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ABSTRACT

Recent advancements in artificial neural networks (ANNs) have greatly enhanced
the ability to predict neural activity in response to visual stimuli. However, the
inverse problem of designing visual stimuli to elicit specific neural responses
remains challenging due to high experimental costs, the high dimensionality of
stimuli, and incomplete understanding of neural selectivity. To address these
limitations, we present a closed-loop visual stimulation framework via elec-
troencephalography (EEG)-based controllable generation. It can iteratively
generate the optimal visual stimuli to achieve the goal of controlling brain sig-
nals. This framework employs an EEG encoder, treated as a non-differentiable
black-box model, to predict neural responses evoked by visual stimuli. By utiliz-
ing this encoder (or human experiment), we can quantify the similarity between
the predicted (or recorded) neural responses and target neural states. Combining
EEG feature extraction with a generation/retrieval module, the framework sys-
tematically explores large-scale natural image spaces to identify stimuli that op-
timally align with the desired brain state. Experimental results demonstrate that,
irrespective of the precision of ANN-predicted brain activity, our framework ef-
ficiently converges to the theoretically optimal stimulus within a fixed number of
iterations. Moreover, this framework generalizes effectively across diverse tar-
get neural activity patterns, underscoring its robustness and potential for broader
applications in brain-inspired stimulus design. Our code is available at https:
//anonymous.4open.science/status/closed-1loop-F2E9.

1 INTRODUCTION

The visual system exhibits selectivity, meaning different visual stimuli evoke distinct neural re-
sponses (Epstein & Kanwisher, 1998} Qiu et al., 2023). This property suggests that visual stimuli
could, in principle, be designed to elicit specific neural responses, offering a novel, non-invasive
approach to neuromodulation. Such neuromodulation technique offers several advantages: it is user-
friendly, natural, and inherently well-aligned with human sensory processing. However, achieving
precise neuromodulation through visual stimuli is highly challenging due to the high dimensional-
ity of visual input space and our incomplete understanding of neuronal selectivity in visual system.
Recent advances in controllable image generation techniques have enabled the creation of images
with specific semantic attributes, typically conditioned on textual descriptions (Li et al.l 2019} Ep-
stein et al., 2023 /Wei et al., |2024). While this represents a significant technological breakthrough,
current methods lack the ability to conditionally generate stimuli based on neural states. To address
this limitation, it is essential to develop frameworks capable of generating visual stimuli specifically
optimized to modulate neural activity in a targeted manner, paving the way for more effective and
precise neuromodulation through visual stimulation.

Many efforts have focused on precise control of brain activity through visual stimulation. For ex-
ample, several works (Ponce et al., 2019; Walker et al., 2019; Bashivan et al., 2019) have sought
to regulate neural activity at the neuronal level using targeted visual inputs. Notably, (Ponce et al.,
2019) introduced a closed-loop experimental framework that integrates a deep generative neural
network (GAN) with neurofeedback to iteratively generate images optimized to maximize the re-
sponses of specific neurons in the visual system. Despite their success in monkey experiments,
these methods often lack generalizability and fail to capture the full diversity of visual features due
to the small number of trials and constraints inherent in animal experiments. Moreover, they primar-
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Figure 1: Conceptualization. The closed-loop visual stimulation framework includes three core
components. (1) The Black-box model is used as a surrogate brain to generate neural responses
to visual stimulation, and can be replaced by EEG data recorded from human participants in real
closed-loop experiments. (2) The Encoder extracts the brain features associated with the target neu-
ral activity, which can be designed flexibly according to specific control goals. (3) The controllable
image generator Guided diffusion synthesizes several candidate images. Through closed-loop itera-
tion, the system continuously refines the visual stimulation to achieve the desired brain response.

ily focus on optimizing stimuli for individual neurons, which cannot reflect the complex, distributed
neural coding patterns observed at a macroscopic scale, such as those captured in EEG signals. More
recently, (Luo et al., 2024b)) introduced the Visual Evoked Potential (VEP) Booster, a closed-loop
framework designed to generate EEG biomarkers through visual stimulation. However, the VEP
Booster primarily generates stroboscopic visual stimuli, rather than natural images that align with
the known selectivity principles of the visual system (e.g., preferences for faces, objects, or semantic
categories). Therefore, it is crucial for a closed-loop neuromodulation framework that uses natural
image stimuli, capable of both flexibly controlling EEG signals and respecting the brain’s inherent
selectivity.

In this work, we develop a flexible closed-loop visual stimulation framework designed to achieve
controllable EEG responses, as illustrated in Figure [I, By leveraging existing natural image
datasets (Hebart et al.l |2019) and pre-trained image generation models (Rombach et al., [2022), we
utilize state-of-the-art diffusion models to identify fine-grained brain functional specializations in a
data-driven manner. Our contributions are summarized as follows:

* We introduce a cutting-edge closed-loop visual neurofeedback framework that synthesizes
natural images to control brain activity signatures. Our framework establishes a causal
mapping between synthetic visual stimuli and specific EEG features in visual regions.

* By replacing traditional human EEG experiments with a black-box model (serving as a
surrogate brain to predict neural responses to stimuli), we minimize dataset biases and
enhance the model’s ability to generalize to novel stimuli, providing valuable insights for
future human subject experiments.

* We leverage state-of-the-art diffusion models to identify fine-grained visual selectivity, in-
corporating natural image priors to improve generalization. It allows for flexible design
according to specific control goals, such as image retrieval to approximate neural activity
generated by a reference image.

2 RELATED WORK

Mapping Selectivity and Invariance from EEG. Modern neuroscience posits that specific re-
gions of the brain exhibit distinct sensitivities or preferences for particular types of stimuli (Tesileanu
et al., 2022). This phenomenon, known as selectivity, describes how neurons or neural networks in
these regions respond strongly to specific visual inputs. For instance, (Luo et al., |2024a)) highlights
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cases where neurons demonstrate pronounced selectivity for particular stimuli, underscoring their
preference for specific visual features. In contrast, invariance refers to the brain’s ability to respond
consistently to distinct stimuli that convey the same information. In other words, different stimuli
can elicit similar patterns of brain activity (Baroni et al., [2023). To explore the intrinsic invariance
shared by ANNs and the brain, (Feather et al.l [2023) proposed a method for generating model-
equivalent stimuli, also known as model Metamers. Metamers evoke identical neuronal activations
as a reference stimulus, providing a robust framework to examine the internal states of AI models
and their alignment with neural processes. This approach provides critical insights into the shared
computational principles underlying how artificial and biological systems process and represent in-
formation.

Closed-loop Control of Brain Activity. Neuromodulation based on visual stimulation offers po-
tential applications in understanding neural mechanisms and developing treatments for neurological
disorders. For instance, 40-Hz light flicker to entrain gamma oscillations in the brain has poten-
tial for treating Alzheimer’s disease (laccarino et al.l 2016} |Martorell et al.l |2019), and depression.
Closed-loop control of brain activity using visual stimulation is a promising approach for regulating
neural responses through real-time monitoring and feedback. Traditionally, studies in this area have
employed cutting-edge algorithms to enhance the efficiency and precision of signal processing and
decision-making, thereby advancing the intelligence of closed-loop systems. (Bashivan et al.|[2019)
applied gradient descent to optimize the characteristics of target neuron excitation or inhibition and
used the resulting gradients to update the ANN-based stimulus image generator, effectively regulat-
ing the activity of specific target neurons. (Walker et al.,|2019) proposed an innovative experimental
paradigm called “inception loops”, which combines in vivo recordings with in silico modeling to
synthesize optimal visual stimuli that can stimulate specific neuronal responses. (Luo et al.| |2024b)
employed a closed-loop strategy wherein a trained generative model to continuously refine the VEP
image of the biomarker. This iterative process produced higher-quality EEG data, demonstrating the
utility of closed-loop methods in improving biomarker-driven optimization framework. (Pierzch-
lewicz et all |2024) introduced a new method for optimizing and generating Most Exciting Inputs
(MEIs) through Energy Guidance (EGG) in neurons of the rhesus monkey V4 region.

Brain-conditioned Image generation. Gradient-based brain condition generation is becoming a
pivotal technique in optimizing visual stimulus design, particularly for neurofeedback and brain-
computer interface (BCI) applications (Luo et al.,[2024bja)). This method relies on iteratively refin-
ing stimuli by backpropagating the gradients of neural activity representations to steer brain states
toward desired conditions or achieve specific cognitive effects. Such an approach enables precise,
adaptive stimulus optimization in response to real-time neural feedback, forming the basis for per-
sonalized brain modulation.

Recent advances have expanded the scope of gradient-based techniques by integrating more so-
phisticated neural models and leveraging high-dimensional neural representations captured by EEG,
fMRI (Gu et al.| 2023), and other brain imaging modalities. These advances have significantly
enhanced the precision of stimulus generation, accounting for individual variability in neural re-
sponses. Moreover, by incorporating deep learning models, such as guided diffusion models (Ye
et al., |2023), researchers can now generate highly detailed and context-specific stimuli tailored to
align closely with target neural states, further advancing the field of brain condition generation.

3 METHOD

We aim to find the optimal stimulus image through either image retrieval or editing within a search-
able space to produce specific neural activity recorded from EEG. We demonstrate our overall frame-
work in Figure[2] This closed-loop system is adaptable to various control objectives, enabling it to
perform retrieval and generation tasks in Figure 2 A). Specifically, we design two distinct feature
extractors for retrieval and generation, respectively, and illustrate how our strategy modulates brain
activity by controlling the visual stimulus presented in Figure 2{B)(C). If the system tends to prefer
images with specific colors or textures, it will recognize the relevance of these features to the target
class and assign them higher weight in subsequent iterations. Through this closed-loop iterative
process, the system can optimize the visual stimulus to better evoke the desired EEG responses.
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Figure 2: Closed-loop visual stimulation framework via EEG-based controllable generation.
(A) We employs a closed-loop iterative process to approximate neural representations derived from
EEG signals X. The encoding model g, which maps images to synthetic EEG, is designed as a black-
box model to broadly simulate the process of regulating brain responses Y. The EEG Encoder f is
tailored to accommodate various neural features U. The image with a higher brain similarity score
s1M (U, Urarger) 18 retained and passed back to the image generator to generate optimized stimuli
with a natural image. (B) Example of semantic feature extraction from a pre-trained EEG encoder
f, aligned with CLIP embedding. In this case, our algorithm performs a retrieval task to identify
the optimal image u; that best matches the wger. (C) Channel-wise energy feature using Power
Spectral Density (PSD) features. Generative models are iteratively applied to modify the images.
For more details, refer to Section @

3.1 CLOSED-LOOP FRAMEWORK

We formulate the EEG signals as X € RE*T | where C is the number of EEG channels and T
represents the length of the data points. The image set, containing [V images, is denoted as €2, with
each image labeled sequentially with 1,2, ..., N for simplicity. Concurrently, we use the encoding
model g to predict brain activity signal X = g(U) € RV*“*T Qur objective is to derive brain
activity embeddings Y = f(g(U)) € RM*¥ from the images [ € RV >*3*HXW ‘where f is the
feature mapping function from X to Y, U is the set of stimulus images set, and F' represents the
dimension of embedding. Our iteration process can be approximated as a value-based iterative
Markov Decision Process (MDP). The state is represented as the probability distribution of each
image P(u) in the image database belonging to target category w¢qrge¢. The state updated after each
iteration corresponds to a state transition in the MDP. In each iteration, the framework determines
which image to select, represented as an action in the MDP. In our model, let j € [1, N], the reward
is defined as the similarity score between the selected or generated image u; from database and the
features of the target category et

_ f(g(uj)) . f (g(utarget))
1S (g(ui)) N1 (9(warger))

Let u; be any image in the search space, which is the target of model evaluation. During the iteration
of the ¢ to t 4+ 1 step, we update S;11(u;) based on w;. The weight coefficient o controls the
cumulative probability increment. Let v, be the image that the system considers to be closest to the
target category by computing EEG feature similarity. For the history subset H of selected images k,
the posterior probability that u; is the most similar to the target image is updated as follows:

(D

SIM(U;, Urarget)

St—‘rl(ui) :Oé'Sf(uz)+(1*Oé) . I_Iexp(s(u“’"l::)) 'St(ul') (2)
>k P (s(ul, ui))
where s is the cosine similarity of CLIP (Radford et al.,|2021) embedding. The update probability
Py y1(u;) for u; is computed by normalizing the exponentiated value of the updated score Sy41(u;)
over the sum of exponentiated scores for all u; in the dataset, ensuring that the probabilities across
all u; sum to 1:

exp (Se1(ui))

Pt 1\U;) =
il SN exp (St ()
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In step ¢ iteration, our framework operates as follows. First, we initialize a set of random images
Up = {u1,uz,...,u;}. Using the pretrained encoding model g to synthesize EEG signals X; from
these stimuli. Second, for any given representation function Y;, we calculate the neural activity
representation Y; = f(g(U;)) € RY*F from the predicted signal z;, to estimate the difference
based on the target neural representation Y34y ge¢. Third, the similarity score sim (u;, target) between
each neural representation derived from each current stimulus u; and the target representation is
computed. Subsequently, stimulus images exhibiting higher similarity scores are more likely to be
selected. Based on sim (u;, Ugrger), stimulation is probabilistically sampled, favoring images that are
closer to the target representation. Finally, the sampled images are used to retrieve similar images
for the step ¢ + 1 or input into the diffusion model to generate new stimulus samples.

3.2 BLACK-BOX ENCODING MODEL

Instead of collecting real EEG data, we employ an image-computable brain encoder gy, treated as
a black-box model, to map an image I; € R3**W to a synthetic EEG X;. This synthetic EEG
can later be replaced with EEG recordings obtained from human participants in real experiments.
Moreover, we assume that our framework remains effective regardless of the specific structure of
the encoding model, allowing us to focus on the advancements of the framework itself rather than
the details of the encoding model’s architecture. To ensure robustness, we use two different CNN
models, AlexNet (Krizhevskyl [2014) and CORnet-S (Kubilius et al., 2019), as feature extractors

and train regressors to predict the ground truth of EEG X,

In the encoding model, we modify the CNN’s 1000-neuron output layer to a C' x T-neuron layer,
where each neuron corresponds to one of the flattened EEG data ponits C' x T. Each subject is
assigned to unique model parameters, achieved by pretrained models and across all EEG time points

T. Given the input training images I and the corresponding target EEG data X, the model updates

its weights by minimizing the mean squared error (MSE) between predicted EEG X and the X.
This setup ensures a personalized and accurate prediction of synthetic neural activity.

3.3 INTERACTIVE SEARCH

To find the optimal stimulus that causes the target neural activity, we search for images that produce
EEG feature similar to target. The target query image is assumed to be unknown, but the target EEG
feature is observable. In this experiment, we set the transition probability as the global cumulative
probability and then sample new image stimuli in each step using a roulette wheel method. To
address the challenge of initiating retrieval without a clear query image, we use the mathematical
framework of (Ferecatu & Geman, 2007, based on mind matching. This approach begins with a
random sample of images, and through iterative steps, the user selects the image that most closely
aligns with the category in their mind. In our retrieval case, this process is adapted to match target
neural feature. The detailed algorithmic procedure is presented in Algorithm|[I] This algorithm can
effectively find an optimal subset of images that maximizes the similarity score with respect to the
target EEG feature.

In our framework, the Closed-loop Retrieval Iteration Algorithm operates as a sequence of state
transitions aimed at maximizing the similarity between current neural feature and the target. The
process begins with a randomly selected set of images Uy, without any prior knowledge of the
specific features of the target image. We use a roulette wheel algorithm to select from current
images according to sim(u;, Uureer). The system updates the probability p;(u;) of each image in
the database belonging to the target class based on the response model’s prediction Y = f(g(U)) €
RY*F_Subsequently, the system calculates the distance between the brain activity feature vector of
the target image and the brain activity feature vector predicted by the image selected by the roulette
wheel algorithm (i.e., the image that is considered to be closer to the target class). Once an image is
optimal in a round, the likelihood of similar images in the search space belonging to the target class
increases. See Appendix[A.T.1|for more implementation details.

3.4 HEURISTIC GENERATION

Retrieving the optimal image stimulus only in the image feature space limits the potential to get
closer to the target brain activity. To design an optimal stimulus to the greatest extent, we use
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Algorithm 1 Closed-loop Retrieval Iteration Algorithm

1: Initialize: Set initial set Uy = {uq, us, ..., ux}, where Uy C Q.

2: repeat

3: Action Selection: U; = {uq,us, ..., u;} from Q based on p;(u).
4: Reward Calculation:

$iMmax = Max sIM{Ug, Uarget)

5: if simmax < threshold:
6: Go to Step 3.
7: else:
8: Optimal Action Reference:
{u ” } = arg max exXp (Sim<uk; ularget>)
topl 25 = - -
opt THop Utlz)g[zjt ZuhEH exp (szm(wn Utarget>) + ZUkeUt exp (Slm<uka Utarget>)
9: if sim(Utarget; Utop1) OF SIM(Utarget, Utop2) > thresholds:
10 CLIP-based Retrieval: Using up1 and wp), retrieve the top-k images {u), u5, ..., u} }
from (2 that have the highest similarity s:
uy, = argmax {s(u, wop1 ), S(U, Uep2) }-
uclU
11: Update Action Set: Update the subset U4 1:
Ut-‘rl = {u/17u/27 ceey u;c}
12: Recurse on U, ;: Repeat the process for the new action set Uy, 1, treating it as the

current action set U; for the next iteration.
13: until 5., > thresholdyrimary

14: Return: Return the best action set U; as the final set of retrieved images.

StableDiffusion XL-turbo for image-guided optimal stimulus generation. The pretrained guided
diffusion model G(U;) generates new visual stimuli via image-to-image. Based on MDP, we use
a genetic algorithm to assist the generator in generating image in the direction of the target neural
activity while ensuring global optimality. Our specific algorithm process is shown in Algorithm [2]
Unlike Algorithm [I] after sampling the stimulus image in each step of roulette, we partially cross
the image features, and randomly sample new image samples from the image space. Mutation is
performed based on the current images features U;. See Appendix [A.1.2] for more details. In the
process of evolution, the relative order of original CLIP features retained by per sample to ensure
that normal semantic images that are understandable to humans can still be generated after mutation.

4 EXPERIMENTS

4.1 SETUP

Datasets We conducted our experiments using the training set of the THINGS-EEG?2 dataset (Gif-
ford et al.| 2022; |Grootswagers et al., 2022), which consists of a large EEG corpus from 10 hu-
man subjects performing a visual task. The experiments used the Rapid Serial Visual Presentation
(RSVP) paradigm for orthogonal target detection tasks to ensure participants’ attention to the visual
stimuli. All 10 participants underwent 4 equivalent experiments, resulting in 10 datasets with 16,540
unique training image conditions, each repeated 4 times, and 200 unique testing image conditions,
each repeated 80 times. In total, this yielded (16,540 training image conditions x 4 repetitions)
+ (200 testing image conditions X 80 repetitions) = 82,160 image trials. The original data were
recorded using a 64-channel EEG system with a 1000 Hz sampling rate. For preprocessing, the
data were first downsampled to 250 Hz and 17 channels were selected from the occipital and pari-
etal regions, which are closely related to the visual system. The EEG data were then segmented
into trials, spanning from 0 to 1000 ms post-stimulus onset, with baseline correction applied using
the mean of the 200 ms pre-stimulus period. Multivariate noise normalization was applied to the
training data (Guggenmos et al., 2018)).
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Algorithm 2 Closed-loop Generative Iteration Algorithm

1: Initialize: Set initial set Uy = {uq, us, ..., ux}, where Uy C Q.

2: repeat

3: Selection: U; = {uq,us, ..., u;} from Q based on p:(u).

4: Sampling: Based on the calculated similarity scores, sample from U, using:

exp (sim(ug, Ugarger) )

P Uk ) = -
( ) Zukl cu, €XP (Szm<uk’7 utarget>)

where P(uy) is the sampling probability for each uy € Us.
5: Crossover: Draw two distinct samples u,, up from Uy based on P(uy), and output new
samples by combining the partial embedding of u,, and wu:

Flul)) + a- F(ug) + (1 — @) - F(u)

Fuls)) « a- F(up) + (1 — a) - Fug)

where « is a crossover control factor.
6: Mutation: Based on P(uy), apply mutation to the drawn images u. from Uy, and another
image uq is drawn from the remaining U; (i.e., Uz \ {uc}):

F(ugy) < B+ Flue) + (1= 8) - F(ug)
where (3 is a mutation control factor.

7: Generation: Generate a new set of images Ugen = {ug,),, uézr)“ ug’,)l} according to the out-
puts of crossover and mutation phase.
8: Selection: Combine Uy, with U; and randomly selected samples Ugndom =
1
{uﬁan), Upgn(2) 5 - - - ,ur(;fl)}, where Uy C Q.

9: Update Action Set: Update the subset U 1:
Ut+1 <~ {Ut7 Ugen, Urandom}

10: Replace the old population with the new set of images U, ;.
11: until similarity score converges or reach the maximum number of cycles.

Encoding Model In the training phase, we used a batch size of 64 images and the Adam optimizer
with a learning rate of 1075, a weight decay term of 0, and default values for other hyperparameters.
Training was conducted over 50 epochs, with EEG responses for test image conditions synthesized
using the model weights from the epoch that yielded the lowest validation loss. For each participant,
the models generated EEG signals with a shape of 17 EEG channels x 250 EEG time points as the
output corresponding to the input images. All experiments can be done on a single NVIDIA 4090
GPU.

Target Features of EEG We designed different target EEG features for different cases. In the re-
trieval task based on semantic representation, system randomly selects images with an index greater
than 12 in each class of the test set of the THINGS-EEG?2 as target images, where these images
are excluded from the retrieval space of 200 x 12 = 2400 images. In the generation task based on
spectral features, in order to ensure that the regulation is meaningful, we calculated the EEG feature
similarity matrix corresponding to the prediction of the 200 x 1 image from the test set, and took the
top-3 images with the lowest similarity in each class after row averaging as the target for testing. We
use the pre-trained encoding model (AlexNet, CORnet-S) and pre-trained EEG encoder (ATM-S (L1
et al.| 2024)), PSD) to process the target images and get their corresponding EEG features.

4.2 REGULATION OF BRAIN SEMANTIC REPRESENTATION

In order to verify the effectiveness of our EEG-based closed-loop visual stimulation framework for
achieving the target neural activity representation, we first conducted a retrieval task in the image
space. We regarded the encoding model g as a black-box model to ensure that the gradient is not used
to update the parameters of the encoding model, so as to better focus on the closed-loop regulation



Under review as a conference paper at ICLR 2025

A Average similarity at different B Similarity and zzerror of different C T-SNE visualization of EEG
1.0 iteration steps Range(MinMax) wel o 05 6 feature space Iteration1
- Iteration2
0.9 4 Iteration3
081 004 ® lterationd
- = @ lterations
N 0.8 S2 @ lteration6
Zoel = /W 003 2 ® lteration?
= <07 /) 03, 5 @ lteration8
E T g __EE, 0 : ::era:won?o
eration
Soal & 0.6 0.02 w ) R LU > Target
7]
02 05 001 = 3
0 04 0.00
" random  step-1 step-2 step-2-last best-step 2 4 6 8 10 6 2 6
D Step Step t-SNE dimension2

step1

Reference only

Figure 3: Results of our framework in the retrieval task. (A) Similarity between the neural
representation obtained by our framework at different iteration steps (i.e., step-1, step-2, step-2-last,
best-step) and the target neural representation compared to random stimulus (i.e., random). (B) The
evolution of EEG representation similarity (blue) and loss curves (yellow) on Subject 8 at different
iteration steps. (C) The t-SNE visualization of Subject 8’s latent trajectories within the feature space
across all iterations. (D) The images retrieved by our framework at different iteration steps. Only the
neural activity representation evoked by the reference image is known during the iteration process.

framework itself. We performed the retrieval task in the test set of THINGS-EEG2 dataset with
200 x 12 = 2400 images. We use the EEG encoder ATM-S to obtain EEG semantic representations
aligned with 1x 1024 CLIP image features. Before the retrieval begins, random initialization ensures
10 initial points are scattered as much as possible in the image feature space. During the search
process, each initial image sample calculates the cosine similarity with the global image features,
and uses the cumulative probability to have more reasonable opportunities to select image samples
that can produce new and closer to the target EEG neural representation. In the image feature space,
through the initial initial image sample point, it continuously expands to form a small area and
iterates, and finally approaches the theoretically optimal stimulus image sample. The condition for
the iteration to terminate is similarity s(u,u;) > 0.97.

Based on semantic representation, our retrieval results are shown in Figure 3] In Figure 3(A), we
plotted the similarity scores of stimuli and random stimuli at different time steps of the iteration
process. Figure [3(B) shows the average similarity and mean square error with the expected EEG
features at different iteration time steps for subject 8. Figure [3(C) illustrates the convergence pat-
terns from initial to final positions for selected iterations (e.g., iterations 1 and 10) over multiple
cycles. In each iteration, ten images are viewed, with points representing the closest match to the
target stimulus at each step. Notably, these points show a gradual approach toward the target stim-
ulus, marked by a red pentagram, across successive iterations. For a given target neural activity
representation, our framework iteratively predicts intermediate EEG results and retrieves stimulus
images at each iteration. Notably, only the neural activity representation evoked by the reference
image is known throughout this process. Through successive iterations in [3(D), the framework re-
fines its selection, ultimately retrieving an image (outlined in red) that closely matches the semantic
representation of the reference image.

4.3 REGULATION OF INTENSITY OF NEURAL ACTIVITY

We implemented a closed-loop stimulus image generation framework using the 200 x 1 =200 image
space of THINGS-EEG? as initialization. We set the crossover rate « to 0.6, the mutation rate 3 to
0.2, and randomly select 10 images from 200 images during initialization. We used StableDiffusion
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Figure 4: Results of our framework in the generation task. (A) Similarity and loss curves of
EEG neural representations for Subject 8. (B) The difference of PSD between the neural activity
representations evoked by the final step of generated and random stimulus, with the target neural
representations used as the relative baseline. (C) For a given target EEG semantic representation,
our framework iteratively predicts synthetic data, extract feature and synthesizes images at each iter-
ation. The image enclosed by a red border represents the image synthesized by the generator, while
the unbordered image is a sample selected from the original dataset. (D) EEG timing diagram gen-
erated by our stimulus images for O; channel. (E) EEG timing diagram generated by our stimulus
images for O, channel. (F) EEG timing diagram generated by our stimulus images for Oz channel.

XL-turbo (Rombach et al.|[2022) integrated by IP-Adapter (Ye et al.}[2023)) to generate new samples

each time based on the new stimulus images obtained after crossover and mutation, and randomly
selected 2 samples from the image feature space, calculated the similarity of EEG activity repre-
sentation, and selected the next step of stimulation according to the roulette method of cumulative
probability.

The results of our stimulus generation experiments are shown in Figure ] Figure (A) shows the
similarity and mean square error between the EEG features generated by the step stimulation image
at different iterations and the target EEG features. In addition, we calculated the explained variance
of different channels and selected the three channels Oy, O,, and O, with the largest variance for
regulation. Figure @{B) shows the comparison of the PSD of the EEG predicted by the random and
step-best samples relative to the target EEG representation. Figure @{DEF) plots the synthetic EEG
of three different channels obtained by step-best, random and target stimulation images respectively.
All three channels show that the EEG corresponding to step-best, random and target images is quite
different before 100 data points (corresponding to 0.4s). After 0.4s, due to the limitations of the
encoding model itself, the synthetic EEG of the target image is not much different from the synthetic
EEG of the optimal stimulation and the synthetic EEG of the random image. This corresponds to
Fig.4 in (Gifford et all, [2022). Using the tick image as an example, Figure @[C) shows the image
and its corresponding time-frequency features, as well as the generated image and corresponding
features at each iteration.

4.4 REGULATION OF INDIVIDUAL VARIABILITY

Table [I] summarizes the results in the retrieval setting (corresponding to the representation score,
SS) and the generation model setting (corresponding to the intensity score, IS), highlighting the
results of our framework in achieving the optimal number of iterations in a given search space. The
data show that for different target EEG features, our method has a good improvement in feature
similarity across different subjects. For instance, the similarity score (SS) of the semantic feature of
Subject 7 is improved from 0.874 in step-1 to 0.974, with an improvement of 10.04%. Similarly, the
feature similarity score (IS) of the channel intensity of Subject 8 is improved from 0.913 in step-1
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to 0.990, accompanied by a 7.744% improvement. Even on the subjects with poor performance,
our framework achieves a positive performance, which shows that our framework has a generalized
improvement effect across different subjects, highlighting its potential in practical applications.

Table 1: Performance (EEG semantic representation and intensity) of brain responses. We
provide two metrics: EEG semantic representation score (i.e., SS) and EEG response intensity score
(i.e., IS) to measure the difference between the neural activity generated by the optimal stimulation
image we obtained and the target EEG neural activity.

\ Step-1 |  Step-Best | Improvement

Subject | SS IS SS IS ASS (%) AIS (%)
1 0.871 0.989 | 0.967 0.997 9.593 0.801
7 0.874 0.960 | 0.974 0.995 10.040 3.444
8 0904 0913 | 0976 0.990 7.162 7.744
10 0915 0.986 | 0.961 0.998 4.587 1.163

5 DISCUSSION AND CONCLUSION

In this study, we developed a flexible closed-loop visual stimulation framework for controlling EEG
signatures. To the best of our knowledge, this is the first work to successfully employ closed-loop
generation of natural images to modulate brain activity.

Technical Impact: Our framework demonstrated the potential of flexibly controlling EEG signals
through visual stimulation. We employed a closed-loop iterative strategy, where new random stimuli
are sampled each time a new round of stimulus images is generated. The gradient of the EEG objec-
tive is passed to the diffusion model in a proxy manner, eliminating the need for training or updating
the weights of the generative model. This approach demonstrates that our framework is an efficient
and optimal closed-loop stimulus generation method, capable of achieving the desired neural mod-
ulation without requiring any model parameter updates. It opens new avenues for applications in
brain-computer interfaces, neurofeedback systems, and therapeutic interventions for neurological
disorders that require precise regulation of brain activity (Jang et al.} 2021} |Alamia et al.,[2023).

Neuroscience Insights: Our study provides valuable insights into the neural mechanisms underlying
visual perception and stimulus processing. First, we demonstrated the successful modulation of
activity in specific electrode channels, indicating that neural activity in targeted brain regions can
be fine-tuned through controlled visual stimulation. Second, we showcased our framework’s ability
to guide the brain in generating specific neural representations, which is crucial for understanding
how different brain regions process visual information and respond to external stimuli. Furthermore,
our framework establishes a causal link between visual stimuli and neural responses. By connecting
specific EEG patterns to visual representations, our work deepens the understanding of how neural
signatures correlate with perceptual experiences.

Interesting Phenomena and Future Directions: Our findings demonstrate that different stimulus
images in our framework can produce similar or identical EEG features, confirming the existence
of Metamers (Feather et al., 2023) and suggesting that Metamers are not necessarily unique. The
presence of multiple Metamers highlights the ill-posed nature of generating visual stimuli condi-
tioned on EEG features. Future research should focus on understanding the neural mechanisms that
lead to the generation of similar EEG features from different stimuli. Another promising direc-
tion is the integration of more sophisticated models that account for inter-individual variability in
neural responses, aiming to fine-tune the stimulus generation process for personalized neuromod-
ulation and enhanced brain-computer interaction (Alamia et al. 2021). Further exploration could
involve integrating this closed-loop framework with other brain imaging modalities, such as fMRI
or MEG. Additionally, it is important to test various control goals aimed at regulating specific EEG
characteristics to modulate brain functions, such as a control objective on EEG features for emotion
regulation.

10
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A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS
A.1.1 RETRIEVAL PIPELINE

We provide a more detailed description of algorithm [T} The algorithm begins by initializing equal
selection probabilities for each image in the candidate set, denoted as po(u) = %, where N is the
total number of images in the retrieval set. This initialization with equal probabilities reflects the
absence of prior information, serving as an exploratory phase. In each iteration (representing a state
in the MDP framework), a subset of images U, = {uq,us,...,u;} is selected from the candidate
images set U based on the current selection probabilities p (u).

For each image u; in the subset U; the algorithm computes a similarity score sim(uj, utargel) by
comparing the image’s representation with the target. This similarity score acts as an immediate
reward within the MDP framework. The maximum similarity score among the subset is identi-
fied as a measure of the effectiveness of the current action. If sim,,x does not meet a predefined
threshold;, the reward is considered insufficient, and the algorithm returns to the image selection
step, effectively trying a new action within the same state. If sim,,,x meets or exceeds the thresh-
old, the algorithm proceeds to identify the two images us,p1 and wu;op2 With the highest similarity
scores. These two images act as reference points for updating the probabilities of other images in
the subsequent state.

As for each image u; in U that surpasses thresholds with either u;op1 OF Usop2, its selection proba-
bility P;y1(u;) is updated by multiplying with a constant factor, representing a policy improvement
step that prioritizes images likely to yield higher rewards. After updating, a Softmax function is ap-
plied to normalize the probabilities, focusing selection weight on images more similar to the target.
This normalization step reflects the transition to a new state with an updated policy. The iteration
continues, with the algorithm transitioning through states by selecting new subsets based on the re-
fined probabilities, until simy,ax reaches thresholdy,imary. At this point, the loop terminates, as
the algorithm has successfully identified an optimal subset of images that maximizes the similarity
reward to the target.

A.1.2 GENERATION PIPELINE
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Figure A.1: Generating subsequent images based on the current round is achieved through crossover,
variation, and a guided diffusion model. Both crossover and mutation operations preserve the rela-
tive ordering of CLIP features, thereby maintaining their semantic coherence.
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A.2 ADDITIONAL QUANTITATIVE RESULTS

A.2.1 ITERATION IMPROVEMENT FROM DIFFERENT SUBJECTS

Based on the conclusions drawn from Figure [A:4] we employ the pre-trained AlexNet end-to-end
model as the EEG encoder and use ATM-S, which is based on S-S (with both the training and testing
sets consisting of synthesized signals), to obtain semantic representations aligned with 1x1024 CLIP
image features. The experimental design involves randomly selecting 50 categories, resulting in a
retrieval space of 50 x 12 = 600 images.

For the semantic feature case, we present the iterative performance improvements for three different
targets randomly selected from the test set, with results reported for Subjects 1, 7, 8, and 10. As
shown in Figure@, we calculate the EEG feature similarity of Subject 1, 7, 8, and 10 at random,
step-1, and step-best in the iterative process respectively.
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Figure A.2: Comparison of improved performance by different targets. We present the similarity
scores of EEG features generated by random stimulation, open-loop stimulation (step 1), and step-
best stimulation, in comparison to the target features. Each subject randomly selected 3 images from
the retrieval space as target images.

A.2.2 PERFORMANCE OF DIFFERENT TARGET IMAGES ACROSS SUBJECTS

We report the results of iterative optimization using different targets in two different cases. The
results for each subject are shown, along with the average percentage improvement across 5 random
seeds. For the semantic feature case, unlike the setting in Table |I| of the main text, which uses
real EEG for training and performs retrieval on synthetic EEG, we determined that training and
testing with synthetic EEG yielded the highest accuracy based on the retrieval performance shown
in Figure[A:4] As a result, we retrained each subject and summarized the results in Table [AT] For
the spectral feature case, we selected 3 images using the method described in Section [d] averaged
the results across 5 random seeds for each image, and supplemented the iterative improvement
performance. Additionally, we performed t-tests on EEG semantic and spectral features across all
subjects to assess the efficacy of our proposed method, we also performed correlation analyses to

14
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investigate the relationships between semantic features and clip representation, as well as between
spectral features (PSD) and clip representation, as shown in Figure|A.3

Table A.1: Performance (EEG semantic representation and intensity) of brain responses. We
provide two metrics: EEG semantic representation score (i.e., SS) and EEG response intensity score
(i.e., IS) to quantify the similarity of generated EEG and target EEG. The table below records the
SS & IS values for each subject, showing the SS & IS value from the first round of stimulation, the
SS & IS value achieved after multiple rounds of closed-loop control (the optimal result), and the
improvement in control. All these results are calculated from pretrained AlexNet models.

\ Random Step-1 Step-Best Improvement
Subject SS IS SS IS SS IS ASS (%) AIS (%)
1 0.5174 0.9632 | 0.6686 0.9729 | 0.8375 0.9976 | 16.8859  2.4790
2 0.5197 0.9678 | 0.6675 0.9764 | 0.7372 0.9998 | 6.9701 2.3406
3 0.5113 0.9883 | 0.6597 0.9927 | 0.7871 0.9980 | 12.7402  0.5306
4 0.5065 0.9650 | 0.6498 0.9836 | 0.8299 0.9963 | 18.0136 1.2690
5 0.5315 0.9788 | 0.6937 0.9768 | 0.8418 0.9979 | 14.8151 2.1055
6 0.6747 0.9836 | 0.8099 0.9856 | 0.8826 0.9961 | 7.2634 1.0461
7 0.8838 0.8955 | 0.9410 0.9033 | 0.950 0.9742 | 1.8237 7.0879
8 0.5077 0.8344 | 0.6838 0.9435 | 0.8568 0.9925 | 17.3066  4.8947
9 0.8465 0.9602 | 0.9251 0.9751 | 0.9597 0.9997 | 3.4662 2.4597
10 0.5128 0.8172 | 0.6707 0.9705 | 0.7687 0.9934 | 9.8032 2.2849
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Figure A.3: Improvement in similarity scores assessed via paired t-tests and correlation of
similarity scores with targets across all subjects. (A) Average EEG semantic representation scores
(SS) for various target EEG semantic features. (B) The correlation of the similarity score with target
between EEG semantic features across all subjects. (C) Average EEG response intensity scores
(IS) for different target EEG PSD features. (D) The correlation of the similarity score with target
between EEG PSD features across all subjects.
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A.3 VALIDITY VERIFICATION OF SYNTHETIC EEG

To evaluate the performance of our EEG encoding models, we compare the synthetic EEG signals
generated by two deep neural networks (DNNs)—AlexNet and CORnet-S—with real EEG data.
Here’s a step-by-step breakdown of how we processed and compared the data.

We selected 17 specific channels from the original 63-channel EEG dataset, focusing on those most
relevant to visual processing. It ensured that we focused on neural regions most directly involved in
responding to the visual stimuli. For each stimulus, we averaged the EEG signals across all trials,
resulting in a representative dataset for each stimulus. This reduced the dimensionality of the data,
making it easier to compare with synthetic data. We used a pretrained end-to-end encoding model
to generate synthetic EEG signals based on the visual stimuli. The model captures the mapping
between the visual input and the resulting EEG signals using deep neural networks. These synthetic
signals represent the neural responses predicted by the model in response to the stimuli.

Table A.2: MSE Values for synthesized EEG

Subject Pretrained Random Init Average

AlexNet CORnet-S AlexNet CORnet-S

Sub-01  0.1095 0.1126 0.1161 0.0994 0.1094
Sub-02  0.0764 0.0788 0.0840 0.0994 0.0847
Sub-03  0.0787 0.0806 0.0816 0.0910 0.0830
Sub-04  0.0652 0.0664 0.0662 0.1011 0.0747
Sub-05  0.0493 0.0515 0.0704 0.0975 0.0672
Sub-06  0.0690 0.0719 0.0498 0.0966 0.0718
Sub-07  0.1267 0.1300 0.0914 0.1312 0.1198
Sub-08  0.0718 0.0727 0.1038 0.1165 0.0912
Sub-09  0.0529 0.0563 0.0781 0.0756 0.0657
Sub-10  0.1122 0.1151 0.0961 0.1149 0.1096

Average  0.0810 0.0832 0.0838 0.1023 0.0876

Table [A.2] presents the mean squared error (MSE) between the synthetic EEG signals generated by
AlexNet and CORnet-S, and the real EEG signals for 10 subjects. The MSE was computed for each
individual test sample and then averaged across the entire test set. Lower MSE values indicate better
alignment between the synthetic and real EEG signals.

From the comparison shown in the Figure [A.4] the retrieval accuracy for S-S (both training and
testing sets consist of generated signals) is significantly higher than other categories, including T-
T (both training and testing sets consist of real signals), T-S (training set consists of real signals,
testing set consists of generated signals), and S-T (training set consists of generated signals, testing
set consists of real signals), under both AlexNet and CORnet-S models. This indicates:

Advantages of generated signals Supported by black-box ANN models (e.g., AlexNet and
CORnet-S), generated signals perform significantly better in retrieval tasks compared to real sig-
nals. In particular, the highest retrieval accuracy for S-S demonstrates the consistency and model
adaptability of generated signals in this retrieval task.

Model adaptability: Different ANN models (e.g., AlexNet and CORnet-S) show consistent supe-
riority in the retrieval tasks for generated signals, indicating that generated signals are more easily
captured and distinguished by black-box models.

In Figure we compute the variance across all samples and time points for each channel, pro-
viding a measure of the overall variability of the EEG signals in response to different visual stimuli
and their temporal dynamics. This variance can help identify channels with the highest variability,
which may be useful for selecting specific channels for further analysis or modulation.
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Figure A.4: Retrieval accuracy under different training and test datasets. Zero-shot retrieval per-
formance of EEG data from different sources in Subject 1 and Subject 8 using ATM-S in different
Settings. AlexNet and CORnet-S used in the first row were both pre-trained end-to-end models, and
the second row was randomly initialized end-to-end.

In Figure [AZ6] we show the variance and standard deviation of the EEG signals computed across
samples for each time point, and then averaged across channels. This analysis allows us to as-
sess how signal variability evolves over time. By comparing the real EEG data with synthetic data
generated by AlexNet and CORnet-S, we can evaluate how well each model captures the temporal
variability present in the real EEG signals.

In Figure[A.7] we compute the Pearson correlation coefficient between the averaged real EEG data
and the synthetic data for each stimulus, measuring how well the synthetic data matches the real
EEG on a per-sample basis. The histogram shows the distribution of correlation coefficients across
all samples for both AlexNet and CORnet-S. A higher concentration of peaks near higher Pear-
son coefficients indicates better alignment between the synthetic data and the real EEG, reflecting
superior model performance.

In Figure[A-8] for each time point, we compute the Pearson correlation between the real EEG signal
and the synthetic signals. This analysis enables us to visualize how well each model replicates the
temporal structure of real neural responses to visual stimuli. Shaded regions in the plot represent
the standard deviation across samples, showing the variability in model performance over time. The
results provide a detailed view of how each model performs at different time points, highlighting
which model more accurately captures the temporal dynamics of EEG signals.stimuli.

From the above analysis, we observe that both AlexNet and CORnet-S perform well, showing com-
parable results in terms of MSE, spatial (channel-wise) variability, and temporal (time-resolved)
variability. The Pearson correlation analysis further confirms that they are able to synthesize EEG
signals that align well with real data, with subtle differences in performance across models. These
findings highlight the robustness of our EEG encoding models, demonstrating their ability that not
only mimic the structural features of real EEG data but also capture the realistic variability seen in
neural responses to visual stimuli. This suggests that our models are effective in approximating the
neural representations underlying visual processing.
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Figure A.5: Variance across different channels for different visual stimulus and temporal dynamics
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Figure A.6: Variance across different time points for different visual stimuli and channels.
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Figure A.7: Distribution of Pearson correlation coefficients across all sample pairs.
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A.4 ADDITIONAL RETRIEVAL EXAMPLES OF SEMANTIC REPRESENTATION

A.4.1 MORE EXAMPLES OF RETRIEVAL

top1 top2 top3 topd top5 top6 top7 top8 top9 top10

groundtruth
step9

‘?\\ MR W /

Figure A.9: Some retrieval examples of Subject 8, 4, 4, and 1. By setting different targets,
we present examples where the stimulus retrieved at the end of the iterative optimization process
increasingly approximates the true category.
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A.4.2 SOME FAILURE EXAMPLES OF RETRIEVAL

top1 top2 top3 top4d top5 top6 top7 top8 top9 top10

4

groundtruth

groundtruth

step6 |
best |

Figure A.10: Some retrieval failure examples of Subject 8. By setting different targets, we show
examples where the stimulus retrieved at the end of the iteration is far from the true category. In
these examples, the final retrieved stimulus exhibits varying degrees of similarity to the target image.
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A.5 ADDITIONAL CONTROLLABLE GENERATION EXAMPLES OF PSD FEATURE

A.5.1 MORE EXAMPLES OF GENERATION
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Figure A.11: Illustration of the closed-loop iterative process for Subject 1. Three distinct visual
targets were presented, each based on a specific similarity measure (details in Target Features of
EEG, Section[4.T)), with new visual stimuli iteratively generated for each target. The left panel illus-
trates the time-domain evolution of neural responses across iterations. The right panel depicts the
changes in similarity (green curve) and loss (blue curve, scaled) between the current stage features
and the target features.
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Figure A.12: Illustration of the closed-loop iterative process for Subject 2. Three distinct visual
targets were presented, each based on a specific similarity measure (details in Target Features of
EEG, Section[4.I), with new visual stimuli iteratively generated for each target. The left panel illus-
trates the time-domain evolution of neural responses across iterations. The right panel depicts the
changes in similarity (green curve) and loss (blue curve, scaled) between the current stage features
and the target features.
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Figure A.13: Illustration of the closed-loop iterative process for Subject 3. Three distinct visual
targets were presented, each based on a specific similarity measure (details in Target Features of
EEG, Section[4.T)), with new visual stimuli iteratively generated for each target. The left panel illus-
trates the time-domain evolution of neural responses across iterations. The right panel depicts the
changes in similarity (green curve) and loss (blue curve, scaled) between the current stage features
and the target features.
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Figure A.14: Illustration of the closed-loop iterative process for Subject 4. Three distinct visual
targets were presented, each based on a specific similarity measure (details in Target Features of
EEG, Section[4.T)), with new visual stimuli iteratively generated for each target. The left panel illus-
trates the time-domain evolution of neural responses across iterations. The right panel depicts the
changes in similarity (green curve) and loss (blue curve, scaled) between the current stage features
and the target features.
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Figure A.15: Illustration of the closed-loop iterative process for Subject 5. Three distinct visual
targets were presented, each based on a specific similarity measure (details in Target Features of
EEG, Section[T), with new visual stimuli iteratively generated for each target. The left panel illus-
trates the time-domain evolution of neural responses across iterations. The right panel depicts the
changes in similarity (green curve) and loss (blue curve, scaled) between the current stage features

and the target features.
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Figure A.16: Illustration of the closed-loop iterative process for Subject 6. Three distinct visual
targets were presented, each based on a specific similarity measure (details in Target Features of
EEG, Section[4.T), with new visual stimuli iteratively generated for each target. The left panel illus-
trates the time-domain evolution of neural responses across iterations. The right panel depicts the
changes in similarity (green curve) and loss (blue curve, scaled) between the current stage features
and the target features.
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Figure A.17: Illustration of the closed-loop iterative process for Subject 7. Three distinct visual
targets were presented, each based on a specific similarity measure (details in Target Features of
EEG, Section[.T), with new visual stimuli iteratively generated for each target. The left panel illus-
trates the time-domain evolution of neural responses across iterations. The right panel depicts the
changes in similarity (green curve) and loss (blue curve, scaled) between the current stage features
and the target features.
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Figure A.18: Illustration of the closed-loop iterative process for Subject 8. Three distinct visual
targets were presented, each based on a specific similarity measure (details in Target Features of
EEG, Section[I), with new visual stimuli iteratively generated for each target. The left panel illus-
trates the time-domain evolution of neural responses across iterations. The right panel depicts the
changes in similarity (green curve) and loss (blue curve, scaled) between the current stage features
and the target features.
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Figure A.19: Illustration of the closed-loop iterative process for Subject 9. Three distinct visual
targets were presented, each based on a specific similarity measure (details in Target Features of
EEG, Section[4.T)), with new visual stimuli iteratively generated for each target. The left panel illus-
trates the time-domain evolution of neural responses across iterations. The right panel depicts the
changes in similarity (green curve) and loss (blue curve, scaled) between the current stage features
and the target features.
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Figure A.20: Illustration of the closed-loop iterative process for Subject 10. Three distinct visual
targets were presented, each based on a specific similarity measure (details in Target Features of
EEG, Section[dI), with new visual stimuli iteratively generated for each target. The left panel illus-
trates the time-domain evolution of neural responses across iterations. The right panel depicts the
changes in similarity (green curve) and loss (blue curve, scaled) between the current stage features
and the target features.
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