find the condition
where o(n + k)/o (k) becomes a decreasing function of k, we take its derivative in terms of k.

don+k) on+k)o(k)—on+k)o' (k)

ak o) o (F)? <0

dn+k) ok)
k) " ok

o' (n+k)o(k) <oln+k)o'(k),

Thus, we see that if o/ (k) /o (k) is a decreasing function of k, then o(n + k)/o(k) also becomes a
decreasing function of k. This condition is equivalent to the condition o”(k)o(k) < o'(k)?. The
derivation is as follows.

. 0" (K)o (k) — o'(k)?
o(k)?

<0

22

Published as a conference paper at ICLR 2025

Wikitext2 Booksum Longbench Pgl9
1
5 0.5
5
7
9 0.4
11
13
T 15 0.3
Ay
- 19
21 0.2
23
25
27 01
29
31
135 7 91113151719212325272931 00
Attention Head
(a) Llama3.1 8B Model.
Wikitext2 Booksum Longbench Pg19
0.5
0.4
@ 0.3
>
S
0.2
0.1
135 7 91113151719 21232527 0.0
Attention Head
(b) Qwen2 7B Model.
Wikitext2 Booksum Longbench Pgl19
1
5 0.5
5
7
9 0.4
11
13
o 15 0.3
A
- 19
21 0.2
23
25
27 01
29
31

0.0

1357 91113151719212325272931
Attention Head

(c) Exaone 3.0 7.8B Model.

Figure 11: NRMSE of Fitting o(A) as a Logarithmic Function. The above figures show the
NRMSE (Normalized Root Mean Squared Error) result of fitting the o(A) function as a logarithmic
function, as a continuation of Figure 12. For fitting the function, the general formula y = alog(z +
b)+c was used. We demonstrate the experimental results on various datasets and LLM architectures.

o’ (k)o(k) < o' (k)?

To summarize, if " (k)o (k) < o’(k)?, then ¢ (o (k), o(n+ k)) becomes a decreasing function of ,
and ¢ (o(n—k), o(2n—k)) becomes an increasing function of k. Therefore, 71,11 —T'1; becomes
a decreasing function of k, and its value goes from positive to negative as k goes from 1 ton — 1.
The crossover point is where kK = n — k, and n + k = 2n — k. Coincidentally, this is when k = n /2.
Therefore, if o’ (k)o (k) < o’(k)? the value of k which maximizes T'1 is k = n/2.

To summarize, if "/ (k)o (k) < o’ (k)?, then k = n/2 maximizes both 7'1 and 7'2. This concludes
the proof. O

A.3 REVISITING ASSUMPTIONS IN THEORETICAL ANALYSIS

In Axiom 1 and Lemma 1, we make two important assumptions: that o follows a normal distribu-
tion V'(0,0(A)?), and that 6,, and 4 are independent of each other. However, is this justifiable? In
this section, we provide analysis and explanation on this issue by providing several empirical results
collected across various datasets and LLM architectures, which justify our assumptions.

A.3.1 THE DISTRIBUTION OF 0a

First, we justify the assumption 5o ~ A (0, 0(A)?) by validating three parts - that 5 does follow a
normal distribution, that o (A) is an increasing function of A, and that the mean can be approximated
as zero.

23

Published as a conference paper at ICLR 2025

Head 4 Head 8 Head 12 Head 16
c 3.50 c 28
[S—— N S T P .t - B R RO W A A
S 300 [AT 8 S0 T AR N Z AR S 325 P O || e
=] A B oas . AARATY =] v 5 26 M
f A J
.E 275 2 4 iy 'E 300 Lo 2 /
1] H (] o [4 Q24
S 250 | T 40 f S 275 o H
° | I { ° f I |
T 225 | g 35 © 250 | 22
° | ° | ° | ° |
c | <30 | c ! c |
T 200 | s 0 g 225 S 20 |
A 1 & | a | a7
175 ! NRMSE: 0.038056 25 NRMSE: 0.071455 200 [y NRMSE: 0.026450 1 NRMSE: 0.044252
[200 400 600 800 1000 0 200 400 600 800 1000] 200 400 600 800 1000 0 200 400 600 800 1000
N e N " Tnday diffaranra N 4"
Head 20 Head24 Nead 58 i Head32
24 g] 4.25
c w i, ~ - O N T N W . v e I I B TV T " c
- Y S 32 e S |l || M- G 40 H—— Nt =17
B e B # S 4.00 N~ B (e AT
8 22 o 830 2 b P 8 35 A
> e > / > P 3 v
[Siad [[o 375 7, [s
© 1 T 28 | k=] K. T 3.0 K
T 20 B { T3s0 f B i
T S 26 | < f © 25
2 2 | B 2 |
5 '8 S 24 s | & 20 !
il il | = | il |
2 0 | 0 300 2 |
16 NRMSE: 0.040612 22 ! NRMSE: 0.034235 NRMSE: 0.053045 15 NRMSE: 0.076300
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Index difference Index difference Index difference Index difference
(a) Llama3.1 8B, 16th layer.
Head 4 Head 8 Head 12 Head 16
3.0 30
c c e - Y Al e e
o 40 O 5o |l | pnMazIml, € 325 H— gl D=1 Wy =16 || | -t
=2l I N IO A T A U A oy .- 28 i (I Y "~ LY L .5 v
8 | SV] Va 3 M- 5 2 a
2 35 L=t S 26 ,g 3.00 S L6 e
Q J Q 4 [o
k-] 7\ o© { 3 { o 7
30 24 T 275 i f
- 30 & - | i o 24
5 55, | 2 el 5 (]
B 25 ! 5 22 3 250 T 22
c : c | c ‘v c
© o 2.0 T 225 T
A 20 a i - & 20
| NRMSE: 0.113388 18 ! NRMSE: 0.033310 200 U NRMSE: 0.069033 18 NRMSE: 0.055701
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
e i * diffaranca Tnday, dj
Index Head 20 Head 24 Head 28 . difference
c oV ANE LTSS c L Aa g A
o T - Ll O 40 H— D=V §3% Aa-ARAFW
&2 K o & 300 Aot
S / > 35 o S 7
H y 2 3 / ¥
g 24 :’ 3 Y. & 275 i
B2 ! T30 T 250 |
T : < ‘l © i
220 ! 2 25 T 225 |
g g 25 g '
RERS A | & 200 |
! NRMSE: 0.044604 2.0 NRMSE: 0.048356 ! NRMSE: 0.039546
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Index difference Index difference Index difference
(b) Qwen2 7B, 12th Layer.
Head 4 Head 8 Head 12 Head 16
c || || . A SNAEA c 275 c 28 g e TR 2 I R " Y i
° ™ e |] ML ad-Y o N O 238 s
B0 g 2 250 weM B 25 T B oS
ES .2 47 S % ES #
3 i 3 225 NP 2 24 326
o f o° 4 o° ! o 4
Tas B 200 B 22 B4
g | © Il g 20 | g |
5 : s 5 S 5 22
| T | I -
a0 & o150 | He n
NRMSE: 0.036647 NRMSE: 0.064164 16 U NRMSE: 0.036935 NRMSE: 0.037188
0 200 400 600 800 1000] 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
" Head 20 Head24 Head 28 " Head 32
4.0 v 2.8 .
3 Iq c 28 T Y e c _nbouhde i, a0 c \
K WA N P s g3 AT
&3 pdl & 26 i & 28 & ive’
3 3., /) 3 3
S 3.0 N S 24 ’l T 26 - 25 /,-’
k<] el k<] ! k<] k<] 2
& 25 Hf* = | = = /
[} 4 o 22 | T 24 [} {
© o° ! T~ T° 2.0 L
< 20 c ! c 2 2.
] 820 822 i
Y oas v | 0 &
E NRMSE: 0.050786 ! NRMSE: 0.044811 NRMSE: 0.050182 15 NRMSE: 0.053617
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Index difference

Index difference

Index difference

(c) Exaone 3 7.8B, 16th layer.

Index difference

Figure 12: Plots of o(A) and their Normalized Root Mean Squared Error. The above figures
show the plots of o(A), and the NRMSE errors for fitting as a logarithmic function across various
LLM models and layers. For the input, we used the Wikitext2 dataset.

Figure 15 shows some examples of the distribution of a of various models. As can be seen in
the figure, 0 clearly follows a normal distribution. In order to provide statistical evidence that 6o
indeed follows a normal distribution, we compute the KL divergence between §a and the normal
distribution fitted onto 5. We experiment on all layers for various LLM models and A values, and
show some of the results in Figure 16. As can be seen in Figure 16, almost all of the KL divergence

values are extremely small and close to zero.

24

In fact, with the small exception of the first layer

Published as a conference paper at ICLR 2025

Head 1 Head 5 Head 9 Head 13
0.06 00 N4 0.0
0.04 M "’\“‘ 015 M -0.2 N
) ki on b ,nl }
c o002 | hl" S 2 "‘k‘.\ £ o0 ' £ 04 \\\
o
b [} [[
S Uil M%W s s '\\ 2 4.“{1\“ M S 06 N
N / o 0.00 i
008 w 05 \MW n -10 \
" 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Index difference Index difference Index difference Index difference
Head 17 Head 21 Head 25 Head 29
0.0 nd 00 ¥
™ 0.20 M '\
015 L
-0.1 '\\‘ 0415 fal ! ‘| 02 N
c \ c c i " <
§ o2 \ 8 010 w s 0.10 m“ 'w I8 h\\
s iy s ‘ m s m s 04)
-03 -‘\ 005 |} mw" 0.05 i \Wb\
M -0.6
-0.4 \ 0.00 i 000 1 ‘\
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Index difference Index difference Index difference Index difference
(a) Llama3.1 8B Model, 17th Layer.
Head 4 Head 8 Head 12 Head 16
, 00 4
0.10 ‘N*N._ 0.025 Lt 00 |y iy
o ' Ll MM : pr
0.05 l 02 \u 0.000 mﬂ ' ““ 0.1
s i -0. # -0.
S s "\k © -0025 ’ L s MW
H O -03 : < M o . 'Y
I SR 2 il 02
S 000 = S -0.050 i =
b o4 '™
\ -0.075 Wi -03
~0.05 \ -0.5 \
\ o6 \ -0.100 N -0a !
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Index difference Index difference Index difference Index difference
Head 20 Head 24 Head 28
0.25 Nl 01 01 e
1 Ll A MM .
0.20 W “‘ ’ ,\ 00 " “WMI
0.15) 0.0 YR
s F W Vg ot B I .
2 010 2 W 2 K
s v i "= W 1= o,
i 02 ' :
0.05 M \ \
000 7 03 N -0.2 \
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Index difference Index difference Index difference
(b) Qwen2 7B Model, 14th Layer.
Head 4 Head 8 Head 12 Head 16
0.25 ; o |
0025 M L 0.00 000 s
020 ﬂM Mn |) -0.05 Mh ~ \
/ 0.000 Wil 5l e 2 N 0.05 “M
€ 015 c -0025 W w ‘“. ‘l \ c -0.10 < -0.10 i
3 jM s wyluwm‘ ' l. H ‘1\ 5 M
= o010 & 2 0050] S -01s WM 2 os)
L -0.075 “Hr \ -0.20 A -0.20 M
0.05 e : m ‘ i "\,\ ; ‘lh
00 -0.100 { -0.25 \ -0.25 - ,‘!,Mg‘u_‘
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Index difference Index difference Index difference Index difference
Head 20 Head 24 Head 28 Head 32
"y w
m 0.0 L
00 A WL il 7\ o0 'm“ 025 .ﬂ
A on h F 0.20 d
5 \ 5 s § oss -
o -0.1 S © -0.05 ! 8o
s \ s o2 W 3 %N S 0 ﬂ!;WWW
-0.2 \fm -03 ™ -0.10 y ‘.‘%) 005 ,‘I‘
-0.4) 045 M 0.00
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Index difference Index difference Index difference Index difference

(c) Exaone 3.0 7.8B Model, 16th Layer.

Figure 13: Plots of the mean of do. The above figures show the plots of the mean of Ja, as a
function of A for various LLM models and layers. For the input, we used the LongBench dataset.

of the Qwen2 model, all of the KL divergence values are smaller than 0.1, which validates that da
follows the normal distribution.

Although the KL divergence values in Figure 16 are very small, it appears that few attention heads
stand out as extreme outliers in the first layer of the Qwen2 model. In Figure 14, we take a closer
look at the distribution of d A in one of such attention heads. This figure shows that the distribution of
0 in these outliers still largely resemble a Gaussian Distribution. However, the distribution appears

25

Published as a conference paper at ICLR 2025

A =200 A =400 A =600 A =800

0.10 0.10 0.10
0.08 0.08 0.08 0.08
0.06 0.06 0.06 0.06
0.04 0.04 0.04 0.04

X AT 0.02 T X T 0.02 s
0.02 pal i Pt N 0.02 » g . rq ™
0.00 J,&t/divergence: 1.4\741\7 0.00 /Mvergence: 1.h34\\ 0.00 IMVergence: 1.2’224\¥ 0.00 /Mvergence: 1.0%23\¥

' 20 -0 0 10 20 ' 20 -10 0 10 20 ’ 20 -10 0 10 20 ’ 20 -10 0 10 20

Attention Score Difference Attention Score Difference Attention Score Difference Attention Score Difference

Figure 14: Close Examination of j o for the Qwen2 Model. The above figures plot the distributions
of da of the 3rd attention head of the first layer for the Qwen2 model, which was also shown in
Figure 16. Close examination on these figures suggest that although the KL divergence scores are
high, a still largely follows a Gaussian distribution.

A =200 A =400 A =600 A =800
0.025 0.025 0.025
0.020 / \‘ 0.020 //\\ 0.020 :/\ \\ 0.020 /\ \‘
0.015 ‘j/ \\ 0.015 f \ 0.015 / \ 0.015 ’/ \\
0.010 i : 0.010 { y 0.010 f \,‘ 0.010)f h
0.005 // \\\ 0.005 // \\ 0.005 // \‘ 0.005 / N
.~ KL divergence: 0.003 b " KL divergence: 0.0079 ™.__ __~~ KL divergence: 0.003\‘ _.~" KL divergence: 0.002\\

0.000 0.000 0.000 0.000

0.025

-5.0 -25 0.0 25 5.0 -5.0 -25 0.0 25 5.0 -50 -25 0.0 25 5.0 -5.0 -25 0.0 25 5.0
Attention Score Difference Attention Score Difference Attention Score Difference Attention Score Difference
(a) Llama3.1 8B, 9th attention head of the first layer.
A =200 A =400 A =600 A =800
0.025 0.025

0.025 0.025 /\

0.020 /\ 0.020 [\ 020 /\\ 0.020)/ \\

0.015 / \ 0.015 // \\ 0.015 / \ 0.015 / \

0.010 f/ \\ 0.010 i \ 0.010 / \\ 0.010 ’/r \

0.005 ’j k 0.005 ’j 0.005 / ‘ 0.005 '

0.000 %'— divergence: O-OOZX 0.000 /“— divergence: 0002& ,/(L divergence: o.oozx /(L divergence: vooz_a\
- -5 0 5

0.000 0.000
10 -5 0 5 10 -10 -5 0 5 -10 -5 0 5 10 -10

Attention Score Difference Attention Score Difference Attention Score Difference Attention Score Difference

(b) Qwen?2 7B, 6th attention head of the 9th layer.

A =200 A =400 A =600 A =600
0.025 0.025

. Py 2\ 2\
Ja /’/\\ [[N
i Y W T

0.010
/ \ f A / \ / i
0.005 / \ 0.005 4) 0.005 / \ 0.005 / \
0,000 KL divergence: 0.0035 0.000 /(L divergence: 0.002& 0.000 KL divergence: 0.0019 0.000 KL divergence: 0.0019
-5 0 5 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
Attention Score Difference Attention Score Difference Attention Score Difference Attention Score Difference

(c) Exaone 3.0 7.8B, 6th head of the 13th layer.

Figure 15: Distribution of 5. The above figures show the distributions of d A across various models
for A values 200, 400, 600, and 800, respectively. The Wikitext2 dataset was used as input.

to be severely discontinuous and quantized, which is the reason why the KL divergence values were
so high. We suspect that this is the result of some internal operations of the Qwen2 model, which we
are not aware of. Although these few occasions stand out as anomalies, we believe that it does not
compromise the integrity of our assumption for two reasons. First, it is an extremely rare occasion
that only occurs in the few early layers of the Qwen2 model. Secondly, even though the results are
discrete, the distribution of da still resembles a normal distribution. Therefore, our assumption of
modeling d as a normal distribution is valid.

Next, we show that o(A) is an increasing function of A. We observe an interesting phenomenon,
where the overall demeanor with which o(A) increases resembles a logarithmic function, as can be
seen in Figure 12. Although there may be some amount of minor deviations, the standard deviation

26

Published as a conference paper at ICLR 2025

Layer 1 Layer 5 Layer 9 Layer 13
0.10
0.08
0.06
Layer 17 Layer 21 Layer 25 Layer 29
0.04
el
©
$ 0.02
0.00
LS L L LSS
Index Difference
(a) Llama3.1 8B Model.
Layer 1 Layer 3 Layer 5
|
0.08
ﬂ 0.06
Layer 13 Layer 17 Layer 21
0.04
kel
©
L 0.02
0.00
N SN S Y
Index Difference
(b) Qwen2 7B Model.
Layer 5 Layer 9 Layer 13
0.10
0.08
0.06
Layer 17 Layer 21 Layer 25 Layer 29
5
; 0.04
9
n
T 5
By 0.02
21
23
25
27
ﬁ 0.00

S 5
£ 5

Index Difference

Yo

I R P
AP

(c) Exaone 3.0 7.8B Model.

Figure 16: KL Divergence. The above figures express the KL Divergence between o and its
fitted normal distributions of various layers. The y axis represents attention heads, and the z axis
represents A, ranging from 50 to 950. We use the Wikitext2 dataset as input for the model.

o(A) of da has consistently shown to resemble a logarithmic function for almost all layers and
attention heads. In order to prove this claim, we show the results for fitting o(A) as a logarithmic
function for each attention head and layer. As can be seen in Figure 11, except for a few outliers (es-
pecially in the early layers), the results converge within NRMSE (Normalized Root Mean Squared

27

Published as a conference paper at ICLR 2025

Error) of 0.1, which suggests a very good fit. This shows that o (A) resembles a logarithmic function
and, therefore, can be seen as an increasing function.

The above observation actually opens up the room for discussion about the optimality of HiP. In
Theorem 2, P(X N A) + P(Y N B) is the probability of HiP making the right choice, regardless of
the location of the maximum token. Therefore, Theorem 2 proves that if o/ (A)o(A) < o/(A)?,
then not only does HiP perform better than random token selection, but it is also in fact optimal.
If 0(A) resembles a logarithmic function like our observation, then o/ (A) < 0, and therefore the
inequality 0"/ (A)o(A) < 0 <= ¢’(A)? holds. Thus, on top of HiP guaranteeing better performance

than random token selection, there also is the possibility of HiP being, in fact, optimal.

However, we are very careful with making this claim because we do not yet have a logical explana-
tion about why o (A) displays a logarithmic increase. In the main paper, based on the assumption
of locality, we only claim that o(A) is an increasing function of A. However, the assumption of
locality does not cover the exact detailed behavior of o(A). There is always the possibility that
the logarithmic pattern we see in o(A) may be the result of some model-specific traits, the overall
training corpus, or some other reasons that we are not aware of. Therefore, although we find this
observation interesting, we only leave it as a discussion topic in the appendix section. We plan to
analyze the detailed characteristics of the o(A) function in future work.

Finally, we discuss approximating the mean to zero. Unlike our assumption, the mean of which
normal distribution 6 follows does not stay as zero. As can be seen in the following Figure 13, the
mean of 0 consistently begins from zero when A = 0, but it moves away from zero as A increases.
The manner in which the mean gets further away from zero is not consistent. In some cases, the
mean decreases negatively away from zero, and in some cases, it is the opposite. The exact behavior
differs between different layers, or attention heads or the input dataset, so it seems that we cannot
deterministically express the mean in terms of math.

However, this does not undermine the integrity of our mathematical analysis. Note that in our proof,
we use the absolute attention score difference |0 |. The main logic of our proof is that since attention
scores display locality, the representative token near the maximum token is likely to have a larger
score than the other representative token and, hence, is more likely to be chosen by HiP’s algorithm.
This does not change, even if the mean of §a displays the aforementioned nonzero characteristic.
Since §o moves away from zero as A increases, |da| is an increasing function of A. This makes it
even more likely that the representative token near the maximum token will have a larger score than
the other representative token compared to when the mean is zero. For this reason, ¢ (o (), o(8))
is still a decreasing function of « and an increasing function of /3, even if the mean exhibits nonzero
characteristics. Thus, our mathematical analysis remains valid.

We approximate the mean as zero mainly for three reasons. First, even though the mean gradually
moves away from zero, regardless, it is still close to zero and much smaller than the standard de-
viation of da. Secondly, the behavior of the mean is not co