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Abstract

Various representation learning methods for molecular structures have been devised
to accelerate data-driven drug and materials discovery. However, the representation
capabilities of existing methods are essentially limited to atom-level information,
which is not sufficient to describe real-world molecular physics. Although electron-
level information can provide fundamental knowledge about chemical compounds
beyond the atom-level information, obtaining the electron-level information in
real-world molecules is computationally impractical and sometimes infeasible. We
propose a new method for learning electron-derived molecular representations
without additional computation costs by transferring pre-calculated electron-level
information about small molecules to large molecules of our interest. The proposed
method achieved state-of-the-art prediction accuracy on extensive benchmark
datasets containing experimentally observed molecular physics.

1 Introduction

Graph neural networks (GNNs) [1] have been successfully applied to predict the physical and
chemical properties of molecules based on graph representations of molecular structures. Typically,
a molecular structure is represented as an attributed graph G = (V,U ,X,E), where V is a set
of nodes (i.e., atoms), U is a set of edges (i.e., chemical bonds), X ∈ R|V|×d is a d-dimensional
node-feature matrix, and E ∈ R|U|×l is an l-dimensional edge-feature matrix [2]. Based on the graph
representation, GNNs were able to learn latent molecular embeddings that encode the local geometry
of the atoms as well as the physical characteristics of the entire molecular structure [3, 4].

Various GNN-based methods have been proposed to learn informative molecular representation from
various approaches, such as molecular geometry [5], fragment-based learning [6, 7], and domain
knowledge integration [8]. However, their representation capabilities are fundamentally limited to
the atom-level molecular structures, and they overlooked the principle of quantum mechanics that
the physical and chemical characteristics of molecules fundamentally originate from the electron
structures [9, 10]. Learning molecular representations from the electron-level structure is crucial
because many physical and chemical characteristics of molecules are, in fact, essentially derived
from their electronic structures [10]. Therefore, we argue that the GNN-based methods would benefit
from considering the molecules in the electron-level structure beyond the atom-level structure.

A straightforward and direct solution would be to directly provide the electron-level information
about the molecules to GNNs by calculating the electronic structures of the molecules based on
the calculation methods in computational physics and chemistry, such as density functional theory
(DFT) [10]. However, this solution is impractical and sometimes infeasible in real-world large
molecules because the calculation methods suffer from cubic or greater time complexities [10] and
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local convergences in the electronic structure calculations [11]. Therefore, we need a new approach
for learning electron-derived representations of large molecules without additional calculations and
experiments of quantum mechanics.

We propose hierarchical electron-derived molecular learning (HEDMoL) to learn molecular repre-
sentations from the input atom-level molecular structures under their estimated electronic structures.
The main idea is to estimate the electron-level information about a large input molecule, which is
given in an atom-level structure, by extending the electron-level information about small molecules
that compose the large input molecule. As the electron-level information about small molecules is
already computed and provided in public calculation databases, we can relieve the computational
burden of expensive electronic structure calculations required for large molecules. More precisely,
HEDMoL learns electron-derived molecular representations from both the input atom-level molecular
information and the estimated electron-level information through the following three steps: (1)
HEDMoL decomposes an input atom-level molecular structure into several atom-level substructures
based on graph decomposition algorithms. (2) HEDMoL constructs an electron-derived molecular
graph by transferring electron-level attributes stored in an external calculation database to each of the
decomposed substructures based on structural similarities between the decomposed substructures
and the small molecules in the external calculation database, and we call this process knowledge
extension. (3) HEDMoL generates molecular representations through a hierarchical representation
learning on the latent atom- and electron-level information.

It is worth noting that in this study, we focus on evaluating the prediction capabilities of the prediction
models on experimental datasets rather than calculation datasets (e.g., QM9 dataset [12]). Although
the calculation datasets are useful for analyzing rough relationships between atomic geometry
and molecular properties, the calculation datasets are not appropriate to evaluate the prediction
capabilities of machine learning methods on real-world molecular physics because they do not
sufficiently simulate the uncertainty and complex configurations in quantum mechanics [13, 14]. For
these reasons, we collected eight experimentally-generated molecular datasets from physicochemistry,
toxicity, and pharmacokinetics applications. In the experiments, we measured the prediction accuracy
of the prediction models on the experimental molecular datasets to evaluate the prediction capabilities
of the prediction models on complex real-world molecular physics. HEDMoL achieves state-of-the-
art performance in predicting the experimentally observed physical and chemical properties of the
molecules. Furthermore, HEDMoL outperforms state-of-the-art GNNs in various regression tasks
on small training datasets, which is one of the main challenges of machine learning in chemical
applications [15, 16].

2 Method

2.1 Problem Reformulation on Electronic Substructures

First of all, we reformulate the prediction problem on molecular structures as a problem on decom-
posed molecular substructures. By doing so, we can extend the knowledge of small molecules, which
is not expensive to calculate or measure the electronic attributes, into the knowledge of complex
real-world molecules. This knowledge extension from theoretically calculated information about
small atomic structures to real-world experimental observations is a long-standing challenge in
computational physics and chemistry [17, 18]. Physically, we can define a problem to predict the
molecular properties y as follows.

y = (f ◦ g)(E), (1)

where E is the electronic structure of a molecule, g is a physics-informed function to generate a
numerical representation from E , and f is a function to calculate the physical and chemical properties
from the electron-level descriptors g(E). Since the calculation methods to calculate the electronic
structure E has a cubic or greater time complexity with respect to the number of atoms, existing
GNNs-based methods basically assume that g(E) can be sufficiently approximated by the atom-level
molecular structures to avoid the impractical time complexity in the electronic structure calculation.
However, the physical information in the electronic structures is inevitably distorted and simplified in
the process of converting g(E) to the atom-level molecular structures [10, 19].

Instead of approximating E with the atom-level structures, we reformulate the problem in Eq. (1) as
a problem on a set of small substructures by decomposing the input electronic structures E into K
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Figure 1: The overall process of HEDMoL to predict the target molecular property y of the input atom-
level molecular structure A. R = {S1, S2, S3}: a set of the decomposed atom-level substructures.
Ue: a set of edges between the decomposed atom-level substructures. za and zc: calculated molecular
embeddings of A, which are defined in Eq. (8)

substructures as:
y = (f ◦ gG)({gL(E1), ..., gL(EK)}), (2)

where Ek ∈ T (E) is the k-th electronic substructure of E , T (E) in a set of physically possible
electronic substructures of E , gL is a descriptor function for the electronic substructures Ek, and
gG is an order-invariant function to generate the molecular representation from a set of electron-
level descriptors {gL(E1), ..., gL(EK)}. HEDMoL aims to predict the target physical and chemical
properties of molecules based on the decomposed formulation in Eq. (2) without the expensive
electronic structure calculations on the entire molecule.

2.2 Overall Architecture of HEDMoL

Fig. 1 illustrates the overall prediction process of HEDMoL, which consists of three steps as: (1)
Substructure decomposition, (2) Knowledge extension, and (3) Hierarchical molecular represen-
tation learning. Each step of HEDMoL is summarized as follows. (Step 1) An input atom-level
molecular structure A is decomposed into a set of atom-level substructures R = {S1, ..., SK}. Each
decomposed substructure Sk implies the atom-level representation of the decomposed electronic
substructures Ek and will be converted into gL(Ek) in the next knowledge extension step. (Step 2)
HEDMoL assigns electron-level attributes in external calculation databases to each decomposed sub-
structure Sk, i.e., the decomposed atom-level substructures R is converted into a set of electron-level
descriptors {gL(E1), ..., gL(EK)} by transferring pre-calculated electronic attributes in an external
calculation database. (Step 3) HEDMoL calculates an electronic state vector by ze = ψe(Ge), where
ψe is a GNN-based embedding network, and Ge is a graph representation of {gL(E1), ..., gL(EK)}.
For the electronic state vector ze, HEDMoL generates two molecular embeddings from atomic and
electron-conditioned structures to predict the target molecular property y. In the following sections,
we will explain the implementation details of each step in HEDMoL.

2.3 Substructure Decomposition

The substructure decomposition of HEDMoL is a data pre-processing step to convert an input atom-
level molecular structure into a tuple (R,Ue), where R = {S1, ..., SK} is a set of the decomposed
substructures of an input atom-level molecular structure A, K is the number of decomposed sub-
structures, Ue is a set of edges between the decomposed substructures. Physically, each decomposed
substructure Sk implies the atom-level representation of the decomposed electronic substructures Ek
in Eq. (2). In the decomposition process, we enforce a constraint A = S1∪...∪SK to prevent informa-
tion loss from the substructure decomposition. In the next knowledge extension step, the decomposed
substructures will be converted into a set of electron-level descriptors {gL(E1), ..., gL(EK)}.

Among various choices for the implementation of the substructure decomposition of HEDMoL,
such as spectral clustering [20], BRICS decomposition [21], and junction tree algorithm [22], we
employed the junction tree algorithm due to the following three benefits of this algorithm as: (1) The
junction tree algorithm does not require a hyperparameter tuning for each input graph. (2) It provides
generalized graph abstraction and clustering results of the molecular structures [22]. (3) It satisfies our

3



constraint A = S1 ∪ ... ∪ SK in the substructure decomposition. Therefore, HEDMoL decomposes
the input atom-level molecular structure A into a set of atom-level substructures R = {S1, ..., SK}
based on the junction tree algorithm, where Sk is a vertex clique in the entire junction tree of A. The
experimental comparison of HEDMoL with the junction tree and BRICS decomposition algorithms
are provided in Appendix 5 of Supplementary Material.

2.4 Knowledge Extension

To avoid the computational bottleneck in the electronic structure calculation, the knowledge extension
step of HEDMoL aims to transfer the electron-level information from an external calculation database
Ds to each of the decomposed substructures Sk ∈ R instead of calculating the electronic structures.
That is, a set of the atom-level decomposed substructures R is converted into a set of electron-level
descriptors {gL(E1), ..., gL(EK)}. By our reformulated problem in Eq. (2), HEDMoL can utilize
the knowledge about the small molecules from the external calculation databases and extend the
knowledge to large molecules without additional calculations and architectural modifications.

In the knowledge extension step, HEDMoL matches the decomposed substructures to the small
molecules in an external calculation database by calculating the molecular distance between them.
Based on the calculated molecular distances, HEDMoL transfers the knowledge of the external
calculation database to each decomposed substructure as:

Xe,k = qidxk , (3)

where Xe,k ∈ Rq is the k-th row vector of Xe ∈ RK×q, and it denotes the node feature of the k-th
decomposed substructure Sk. qidxk ∈ Rq is the pre-calculated electron-level attributes of a small
molecule in Ds, where idxk is the index (such as) of the small molecule in Ds that is the most similar
to Sk. Formally, idxk is calculated by:

idxk = argmin
i∈{1,2,...,|Ds|}

π(Sk, G
s
i ), (4)

where Gs
i is the atom-level graph of the i-th molecule in Ds, π is a distance metric between two

graphs. Among several choices, we implemented π based on a robust and efficient unsupervised graph
embedding method called geometric scattering on graphs (GeoScattering) [23], and the molecular
distance was calculated by the Euclidean distance between the GeoScattering embeddings of Sk

and Gs
i . The prediction capabilities of HEDMoL for the implementations of π with different graph

embedding methods are experimentally evaluated in Appendix 6 of Supplementary Material.

After the knowledge extension step, an electron-derived substructure graph Ge of the input molecule
is generated by reconstructing an attributed graph based on the decomposed substructures and the
assigned electron-level attributes asGe = (R,Ue,Xe). Thus, we generatedGe containing fragmented
information about the electronic structure without expensive electronic structure calculations. In the
next step, HEDMoL generates a latent molecular embedding through a hierarchical representation
learning of the atom-level molecular graph Ga = (V,U ,Xa,E) and the electron-derived substructure
graph Ge of the input molecule, where Xa is an input atom-feature matrix.

2.5 Hierarchical Molecular Representation Learning

The purpose of the hierarchical representation learning in HEDMoL is to generate a latent embed-
ding vector z of the input molecule by propagating the electron-level information from a latent
embedding of Ge to the embedding process of the atom-level molecular descriptor Ga. This mech-
anism is consistent with the physical principle because the atomic configurations fundamentally
depend on the electronic structures [9, 10]. In the hierarchical representation learning, we em-
ployed a GNN-based embedding network ψe for an order-invariant representation learning on a set
{gL(E1), ..., gL(EK)}. Formally, HEDMoL calculates an order-invariant electron-derived embedding
He on {gL(E1), ..., gL(EK)} as:

He = ψe(Ge) ≈ gG({gL(E1), ..., gL(EK)}). (5)

For the calculated He, an electronic state vector ze is calculated by ze =
∑|R|

i=1 He,i, where He,i is
the i-th row-vector of He. After the embedding process of Ge, GNN-based embedding network ψa

calculates an atom-level node embedding matrix as Ha = ψa(Ga) for a given atom-level molecular
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graph Ga. Then, an atom-level molecular embedding za is similarly calculated by za =
∑|V|

i=1 Ha,i.
On the other hand, a conditional atom-level molecular embedding zc is calculated by considering the
atomic contributions under the given electronic state vector ze as:

zc =
|V|∑
i=1

exp(fa(Ha,i ⊕ ze))∑|V|
j=1 exp(fa(Ha,j ⊕ ze))

Ha,i, (6)

where fa is a trainable neural network to calculate attention scores of the i-th atom under the given
electronic structure described by the electronic state vector ze. In other words, zc contains atom-level
information conditioned by underlying electronic structures.

After the graph embedding process, HEDMoL generates the molecular embedding z by concatenating
the graph-level embeddings from different views as z = za ⊕ zc, where za is the graph-level
embedding of Ga. Conceptually, the molecular embedding z contains the atomic information
conditioned by electronic structures as well as the atom-level information about the input molecules.
Finally, HEDMoL predicts the target molecular properties y = fd(z) by entering z to the trainable
dense layers fd.

2.6 Energy-Based Physical Consistency Regularization

In the molecular representation learning of HEDMoL, we enforce that the latent atom- and electron-
level embeddings of the input molecule to indicate the same potential energy, which is one of the
universal quantities to describe the atomic systems [10, 24, 25]. Physically, the atom- and electron-
level descriptors of a molecule should have the same potential energy because they describe essentially
the same molecular structure. To this end, we introduce two constraints on the input molecule as:

Ep,k + ϵk = Ea,k, s.t.Ea,k = Ee,k,∀k = 1, 2, ..., |R|, (7)

where Ep,k is the calculated physical energy of the small molecule that matches with the k-th
decomposed substructure Sk, ϵk ∼ N (0, σk) is independent and identically normally distributed
random variables following a normal distribution N (0, σk), Ea,k is the predicted energy from the
node embeddings of the atoms in Sk, and Ee,k is the predicted energy from the k-th substructure
embedding He,k. ϵk indicates the approximation error in transferring the physical energy of the small
molecule in Ds to the decomposed substructures in R.

Physically, the energy of an atomic system A can be described by the many-body potential energies
of the atoms in A as [26]:

E =

|A|∑
i1,i2

V2(Hi1 ,Hi2) +

|A|∑
i1,i2,i3

V3(Hi1 ,Hi2 ,Hi3)

+ · · ·+
|A|∑

i1,...,i|A|

V|A|(Hi1 , ...,Hi|A|), (8)

where |A| is the number of atoms in the atomic system A, Vi is the i-body potential function, and Hi

is the local environment around the i-th atom. However, calculating the many-body potential energy is
infeasible due to the computational complexity. To overcome the infeasible computational complexity,
we approximate the many-body potential energy in Eq. (8) based on a trainable message-passing
function, as the message-passing scheme is an efficient approach for predicting the physical properties
from the physical interactions of particles [27, 28]. We define the many-body potential energy of Sk

based on the graph self-attention mechanism [29], which calculates the interatomic attention score
αi,j . Formally, HEDMoL predicts the many-body potential energy of Sk based on a trainable energy
function fe and a message-passing function ge as:

Ea,k = fe(ge(Sk)), (9)

where a vector-shaped atom-level substructure embedding ge(Sk) is given by

ge(Sk) =
1

|Sk|
∑
i∈Sk

WHa,i +
∑

j∈Ni∩Sk

αi,jVHa,j

 , (10)
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|Sk| is the number of atoms in a substructure Sk, W and V are trainable weight matrices of ge, Ni is
a set of indices of the atoms connected to the i-th atom, and αi,j is an attention score between the i-th
and j-th atoms. Similarly, we define Ee,k of the k-th decomposed substructure based on the trainable
energy function fe in Eq. (9) as:

Ee,k = fe(He,k) (11)

Based on Eqs. (9) and (11), we define two regularization terms Ωa,n and Ωe,n for the n-th molecule
in the training dataset D as:

Ωa,n =

|Rn|∑
k=1

max{|Ea,k − fe(ge(Sk))| − α, 0}, (12)

Ωe,n =

|Rn|∑
k=1

max{|Ee,k − fe(He,k))| − α, 0}, (13)

where Rn is the set of decomposed substructures of the n-th molecule, α ≥ 0 is a hyperparameter
to allow uncontrollable energy differences incurred by the structural differences between the de-
composed substructures and the matched small molecules in the external calculation database. The
hyperparameter α is a physically bounded variable [14], and the energy differences between small
organic molecules are usually in a range from 0.1 to 0.3 electronvolts because the energy that the
small organic molecules can have is physically bounded [9, 14]. Finally, we optimize the model
parameters of HEDMoL to minimize the following loss function L as:

L =

|D|∑
n=1

Lp(yn, fd(zn)) + λ

 |D|∑
n=1

Ωa,n +Ωe,n

 , (14)

where Lp is a prediction loss, and λ ≥ 0 is a hyperparameter to control the effect of the regularization
terms Ωa,n and Ωe,n in the training of HEDMoL. Experimental evaluations of HEDMoL for different
values of α and λ are provided in Appendix 7 of Supplementary Material.

3 Experiments

We compared the prediction accuracies of HEDMoL with those of the state-of-the-art methods on
various benchmark molecular datasets containing experimentally observed molecular physics. The
experimental molecular datasets were provided by public chemical databases, such as MoleculeNet
[30] and ChEMBL [31]. We selected eight benchmark datasets from various application fields includ-
ing physicochemistry, toxicity, and pharmacokinetics, as shown in Appendix 2 of Supplementary
Material. We compared the prediction capabilities of HEDMoL with those of a tree-based ensemble
method [32] and ten state-of-the-art GNNs [33–39, 3, 40, 41]. We generated XGB-Mor, XGB-FC,
and XGB-MK that predict target molecular properties for input Morgan (Mor) [42], functional-class
(FC) [42], and MACCS Key (MK) [43] fingerprints, respectively. Although the 3D structure-based
GNNs are not applicable to the experimental molecular datasets due to the absence of the 3D atomic
coordinates, we additionally calculated the 3D atomic coordinates based on the semi-empirical
method in RDKit1 and evaluated the 3D structure-based GNNs based on the generated 3D atomic
coordinates. However, we were not able to execute or evaluate PaiNN [44], GemNet [45], and
Equiformer [4] on the experimental molecular datasets due to the out-of-memory problem or required
additional information.

In the experiments, we focused on evaluating the prediction capabilities of HEDMoL on the experi-
mental datasets rather than calculation datasets, due to the following two reasons: (1) Evaluations
on the calculation datasets (e.g., QM9 dataset) are not fair because HEDMoL exploits the external
calculation databases in the knowledge extension step. (2) The experimental datasets containing the
uncertainty of the atomic systems are closer to real-world molecular physics than the calculation
datasets [46]. We used SchNet, MPNN, and GIN as the GNN-based embedding networks of HED-
MoL. Implementation details and hyperparameter settings of HEDMoL are provided in Appendix
4 of Supplementary Material. We used a subset of the QM9 dataset containing the molecules of

1https://www.rdkit.org/
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Table 1: Measured R2-scores on the benchmark molecular datasets. Input type means the required
data format of the input molecules. The highest R2-score for each benchmark dataset has been
remarked in bold, and the standard deviation of the R2-scores is presented in parentheses. N/R means
the negative R2-score indicating the failure of the machine learning model. N/A is “not available”
that means the out-of-memory problem or impractical computation cost.

Input
Type Method Lipop ESOL ADMET IGC50 LC50 LD50 LMC-H LMC-R

Molecular
Fingerprint

XGB-Mor [42] 0.531
(0.024)

0.659
(0.045)

0.717
(0.021)

0.621
(0.040)

0.390
(0.133)

0.497
(0.016)

0.505
(0.018)

0.617
(0.058)

XGB-FC [42] 0.578
(0.018)

0.686
(0.052)

0.720
(0.009)

0.628
(0.023)

0.501
(0.052)

0.519
(0.025)

0.503
(0.007)

0.612
(0.015)

XGB-MK [43] 0.542
(0.041)

0.764
(0.047)

0.761
(0.020)

0.680
(0.037)

0.486
(0.112)

0.526
(0.021)

0.471
(0.019)

0.591
(0.033)

3D
molecular

Graph

DimeNet++ [33] N/R 0.878
(0.025) N/R 0.779

(0.019)
0.591

(0.055) N/A 0.352
(0.101) N/R

PhysChem [34] 0.694
(0.024)

0.848
(0.032) N/A 0.814

(0.017)
0.511

(0.053) N/A N/A N/R

M3GNet [35] N/A 0.857
(0.025) N/A 0.697

(0.029)
0.531

(0.034) N/A N/A 0.565
(0.041)

2D
Molecular

Graph

GIN [36] 0.702
(0.031)

0.897
(0.022)

0.833
(0.017)

0.799
(0.021)

0.543
(0.080)

0.515
(0.044)

0.443
(0.027)

0.568
(0.020)

EGC [37] 0.708
(0.043)

0.896
(0.017)

0.838
(0.012)

0.808
(0.029)

0.575
(0.045)

0.497
(0.034)

0.441
(0.023)

0.566
(0.017)

MPNN [38] 0.711
(0.022)

0.894
(0.023)

0.830
(0.014)

0.797
(0.018)

0.532
(0.064)

0.469
(0.040)

0.449
(0.057)

0.564
(0.031)

CGCNN [39] 0.701
(0.034)

0.899
(0.029)

0.836
(0.008)

0.807
(0.018)

0.531
(0.040)

0.482
(0.041)

0.436
(0.051)

0.588
(0.020)

SchNet [3] 0.667
(0.021)

0.881
(0.026)

0.834
(0.012)

0.765
(0.034)

0.587
(0.052)

0.467
(0.025)

0.456
(0.024)

0.543
(0.033)

MEGNet [40] 0.604
(0.023)

0.889
(0.027)

0.826
(0.024)

0.754
(0.026)

0.574
(0.122)

0.505
(0.027)

0.422
(0.032)

0.617
(0.058)

UniMP [41] 0.702
(0.030)

0.886
(0.025)

0.833
(0.014)

0.793
(0.027)

0.504
(0.031)

0.470
(0.025)

0.422
(0.061)

0.579
(0.036)

HEDMoL 0.759
(0.043)

0.914
(0.016)

0.865
(0.014)

0.840
(0.010)

0.663
(0.053)

0.572
(0.035)

0.551
(0.008)

0.639
(0.035)

maximum six atoms as an external calculation database for knowledge extension of HEDMoL, as de-
scribed in Appendix 4 of Supplementary Material. The source code of HEDMoL and the experiment
scripts are publicly available at https://github.com/anonauthor60/HEDMoL. The experimental
evaluations of HEDMoL for different choices of implementations and external databases are provided
in Supplementary Material.

3.1 Prediction Accuracy on Experimentally Collected Benchmark Datasets

We measured R2-scores of the state-of-the-art competitors and HEDMoL based on the leave-one-out
5-fold cross-validation so that the test dataset covers all molecules in the original dataset because
the prediction accuracy of the prediction models on the real-world chemical data is sensitive to
training/test split [47]. We reported the mean of the measured R2-scores with the standard deviation
on the test datasets. Table 1 presents the measured R2-scores and standard deviations on the
eight benchmark molecular datasets, and HEDMoL achieved the best R2-scores for all benchmark
datasets. HEDMoL outperformed the competitor methods over the standard deviations for all
benchmark datasets except for the ESOL dataset. In particular, HEDMoL showed higher R2-scores
than individual GIN, EGC, and SchNet, which are used as the embedding networks of HEDMoL.
Furthermore, HEDMoL outperformed the 3D-based GNNs, DimeNet++, PhysChem, and M3GNet,
even though they used additional 3D atomic coordinates. This result stems from the approximation
and calculation errors in the 3D molecular generation. Experimental results on MAEs were consistent
with the results in Table 1, as shown in Appendix 10. These results show that HEDMoL learned
more generalized and informative molecular representations beyond individual GNNs through the
hierarchical representation learning on Ga and Ge.

In the experiment, GNNs outperformed the XGB-based models in the problems of predicting the
physicochemistry properties on the Lipop, ESOL, and ADMET datasets. However, the simple XGB-
based models showed higher R2-scores than those of the state-of-the-art GNNs on the LMC-H and
LMC-R datasets containing relatively large molecules. This result is consistent with an experimental
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observation in a previous study [48] regarding the overfitting problems of GNNs on large atomic
systems. As shown in the experimental results, the fingerprint-based models and GNNs have their own
limitations when applied to the experimental molecular data. The fingerprint-based methods suffer
from the lack of physical information about the input molecules because the molecular fingerprints
are designed to describe the connectivities of the atoms rather than representing the physical attributes
of each atom. On the other hand, although GNNs can extract physical information from the input
molecular graphs containing physical attributes of each atom, they can be easily overfitted in large
atomic systems [48]. However, HEDMoL overcomes both limitations of the existing methods by
exploiting the molecular graph with electronic attributes, which are robust to extrapolation [9, 10, 17].
The prediction accuracy and improvement of HEDMoL according to the molecular sizes were
presented in Appendix 12 of Supplementary Material. The experimental results demonstrate that
HEDMoL can provide more accurate and robust prediction results on real-world molecular physics
without additional electronic structure calculations.

4 Conclusion

This paper proposed HEDMoL for learning electron-derived molecular representations to improve
the prediction capabilities on real-world molecular physics. HEDMoL learned the electron-derived
molecular representations without additional calculation costs by transferring the pre-calculated
electron-level information of small molecules in an external database to large input molecules.
HEDMoL achieved state-of-the-art prediction accuracy on extensive molecular datasets containing
experimentally observed molecules and their properties. Furthermore, HEDMoL showed better
prediction accuracies even under the lack of training data, which is one of the main challenges of
machine learning in chemical applications. These results showed the practical potential of HEDMoL
in real-world chemical applications.
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Appendix 1: Related Work

Graph Neural Networks on Molecular Structures

Various GNNs were proposed to predict the physical and chemical properties of molecules [2, 49].
SchNet [3] and MEGNet [40] are graph convolutional networks to learn quantum chemical principles
in atomic structures based on atom-wise representations of molecules. MPNN introduced in [38] is
a message-passing neural network for learning quantum mechanics in atomic structures. CGCNN
[39] is a graph convolutional network designed for processing crystalline materials and molecules,
and it showed state-of-the-art performance in various chemical applications on molecular datasets.
DimeNet++ [33], PhysChem [34], and M3GNet [35] were devised based on message-passing schemes
that generate molecular embeddings by propagating the local and global 3D atomic geometry. In
addition to these methods, PaiNN [44], GemNet [45], and Equiformer [4] were proposed for molecular
property prediction on the 3D structures. However, despite their state-of-the-art performances on
several benchmark datasets of calculated molecular structures, their applicability in real-world
molecular physics is limited in most cases because it is hard to accurately determine the 3D atomic
coordinates in real-world chemical compounds due to the uncertainty of atomic positions and the
limitations of measurement equipment [5, 50].

Transfer Learning on Molecular Datasets

Machine learning in chemical applications usually suffers from the lack of training data because
conducting chemical experiments to collect the training data is expensive and time-consuming
[51, 52]. To overcome the lack of the training data, transfer learning has received significant interest
in physics and chemistry [15, 16, 53]. Several transfer learning methods were successfully applied to
various chemical applications by transferring pre-trained models on large source calculation databases
to target experimental datasets [16, 53]. Nonetheless, the prediction capability of existing transfer
learning methods is inherently limited because the source calculation databases are not able to cover
the majority of large molecules in real-world experimental datasets due to the cubic or greater time
complexities of the calculation methods with respect to the number of electrons in the molecules
[9, 10].

In addition, various molecular representation learning methods were proposed to learn informative
molecular representations by transferring knowledge of decomposed substructures to the entire
molecules [8, 6, 54, 55, 7]. However, the representation capabilities of the existing methods are
inherently limited to the atom-level information, and they did not consider the fundamental relation-
ships between the molecular properties and the electronic structures of the molecules [8, 6, 54, 55, 7].
Moreover, some existing method requires additional information about substructure-based synthesis
recipe of the molecule [8], which is not available in real-world molecules. Therefore, we need a
new approach for transferring electron-level information between the molecules of different scales
without additional calculations and experiments.

Appendix 2: Benchmark Molecular Datasets

We evaluated the prediction capabilities of HEDMoL on various benchmark datasets containing
experimentally observed molecular properties from chemical databases, such as MoleculeNet [30]
and ChEMBL [31]. We selected eight benchmark datasets from various application fields, including
physicochemistry, toxicity, and pharmacokinetics, as shown in Table 2.

Appendix 3: Competitor Methods

In the experiments, we compared the prediction capabilities of HEDMoL with a baseline tree
method and eight state-of-the-art GNNs, which have been widely used in chemical applications. The
competitor methods are briefly described as:

• XGB-Mor: XGBoost (XGB) [32] is a tree-based gradient boosting model, and it showed
state-of-the-art performances in various scientific applications. For the experimental evalua-
tions, we generated XGB-Mor that predicts the target molecular properties for the Morgan
(Mor) fingerprints of the atom-level molecular structures.
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Table 2: Characteristics of eight benchmark molecular datasets that contain the atom-level molecular
structures and their experimentally observed target properties.

Application Category Dataset Target Property # of Molecules

Physicochemistry
Lipop [31] Lipophilicity 4,200
ESOL [56] Aqueous solubility 1,128
ADMET [57] Aqueous solubility 4,801

Toxicity
IGC50 [58] Tetrahymenapyriformis toxicity 1,791
LC50 [58] Fathead minnow toxicity 822
LD50 [58] Oral rat toxicity 7,412

Pharmacokinetics LMC-H [31] Liver microsomal clearance in human 5,347
LMC-R [31] Liver microsomal clearance in rat 2,165

• XGB-FC: We generated XGB-FC by combining XGB with the functional-class (FC) [42]
fingerprints of the input molecules. The FC fingerprint represents the atom-level molecular
structures based on their functional substructures and atoms.

• XGB-MK: We also generated XGB-MK based on the MACCS Key (MK) fingerprint, which
is one of the most commonly used molecular representations. MACCS key encodes the
atom-level molecular structures based on 166-bits binary patterns.

• GIN [36]: Graph isomorphism network (GIN) is an effective framework for graph represen-
tation learning based on graph isomorphism test.

• EGC [37]: Efficient graph convolution (EGC) is an isotropic GNN based on adaptive
filters and aggregation fusion in the node aggregation phase. EGC outperformed common
anisotropic GNNs, such as graph attention networks, on benchmark datasets.

• MPNN [38]: Message passing neural network is a unified framework of node and edge
convolution methods for learning molecular representations on quantum chemistry.

• CGCNN [39]: Crystal graph convolutional neural network (CGCNN) was proposed to
predict the physical properties of the atomic structures of chemical compounds. It achieved
state-of-the-art prediction accuracies in various chemical applications.

• SchNet [3]: It is a convolutional neural network for learning molecular representations
based on quantum interactions in molecules. It has been widely used as a baseline model in
various chemical applications [3, 59].

• MEGNet [40]: MatErials Graph Network (MEGNet) was proposed to predict the physical
and chemical properties of molecular and crystal structures. It significantly improved the
prediction accuracy by propagating the global state of the atomic structures through a
message passing process between the atoms.

• UniMP [41]: Unified message passaging (UniMP) is a transformer-based GNN. UniMP
showed state-of-the-art prediction capabilities by incorporating feature and label propagation
at both training and inference time based on the transformer architecture.

• DimeNet++ [33]: DimeNet++ is a variant of the original DimeNet [60]. DimeNet++
was more 10% more accurate than DimeNet on the QM9 dataset by solving information
bottleneck in hierarchical representation leanring on molecular grapsh.

• PhysChem [34]: PhysChem was proposed to predict molecular properties by integrating
the latent molecular embeddings from physical and chemical perspectives.

• M3GNet [35]: M3GNet is a graph neural network to learn inter-atomic potentials in
molecular structures. It showed state-of-the-art prediction accuracy on several tasks in
chemical applications by learning three-body atomic interactions of the molecular.

Appendix 4: Implementation Details of HEDMoL

We converted a molecular structure into an attributed graph G = (V,U ,X,E), where V is the set
of nodes (i.e., atoms), U is the set of edges (i.e., chemical bonds), X ∈ R|V|×d is a d-dimensional
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Table 3: Hyperparameter settings of HEDMoL for each benchmark molecular dataset. la and le
mean the dimensionality of the graph embeddings for the atom-level molecular graph Ga and the
electron-derived substructure graph Ge.

Dataset Batch Size Weight Regularization
Coefficient ψa ψe la le α λ

Lipop 64 5e-6 EGC GIN 32 32 0.2 1.0
ESOL 64 5e-6 EGC GIN 16 16 0.2 1.0

ADMET 64 5e-6 EGC GIN 16 16 0.2 1.0
IGC50 32 5e-6 EGC GIN 16 16 0.2 0.4
LC50 32 5e-6 SchNet GIN 16 16 0.1 0.2
LD50 64 1e-6 SchNet GIN 16 16 0.2 1.0

LMC-H 128 5e-6 SchNet GIN 16 16 0.2 1.0
LMC-R 32 5e-6 SchNet GIN 32 32 0.2 1.0

node-feature matrix, and E ∈ R|U|×l is an l-dimensional edge-feature matrix. We used the pre-
defined 200-dimensional atomic embeddings [61] with atomic features determined by local molecular
environments to define the input node-feature matrix X. To assign the edge features, we followed the
popular implementation that defines the edge features between the atoms as the 22-dimensional one-
hot encoding of the bonding types [2, 40]. The pre-defined bonding types were provided in RDKit2,
which is a popular cheminformatics library in computational chemistry. We used the junction tree
algorithm provided by PyTorch Geometric3 for the implementation of the substructure decomposition
step in HEDMoL.

We used the grid search to optimize the training hyperparameters of the competitor GNNs and
HEDMoL, such as batch size and weight regularization coefficient. The hyperparameter settings
of HEDMoL for each dataset are presented in Table 3. The initial learning rate in the training of
HEDMoL was fixed to 5e-4 for all datasets. In the implementation of HEDMoL, we used GIN as
the GNN-based embedding network for the electron-derived substructure graphs for all datasets.
However, we used EGC or SchNet as the GNN-based embedding network for the atom-level molecular
graph, as shown in Table 3. All competitor GNNs were constructed by stacking one dense layer for
node-feature embedding, two node aggregation layers with layer normalization [62], and two dense
layers for prediction. The number of hidden channels was fixed to 256 for all competitor GNNs.
HEDMoL used GIN, EGC, and SchNet with the same architecture of the competitor GNNs, but
the number of hidden channels between the node aggregation and dense layers was fixed to 128
for fair comparisons on a similar number of model parameters. HEDMoL was implemented with
Python 3.9. All implementations and experiment scripts are written by PyTorch 2.0.0+cu117 and
PyTorch Geometric 2.3.1 with CUDA 11.7. All experiments were conducted in a machine with Intel
i9-12900K CPU, 128G memory, and NVIDIA GeForce RTX 3090 Ti.

For the knowledge extension of HEDMoL, we used the QM9 dataset as an external database. The
QM9 dataset is a well-known calculation dataset containing pre-calculated electron-level information
about small organic molecules. In the implementation of HEDMoL, we select molecules that consist
of six or fewer atoms from the QM9 dataset to obtain a subset containing 685 molecules. This
is because we aim to perform knowledge extension based on small molecules since the electron-
level calculation error is small for small molecules. In the knowledge extension, the transferred
substructure feature Xe,k is defined as a substructure-feature matrix Xe is defined as a 12-dimensional
vector containing physically calculated electronic attributes: dipole moment, isotropic polarizability,
HOMO, MUMO, HOMO-LUMO gap, electronic spatial extent, vibrational energy, internal energy at
0 K and 298.15 K, enthalpy, free energy, and heat capacity.

Appendix 5: Prediction Accuracy of HEDMoL Architectures with Junction
Tree and BRICS Decomposition Algorithms

There are several choices in the implementation of the substructure decomposition in HEDMoL.
In the implementation of HEDMoL, we used the junction tree algorithm to decompose the input

2https://www.rdkit.org
3https://pytorch-geometric.readthedocs.io
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Table 4: Measured R2-scores of HEDMoL and HEDMoL-BC.
Method Lipop ESOL ADMET IGC50 LC50 LD50 LMC-H LMC-R

HEDMoL-BC 0.731
(0.054)

0.915
(0.021)

0.862
(0.007)

0.836
(0.016)

0.620
(0.081) N/A 0.532

(0.013)
0.622

(0.039)

HEDMoL 0.759
(0.043)

0.914
(0.016)

0.865
(0.014)

0.840
(0.010)

0.663
(0.053)

0.572
(0.035)

0.551
(0.008)

0.639
(0.035)

molecular graphs into the subgraphs. However, there is an alternative implementation of HEDMoL
based on the BRICS decomposition [21], which is the most common graph decomposition method
in chemical science to split the molecular graph into the chemically-valid substructures. In this
experiment, we conducted an experimental evaluation with a variant of HEDMoL, i.e., HEDMoL-BC,
in which the junction tree algorithm in the substructure decomposition process is replaced with the
BRICS decomposition [21].

As shown in Table 4, HEDMoL showed marginally better prediction accuracy than HEDMoL-BC
on the most benchmark datasets. In particular, HEDMoL outperformed HEDMoL-BC on the Lipop
and LC50 dataset. This experimental result comes from two reasons: (1) The BRICS decomposition
cannot split the large molecules into sufficiently small substructures because it should guarantee the
chemical validity of the decomposed substructures. (2) Many hydrogens are virtually added to the
decomposed substructures for their chemical validity, and it can distort the structural information
of the original molecules. Furthermore, we were not able to execute HEDMoL-BC on the LD50
dataset because the execution time of the BRICS decomposition exploded on several large molecules
of the LD50 dataset. This experimental result implies the effectiveness of processing the molecular
structures as an attributed graph rather than a chemical system.

Table 5: Test R2-scores of HEDMoL for different implementations of the knowledge extension.
FEATURE-G, FGSD, Graph2Vec, and GeoScattering are unsupervised graph embedding methods.
We implemented the knowledge extension step of HEDMoL based on GeoScattering.

Dataset Morgan Fingerprint FEATHER-G FGSD Graph2Vec GeoScattering

Lipop 0.734 (0.044) 0.734 (0.042) 0.741 (0.038) 0.734 (0.047) 0.736 (0.030)

ESOL 0.909 (0.018) 0.912 (0.019) 0.914 (0.014) 0.910 (0.016) 0.915 (0.016)

ADMET 0.865 (0.011) 0.870 (0.010) 0.864 (0.013) 0.864 (0.010) 0.861 (0.010)

IGC50 0.796 (0.018) 0.835 (0.011) 0.837 (0.021) 0.831 (0.023) 0.835 (0.017)

Appendix 6: Prediction Capabilities for Different Graph Embedding Methods
in the Knowledge Extension

There are several choices of π(Sk, G
s
i ) in the implementation of the knowledge extension in HED-

MoL. In this experiment, we evaluated the prediction capabilities of HEDMoL for different graph
embedding methods in the knowledge extension step. We implemented HEDMoL with four different
graph embedding methods: Morgan fingerprint[42], FEATHER-G [63], FGSD [64], Graph2Vec
[65], and GeoScattering [23]. Note that we implemented π(Sk, G

s
i ) with the Morgan fingerprint

based on the Tanimoto distance [66] for the Morgan fingerprints [42] of the molecules, which is a
common approach for finding similar molecules in cheminformatics. The experimental evaluation
was conducted on the Lipop, ESOL, ADMET, and IGC50 datasets, where the competitor GNNs
and HEDMoL achieved R2 scores greater than 0.7. As shown in Table 5, HEDMoL with the graph
embedding methods showed similar R2-scores for all benchmark datasets because HEDMoL already
assumes the matching errors in the knowledge extension, which was formalized by the Gaussian error
ϵk. As a result, HEDMoL was robust to the implementation choices of the knowledge extension.
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Figure 2: R2-scores of HEDMoL on the Lipop, ESOL, ADMET, and IGC50 datasets for different
values of α.
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Figure 3: R2-scores of HEDMoL on the Lipop, ESOL, ADMET, and IGC50 datasets for different
values of λ.

Appendix 7: Hyperparameter Analysis for α and λ

In the training process of HEDMoL, there are two hyperparameters α and λ to control the structural
approximation errors and the effect of the physical consistency regularization, respectively. In this
experiment, we measured the R2-scores of HEDMoL for different values of α and λ on the Lipop,
ESOL, ADMET, and IGC50 datasets. We selected the hyperparameter values of α and λ in {0, 0.05,
0.1, 0.15, 0.2, 0.25, 0.3, 0.35} and {0.2, 0.4, 0.6, 0.8, 1.0}, respectively. Figs. 2 and 3 show the
measured R2-scores for different hyperparameter values. In this experiment, HEDMoL consistently
achieved better R2-scores than those of the best competitor GNNs for all hyperparameter values
and benchmark datasets. In particular, HEDMoL outperformed the best competitor GNNs over the
standard deviations on the ESOL, ADMET, and IGC50 datasets for all hyperparameter values. These
experimental results show the robustness of HEDMoL to the hyperparameter values.

Appendix 8: Representation Capabilities for External Databases of Different
Molecular Scales

HEDMoL is a representation learning method based on knowledge transfer between the information
on different scales. In this experiment, we evaluated the prediction capabilities of HEDMoL for
the external calculation databases containing molecules of different sizes. We generated external
calculation databases of different molecular scales by selecting the molecules from the QM9 dataset
based on the number of atoms. We generated six external calculation databases that contain molecules
consisting of two to C atoms, where C = {3, 4, 5, 6, 7, 8}. Note that the knowledge extension of
HEDMoL was implemented with C = 6. Table 6 shows the measured R2-scores of HEDMoL on the
external calculation databases of different molecular sizes.

Table 6: R2-scores of HEDMoL for the external datasets of different molecular scales. C indicates
the maximum number of atoms of the molecules in the subset of the QM9 dataset. HEDMoL was
implemented with the QM9 subset of C = 6.

Dataset C = 3 C = 4 C = 5 C = 6 C = 7 C = 8

Lipop 0.732 (0.037) 0.723 (0.053) 0.735 (0.047) 0.736 (0.030) 0.738 (0.040) 0.736 (0.037)

ESOL 0.914 (0.018) 0.911 (0.016) 0.915 (0.015) 0.915 (0.016) 0.916 (0.015) 0.914 (0.019)

ADMET 0.867 (0.007) 0.862 (0.015) 0.868 (0.012) 0.861 (0.010) 0.867 (0.012) 0.865 (0.014)

IGC50 0.829 (0.017) 0.833 (0.012) 0.828 (0.016) 0.835 (0.017) 0.825 (0.018) 0.831 (0.016)
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As shown in the table, the R2-scores of HEDMoL were robust to the changes in the molecular
scales of the external datasets because the junction tree algorithm in the knowledge extension of
HEDMoL decomposes the input molecules into tiny substructures. For this reason, most decomposed
substructures would have been sufficiently approximated by the small molecules in the QM9 subsets
of C = {3, 4, 5}. Similarly, the changes on the R2-scores were marginal for C = {7, 8} because
most decomposed substructures will be replaced with the small molecules containing 3-5 atoms even
on the QM9 subsets containing larger molecules. This experimental result implies that preparing
an external dataset containing enough small molecules is not a challenging task because possible
molecular structures decrease exponentially as the number of atoms in the molecules decreases.

Appendix 9: Execution Time of the Training and Inference Processes

HEDMoL inevitably requires additional computation costs in the training and inference phases to
execute the hierarchical representation learning with two embedding networks ψa and ψe. Moreover,
calculating the regularization terms of the physical consistency also causes additional computations.
We compared the execution time of HEDMoL with EGC, GIN, MPNN, and SchNet on the LC50,
Lipop, and LD50 datasets. MPNN and SchNet showed the best prediction accuracy on the benchmark
datasets. EGC, GIN, and SchNet were used as the embedding networks of HEDMoL. The LC50,
Lipop, and LD50 datasets contain 822, 4,200, and 7,412 molecules, respectively. This experiment to
measure the execution time was conducted in a machine with Intel i9-12900K CPU, 128G memory,
and NVIDIA GeForce RTX 3090 Ti.

Table 7: Execution time per epoch (sec/epoch) on the LC50, Lipop, and LD50 datasets. The LC50,
Lipop, and LD50 datasets contain 822, 4,200, 7,412 molecules, respectively.

Dataset
Training Inference

EGC GIN MPNN SchNet HEDMoL EGC GIN MPNN SchNet HEDMoL

LC50 0.087 0.077 0.091 0.172 0.229 0.014 0.013 0.014 0.022 0.035

Lipop 0.643 0.558 0.619 1.650 1.371 0.099 0.090 0.099 0.191 0.228

LD50 0.929 0.828 0.902 2.038 2.468 0.136 0.125 0.133 0.237 0.373

Table 7 shows the execution time of MPNN, SchNet, and HEDMoL in the training and inference
processes. Obviously, HEDMoL requires more execution time in the training and inference processes
because it has two GNN-based embedding networks. However, the execution time of HEDMoL
linearly increased as the sum of two embedding networks. For example, the execution time of
HEDMoL on the LC50 dataset is similar to the sum of the execution times of GIN and SchNet, as
shown in 0.229 ≈ 0.077 + 0.172 of the training process on the LC dataset. Also, the execution time
of HEDMoL on the Lipop dataset is similar to the sum of the execution times of EGC and GIN, as
shown in 1.371 ≈ 0.643 + 0.558 of the training process on the Lipop dataset. For the inference time,
the execution time of HEDMoL linearly increased.

Appendix 10: Evaluation Results on Mean Absolute Error

Table 8 presents the measured mean absolute errors (MAEs) of the competitor methods and HEDMoL
on the benchmark molecular datasets. As with the result measured by R2-score, HEDMoL showed
the best performance for all benchmark datasets, i.e., HEDMoL achieved the lowest MAEs for all
benchmark datasets.

Appendix 11: Prediction Accuracy for Different Types of Electron-Level
Information

The representation learning results of HEDMoL are affected by the electron-level features provided in
the external database. For more investigation, we measured the prediction accuracy of HEDMoL for
different types of electron-level information in the QM9 dataset. In this experiment, we categorized the
electron-level features in the QM9 dataset into three categories: energy-related features, temperature-
dependent features, and features in other categories. There are 7, 2, and 3 electron-level features
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Table 8: Measured MAEs of the competitor methods and HEDMoL on the benchmark molecular
datasets. Input type means the required data format of the input molecules for each method. The
highest MAE for each benchmark dataset has been remarked in bold, and the standard deviation of
the MAEs is presented in parentheses.

Input
Type Method Lipop ESOL ADMET IGC50 LC50 LD50 LMC-H LMC-R

Molecular
Fingerprint

XGB-Mor [42] 0.608
(0.012)

0.908
(0.039)

0.855
(0.018)

0.648
(0.017)

0.876
(0.061)

0.475
(0.008)

0.358
(0.006)

0.368
(0.027)

XGB-FC [42] 0.586
(0.010)

0.874
(0.064)

0.855
(0.017)

0.468
(0.021)

0.776
(0.020)

0.484
(0.006)

0.357
(0.005)

0.365
(0.007)

XGB-MK [43] 0.610
(0.014)

0.740
(0.047)

0.773
(0.017)

0.444
(0.012)

0.770
(0.139)

0.491
(0.015)

0.364
(0.004)

0.373
(0.018)

3D
molecular

Graph

DimeNet++ [33] N/R 0.541
(0.040) N/R 0.385

(0.023)
0.681

(0.024) N/A 0.455
(0.021) N/R

PhysChem [34] 0.453
(0.019)

0.563
(0.038) N/A 0.318

(0.021)
0.675

(0.038) N/A N/A N/R

M3GNet [35] N/A 0.531
(0.035) N/A 0.451

(0.021)
0.681

(0.045) N/A N/A 0.378
(0.011)

2D
Molecular

Graph

GIN [36] 0.437
(0.024)

0.443
(0.040)

0.575
(0.017)

0.311
(0.012)

0.663
(0.038)

0.475
(0.016)

0.365
(0.007)

0.381
(0.008)

EGC [37] 0.436
(0.016)

0.434
(0.016)

0.590
(0.012)

0.306
(0.022)

0.644
(0.039)

0.486
(0.005)

0.367
(0.005)

0.378
(0.009)

MPNN [38] 0.438
(0.012)

0.453
(0.017)

0.611
(0.011)

0.312
(0.011)

0.670
(0.053)

0.500
(0.014)

0.363
(0.011)

0.382
(0.014)

CGCNN [39] 0.442
(0.020)

0.441
(0.041)

0.599
(0.012)

0.301
(0.019)

0.686
(0.046)

0.490
(0.015)

0.368
(0.005)

0.368
(0.006)

SchNet [3] 0.560
(0.013)

0.554
(0.042)

0.606
(0.020)

0.390
(0.022)

0.677
(0.019)

0.483
(0.010)

0.359
(0.007)

0.410
(0.016)

MEGNet [40] 0.537
(0.019)

0.474
(0.024)

0.601
(0.025)

0.355
(0.018)

0.662
(0.054)

0.478
(0.011)

0.371
(0.008)

0.366
(0.010)

UniMP [41] 0.449
(0.020)

0.472
(0.030)

0.599
(0.021)

0.320
(0.024)

0.682
(0.035)

0.497
(0.009)

0.373
(0.011)

0.376
(0.016)

HEDMoL 0.427
(0.037)

0.427
(0.027)

0.554
(0.026)

0.287
(0.007)

0.603
(0.036)

0.451
(0.013)

0.335
(0.004)

0.344
(0.016)

Table 9: R2-scores of HEDMoL for different types of electron-level features in the QM9 dataset.

Dataset Lipop ESOL ADMET IGC50 LC50 LD50 LMC-H LMC-R
Energy-related

features
0.736

(0.049)
0.918

(0.019)
0.866

(0.015)
0.832

(0.011)
0.628

(0.069)
0.562

(0.027)
0.541

(0.009)
0.619

(0.032)
Temperature-dependent

features
0.730

(0.053)
0.915

(0.020)
0.863

(0.012)
0.837

(0.012)
0.656

(0.045)
0.582

(0.026)
0.537

(0.011)
0.624

(0.037)
Features in other

categories
0.720

(0.051)
0.919

(0.016)
0.868

(0.013)
0.836

(0.008)
0.642

(0.076)
0.557

(0.029)
0.533

(0.009)
0.621

(0.036)
All features
(HEDMoL)

0.759
(0.043)

0.914
(0.016)

0.865
(0.014)

0.840
(0.010)

0.663
(0.053)

0.572
(0.035)

0.551
(0.008)

0.639
(0.035)

in the energy-related, temperature-dependent, and other categories, respectively. Table 9 shows the
R2-scores of HEDMoL using only the electron-level features in each category. “All features” in the
table means HEDMoL using all electron-level features in the QM9 dataset, which is the same model
as HEDMoL in the paper.

As shown in Table 9, the prediction model using all electron-level features showed better R2-scores
on the Lipop, IGC50, LC50, LD50, LMC-H, and LMC-R datasets, because the molecular properties
of toxicity and pharmacokinetics are comprehensively related to the electron-level features of the
molecules. However, we were not able to observe the performance improvement on the ESOL and
ADMET datasets, which contain the aqueous solubilities of the molecules. This result is consistent
with existing experimental results that the aqueous solubilities are usually dependent on the molecular
scale rather than electronic distributions and energies [67].
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Appendix 12: Prediction Accuracy for Input Molecules of Different Molecular
Scales

The LMC-H and LMC-R datasets contain relatively large molecules where the average number of
atoms and edges are greater than 50 and 110, respectively. In these datasets, the prediction accuracy
of the existing GNNs was significantly degraded, and the simple XGB-based methods outperformed
them, as shown in Table 1 of the manuscript. Our results align with existing study reporting the
performance degradations of GNNs on large molecular graphs [48]. On the other hand, HEDMoL
showed an improved prediction accuracy and outperformed all competitor GNNs and XGB-based
methods on the LMC-H and LMC-R datasets, which contain relatively large molecules. This result
comes from the substructure decomposition-based graph representation learning of HEDMoL in
Sections 3.3-3.5. It is consistent with existing experimental results that the subgraph decomposition
approach can improve the representation and generalization capabilities of the graph embedding
models [6, 7].

Table 10: Prediction accuracy and improvement of HEDMoL according to the molecular sizes. The
average molecular size is presented in the parenthesis of each dataset name. The average number of
atoms was presented together with the dataset name.

Method IGC50
(19.29)

LC50
(22.32)

ESOL
(25.63)

ADMET
(26.76)

LD50
(31.30)

Lipop
(48.51)

LMC-R
(53.13)

LMC-H
(54.54)

R2-score of the best
competitor (A) 0.808 0.587 0.899 0.838 0.526 0.703 0.617 0.505

R2-score of
HEDMoL (B) 0.840 0.663 0.914 0.865 0.572 0.759 0.639 0.551

Accuracy improvement
(100× ((B −A)/A)) 3.960 12.947 1.669 3.222 8.745 7.966 3.566 9.109

Furthermore, we quantitatively measured the accuracy improvement of HEDMoL according to the
molecular size in molecular property prediction, as shown in Table 10. We sorted the benchmark
molecular datasets according to the average number of atoms in the molecules. As shown in Table
10, the accuracy improvement of HEDMoL does not decreased in the LMC-R and LMC-H datasets,
which contain relatively large molecules. The accuracy improvement of HEDMoL was independent
to the molecular size, and their Pearson correlation coefficient was 0.103. We will add descriptions of
the statistics of the molecules in each benchmark dataset. Also, we will supplement the discussion
section about the accuracy improvement of HEDMoL and the molecular size.

Appendix 13: Ablation Study on HEDMoL

In this experiment, we conducted an ablation study of HEDMoL to investigate the effects of each
component on the prediction capabilities of HEDMoL. We compared the R2-scores of EGC and GIN
because HEDMoL is equivalent to the embedding networks ψa or ψe if all the proposed components
are removed from HEDMoL. Table 11 shows the experimental results on HEDMoL. To implement
KE without HRL, we used z = za ⊕ ze as the final molecular embedding instead of z = za ⊕ zc. We
observe that the R2-scores of the prediction models notably increased after implementing KE for
all datasets, as shown in Table 11. This result explicitly shows the effectiveness of our knowledge

Table 11: Ablation studies on HEDMoL. Each abbreviation means the components of HEDMoL
as follows. KE: knowledge extension. HRL: hierarchical molecular representation learning. PCR:
energy-based physical consistency regularization. In this abliation study, KE+HRL+PCR denotes
HEDMoL.

Dataset EGC GIN KE KE+HRL KE+PCR KE+HRL+PCR
Lipop 0.708 (0.043) 0.702 (0.031) 0.722 (0.051) 0.726 (0.049) 0.731 (0.044) 0.759 (0.043)
ESOL 0.896 (0.017) 0.897 (0.022) 0.913 (0.015) 0.913 (0.015) 0.915 (0.017) 0.914 (0.016)

ADMET 0.838 (0.012) 0.833 (0.017) 0.862 (0.014) 0.864 (0.015) 0.860 (0.013) 0.865 (0.014)
IGC50 0.808 (0.029) 0.799 (0.021) 0.827 (0.018) 0.833 (0.017) 0.826 (0.014) 0.840 (0.010)
LC50 0.575 (0.045) 0.543 (0.080) 0.631 (0.091) 0.640 (0.084) 0.603 (0.061) 0.663 (0.053)
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extension approach for propagating the electron-level attributes to the atom-level molecular structures.
Although the improvements by KE+HRL and KE+PCR were not observed in the experiment, the
R2-scores were improved, and their standard deviations decreased by KE+HRL+PCR on the Lipop,
IGC50, and LC50 datasets.

Appendix 14: Prediction Capabilities on Small Training Datasets

Since conducting chemical experiments to obtain the experimentally labeled data is time-consuming
and labor-intensive, the lack of training data is one of the main challenges of machine learning
in chemical applications [15, 16]. As described in the knowledge extension step of Section 2.4,
HEDMoL inherently has the ability to extend the electron-level knowledge regarding small molecules
to unseen large molecules, which is beneficial in constructing an accurate prediction model on
small training datasets. In this experiment, we compared R2-scores of the competitor methods
and HEDMoL over different sizes of training datasets to demonstrate the prediction capabilities of
HEDMoL on small training datasets.

Lipop ESOL ADMET IGC50

Dimenet++ MPNN CGCNN MEGNetPhysChem HEDMoL

Ratio of the training data Ratio of the training data Ratio of the training data Ratio of the training data
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Figure 4: R2-scores for different sizes of training data. The black dotted line indicates the R2-score
of the best competitor method on the 80% training data.

Fig. 4 shows the R2-scores of the competitor methods and HEDMoL for different sizes of training
datasets. We measured the R2-scores on the Lipop, ESOL, ADMET, and IGC50 datasets in which
HEDMoL and most competitor GNNs achieved the R2-scores greater than 0.6. We did not measure
the R2-scores of the XGB- and 3D structure-based methods because most of them failed on small
training datasets. Obviously, we were able to observe that the prediction accuracy tends to be
improved as the size of the training dataset increases. However, HEDMoL showed higher R2-scores
than the competitor GNNs for all sizes of the training datasets on the Lipop, ADMET, and IGC50
datasets. Furthermore, HEDMoL already achieved comparable R2-scores with each best competitor
method on the 80% training data (black dotted line) on the 50%, 40%, and 60% training data of
the Lipop, ADMET, and IGC0 datasets, respectively. These experimental results show the practical
potential of HEDMoL in real-world chemical applications, which usually suffer from the lack of
training data.
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