

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 APLAUD: ADAPTIVE PERSONALIZED LOW-RANK DE- COMPOSITION FOR USER-SPECIFIC LLM

Anonymous authors

Paper under double-blind review

ABSTRACT

In this paper, we introduce and study the problem of *personalized survey response prediction* using fine-tuned large language models (LLMs). This task poses unique challenges: limited per-user training data, scalability of model storage, and the need to exploit shared survey structures. To address these issues, we propose **APlaud** (Adaptive Personalized Low-rank and User-specific Nested Decomposition), a lightweight and scalable framework for LLM personalization. APlaud extends the LoRA paradigm by separating adaptation into a frozen, shared low-rank basis and a compact user-specific correction, augmented with a rank-one residual for finer personalization. To further reduce per-user parameter cost and mitigate overfitting, the correction matrix can be factorized into an even lower-rank form. Empirical results demonstrate that APlaud achieves efficient, scalable personalization across users while outperforming state-of-the-art LoRA-based personalized LLM approaches in both generalization and inference efficiency.

1 INTRODUCTION

Surveys and polls such as the Pew Research Survey (61), the General Social Survey (GSS) (70), the Gallup World Poll (20), and the American National Election Studies (ANES) (2) have long been indispensable for informing public policy, advancing social science, and guiding marketing decisions (26; 78; 54; 10; 18). Beyond these canonical examples, fields such as marketing research, product design, social and political science, biomedicine and psychology, and education all rely heavily on surveys and interviews as primary tools for understanding human perspectives. Yet these instruments now face mounting challenges, including rising costs, declining response rates, and persistent concerns over accuracy and representativeness (43; 11; 44). **Driven by surging demand in the multi-billion-dollar global survey and market-research sector, researchers and practitioners are increasingly turning to synthetic participants – LLM-generated respondents – as a scalable alternative for augmenting or partially replacing traditional data collection (5; 40; 1; 33; 16; 28; 65; 53; 63; 36; 45; 7; 72; 91; 71; 29; 4).** **Industry adoption has accelerated rapidly:** the Qualtrics 2025 marketing trend report (64) highlights synthetic responses as a direct substitute for human respondents, while enterprises such as YouGov and Kantar, along with startups including SyntheticUsers (73), OpinioAI (58), Delve.ai (15), and PersonaLive.ai (60), have begun offering synthetic survey responses at scale, underscoring the growing momentum of synthetic subject modeling across both research and commercial applications.

However, the majority of existing research (primarily from the domain sciences) has focused on directly applying LLMs with simple prompting strategies that condition responses on basic demographic attributes—a setting we refer to as **persona-level (subpopulation) prediction** (5; 1; 33; 67; 47; 4; 68; 83; 42; 22; 24; 79). Such studies typically test whether LLMs inherently capture the correct distribution of answers for a target demographic subpopulation. Results consistently show that LLM-generated responses often exhibit cultural and in-group/out-group biases, lack demographic nuance, and tend to produce homogenized opinions with reduced diversity and greater predictability compared to real human participants (68; 83; 47; 42; 22; 24; 79; 56).

More recently, a small but growing body of work has sought to mitigate these limitations by aligning persona-level response distributions (e.g., demographics, socioeconomic status, or ideology) with empirical human data through fine-tuning or reinforcement learning with human feedback (RLHF) (38; 90; 71). Yet these approaches remain constrained to the subpopulation level, leaving

054 open the critical challenge of modeling survey response personalization at the level of individual
 055 users.

056 **The Personalized Survey Response Prediction Problem.** To move beyond subpopulation-level
 057 modeling and address personalization at the level of individual users, we formally introduce and
 058 investigate the *personalized survey response prediction problem*: *Can a fine-tuned (personalized)*
 059 *LLM replicate, predict, or simulate an individual’s responses to new survey questions, given their*
 060 *answers to a previous set of questions in an existing survey?* This problem has immediate real-world
 061 relevance. In both public and private sectors, organizations frequently conduct large-scale surveys and
 062 retain ownership of the resulting data. When new, related questions arise, it is natural to want to follow
 063 up with the original participants. Yet re-contacting respondents is often costly, time-consuming, or
 064 infeasible. As a result, stakeholders are increasingly turning to LLMs to generate synthetic responses
 065 as a preliminary step before committing resources to new data collection (64).

066 This problem lies at the heart of the emerging notion of *digital twins*, where the goal is to simulate
 067 user behavior or preferences in a way that reflects individual-specific characteristics rather than
 068 merely subpopulation-level distributions (73; 60). It also connects directly to ongoing advances in
 069 recommendation and personalization, where the development of *personalized LLMs*—or *personalized*
 070 *alignment*—has become a central objective (90; 27). Our work is further motivated by direct industry
 071 *collaborations that revealed a critical operational bottleneck: organizations frequently need to pose*
 072 *follow-up questions to respondents who are unavailable or prohibitively costly to re-contact due*
 073 *to attrition, survey fatigue, or escalating incentive expenses. Personalized synthetic respondents*
 074 *offer a direct solution to this problem by enabling practitioners to ask new questions to modeled*
 075 *representations of original respondents, thereby preserving continuity of analysis without repeated*
 076 *recruitment. The overarching aim of this line of research is to align model outputs with the preferences,*
 077 *stylistic tendencies, and behavioral patterns of specific individuals. Yet, to the best of our knowledge,*
 078 *personalized LLMs have not been systematically developed or evaluated for individual-level survey*
 079 *response prediction—a critical and largely unexplored opportunity that our work seeks to address.*

080 Finally, from a benchmarking perspective, individual-level survey response prediction provides a
 081 rigorous and interpretable testbed for evaluating both digital twins and personalized LLMs. While
 082 benchmarks such as LaMP (66) assess personalization across tasks such as citation generation, tagging,
 083 product rating, and title creation, survey response prediction offers a complementary, domain-specific
 084 benchmark focused on capturing users’ latent preferences, behavioral patterns, and opinions. To our
 085 knowledge, this work is the first to explicitly formulate and study the survey prediction problem in
 086 the personalized LLM setting.

087 1.1 RESEARCH CHALLENGES AND OUR APPROACH

088 The main challenges of the problem are threefold. First, the number of survey questions in existing
 089 datasets and real-world scenarios is typically modest—ranging from tens to, at most, a few thousand.
 090 This means the amount of personalized data available per user is often much smaller than the size of
 091 the personalized parameters, which can easily lead to severe overfitting. Second, the number of users
 092 can be extremely large—ranging from thousands to tens of millions in industry-scale applications.
 093 Even though PEFT methods like LoRA reduce the number of trainable parameters relative to full
 094 fine-tuning, each per-user adapter can still involve hundreds of millions of parameters (albeit a small
 095 fraction of the base model). At scale, maintaining such adapters quickly becomes prohibitively
 096 expensive in terms of both storage and deployment, making per-user fine-tuning impractical. Third,
 097 surveys typically ask the same set of questions across users, which naturally induces shared semantics
 098 and correlations. An effective personalization strategy should exploit this inherent structure, rather
 099 than treating each user entirely in isolation.

100 To address these challenges, we propose **APlaud**, a framework for developing truly personalized
 101 LLMs by leveraging existing survey questions and responses. Our approach is designed to balance
 102 scalability, data efficiency, and structural exploitation. An overview of the proposed framework for
 103 the personalized survey response prediction problem is shown in Figure 1.

104 The key idea of APlaud is to utilize the shared space introduced by the standard LoRA training AB ,
 105 and then apply singular value decomposition (SVD) to uncover the orthogonal decomposition $U\Sigma V$.
 106 We hypothesize that the subspaces U and V are relatively stable across users, enabling us to introduce
 107 a small personalized matrix C_u to capture individual user preferences. Specifically, APlaud builds on

108 the LoRA paradigm by decoupling adaptation into a frozen, shared low-rank basis and a compact,
 109 user-specific residual correction. Concretely, we decompose a LoRA update via SVD into orthogonal
 110 matrices U , Σ , and V , and inject a learnable user-specific matrix C_u , yielding an adapted weight of
 111 the form

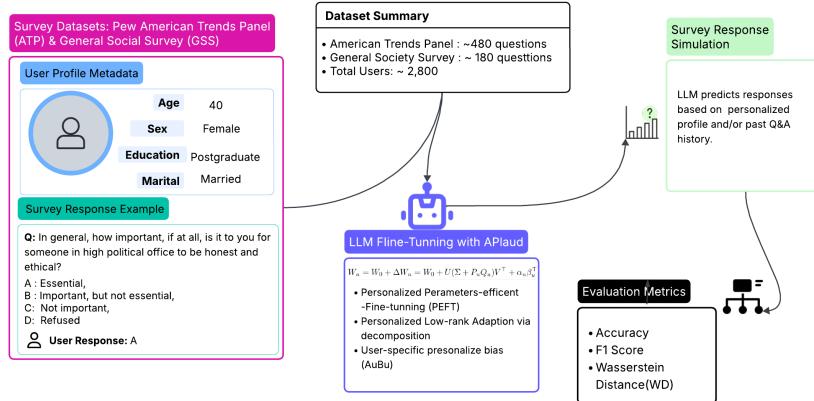
$$112 \quad W = W_0 + U(\Sigma + C_u)V^\top,$$

113 where U and V are shared across users while C_u encodes personalization. To further enhance
 114 expressiveness, APlaud augments this formulation with a small, user-specific low-rank residual term.
 115 Finally, to reduce parameter overhead and mitigate overfitting, the personalized matrix C_u is itself
 116 factorized into a lower-rank form P_uQ_u . This design directly addresses the three key challenges
 117 identified earlier: (1) compact user-specific parameters mitigate overfitting when per-user data is
 118 limited; (2) low-rank factorization further minimizes per-user storage and parameter overhead; and
 119 (3) shared subspaces maximize the utilization of semantic information common across users.

120 **Our Contributions.** The contributions of this work are threefold:

- 121 • We introduce the *personalized survey response prediction problem*, a novel and practically
 122 important task that bridges survey research and the development of personalized LLMs, and
 123 propose it as a new benchmark for personalization.
- 124 • We present **APlaud**, a scalable and parameter-efficient framework that combines shared
 125 LoRA-derived subspaces with lightweight, user-specific corrections via SVD-based decom-
 126 position and residual terms.
- 127 • We provide extensive empirical evaluation showing that APlaud reduces the per-user param-
 128 eter cost of state-of-the-art personalized LLM methods (e.g., OPPU) by orders of magnitude,
 129 while achieving comparable or superior predictive accuracy.

131 In real operational settings, our method provides survey companies, market-research organizations,
 132 and enterprise stakeholders with a scalable and cost-efficient alternative to traditional respondent
 133 workflows. Concretely, our framework alleviates key deployment pressures by enabling organizations
 134 to: (i) generate reliable follow-up responses without re-contacting participants; (ii) substantially
 135 reduce recruitment, incentive, and panel-maintenance costs; (iii) rapidly prototype, iterate on, and
 136 validate new survey instruments; and (iv) extend panel longevity through persistent, personalized
 137 synthetic respondents calibrated to each user’s historical responses.



153 Figure 1: Overview of **APlaud** for personalized survey response prediction. The framework combines
 154 shared LoRA-derived subspaces with user-specific low-rank corrections to achieve scalable and data-
 155 efficient personalization.

2 PRELIMINARY: LoRA AND PERSONALIZED LLM

2.1 LoRA AND ITS VARIANTS

161 LoRA (Low-Rank Adaptation) is one of the most widely adopted parameter-efficient fine-tuning
 (PEFT) techniques (35). It is motivated by the low intrinsic dimensionality hypothesis (3), which

suggests that fine-tuning can often be effectively performed in a lower-dimensional subspace. LoRA achieves this by introducing low-rank updates to the dense layers of a pre-trained neural network, instead of modifying the full parameter matrix.

Formally, let $W_0 \in \mathbb{R}^{d \times k}$ denote the original weight matrix of a dense layer. LoRA introduces a trainable update $\Delta W \in \mathbb{R}^{d \times k}$ such that the updated layer is parameterized by:

$$W = W_0 + \Delta W.$$

Rather than learning ΔW directly, LoRA factorizes it as the product of two low-rank matrices:

$$W = W_0 + sAB,$$

where $A \in \mathbb{R}^{d \times r}$, $B \in \mathbb{R}^{r \times k}$, and $r \ll \min\{d, k\}$. The matrix A is typically initialized with a Gaussian distribution, while B is initialized to zero. The scalar s is a scaling factor used to stabilize and control the magnitude of the update.

This factorization significantly reduces the number of trainable parameters from $d \times k$ (in full fine-tuning) to $r \times (d + k)$ in LoRA, offering a substantial efficiency gain. For simplicity of exposition, we assume in the remainder of this paper that W_0 is a square matrix (i.e., $d = k$), which is commonly the case in transformer-based architectures. Nonetheless, our method generalizes naturally to non-square matrices.

We note that several recent approaches have explored the use of Singular Value Decomposition (SVD) to enhance LoRA training. For example, given the SVD of a pre-trained weight matrix $W_0 = U\Sigma V^\top$, one can initialize the LoRA adapters using the factorized components—setting $A = U\Sigma^{1/2}$ and $B = \Sigma^{1/2}V^\top$ —to provide a data-informed starting point for fine-tuning.

Some methods adopt SVD-inspired parameterizations directly during training. For instance, AdaLoRA (89) approximates the weight update matrix as $\Delta W = P\Sigma Q^\top$, where P and Q are constrained to be approximately orthogonal via regularization terms $\|P^\top P - I\|$ and $\|Q^\top Q - I\|$, and Σ is a learnable diagonal matrix. PiSSA (Principal Singular Values and Singular Vectors Adaptation) (55) initializes LoRA adapters using the top singular components of the pre-trained weights via SVD while freezing the remaining components. This strategy improves convergence speed and accuracy by aligning updates with the most informative subspace. In contrast, MiLoRA (81) and KASA (80) propose to freeze the top singular components and instead fine-tune the minor singular directions, emphasizing complementary subspaces for adaptation. To the best of our knowledge, our approach (Aplaud) is the first to leverage SVD-based decomposition strategies to support personalized LLM adaptation and personalized alignment.

2.2 PERSONALIZED LLM

Prompt-based Personalization. User information—such as demographics, preferences, behavioral signals, and historical activity—derived from user-generated content or contextual background, is typically encoded into prompts (87; 1; 5; 51; 6; 19; 48; 88; 50). When user history is extensive, techniques such as prompt refinement (49) and retrieval-augmented generation (RAG) (82) can be employed to construct more informative and scalable prompts.

In the context of personalized survey response prediction, the number of available questions and responses per user typically ranges from a few dozen to a few thousand—sufficient to fit within the context window of commercial LLMs such as ChatGPT. However, when using open-source models with more limited context capacity, it may be necessary to summarize prior interactions or apply RAG-based mechanisms to generate compact, user-specific prompts.

Encoding-based Personalization. In this class of approaches, user data and preferences are compressed into vector representations or embeddings (57; 49; 69), which are then integrated into the model to modulate token-level processing and output generation for personalization. Similarly, user-specific latent variables and reward models have been developed to enable personalization through reinforcement learning (62; 25; 9).

While these methods allow for individualized conditioning, they typically rely on a shared transformer backbone, resulting in a uniform inference architecture across all users. This shared structure implicitly assumes a common "thinking process" for all individuals, which may be too restrictive to accurately capture the full range of human variability in preferences, reasoning patterns, and response styles.

Parameter-based Personalization. In this category, the first class of methods encodes user preferences directly into model parameters via full-parameter personalization, where a separate model is trained for each user by fine-tuning (41; 49; 85) or optimizing via reinforcement learning (38; 86) all model weights. While offering maximal flexibility, this approach is often prohibitively expensive in both storage and computation. The second class of methods leverages parameter-efficient fine-tuning (PEFT), which introduces per-user adaptation modules—such as LoRA, while keeping the base model frozen (74; 14; 37). Next, we will introduce OPPU (One PEFT Per User) (75), which is the current SOTA per-user LLM framework and provides a straightforward way to the personalized survey response prediction problem.

OPPU for Personalized Survey Response Prediction. OPPU (One PEFT Per User) (75) builds an independent parameter-efficient fine-tuning (PEFT) model for each user. In practice, this often entails assigning each individual their own LoRA (Low-Rank Adaptation) module (35). Formally, the parameterization can be expressed as

$$W_u = W_0 + s_1 AB + s_2 A_u B_u,$$

where W_0 denotes the pretrained model weights, AB is a shared low-rank adaptation trained on the entire dataset using standard LoRA (first stage, with s_1 to its scaling factor), and $A_u B_u$ represents the user-specific low-rank parameters. In this setup, the shared component AB captures global adaptation across all users, while personalization is introduced in a second stage by training the individual-specific parameters (A_u, B_u) on top of the updated weights $W_0 + AB$ (with s_2 as its scaling factor).

Note that a follow-up study (74) extends OPPU by allowing target users to select and assemble personalized PEFT modules from a shared pool using their historical data. This reduces storage costs by avoiding one fully independent PEFT per user, but it sacrifices accuracy relative to fully personalized models. Other approaches have proposed reinforcement learning to incorporate user-specific preferences via reward models (90; 27). However, even with these advances, a foundational challenge remains: *how to represent each user within the LLM architecture in a way that is parameter-efficient, storage-optimized, structure-aware, and resistant to overfitting given the limited data available for each individual?*

3 APLAUD APPROACH

APlaud (*Adaptive Personalized Low-rank and User-specific Nested Decomposition*) is a novel parameter-efficient fine-tuning method designed to personalize large language models (LLMs) at the per-user level. It extends the standard LoRA framework by enabling scalable and expressive user-specific adaptation while minimizing the per-user parameter footprint. Figure 2 illustrates the APlaud method in comparison with LoRA, which provides only global (non-personalized) adaptation.

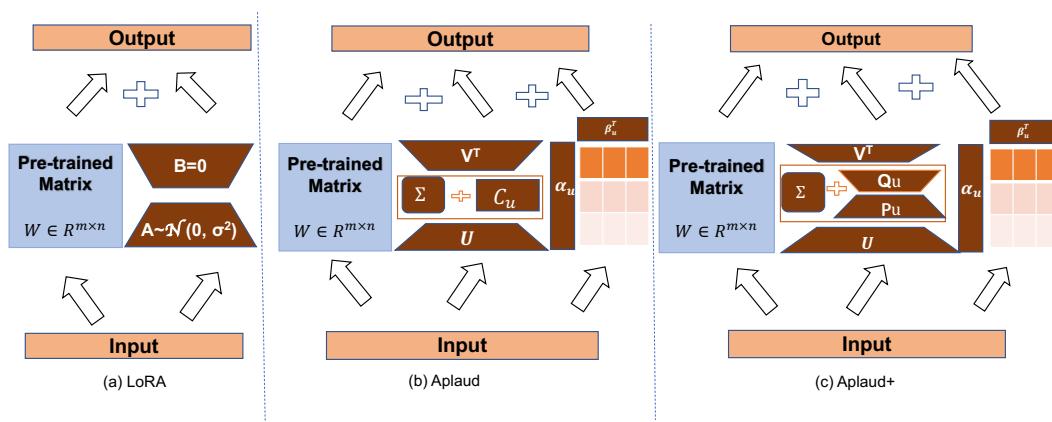


Figure 2: LoRA vs. APlaud Overview

3.1 MODEL DETAILS: COMPACT CORRECTIONS AND RESIDUAL REFINEMENT

To address the limitations of existing personalized LLMs such as OPPU (74), which assigns each user an independent pair of matrices (A_u, B_u), APlaud instead reuses the shared low-rank update

270 AB learned in the first stage of a standard LoRA adaptation. Specifically, we apply singular value
 271 decomposition (SVD) to the global LoRA update:

$$272 \quad \Delta W = AB = U \Sigma V^\top,$$

273 where $U \in \mathbb{R}^{d \times r}$ and $V \in \mathbb{R}^{d \times r}$ are orthogonal matrices capturing dominant update directions, and
 274 $\Sigma \in \mathbb{R}^{r \times r}$ is a diagonal matrix of singular values $(\sigma_1, \dots, \sigma_r)$.

275 Intuitively, each singular vector V_i in V corresponds to a semantic direction against which the input
 276 x is measured. The projection $V_i^\top x$ is scaled by the singular value σ_i and then mapped to the
 277 corresponding output direction U_i , yielding a transformed coordinate $\sigma_i(V_i^\top x)U_i$. Because user-
 278 specific datasets are small and the semantic structure of survey questions is relatively stable across
 279 users, we hypothesize that the shared subspaces U and V capture most of the semantic directions
 280 needed for personalization.

281 Building on this, instead of training new (A_u, B_u) for each user, we inject a compact, user-specific
 282 correction matrix $C_u \in \mathbb{R}^{r \times r}$ into the singular spectrum:

$$283 \quad W_u = W_0 + \Delta W_u = W_0 + s U (\Sigma + C_u) V^\top,$$

284 where W_0 is the base model weight and s is a scaling factor. The shared U and V are fixed across all
 285 users, while C_u provides personalized adjustments. Importantly, C_u is extremely lightweight: for
 286 rank $r = 8$, it requires only 64 parameters, and even for rank $r = 64$, only 4096, on the order of a
 287 single singular vector.

288 Compared with $U \Sigma V^\top$, the modified form $U (\Sigma + C_u) V^\top$ remains in the subspace spanned by U ,
 289 i.e.,

$$290 \quad U (\Sigma + C_u) V^\top x \in \text{Span}(\text{Col}(U)).$$

291 However, C_u enables each user to reweight and mix semantic directions in V , thereby reflecting their
 292 individual preferences and importance weights.

293 To capture fine-grained, idiosyncratic nuances beyond the shared subspace, APlaud augments the
 294 representation with a lightweight personalized residual:

$$300 \quad W_u = W_0 + s U (\Sigma + C_u) V^\top + \alpha_u \beta_u^\top,$$

301 where $\alpha_u, \beta_u \in \mathbb{R}^d$ are learned per-user vectors. This rank-one residual enables APlaud to adjust
 302 beyond the shared low-rank structure, modeling distinctive patterns that cannot be expressed solely
 303 within the subspace spanned by U and V . In principle, the residual can be extended to higher rank, but
 304 we find that a rank-one correction is generally sufficient in our experimental settings (see Appendix
 305 for detailed results).

306 **APlaud+:** **Nested Low-Rank Factorization.** To further compress the user-specific component and
 307 improve regularization, we factorize the correction matrix as

$$310 \quad C_u \approx P_u Q_u,$$

312 yielding the personalized update

$$314 \quad W_u = W_0 + s U (\Sigma + P_u Q_u) V^\top + \alpha_u \beta_u^\top,$$

316 where $P_u, Q_u \in \mathbb{R}^{r \times k}$.

317 APlaud and APlaud+ drastically reduce the per-user parameter footprint. For APlaud, with rank
 318 $r = 64$, the correction matrix C_u requires only $64 \times 64 = 4096$ parameters. For APlaud+, using a
 319 nested inner rank of $k = 16$, the factorization $P_u Q_u$ requires only $2rk = 2048$ parameters per user
 320 for each weight matrix W . The residual vectors $\alpha_u, \beta_u \in \mathbb{R}^d$ introduce an additional $2d$ parameters.
 321 By contrast, OPPU requires $2dr = 524,288$ parameters when $d = 4096$. Thus, APlaud and APlaud+
 322 achieve approximately $128\times$ and $256\times$ parameter reduction, respectively, without residual terms,
 323 and still over $42\times$ and $50\times$ reduction, respectively, when including the residual terms – all while
 324 preserving expressive capacity.

324 3.2 TRAINING PROCEDURE FOR APLAUD
325326 The training procedure for **APlaud** consists of two stages, similar to other personalized LLM
327 frameworks such as OPPU (75).328 **Stage 1: Global Adaptation with LoRA-style Training.**
329330 We begin with a standard parameter-efficient fine-tuning (PEFT) procedure such as LoRA, applied
331 across the full training dataset comprising all users’ responses. Specifically, we learn a global
332 low-rank update:

333
$$W = W_0 + \Delta W = W_0 + AB,$$

334

335 where $W_0 \in \mathbb{R}^{d \times d}$ is the pre-trained weight matrix, and $A \in \mathbb{R}^{d \times r}$, $B \in \mathbb{R}^{r \times d}$ are trainable low-rank
336 matrices. Following LoRA convention, A is initialized from a standard Gaussian distribution and B
337 is initialized to zero, ensuring the pretrained model behavior is preserved at initialization. This stage
338 captures population-level adaptation trends.339 After training, we compute the singular value decomposition (SVD):
340

341
$$AB = U\Sigma V^\top,$$

342

343 where $U, V \in \mathbb{R}^{d \times r}$ and $\Sigma \in \mathbb{R}^{r \times r}$. These components define a shared low-rank subspace, which
344 remains fixed for all users in the personalization stage.345 **Stage 2: Personalized Fine-tuning of C_u and Residual Terms.**
346347 For each user u , we fine-tune a compact correction matrix C_u together with residual vectors α_u, β_u .
348 We initialize $C_u = \mathbf{0}$, set $\alpha_u \sim \mathcal{N}(0, I)$, and $\beta_u = \mathbf{0}$. To stabilize training, we normalize α_u and
349 introduce a scaling factor m , yielding:

350
$$W_u = W_0 + s U(\Sigma + C_u)V^\top + m \frac{\alpha_u}{\|\alpha_u\|} \beta_u^\top.$$

351

352 Here, s controls the global scaling, while m modulates the strength of the residual correction.
353354 3.3 APLAUD+ TRAINING PROCESS
355356 In **APlaud+**, the correction matrix C_u is further factorized into a nested low-rank form $P_u Q_u$.
357 Training proceeds in three substages:358 **Stage 2(a): Training C_u .** We first learn the full correction matrix $C_u \in \mathbb{R}^{r \times r}$ using user u ’s data:
359

360
$$W_u = W_0 + s U(\Sigma + \gamma C_u)V^\top,$$

361

362 where γ is a scaling factor similar to LoRA.363 **Stage 2(b): Low-Rank Factorization of C_u .** Next, we compress C_u via SVD:
364

365
$$C_u = U_C \Sigma_C V_C^\top.$$

366

367 Truncating to a smaller rank $k \ll r$, we initialize:
368

369
$$P_u = U_C \Sigma_C^{1/2}, \quad Q_u = \Sigma_C^{1/2} V_C^\top,$$

370

371 and re-train using user u ’s data:
372

373
$$W_u = W_0 + s U(\Sigma + P_u Q_u)V^\top.$$

374

375 **Stage 2(c): Residual Learning.** Finally, we fine-tune residual vectors α_u, β_u :

376
$$W_u = W_0 + s U(\Sigma + P_u Q_u)V^\top + m \frac{\alpha_u}{\|\alpha_u\|} \beta_u^\top.$$

377

378 **Remarks.** These substages serve distinct purposes: Stage 2(a) help initialize P_u, Q_u from a learned
379 C_u ; Stages 2(b) and 2(c) then train the nested low-rank and residual components. While they could
380 in principle be trained jointly, we find that separating them improves stability. Despite the per-user

378 independence of these stages, the small size of survey datasets (20–40 responses) allows training
 379 each user’s model in just 1–2 minutes on a single A100 GPU.
 380

381 **Personalized Parameter Size Summary.** - For APlaud, each user is represented by a correction
 382 $C_u \in \mathbb{R}^{r \times r}$ plus an optional rank-one residual $\alpha_u \beta_u^\top$, for a total of $r^2 + 2d$ parameters per weight
 383 matrix. - For APlaud+, we use $P_u \in \mathbb{R}^{r \times k}$, $Q_u \in \mathbb{R}^{k \times r}$ with residual vectors, for a total of $2rk + 2d$
 384 parameters per weight matrix.

385 Thus, APlaud and APlaud+ provide fine-grained personalization with dramatically reduced per-user
 386 memory footprint, leveraging shared U, V, Σ for structure while adapting lightweight corrections and
 387 residuals for individual flexibility.

388 4 EXPERIMENT

390 **Datasets** For survey data, we utilize data from two prominent sources of US public opinion: the
 391 annual Pew American Trends Panel (ATP) and the General Society Survey (GSS) (8)(70) for LLM
 392 simulation of survey and opinions(68)(71). We further evaluate our methods on LAMP Movie-
 393 Tagging(66), a publicly available personalized dataset from a non-survey domain to guarantee dataset
 394 diversity. The ATP is an annual longitudinal survey conducted by the Pew Research Center, based on
 395 a nationally representative panel of approximately 10,000 US participants recruited over multiple
 396 years, many of whom respond to repeated survey waves. From this dataset, we selected four specific
 397 waves that cover a diverse range of public opinion topics, including gender and leadership, trust in
 398 science, family and relationships, and economic inequality. For the GSS, we focus on Panel 20, a
 399 longitudinal cohort that provides rich repeated measurement data on topics such as political trust,
 400 social norms, religiosity, and inequality. This panel enables the study of temporal dynamics in US
 401 social attitudes and is particularly well-suited for evaluating user-specific LLM adaptation over time.
 402

403 To explore user-level personalization and simulate LLM “ownership”, we focus on the most engaged
 404 participants. Specifically, we retain respondents with at least 10 valid answers and remove “Refused”
 405 responses. Since each wave contains over 100 ASK-ALL items, the filtered dataset provides roughly
 406 50 answered questions per person on average—sufficient for robust personalization and learning stable
 407 user embeddings (More details in Appendix A.2). After this filtering, we selected 200 users with
 408 the highest response rates and validated their responses across approximately 130 survey questions.
 409 To align the model output with the preferences and behavioral tendencies of the individual user, we
 410 first identify a subset comprising 30% of questions that capture key aspects of user personality and
 411 behavioral traits. This subset is used to construct a user-specific profile through LLM-based prompting.
 412 Then we split the rest of the question into three sections, 80% for training, 10% for validation, 10%
 413 for testing. This setup enables evaluation of each model’s ability to simulate personalized responses
 with minimal supervision. For LAMP Movie Tagging dataset, we follow the work of OPPU to choose
 the top 100 users and also split the data with 8:1:1 ratio.
 414

415 **Baseline** We compare our proposed method, APlaud, with several set of baseline approaches,
 416 including: (1) Non-personalized LoRA and its variatns: LoRA(34), PiSSA(55), MiLoRA(81),
 417 AdaLoRA(89) and QLoRA(17); (2) GPT-5 with profile only as best zero shot baseline; (3) Retrieval-
 418 based approach, where we also use GPT-5 and augments the prompt with the five most relevant
 419 historical QA pairs, inserted as few-shot exemplars; (4) Personalized per user LLM: such as OPPU(75).
 420 We employ both Mistral-7B-v0.2-Instruct (39) and LLaMA-2-7B (76) as backbone models to verify
 the robustness of our approach under different base architectures.

421 **Evaluation Metrics** We evaluate model performance using three complementary metrics. Accuracy
 422 measures the proportion of correctly predicted survey responses compared to ground truth, providing
 423 a direct indicator of prediction reliability. F1 Score (macro) captures the balance between precision
 424 and recall, particularly useful when evaluating multi-class or imbalanced response distributions.
 425 Wasserstein Distance (WD)(see corresponding results in appendix) quantifies the distributional
 426 difference between the predicted and actual answer distributions, offering a fine-grained assessment
 427 of how closely the model captures user-specific response patterns.

428 **Experimental Settings** Due to space limitations, we leave more experimental details to the ap-
 429 pendix. Our Code is available at [https://anonymous.4open.science/r/ICLR2026_](https://anonymous.4open.science/r/ICLR2026_Aplaund-4EEF/README.md)
 430 Aplaund-4EEF/README.md

431 **Experimental Performance** We first report our main results in Table 1 and Table 2. We also report
 the Relative of Improvement Results using one of our methods(APlaud+) in Table 13 and Table 14 in

432
 433 Table 1: Performance comparison across different datasets with llama2-7B backbone. Bold numbers
 434 indicate the best results within each dataset. Dataset names: G&L = ATP Gender & Leadership, TS =
 435 ATP Trust in Science, F&R = ATP Family and Relationships, EI = ATP Economic Inequality, GSS =
 436 General Social Survey. LAMP MV = LAMP Movie Tagging

437 Method	G&L		TS		F&R		EI		GSS		LAMP MV	
	438 ACC	Macro-F1	ACC	Macro-F1	ACC	Macro-F1	ACC	Macro-F1	ACC	Macro-F1	ACC	Macro-F1
Non-Personalized												
439 LoRA	0.6393	0.6140	0.7052	0.5343	0.5772	0.3348	0.4617	0.3308	0.3785	0.2479	0.6214	0.5076
440 PiSSA	0.6296	0.6142	0.7386	0.5620	0.5473	0.3427	0.4783	0.3722	0.3559	0.2333	0.6201	0.5280
441 MiLoRA	0.6714	0.6634	0.7406	0.5768	0.5551	0.3503	0.4618	0.3522	0.3836	0.2681	0.6308	0.5341
442 AdaLoRA	0.6700	0.6675	0.7779	0.5965	0.5564	0.3602	0.4716	0.3689	0.3907	0.2834	0.6146	0.5058
443 QLoRA	0.6618	0.6475	0.7467	0.5316	0.5408	0.3411	0.4683	0.3296	0.3738	0.2531	0.6302	0.5253
Personalized												
444 GPT5-profile	0.5394	0.5340	0.6170	0.3448	0.4954	0.2879	0.4566	0.3491	0.4689	0.2570	0.5478	0.4507
445 GPT5-RAG	0.6377	0.6306	0.7001	0.6169	0.6174	0.3542	0.5213	0.4117	0.5106	0.3520	-	-
446 OPPU	0.6651	0.6559	0.7548	0.6275	0.6096	0.3612	0.5008	0.4091	0.3701	0.2588	0.6336	0.5147
447 Cu	0.6651	0.6453	0.7497	0.6423	0.5994	0.3475	0.4975	0.3611	0.3870	0.2590	0.6414	0.5358
448 Aplaud	0.6731	0.6581	0.7761	0.6637	0.6151	0.3669	0.5042	0.3945	0.3912	0.2715	0.6442	0.5366
449 Aplaud+	0.6828	0.6642	0.7974	0.6824	0.6381	0.3704	0.5183	0.4180	0.3969	0.2719	0.6593	0.5529

447
 448 Table 2: Performance comparison across different datasets with Mistral-7B backbone. Bold numbers
 449 indicate the best results within each dataset. Dataset names: G&L = ATP Gender & Leadership, TS =
 450 ATP Trust in Science, F&R = ATP Family and Relationships, EI = ATP Economic Inequality, GSS =
 451 General Social Survey. LAMP MV = LAMP Movie Tagging

452 Method	G&L		TS		F&R		EI		GSS		LAMP MV	
	453 ACC	Macro-F1	ACC	Macro-F1	ACC	Macro-F1	ACC	Macro-F1	ACC	Macro-F1	ACC	Macro-F1
Non-Personalized												
454 Lora	0.6554	0.6342	0.7072	0.4186	0.5681	0.2372	0.4708	0.3356	0.4336	0.2624	0.6669	0.5035
455 PiSSA	0.6521	0.6466	0.7375	0.5169	0.5408	0.2387	0.4525	0.3119	0.4110	0.2832	0.6801	0.5114
456 MiLoRA	0.6586	0.6499	0.7446	0.5039	0.5539	0.2572	0.4633	0.3297	0.4532	0.3146	0.6823	0.5014
457 AdaLoRA	0.6425	0.6318	0.7071	0.4768	0.6005	0.3653	0.4708	0.3114	0.5649	0.3573	0.6635	0.5349
458 QLoRA	0.6505	0.6368	0.7183	0.5127	0.5422	0.2486	0.4700	0.3307	0.4435	0.2903	0.7047	0.5517
Personalized												
459 GPT5-profile	0.5394	0.5340	0.6170	0.3448	0.4954	0.2879	0.4566	0.3491	0.4689	0.2570	0.5478	0.4507
460 GPT5-RAG	0.6377	0.6306	0.7001	0.6169	0.6174	0.3542	0.5213	0.4117	0.5106	0.3520	-	-
461 OPPU	0.6731	0.6560	0.7852	0.6962	0.6368	0.3654	0.4925	0.3936	0.4322	0.2906	0.6917	0.4401
462 Cu	0.6828	0.6691	0.7781	0.6338	0.5746	0.2796	0.5008	0.3868	0.4548	0.2917	0.6982	0.5014
463 Aplaud	0.6828	0.6707	0.7852	0.7127	0.6278	0.3842	0.5042	0.3921	0.4506	0.3385	0.7159	0.5116
464 Aplaud+	0.6876	0.6742	0.7862	0.7204	0.6537	0.4369	0.4992	0.3859	0.4605	0.3459	0.7081	0.5204

463 Appendix C.9. Aplaud families demonstrates markedly superior personalization capability across
 464 different datasets. Typically, on the Llama2-7B backbone, Aplaud+ delivers consistent gains of
 465 6–10% in ACC and 11–15% in Macro-F1 over state-of-the-art non-personalized PEFT methods, and
 466 outperforms even SOTA general-purpose model (GPT5-profile) by 17.2% ACC and 33.2% Macro-F1
 467 on average. Compared with the strong personalized adapter-based baseline OPPU, Aplaud also
 468 outperforms with a significant margin, improving 4.6% in ACC and 4.5% in Macro-F1. On the
 469 Mistral-7B backbone, the improvements is also pronounced, reaching 8–10% ACC and 24–36%
 470 Macro-F1 over non-personalized methods; surpassing retrieval-based approach (GPT5-RAG) 2.4%
 471 ACC and 7.8% Macro-F1 and outperform OPPU by 2.5% ACC and 10.2% Macro-F1.

472 Firstly, personalized approaches on average consistently surpass their non-personalized counterparts
 473 in terms of both accuracy (ACC) and macro-F1, highlighting the benefits of modeling user-specific
 474 adaptation. While adaptive non-personalized methods such as AdaLoRA and MiLoRA demonstrate
 475 relatively competitive performance, they remain inferior to personalized strategies on most datasets.

476 When comparing with stronger zero-shot general-purpose models and retrieval-based approaches
 477 (GPT-5 profile / GPT-5 RAG), our methods (Aplaud and Aplaud+) also demonstrate clear superiority.
 478 For example, in F&R data and with Mistral-7B as backbone, Aplaud+ achieves as large as 51.8% on
 479 Macro-F1, compared with zero-shot GPT and also 23.3% compared with GPT-RAG. This disparity
 480 reflects a fundamental limitation of retrieval-based personalization: Although free of training, the
 481 quality of each generated response relies on a narrow subsample of history records, which inevitably
 482 cannot capture a respondent's full behavioral signature, thus lacking personalization expressiveness.
 483 Especially in survey prediction tasks, a few retrieved samples rarely reflect the full spectrum of a user's
 484 attitudes and easily omit key signals. In contrast, our lightweight adapter architecture accumulates
 485 user-specific signals across the full interaction history and encodes them as persistent parametric
 486 memory, forming a holistic and stable representation of user preferences. This enables long-term

486
 487 Table 3: Parameter count comparison per user per layer. We assume using Mistral-7B as foundation
 488 model and all LoRA-based PEFT with rank 64. For the SVD step, we retain the top 16 dimensions
 489 and bias term with rank 1.

	Per-user per layer private parameter Calculation	#params	Percentage
OPPU	$4096 \times 64 \times 2 \times 2 + (4096 \times 64 + 1024 \times 64) \times 2$ $+ (4096 \times 64 + 14336 \times 64) \times 3$	5,242,880	100%
SVD	$(64 \times 16 \times 2) \times 7$	14,336	0.27%
Aplaud	$(64 \times 64) \times 7 + (4096 \times 1 \times 2 \times 2 + (4096 \times 1 + 1024 \times 1) \times 2$ $+ (4096 \times 1 + 14336 \times 1) \times 3$	110,599	2.11%
Aplaud+	$(64 \times 16 \times 2) \times 7 + 4096 \times 1 \times 2 \times 2$ $+ (4096 \times 1 + 14336 \times 1) \times 3$	96,263	1.84%

490
 491
 492
 493
 494
 495 personalization rather than episodic conditioning, explaining why Aplaud/Aplaud+ substantially
 496 outperform retrieval-based baselines despite using far smaller models.

497
 498 Compared with the representative personalized benchmark OPPU, our proposed Aplaud framework
 499 achieves consistent improvements across most datasets, yielding more balanced gains in both ACC and
 500 macro-F1. Notably, the enhanced variant Aplaud+ establishes new state-of-the-art performance on the
 501 majority of datasets, with average ACC improvements 4.6%, 2.5% and Macro-F1 improvements 4.5%,
 502 and 10.2% on Llama2-7B and Mistral-7B, respectively. These results underscore that Aplaud not
 503 only advances beyond non-personalized tuning but also surpasses existing personalized approaches
 504 such as OPPU, thereby demonstrating the effectiveness of incorporating user-specific signals to
 505 enhance robustness and generalization across diverse domains.

506
 507 Taken together, these results demonstrate the effectiveness of our proposed method: while existing
 508 non-personalized PEFT approaches capture generalizable knowledge, incorporating user-level person-
 509 alization (as in Aplaud and Aplaud+) leads to more robust and balanced performance across diverse
 510 datasets.

511
 512 **Model Parameter Efficiency.** Table 3 compares the per-user parameter count per layer across
 513 methods. A standard OPPU design requires over 5M parameters per user per layer, since it places
 514 independent adapters on all *seven weight matrices* in each transformer block: four in the attention
 515 module (W_q, W_k, W_v, W_o) and three in the feed-forward module ($W_{\text{up}}, W_{\text{gate}}, W_{\text{down}}$). This heavy
 516 footprint makes OPPU impractical to scale across large user populations.

517
 518 By contrast, our methods dramatically reduce this overhead. The pure SVD ($C_u \approx P_u Q_u$) variant
 519 compresses the personalization into a compact shared subspace, achieving a 99.7% reduction in
 520 parameter size. APlaud introduces lightweight user-specific corrections and a rank-one residual,
 521 requiring only about 2% of the OPPU footprint, while Aplaud+ further factorizes the corrections to
 522 reduce usage to under 2%. These results highlight the strong parameter efficiency of our framework,
 523 which balances compactness with sufficient expressive capacity to yield substantial performance
 524 improvements.

525 Finally, we note that the ablation study and additional experiments can be found in the Appendix.

5 CONCLUSION

526 In this work, we introduced **APlaud**, a scalable and lightweight framework for personalizing large
 527 language models (LLMs) at the individual user level in the context of survey response prediction.
 528 APlaud leverages a shared low-rank subspace obtained through global LoRA fine-tuning, while
 529 enabling user-specific adaptation via a nested low-rank correction and an optional rank-one residual.
 530 This design achieves strong personalization with minimal per-user parameter overhead.

531 Our approach addresses key challenges in user modeling—such as data sparsity and scalability –
 532 while consistently outperforming existing LoRA-based personalized methods in both accuracy and
 533 parameter efficiency. These results highlight the promise of APlaud for simulating individualized
 534 behavior in large-scale settings, offering a principled bridge between global adaptation and fine-
 535 grained user representation.

536 In future work, we plan to extend APlaud to a broader range of personalization tasks, including
 537 recommendation systems, writing assistants, and other applications where lightweight and expressive
 538 user modeling is critical. We also plan to integrate it with the quantization approach to further reduce
 539 parameter space.

540 REFERENCES
541

542 [1] Gati Aher, Rosa I. Arriaga, and Adam Tauman Kalai. Using large language models to simulate
543 multiple humans and replicate human subject studies. In *Proceedings of the 40th International*
544 *Conference on Machine Learning*, volume 202 of *ICML’23*, pages 337–371, Honolulu, Hawaii,
545 USA, July 2023. JMLR.org.

546 [2] American National Election Studies. American national election studies (anes). <https://electionstudies.org>, 2020. Accessed: 2025-05-15.

547 [3] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine Bias. *ProPublica*,
548 2016.

549 [4] Jacy Reese Anthis, Ryan Liu, Sean M. Richardson, Austin C. Kozlowski, Bernard Koch, James
550 Evans, Erik Brynjolfsson, and Michael Bernstein. Llm social simulations are a promising
551 research method, 2025.

552 [5] Lisa P Argyle, Ethan C Busby, Nancy Fulda, Joshua R Gubler, Christopher Rytting, and David
553 Wingate. Out of one, many: Using language models to simulate human samples. *Political*
554 *Analysis*, 31(3):337–351, 2023.

555 [6] Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
556 effective and efficient tuning framework to align large language model with recommendation. In
557 *Proceedings of the 17th ACM Conference on Recommender Systems*, pages 1007–1014, 2023.

558 [7] James Bisbee, Joshua D. Clinton, Cassy Dorff, Brenton Kenkel, and Jennifer M. Larson.
559 Synthetic Replacements for Human Survey Data? The Perils of Large Language Models.
560 *Political Analysis*, 32(4):401–416, October 2024.

561 [8] Pew Research Center. American trends panel datasets, 2025. Accessed: 2025-05-15.

562 [9] Daiwei Chen, Yi Chen, Aniket Rege, Zhi Wang, and Ramya Korlakai Vinayak. PAL: Sample-
563 efficient personalized reward modeling for pluralistic alignment. In *The Thirteenth International*
564 *Conference on Learning Representations*, 2025.

565 [10] Gilbert A. Churchill and Dawn Iacobucci. *Marketing Research: Methodological Foundations*.
566 Cengage Learning, Mason, OH, 10th edition, 2010.

567 [11] J. D. Clinton et al. American association of public opinion research task force on pre-election
568 polling: An evaluation of the 2020 general election polls. Technical report, AAPOR, 2021.

569 [12] Zeyu Cui, Jianxin Ma, Chang Zhou, Jingren Zhou, and Hongxia Yang. M6-rec: Gener-
570 ative pretrained language models are open-ended recommender systems. *arXiv preprint*
571 *arXiv:2205.08084*, 2022.

572 [13] Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu, Zihua Si, Chen Xu, Zhongxiang Sun, Xiao
573 Zhang, and Jun Xu. Uncovering chatgpt’s capabilities in recommender systems. In *Proceedings*
574 *of the 17th ACM Conference on Recommender Systems*, pages 1126–1132, 2023.

575 [14] Yuhao Dan, Jie Zhou, Qin Chen, Junfeng Tian, and Liang He. P-tailor: Customizing per-
576 sonality traits for language models via mixture of specialized lora experts. *arXiv preprint*
577 *arXiv:2406.12548*, 2024.

578 [15] Delve.ai Team. Delve.ai. <https://delve.ai>, 2023. AI-Powered Customer Intelligence
579 Platform. Available at: <https://delve.ai>.

580 [16] Dorottya Demszky, Diyi Yang, David S Yeager, Christopher J Bryan, Margaret Clapper,
581 Susannah Chandhok, Johannes C Eichstaedt, Cameron Hecht, Jeremy Jamieson, Meghann
582 Johnson, et al. Using large language models in psychology. *Nature Reviews Psychology*,
583 2(11):688–701, 2023.

584 [17] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLORA: efficient
585 finetuning of quantized LLMs. In *Proceedings of the 37th International Conference on Neu-*
586 *ral Information Processing Systems*, NIPS ’23, pages 10088–10115, Red Hook, NY, USA,
587 December 2023. Curran Associates Inc.

594 [18] Don A. Dillman, Jolene D. Smyth, and Leah Melani Christian. *Internet, Phone, Mail, and*
 595 *Mixed-Mode Surveys: The Tailored Design Method*. Wiley, Hoboken, NJ, 4th edition, 2014.
 596

597 [19] Yi Dong, Zhilin Wang, Makesh Sreedhar, Xianchao Wu, and Oleksii Kuchaiev. SteerLM:
 598 Attribute conditioned SFT as an (user-steerable) alternative to RLHF. In Houda Bouamor,
 599 Juan Pino, and Kalika Bali, editors, *Findings of the Association for Computational Linguistics:*
 600 *EMNLP 2023*, pages 11275–11288, Singapore, December 2023. Association for Computational
 601 Linguistics.

602 [20] Gallup Inc. Gallup world poll. <https://www.gallup.com/analytics>, 2022. Ac-
 603 cessed: 2025-05-15.

604 [21] Jingtong Gao, Bo Chen, Xiangyu Zhao, Weiwen Liu, Xiangyang Li, Yichao Wang, Wanyu
 605 Wang, Hufeng Guo, and Ruiming Tang. Llm4rerank: Llm-based auto-reranking framework for
 606 recommendations. In *Proceedings of the ACM on Web Conference 2025*, pages 228–239, 2025.

607 [22] Yuan Gao, Dokyun Lee, Gordon Burtch, and Sina Fazelpour. Take Caution in Using LLMs as
 608 Human Surrogates: Scylla Ex Machina, November 2024. arXiv:2410.19599 [econ].

609 [23] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation
 610 as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5).
 611 In *Proceedings of the 16th ACM conference on recommender systems*, pages 299–315, 2022.

612 [24] Salvatore Giorgi, Tingting Liu, Ankit Aich, Kelsey Isman, Garrick Sherman, Zachary Fried,
 613 João Sedoc, Lyle H. Ungar, and Brenda Curtis. Modeling human subjectivity in llms using
 614 explicit and implicit human factors in personas, 2024.

615 [25] Zhuocheng Gong, Jian Guan, Wei Wu, Huishuai Zhang, Dongyan Zhao, and Rui Yan. Latent
 616 preference coding: Aligning large language models via discrete latent codes. 2024.

617 [26] D. A. Graham. The polling crisis is a catastrophe for american democracy, 2023. The Atlantic.

618 [27] Jian Guan, Junfei Wu, Jia-Nan Li, Chuanqi Cheng, and Wei Wu. A survey on personalized
 619 alignment – the missing piece for large language models in real-world applications, 2025.

620 [28] Perttu Hämäläinen, Mikke Tavast, and Anton Kunnari. Evaluating large language models in
 621 generating synthetic hci research data: a case study. In *Proceedings of the 2023 CHI Conference*
 622 *on Human Factors in Computing Systems*, pages 1–19, 2023.

623 [29] Yuzhi Hao and Danyang Xie. A multi-llm-agent-based framework for economic and public
 624 policy analysis. *arXiv preprint arXiv:2502.16879*, 2025.

625 [30] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
 626 Simplifying and powering graph convolution network for recommendation. In *Proceedings of*
 627 *the 43rd International ACM SIGIR conference on research and development in Information*
 628 *Retrieval*, pages 639–648, 2020.

629 [31] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
 630 collaborative filtering. In *Proceedings of the 26th international conference on world wide web*,
 631 pages 173–182, 2017.

632 [32] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. Fast matrix factorization
 633 for online recommendation with implicit feedback. In *Proceedings of the 39th International*
 634 *ACM SIGIR conference on Research and Development in Information Retrieval*, pages 549–558,
 635 2016.

636 [33] John Horton. Large Language Models as Simulated Economic Agents: What Can We Learn
 637 from Homo Silicus? Technical Report w31122, National Bureau of Economic Research,
 638 Cambridge, MA, April 2023.

639 [34] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
 640 Lu Wang, and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models, October
 641 2021.

648 [35] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
 649 Chen, et al. Lora: Low-rank adaptation of large language models. In *International Conference*
 650 *on Learning Representations*, 2021.

651 [36] Jinpeng Hu, Tengteng Dong, Hui Ma, Peng Zou, Xiao Sun, and Meng Wang. Psycollm: En-
 652 hancing llm for psychological understanding and evaluation. *arXiv preprint arXiv:2407.05721*,
 653 2024.

654 [37] Qiushi Huang, Xubo Liu, Tom Ko, Bo Wu, Wenwu Wang, Yu Zhang, and Lilian Tang. Selective
 655 prompting tuning for personalized conversations with llms. *arXiv preprint arXiv:2406.18187*,
 656 2024.

657 [38] Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer,
 658 Hannaneh Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups: Person-
 659 alized large language model alignment via post-hoc parameter merging. *arXiv:2310.11564*,
 660 2023.

661 [39] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
 662 Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
 663 Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
 664 Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

665 [40] Julie Jiang and Emilio Ferrara. Social-llm: Modeling user behavior at scale using language
 666 models and social network data. *arXiv preprint arXiv:2401.00893*, 2023.

667 [41] Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy, Lichan Hong,
 668 Ed Chi, and Derek Zhiyuan Cheng. Do llms understand user preferences? evaluating llms on
 669 user rating prediction. *arXiv preprint arXiv:2305.06474*, 2023.

670 [42] Shivani Kapania, William Agnew, Motahhare Eslami, Hoda Heidari, and Sarah Fox. 'simu-
 671 lacrum of stories': Examining large language models as qualitative research participants. *arXiv*
 672 *preprint arXiv:2409.19430*, 2024.

673 [43] S. Keeter, N. Hatley, C. Kennedy, and A. Lau. What low response rates mean for telephone
 674 surveys. Technical report, Pew Research Center, 2017.

675 [44] C. Kennedy et al. An evaluation of the 2016 election polls in the united states. *Public Opinion*
 676 *Quarterly*, 82(1):1–33, 2018.

677 [45] Junsol Kim and Byungkyu Lee. AI-Augmented Surveys: Leveraging Large Language Mod-
 678 els and Surveys for Opinion Prediction, April 2024. arXiv: 2305.09620 [cs] Number:
 679 arXiv:2305.09620.

680 [46] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
 681 network representations revisited. In *International conference on machine learning*, pages
 682 3519–3529. PMIR, 2019.

683 [47] Sanguk Lee, Tai-Quan Peng, Matthew H. Goldberg, Seth A. Rosenthal, John E. Kotcher,
 684 Edward W. Maibach, and Anthony Leiserowitz. Can large language models estimate public
 685 opinion about global warming? an empirical assessment of algorithmic fidelity and bias. *PLOS*
 686 *Climate*, 3(8):e0000429, 2024.

687 [48] Seongyun Lee, Sue Hyun Park, Seungone Kim, and Minjoon Seo. Aligning to thousands of
 688 preferences via system message generalization. *arXiv:2405.17977*, 2024.

689 [49] Cheng Li, Mingyang Zhang, Qiaozhu Mei, Weize Kong, and Michael Bendersky. Learning to
 690 rewrite prompts for personalized text generation. In *Proc. of Web Conference*, 2024.

691 [50] Jia-Nan Li, Jian Guan, Songhao Wu, Wei Wu, and Rui Yan. From 1,000,000 users to every user:
 692 Scaling up personalized preference for user-level alignment, 2025.

693 [51] Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Julian McAuley.
 694 Text is all you need: Learning language representations for sequential recommendation. In
 695 *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*,
 696 pages 1258–1267, 2023.

[52] Jinming Li, Wentao Zhang, Tian Wang, Guanglei Xiong, Alan Lu, and Gerard Medioni. Gpt4rec: A generative framework for personalized recommendation and user interests interpretation. *arXiv preprint arXiv:2304.03879*, 2023.

[53] Ryan Louie, Ananjan Nandi, William Fang, Cheng Chang, Emma Brunskill, and Diyi Yang. Roleplay-doh: Enabling domain-experts to create llm-simulated patients via eliciting and adhering to principles. *arXiv preprint arXiv:2407.00870*, 2024.

[54] Naresh K. Malhotra. *Marketing Research: An Applied Orientation*. Pearson, Harlow, England, 7th edition, 2019.

[55] Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA: Principal singular values and singular vectors adaptation of large language models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

[56] Terrence Neumann, Maria De-Arteaga, and Sina Fazelpour. Should you use llms to simulate opinions? quality checks for early-stage deliberation, 2025.

[57] Lin Ning, Luyang Liu, Jiaxing Wu, Neo Wu, Devora Berlowitz, Sushant Prakash, Bradley Green, Shawn O’Banion, and Jun Xie. User-llm: Efficient llm contextualization with user embeddings. *arXiv:2402.13598*, 2024.

[58] OpinioAI Team. Opinioai. <https://www.opinioai.com>, 2023. Available at: <https://www.opinioai.com>.

[59] Bo Peng, Xinyi Ling, Ziru Chen, Huan Sun, and Xia Ning. ecellm: Generalizing large language models for e-commerce from large-scale, high-quality instruction data. *arXiv preprint arXiv:2402.08831*, 2024.

[60] PersonaLive.ai Team. Personalive.ai. <https://www.personalive.ai>, 2024. AI-driven psychometric and professional profiling and conversation platform. Available at: <https://www.personalive.ai>.

[61] Pew Research Center. Pew research center, 2024. Accessed: February 10, 2025.

[62] Sriyash Poddar, Yanming Wan, Hamish Ivison, Abhishek Gupta, and Natasha Jaques. Personalizing reinforcement learning from human feedback with variational preference learning. *arXiv:2408.10075*, 2024.

[63] Mirjana Prpa, Giovanni Maria Troiano, Matthew Wood, and Yvonne Coady. Challenges and opportunities of llm-based synthetic personae and data in hci. In *Proceedings of the CHI Conference on Human Factors in Computing Systems*. Association for Computing Machinery, 2024.

[64] Qualtrics. 2025 global market research trends report. Technical report, Qualtrics, 2025. Retrieved from <https://www.qualtrics.com/ebooks-guides/market-research-trends/>.

[65] Akshay Ravi, Aaron Neinstein, and Sara G Murray. Large language models and medical education: Preparing for a rapid transformation in how trainees will learn to be doctors. *ATS scholar*, 4(3):282–292, 2023.

[66] Alireza Salemi, Sheshera Mysore, Michael Bendersky, and Hamed Zamani. Lamp: When large language models meet personalization. *arXiv:2304.11406*, 2023.

[67] Nathan E. Sanders, Alex Ulinich, and Bruce Schneier. Demonstrations of the potential of ai-based political issue polling. *Harvard Data Science Review*, 5, 2023.

[68] Shibani Santurkar, Esin Durmus, Faisal Ladakh, Cinoo Lee, Percy Liang, and Tatsunori Hashimoto. Whose opinions do language models reflect? In *International Conference on Machine Learning*, pages 29971–30004. PMLR, 2023.

[69] Idan Shenfeld, Felix Faltings, Pulkit Agrawal, and Aldo Pacchiano. Language model personalization via reward factorization. *arXiv preprint arXiv:2503.06358*, 2025.

756 [70] Tom W. Smith, Michael Davern, Jeremy Freese, and Stephen L. Morgan. General social survey,
 757 1972–2021 [cumulative file]. NORC at the University of Chicago, 2022.

758 [71] Joseph Suh, Erfan Jahanparast, Suhong Moon, Minwoo Kang, and Serina Chang. Language
 759 model fine-tuning on scaled survey data for predicting distributions of public opinions, 2025.

760 [72] Seungjong Sun, Eungu Lee, Dongyan Nan, Xiangying Zhao, Wonbyung Lee, Bernard J. Jansen,
 761 and Jang Hyun Kim. Random silicon sampling: Simulating human sub-population opinion
 762 using a large language model based on group-level demographic information. *arXiv preprint*
 763 *arXiv:2402.18144*, 2024.

764 [73] SyntheticUser Team. Synthetic user. <https://syntheticuser.com>, 2023. Available at:
 765 <https://syntheticuser.com>.

766 [74] Zhaoxuan Tan, Zheyuan Liu, and Meng Jiang. Personalized pieces: Efficient personalized large
 767 language models through collaborative efforts. *arXiv:2406.10471*, 2024.

768 [75] Zhaoxuan Tan, Qingkai Zeng, Yijun Tian, Zheyuan Liu, Bing Yin, and Meng Jiang. Democratizing
 769 large language models via personalized parameter-efficient fine-tuning. *arXiv preprint*
 770 *arXiv:2402.04401*, 2024.

771 [76] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
 772 thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
 773 and efficient foundation language models. *arXiv:2302.13971*, 2023.

774 [77] Mahsa Valizadeh, Xiangjue Dong, Rui Tuo, and James Caverlee. Language models as semantic
 775 augmenters for sequential recommenders. *arXiv preprint arXiv:2510.18046*, 2025.

776 [78] D. Waldner and E. Lust. Unwelcome change: Coming to terms with democratic backsliding.
 777 *Annual Review of Political Science*, 21:93–113, 2018.

778 [79] Angelina Wang, Jamie Morgenstern, and John P. Dickerson. Large language models that replace
 779 human participants can harmfully misportray and flatten identity groups, 2025.

780 [80] Fan Wang, Juyong Jiang, Chansung Park, Sunghun Kim, and Jing Tang. Kasa: Knowledge-
 781 aware singular-value adaptation of large language models, 2024.

782 [81] Hanqing Wang, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora: Harnessing
 783 minor singular components for parameter-efficient llm finetuning, 2024.

784 [82] Hongru Wang, Wenyu Huang, Yang Deng, Rui Wang, Zehong Wang, Yufei Wang, Fei Mi,
 785 Jeff Z Pan, and Kam-Fai Wong. Unims-rag: A unified multi-source retrieval-augmented
 786 generation for personalized dialogue systems. *arXiv preprint arXiv:2401.13256*, 2024.

787 [83] Pengda Wang, Huiqi Zou, Zihan Yan, Feng Guo, Tianjun Sun, Ziang Xiao, and Bo Zhang. Not
 788 Yet: Large Language Models Cannot Replace Human Respondents for Psychometric Research,
 789 September 2024.

790 [84] Xiaolei Wang, Xinyu Tang, Wayne Xin Zhao, Jingyuan Wang, and Ji-Rong Wen. Rethinking
 791 the evaluation for conversational recommendation in the era of large language models. *arXiv*
 792 *preprint arXiv:2305.13112*, 2023.

793 [85] Zekun Moore Wang, Zhongyuan Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan
 794 Wu, Hongcheng Guo, Ruitong Gan, Zehao Ni, Jian Yang, et al. Rolellm: Benchmarking,
 795 eliciting, and enhancing role-playing abilities of large language models. *arXiv preprint*
 796 *arXiv:2310.00746*, 2023.

797 [86] Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A
 798 Smith, Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better
 799 rewards for language model training. *Advances in Neural Information Processing Systems*, 36,
 800 2024.

801 [87] Xinchao Xu, Zhibin Gou, Wenquan Wu, Zheng-Yu Niu, Hua Wu, Haifeng Wang, and Shihang
 802 Wang. Long time no see! open-domain conversation with long-term persona memory. In
 803 *Findings of the Association for Computational Linguistics: ACL 2022*, pages 2639–2650, 2022.

810 [88] Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han Zhong, Dong Yu, and Jianshu Chen.
811 Rewards-in-context: Multi-objective alignment of foundation models with dynamic preference
812 adjustment. *arXiv preprint arXiv:2402.10207*, 2024.

813
814 [89] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
815 Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
816 efficient fine-tuning, 2023.

817 [90] Zhehao Zhang, Ryan A Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck
818 Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, et al. Personalization of large language
819 models: A survey. *arXiv:2411.00027*, 2024.

820 [91] Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu Gong, Jinchang Zhou, Zhiyuan Liu, Lei Hou,
821 and Juanzi Li. Simulating classroom education with llm-empowered agents. *arXiv preprint
arXiv:2406.19226*, 2024.

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864
 865 Table 4: Dataset statistics across six benchmarks. “# Qs” denotes the number of questions, and “Avg
 866 Q length” is measured in tokens.

	G&L	TS	F&R	EI	GSS	LAMP	Movie Tagging
# Users	top 200	top 100					
# Qs	6104	7582	9036	9596	6161	8860	
Avg Q length	1343.2	1678.1	1384.5	1597.7	1195.6	572.3	

873 A EXPERIMENT SETTING

874 A.1 ENVIRONMENTAL SETTING

875 All experiments were conducted on a single cluster node equipped with a Dell PowerEdge C6620
 876 and NVIDIA H100 GPUs with 94 GB of memory.

881 A.2 MORE DETAILS ON DATA STATISTICS

882 In this sections, we first provide all six data statistics we used in this paper in Table 4

883 We also disclose more details on the missing/incompleteness data statistics and analysis: Across
 884 the four ATP waves used in our study, the total number of survey items varies by design (W36:
 885 139 questions, W42: 129, W50: 127, W54: 115). Consistent with ATP’s rotating-module structure,
 886 raw item-level missingness ranges from 28% to 62%, reflecting that different sub-samples receive
 887 different topical modules rather than indicating data quality issues. After applying our quality-control
 888 filter (retaining respondents with at least 10 valid answers), missingness decreases in every wave (e.g.,
 889 W36: 62.1% → 56.1%; W42: 41.4% → 39.5%; W50: 54.8% → 34.4%; W54: 28.4% → 24.4%).

892 A.3 TRAINING DETAILS

893 For a fair comparison, all experiments were trained for 5 epochs. In the Table1, we set the LoRA rank
 894 and dimension of C_u to be 64. Subsequently, we selected the top 16 SVD dimension as the starting
 895 state for the second training phase, and set the residual module A_u and B_u to rank 1, respectively.
 896 Since the initialization of m significantly influence the final result, we tuned its initialization from
 897 $\{50.0, 30.0, 20.0, 10.0, 5.0, 2.0, 1.0, 0.1, 0.01, 0.01\}$ and reported the best result. These choices are
 898 based on our ablation study, where we explored the LoRA rank from $\{8, 16, 32, 64, 128\}$, SVD dimen-
 899 sion from $\{4, 8, 16, 32\}$, training epochs from $\{5, 7, 9, 10\}$ and residual term rank from $\{1, 2, 4, 8\}$.
 900 We found that reducing the rank of the pretrained LoRA may boosted performance, while changes in
 901 other hyperparameters had less impact.

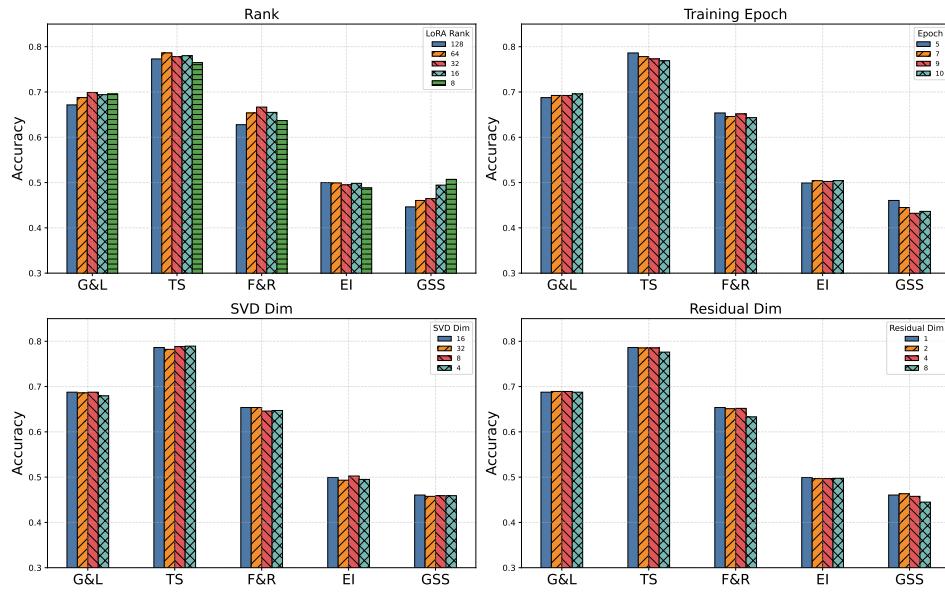
904 B ABLATION STUDY

905 In this section, we systematically explore the effect of 4 hyperparameters: LoRA Rank, SVD dim (i.e.,
 906 rank of P_u and Q_u), number of training epochs, and residual dimension (i.e., rank of A_u and B_u) on
 907 our framework’s performance. This analysis helps identify the optimal range for each setting and
 908 provides insight into the robustness of our approach. We conduct ablation study on our textbf{Aplaud+}
 909 model. The results of our ablation study are presented in Table 5 and Fig 3. Specifically, in Table 3
 910 (a), we fix the training epoch at 5 and set the residual dimension to 1. Given that the SVD dimension
 911 must remain smaller than C_u (i.e., the LoRA rank), we experiment with the following (LoRA rank,
 912 SVD dim) pairs: (128, 16), (64, 16), (32, 16), (16, 8), and (8, 4). In Table 5 (b), we set LoRA
 913 rank to be 64, SVD dim 16, residual dimension to be 1 and experiment on training epochs from
 914 $\{5, 7, 9, 10\}$. In Table 5 (c), we set LoRA rank to be 64, training epoch to be 5, residual dimension to
 915 be 1 and experiment on SVD dimension from $\{32, 16, 8, 4\}$. In Table 5 (d), we set LoRA rank to be
 916 64, training epoch to be 5, SVD dimension to be 16 and experiment on different residual dimension
 917 from $\{1, 2, 4, 8\}$.

918
 919 Table 5: Ablation studies across four key hyperparameters. All reported values are test accuracy.
 920 G&L = Gender & Law, TS = [Twitter Stance](#), F&R = Finance & Risk, EI = Emotional Intensity, GSS
 921 = General Social Survey.

(a) LoRA rank						(b) Training epoch					
Rank	G&L	TS	F&R	EI	GSS	Epoch	G&L	TS	F&R	EI	GSS
128	0.6715	0.7730	0.6278	0.5000	0.4463	5	0.6876	0.7862	0.6537	0.4992	0.4605
64	0.6876	0.7862	0.6537	0.4992	0.4605	7	0.6924	0.7781	0.6459	0.5042	0.4449
32	0.6989	0.7781	0.6667	0.4950	0.4647	9	0.6924	0.7730	0.6515	0.5025	0.4322
16	0.6940	0.7801	0.6550	0.4983	0.4944	10	0.6957	0.7690	0.6433	0.5042	0.4364
8	0.6957	0.7649	0.6368	0.4883	0.5071						

(c) SVD dimension						(d) Residual dimension					
SVD dim	G&L	TS	F&R	EI	GSS	Res dim	G&L	TS	F&R	EI	GSS
32	0.6860	0.7822	0.6537	0.4933	0.4576	1	0.6876	0.7862	0.6537	0.4992	0.4605
16	0.6876	0.7862	0.6537	0.4992	0.4605	2	0.6892	0.7852	0.6511	0.4967	0.4633
8	0.6876	0.7882	0.6459	0.5025	0.4590	4	0.6892	0.7852	0.6519	0.4967	0.4576
4	0.6795	0.7893	0.6472	0.4950	0.4590	8	0.6876	0.7761	0.6329	0.4975	0.4449

954 Figure 3: Ablation study on different hyperparameters.
 955
 956957

B.1 LoRA RANK

958 We observe that the impact of the pretrained LoRA rank on model performance is not consistent
 959 across datasets. For example, while accuracy on G&L and F&R improves as the rank decreases,
 960 the performance on TS and EI slightly drops when the rank is reduced to 8. This inconsistency
 961 suggests that the optimal LoRA rank may vary depending on the dataset characteristics. To ensure a
 962 fair comparison under a uniform setting, we additionally conduct experiments using pretrained LoRA
 963 with a fixed rank of 8 for all models. The results, summarized in Table 6, show that our framework
 964 continues to outperform all baselines under this constrained low-rank setting.
 965

966

B.2 TRAINING EPOCH

967 We evaluate the effect of training epochs by varying the number of fine-tuning epochs from 5 to 10.
 968 Our observations indicate that extending training beyond 5 epochs does not consistently improve
 969 performance. For example, on TS, accuracy decreased from 0.7862 (epoch 5) to 0.7690 (epoch 10),
 970 and on F&R, it dropped from 0.6537 to 0.6433. This suggests that the model begins to overfit the
 971 limited personalized data after a few epochs. Overall, 5 epochs already yield strong performance, with

972 additional training offering diminishing or even negative returns, thus emphasizing the importance of
 973 early stopping or lightweight adaptation.
 974

975 B.3 SVD DIMENSION 976

977 To assess the role of the low-rank SVD projection dimension, we compared the SVD dimension (rank
 978 of P_u and Q_u) of 4, 8, 16, and 32. The best overall performance was achieved using 16 dimensions,
 979 which served as our default setting. While increasing the SVD dimension to 32 maintained similar
 980 performance on F&R and G&L, it slightly degraded on EI and GSS. Conversely, reducing the
 981 dimension to 4 caused a more noticeable drop in performance, particularly on G&L (0.6795). These
 982 trends indicate that although the method is robust to reasonable SVD compression, extremely low
 983 dimensions may under-represent user-specific variation.

984 B.4 RESIDUAL DIMENSION 985

986 We varied the dimension of the user-specific residual component (residual dimension, the rank of A_u
 987 and B_u) from 1 to 8 to assess its effect. Performance remained relatively stable when increasing from
 988 1 to 4 dimensions, showing minor fluctuations across datasets. For example, on TS, performance
 989 was nearly unchanged between 1 and 4 dimensions (0.7862 vs. 0.7852), suggesting that even a very
 990 low-rank residual term is sufficient to capture key personalization signals. However, setting the
 991 residual dimension to 8 lead to a performance drop on several datasets (e.g., G&L and F&R), likely
 992 due to overfitting. This result highlights the effectiveness of an extreme small residual dimension.
 993

994 C ADDITIONAL EXPERIMENTAL RESULTS 995

996 C.1 RANK-8 PRETRAINED LORA BASED EXPERIMENTAL RESULT 997

998 As ablation studies indicated that rank of pretrained LoRA may influence our three-phase training
 999 performance across different datasets, for a fair and more comprehensive comparison, we also report
 1000 experimental results (including baseline results) based on rank-8 pretrained LoRA in Table 6 for
 1001 better comparison. The experiment setting is as follow: LoRA rank is set to be 8, training epoch is set
 1002 to be 5, SVD dimension to be 4, rank of residual term (A_u and B_u) to be 1, we tune the initialization of
 1003 m from $\{50.0, 30.0, 20.0, 10.0, 5.0, 2.0, 1.0, 0.1, 0.01, 0.001\}$ and reported the best result. Compared
 1004 with Table 1, the following conclusions can be drawn:

- 1005 • While all models are affected by the choice of LoRA rank, APlaud tends to benefit more
 1006 from lower ranks compared to baseline methods, which sometimes exhibit marginal or
 1007 negative effects, particularly on datasets like GSS.
- 1008 • Our APlaud framework outperforms baseline models across all datasets, with the largest
 1009 improvements reaching up to 12.8% in accuracy and 6.17% in macro-F1.
- 1010 • These results further highlight the robustness of our model, as it consistently outperforms
 1011 baselines in personalization tasks regardless of the pre-trained LoRA setup, and does so
 1012 with substantially fewer parameters.

1015
 1016 Table 6: Performance comparison across different datasets based on pretrained rank-8 LoRA. Bold
 1017 numbers indicate the best results within each dataset. Dataset names: G&L = ATP Gender &
 1018 Leadership, TS = ATP Trust in Science, F&R = ATP Family and Relationships, EI = ATP Economic
 1019 Inequality, GSS = General Social Survey.

1020 Method	G&L		TS		F&R		EI		GSS	
	1021 ACC	F1	ACC	F1	ACC	F1	ACC	F1	ACC	F1
1022 LoRA	0.6312	0.6209	0.7123	0.4216	0.5681	0.2655	0.4117	0.3219	0.4901	0.3165
1023 OPPU	0.6828	0.6761	0.7822	0.7004	0.6174	0.3569	0.4950	0.4103	0.5014	0.3349
1024 Cu	0.6908	0.6824	0.7903	0.6598	0.5863	0.3100	0.4925	0.3982	0.5042	0.3269
1025 Aplaud+	0.7005	0.6921	0.7994	0.7436	0.6498	0.4028	0.5008	0.4161	0.5240	0.3484

1026
 1027 **Table 7: Performance comparison across different datasets with LLaMA-2 backbone with profile**
 1028 **being removed from prompts. Dataset names: G&L = ATP Gender & Leadership, TS = ATP Trust**
 1029 **in Science, F&R = ATP Family and Relationships, EI = ATP Economic Inequality, GSS = General**
 1030 **Social Survey.**

Method	G&L		TS		F&R		EI		GSS	
	ACC	Macro-F1								
LoRA	0.4576	0.3106	0.6454	0.3249	0.5486	0.2598	0.4725	0.3028	0.3583	0.2139
OPPU	0.6271	0.6030	0.7528	0.6115	0.5970	0.3462	0.4942	0.4005	0.3686	0.2322
Cu	0.6151	0.5798	0.6991	0.5838	0.5681	0.2975	0.4942	0.3602	0.3743	0.2545
Aplaud	0.6457	0.6225	0.7599	0.6165	0.6148	0.3498	0.4942	0.3614	0.3743	0.2604
Aplaud+	0.6329	0.6079	0.7639	0.6231	0.6200	0.3599	0.5083	0.3918	0.3757	0.2617

1031
 1032 **Table 8: Generation Task Performance on LaMP News Headline Dataset.**

Method	R-1	R-L
GPT5-profile	0.1312	0.1177
OPPU	0.1987	0.1832
Cu	0.1987	0.1825
Aplaud	0.2003	0.1838
Aplaud+	0.1987	0.1830

1033 **C.2 PERFORMANCE RESULT WITHOUT PROFILE INPUT**

1034 Our user profile is constructed from survey-provided demographic metadata and the 10 survey
 1035 questions most relevant to user characterization. These questions are selected from the user’s
 1036 answered items and capture personal attitudes, preferences, and values. To avoid information leakage,
 1037 we remove these 10 profile-related questions before forming the train/validation/test split. See D.3 on
 1038 the data and prompt we use for profile generation.

1039 To verify the importance of profile information and to evaluate each model’s ability to learn user
 1040 preferences without explicit profile signals, we conduct an additional ablation in which all models are
 1041 trained and evaluated without any profile input. As shown in Table 7, removing profile information
 1042 leads to a consistent performance drop across all methods, demonstrating that user profiles provide
 1043 valuable preference cues. Nevertheless, Aplaud and Aplaud+ remain highly competitive and often
 1044 surpass OPPU across multiple datasets, despite using significantly fewer per-user parameters. These
 1045 results indicate that our lightweight modules can effectively recover stable preference patterns even
 1046 in the absence of explicit profile features, highlighting the robustness and parameter efficiency of our
 1047 approach.

1048 **C.3 ADDITIONAL EVALUATION ON GENERATION TASK**

1049 We further evaluate our approach on the LAMP News Headline generation task to assess whether the
 1050 proposed personalization mechanism also benefits a text generation setting. As shown in Table 8, our
 1051 Aplaud and Aplaud+ models achieve performance comparable to the strong OPPU baseline while
 1052 using only about 1% of its per-user parameters.

1053 **C.4 ADDITIONAL RESULT WHERE STAGE 1 DOES NOT USE TRAIN/TEST USER**

1054 To ensure that Stage 1 pretraining does not unintentionally encode information about users who later
 1055 appear in personalization, we conduct an additional experiment in which Stage 1 is trained on a
 1056 20% subsample of users that does not overlap with any train/test users. This setup guarantees that
 1057 none of the evaluation users contribute to Stage 1 and thus eliminates any possibility of user-level
 1058 information leaking across stages. As shown in Table 9, the performance of Aplaud and Aplaud+
 1059 remains virtually unchanged, confirming that Stage 1 captures only *general task knowledge*, while
 1060 Stage 2 is solely responsible for learning user-specific preferences. This further demonstrates that
 1061 task-level learning and personalization are cleanly disentangled in our framework.

1080
 1081 Table 9: Performance comparison across different datasets with LLaMA-2 backbone where users in
 1082 Stage 1 pretraining does not overlap with users in Stage 2

Method	G&L		TS		F&R		EI		GSS	
	ACC	Macro-F1								
LoRA	0.5749	0.5344	0.6667	0.3736	0.4929	0.2416	0.4642	0.3687	0.3136	0.1707
OPPU	0.6667	0.6529	0.7305	0.5995	0.6135	0.3471	0.5042	0.3951	0.3771	0.2909
Cu	0.6441	0.6425	0.7305	0.5987	0.6196	0.3440	0.5208	0.3955	0.3775	0.2943
APlaud	0.6506	0.6506	0.7599	0.6335	0.6265	0.3695	0.5167	0.3927	0.4124	0.3259
APlaud+	0.6860	0.6717	0.7639	0.6401	0.6291	0.3706	0.5208	0.3981	0.3969	0.3147

1089
 1090 Table 10: Pratical Running Time and Memory Usage

Method	SVD Time	Time	GPU Mem	# Per User Param
LoRA	–	29 min	49.18 GB	100%
OPPU	–	72 min	53.96 GB	100%
APlaud+:Stage1	17 min	38 min	67.09 GB	0.54%
APlaud+:Stage2(a)	–	33 min	62.04 GB	0.27%
APlaud+:Stage2(b)	46 s	34 min	61.12 GB	1.84%
APlaud+:Stage2(c)	18 min	105 min	67.09 GB	1.84%

1100 C.5 PRATICAL RUNNING TIME AND MEMORY USAGE

1101 In this section, we show practical running time and memory in table 10

1104 C.6 SENSITIVITY ANALYSIS

1106 We conducted sensitivity analyses to assess the robustness of APlaud to imperfect initializations of
 1107 the shared subspace and to examine potential error propagation during subsequent training stages.

1109 To simulate noisy conditions, we added Gaussian noise $\epsilon \cdot \mathcal{N}(0, 1)$ to the global LoRA matrices A
 1110 and B prior to performing SVD:

$$1111 \quad (U, \Sigma, V) = \text{SVD}(AB + \epsilon \cdot \mathcal{N}(0, 1)).$$

1112 This perturbation introduces stochasticity into the shared subspace and allows us to observe the
 1113 impact of initialization noise on downstream personalization.

1115 We specifically use $\epsilon = 10^{-3}$ and 10^{-4} , which introduce non-trivial yet controlled noise magnitudes.
 1116 These values are chosen to reflect realistic perturbations relative to the typical scale of LoRA updates,
 1117 where AB often has entries on the order of 10^{-2} or smaller.

1118 As shown in our experimental results (Table 11), APlaud demonstrates strong robustness to such
 1119 perturbations, consistently exhibiting low performance variance across runs. This suggests that
 1120 APlaud does not rely heavily on precise early-stage decompositions and can generalize effectively
 1121 even in the presence of moderate noise during shared initialization.

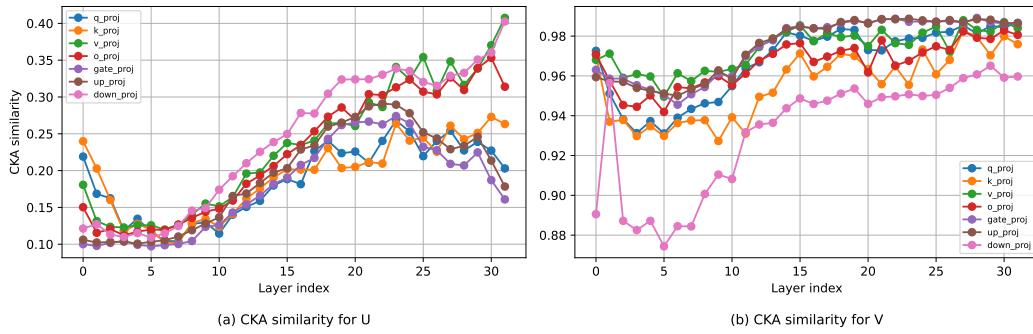
1123 C.7 SHARED SUBAPACE SIMILARITY ANALYSIS

1125 In this section, we analyze the similarity of different shared subpace U and V across different topics.
 1126 Specifically, we computed average (across different modules within the same layer) *Centered Kernel*
 1127 *Alignment* (CKA) (46) similarities of the SVD components U and V between two different topics
 1128 (G&L vs. TS) as shown in Fig 4: (i) V is relatively stable across topics, while (ii) U varies more.
 1129 This confirms that U and V serve different purposes: V acts as a coordinate generator which could
 1130 be relevant across different topics, whereas U serves as different semantic subspaces built on top of
 1131 V . Despite this, both remain well-aligned across topics, supporting our shared-subspace design.

1132 We would like to mention again that our method does not assume that a single pair of (U, V) must
 1133 generalize across all tasks or topics. In practice, the model learns different (U, V) for different
 tasks/topics, as also supported by our CKA analysis. The personalized parameters (C_u, α_u, β_u) are

1134
 1135 Table 11: Robustness study under random noise injection. We report mean \pm std for ACC and
 1136 Macro-F1.

Method	ACC	Macro-F1
Cu	0.6626 ± 0.0031	0.6455 ± 0.0070
PuQu	0.6618 ± 0.0039	0.6411 ± 0.0038
Aplaud+	0.6856 ± 0.0051	0.6686 ± 0.0062
Cu	0.6642 ± 0.0009	0.6435 ± 0.0011
PuQu	0.6626 ± 0.0059	0.6424 ± 0.0058
Aplaud+	0.6852 ± 0.0016	0.6677 ± 0.0020
Cu	0.6611 ± 0.0060	0.6401 ± 0.0058
PuQu	0.6654 ± 0.0038	0.6432 ± 0.0048
Aplaud+	0.6755 ± 0.0093	0.6593 ± 0.0050



1149
 1150 Figure 4: Average CKA similarity of U, V under different layers across different topics
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161

1162 then learned in Stage 2 within the subspace defined by that task/topic-specific (U, V) . This design
 1163 ensures that personalization is performed inside an already aligned subspace, without requiring
 1164 cross-topic invariance of (U, V) .

1165 Regarding drift across waves and time, our current datasets mix users from different time points within
 1166 each topic, so we cannot cleanly isolate purely temporal drift in this paper. We view a more fine-
 1167 grained, time-indexed analysis as important future work. However, in real survey practice, questions
 1168 within the same topic typically evolve slowly and remain within a relatively narrow semantic range.
 1169 Combined with the high CKA stability of V that we observe, this gives us good reason to believe that
 1170 subspace drift across waves and time within a topic is gradual rather than catastrophic in the survey
 1171 setting we target.

C.8 SIGNIFICANCE

1172 We conducted 5 runs with different random seeds on two representative datasets with Llama2
 1173 backbone and compared against SOTA. The results, reported in 12, show that APlaud consistently
 1174 and robustly outperforms baselines. Due to time constraints, we could not repeat all settings, but we
 1175 will include the full repeated results in the camera-ready version.

C.9 RELATIVE OF IMPROVEMENT PERFORMANCE OVER DIFFERENT BASELINES

1176 In this section, we present the Relative of Improvement (ROI) of our method (we report results of
 1177 Aplaud+ as a representative here) over all other baselines in Table 13 and Table 14.

1178 Compared with non-personalized PEFT methods (LoRA, PiSSA, MiLoRA, AdaLoRA, QLoRA),
 1179 Aplaud+ provides clear and stable gains. For example, on Llama2-7B it improves Macro-F1 by
 1180 +27.7% on TS and +10.6% on F&R over LoRA, and on Mistral-7B it further increases TS Macro-F1

1188

1189

Table 12: Siginificance performance comparison across different methods (mean \pm std over 5 runs).

1190

1191

Method	G&L		LAMP Movie Tagging	
	ACC	F1	ACC	F1
<i>Non-Personalized</i>				
LoRA	0.6402 ± 0.0052	0.6174 ± 0.0083	0.6220 ± 0.0082	0.5037 ± 0.0074
QLoRA	0.6315 ± 0.0149	0.6192 ± 0.0175	0.6257 ± 0.0097	0.5045 ± 0.0247
PiSSA	0.6588 ± 0.0116	0.6501 ± 0.0127	0.6274 ± 0.0103	0.5172 ± 0.0074
MiLoRA	0.6620 ± 0.0079	0.6581 ± 0.0130	0.6297 ± 0.0068	0.5298 ± 0.0063
AdaLoRA	0.6637 ± 0.0113	0.6503 ± 0.0148	0.6201 ± 0.0139	0.5102 ± 0.0083
<i>Personalized</i>				
OPPU	0.6602 ± 0.0094	0.6423 ± 0.0187	0.6356 ± 0.0106	0.5174 ± 0.0115
Cu	0.6627 ± 0.0071	0.6507 ± 0.0263	0.6410 ± 0.0103	0.5289 ± 0.0137
Aplaud+	0.6785 ± 0.0040	0.6657 ± 0.0082	0.6602 ± 0.0079	0.5512 ± 0.0091

1198

1200

1201

1203

Table 13: Relative of Improvements of Aplaud+ over different baselines across datasets with llama2-7B backbone.

1204

1205

Method	G&L		TS		F&R		EI		GSS		LAMP MV		Avg ACC Gain	Avg F1 Gain
	ACC	Macro-F1	ACC	Macro-F1										
Non-Personalized														
LoRA	+6.8%	+8.2%	+13.1%	+27.7%	+10.6%	+10.6%	+12.3%	+26.4%	+4.9%	+9.7%	+6.1%	+8.9%	+8.9%	+15.2%
PiSSA	+8.4%	+8.1%	+8.0%	+21.4%	+16.6%	+8.1%	+8.4%	+12.3%	+11.5%	+16.5%	+6.3%	+4.7%	+9.9%	+11.9%
MiLoRA	+1.7%	+0.1%	+7.7%	+18.3%	+15.0%	+5.7%	+12.2%	+18.7%	+3.5%	+1.4%	+4.5%	+3.5%	+7.4%	+8.0%
AdaLoRA	+1.9%	-0.5%	+2.5%	+14.4%	+14.7%	+2.8%	+9.9%	+13.3%	+1.6%	-4.1%	+7.3%	+9.3%	+6.3%	+5.9%
QLoRA	+3.2%	+2.6%	+6.8%	+28.4%	+18.0%	+8.6%	+10.7%	+26.8%	+6.2%	+7.4%	+4.6%	+5.3%	+8.2%	+13.2%
Personalized														
GPT5-profile	+26.6%	+24.4%	+29.2%	+97.9%	+28.8%	+28.7%	+13.5%	+19.7%	-15.4%	+5.8%	+20.4%	+22.7%	+17.2%	+33.2%
GPT5-RAG	+7.1%	+5.3%	+13.9%	+10.6%	+3.4%	+4.6%	-0.6%	+1.5%	-22.3%	-22.8%	-	+0.3%	-0.1%	
OPPU	+2.7%	+1.3%	+5.6%	+8.7%	+4.7%	+2.5%	+3.5%	+2.2%	+7.2%	+5.1%	+4.1%	+7.4%	+4.6%	+4.5%

1213

by +51.1% over AdaLoRA. These results indicate that generic finetuning cannot capture user-specific heterogeneity, while Aplaud+ effectively personalizes model behavior.

1214

Compared with retrieval-based personalization (GPT5-profile / GPT5-RAG), Aplaud+ delivers significantly higher and more robust performance. On Llama2-7B, it surpasses GPT5-profile by +17.2% ACC and +33.2% Macro-F1 on average. Aplaud avoids dependence on prompt context quality and instead encodes stable user preferences in parameters.

1215

Compared with OPPU, a strong personalized baseline, Aplaud still achieves consistent improvements. On Llama2-7B it yields +4.6% ACC and +4.5% Macro-F1 gains on average, and on Mistral-7B the gains reach +2.5% ACC and +10.2% Macro-F1. This demonstrates the superiority of our meticulously designed personalized modules to capture user preferences.

1216

C.10 WASSERSTEIN DISTANCE RESULT

1217

As an addition to Table 1, Table 15 presents the results on approximating human responses for Pew Research Center surveys and the General Social Survey under the same setting. We report Accuracy (ACC), F1 Score (F1), and Wasserstein Distance (WD), with WD measuring the average distributional distance between real human subjects and simulated virtual subjects across test survey questions. A lower WD indicates better distributional alignment. Across all datasets, the **Aplaud+** method consistently achieves the **lowest Wasserstein Distance (WD)**, indicating superior alignment between the distributions of human and simulated responses. For instance, on the **GSS** dataset, the WD achieved by Aplaud+ is **0.1949**, outperforming both the **LoRA** baseline (0.2782) and other personalized approaches. This trend holds across various survey domains:

1218

1219

1220

1221

1222

1223

1224

1225

1226

- In **Gender and Leadership (G&L)**, our method achieves a WD of **0.0097**, which is substantially lower than LoRA (0.1111) and OPPU (0.0725).
- In **Trust in Science (TS)**, Cu records a WD of **0.0203**, outperforming LoRA (0.0294) and OPPU (0.0324).
- For **Friendship and Relationships (F&R)**, the WD drops to **0.1362**, compared to **0.4462** with LoRA and **0.2127** with OPPU.

1242

1243

Table 14: Relative of Improvements of Aplaud+ over different baselines with Mistral-7B backbone.

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

Method	G&L		TS		F&R		EI		GSS		LAMP MV		Avg ACC Gain	Avg F1 Gain
	ACC	Macro-F1	ACC	Macro-F1										
Non-Personalized														
LoRA	+4.9%	+6.3%	+11.2%	+72.1%	+15.1%	+84.2%	+6.0%	+14.9%	+6.2%	+31.8%	+6.2%	+3.4%	+8.3%	+35.5%
PISSA	+5.4%	+4.3%	+6.6%	+39.4%	+20.9%	+83.0%	+10.3%	+23.8%	+12.0%	+22.2%	+4.1%	+1.8%	+9.9%	+29.1%
MiLoRA	+4.4%	+3.7%	+5.6%	+42.9%	+18.0%	+69.8%	+7.7%	+17.0%	+1.6%	+9.9%	+3.8%	+3.8%	+6.9%	+24.5%
AdaLoRA	+7.0%	+6.7%	+11.2%	+51.1%	+8.9%	+19.6%	+6.0%	+23.9%	-18.5%	-3.2%	+6.7%	-2.7%	+3.5%	+15.8%
QLoRA	+5.7%	+5.9%	+9.5%	+40.5%	+20.5%	+75.7%	+6.2%	+16.7%	+3.8%	+19.3%	+0.5%	-5.7%	+7.7%	+25.4%
Personalized														
GPTS-profile	+27.4%	+26.3%	+27.4%	+108.9%	+31.9%	+51.8%	+9.3%	+10.6%	-1.7%	+34.6%	+29.2%	+15.4%	+20.6%	+41.3%
GPTS-RAG	+7.8%	+6.9%	+12.3%	+16.8%	+5.9%	+23.3%	-4.2%	-6.3%	-9.8%	-1.7%	-	-	+2.4%	+7.8%
OPPU	+2.1%	+2.8%	+0.1%	+3.5%	+2.7%	+19.6%	+1.3%	-1.9%	+6.5%	+19.0%	+2.4%	+18.3%	+2.5%	+10.2%

1258

1259

Table 15: WD Performance across all survey datasets.

1260

1261

1262

1263

1264

1265

1266

1267

- In **Economic Inequality (EI)**, our model achieves a WD of **0.1558**, improving over LoRA (0.3350) and slightly increasing to OPPU (0.0933).
- In **Economic Inequality (EI)**, our model achieves a WD of **0.1558**, improving over LoRA (0.3350) and slightly increasing to OPPU (0.0933).

1268

1269

The results underscore the effectiveness of structure-aware personalization, particularly the bias-corrected matrix factorization **Aplaud+**, in accurately capturing subtle, user-specific behavioral patterns across diverse survey domains.

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

To assess how well each personalized model generalizes across diverse population subgroups, we conduct stratified evaluations along three key demographic dimensions: geographic region (CREGION), sex (SEX), and political affiliation (POLPARTY). This analysis spans four waves of the Pew American Trends Panel (ATP)—Waves 36, 42, 50, and 54—as well as the 2016–2020 General Social Survey (GSS) Panel.

1282

1283

1284

1285

1286

1287

For each dataset, we report model performance within each subgroup using two metrics: classification accuracy (ACC) and Wasserstein Distance (WD). We highlight the best-performing results in each subgroup to assess the consistency, fairness, and personalization quality of different adaptation methods.

Subgroup definitions:

- **CREGION** ∈ {Northeast, Midwest, South, West}
- **SEX** ∈ {Male, Female}
- **POLPARTY** ∈ {Republican, Democrat, Independent, Other}

1288

1289

1290

1291

1292

1293

1294

1295

Subgroup Performance in ATP Wave 36 by Region (CREGION). As shown in Table 16, **Aplaud+** yields the highest accuracy in the West (0.7671) and consistently performs well across other regions. In contrast, OPPU achieved the lowest Wasserstein Distance in the Northeast (0.0323), indicating stronger distributional alignment in that specific subgroup. Overall, these results reinforce the strength of structured personalization in APlaud, which combines shared matrix decomposition with user-specific adaptation.

Subgroup Performance in ATP Wave 36 by Gender (SEX). As shown in Table 17, **Aplaud+** achieves the highest classification accuracy for both Female (0.6849) and Male (0.6914) respondents.

1296

1297

Table 16: ATP Wave 36: Performance by Region (CREGION).

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

In terms of distributional alignment, our method showed significant gains. For Female users, **PuQu** achieved a Wasserstein Distance (WD) of 0.0055, representing a relative reduction of 92.8% compared to LoRA (0.0767), and 90.4% compared to OPPU (0.0575). For Male users, **Aplaud+** yields the lowest WD (0.0469), making a 70.7% improvement over LoRA (0.1602), and 50.0% better than OPPU (0.0938).

1312

1313

1314

Table 17: ATP Wave 36: Performance by Gender (SEX). Best values per column are **bolded**.

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

Subgroup Performance in ATP Wave 36 by Political Affiliation (POLPARTY). Table 18 presents model performance stratified by political affiliation—Democrat, Republican, Independent, and Other—based on ATP Wave 36. **Aplaud+** achieved the highest classification accuracy for both Democrats (0.7095) and Independents (0.6968), while Cu and PuQu also demonstrated consistently strong generalization across subgroups.

1328

1329

1330

1331

1332

1333

1334

1335

In terms of distributional alignment, OPPU achieved the lowest Wasserstein Distance for Democrats (0.0207) and Independents (0.0194), whereas **Aplaud+** performs best for Republicans (0.0733) and users classified as Other (0.1176). These findings suggest that structured personalization approaches, such as APlaud can effectively adapt to diverse political profiles, yielding both accurate and distributionally faithful response simulations.

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Table 18: ATP Wave 36: Performance by Political Party (POLPARTY).

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

C.11.2 ATP WAVE 42

Topic: Trust in Science

Subgroup Performance in ATP Wave 42 by Region (CREGION). Table 19 presents the subgroup performance across geographic regions. The **Cu** model achieved the highest accuracy in the Midwest

(0.8008) and the lowest Wasserstein Distance (WD) of 0.0456, indicating strong performance in this region. In the Northeast, **PuQu** attains the best accuracy (0.7574) and the lowest WD (0.0221), reflecting excellent distributional alignment. While **Aplaud+** demonstrates the highest accuracy in both the South (0.8232) and West (0.7766), it did not achieve the lowest WD in these regions, suggesting that its distributional alignment was not optimal compared to other models.

Table 19: ATP Wave 42: Performance by Region (CREGION).

Model	Midwest		Northeast		South		West	
	Acc	WD	Acc	WD	Acc	WD	Acc	WD
LoRA	0.7178	0.0539	0.6985	0.0368	0.7226	0.0244	0.6844	0.0390
OPPU	0.7759	0.0705	0.7574	0.0294	0.8171	0.0396	0.7695	0.0142
Cu	0.8008	0.0456	0.7426	0.0221	0.7866	0.0274	0.7660	0.0177
PuQu	0.7967	0.0498	0.7574	0.0221	0.7835	0.0305	0.7695	0.0142
Aplaud+	0.7801	0.0664	0.7279	0.0809	0.8232	0.0396	0.7766	0.0213

Subgroup Performance in ATP Wave 42 by Gender (SEX). Table 20 presents model performance by gender for ATP Wave 42, focusing on Trust in Science. **Aplaud+** achieves the highest accuracy among female respondents (0.7805), whereas OPPU yields the highest accuracy for male respondents (0.7955). In terms of Wasserstein Distance, reflecting distributional alignment, **Cu**, **PuQu**, and **Aplaud+** achieve equally strong alignment (WD = 0.0561) among female respondents. For male respondents, **PuQu** demonstrates the best distributional alignment, achieving the lowest WD (0.0035). These results underscore that structured personalization methods, particularly those incorporating low-rank decomposition and residual correction, effectively enhance prediction accuracy and response alignment across gender subgroups.

Table 20: ATP Wave 42: Performance by Gender (SEX).

Model	Female		Male	
	Acc	WD	Acc	WD
LoRA	0.7098	0.0756	0.7054	0.0451
OPPU	0.7707	0.0585	0.7955	0.0139
Cu	0.7780	0.0561	0.7782	0.0052
PuQu	0.7780	0.0561	0.7799	0.0035
Aplaud+	0.7805	0.0561	0.7903	0.0191

Subgroup Performance in ATP Wave 42 by Political Affiliation (POLPARTY). Table 21 summarizes performance across political affiliation subgroups for ATP Wave 42, focused on Trust in Science. **Aplaud+** achieves the highest accuracy among Democrats (0.8293), while OPPU yielded the best accuracy for Republicans (0.8143) and Independents (0.7838). **Cu** provided the highest accuracy among respondents identifying as "Other" (0.7828). Regarding Wasserstein Distance (WD), OPPU has the lowest WD among Democrats (0.0585), **Aplaud+** achieved the lowest WD for Republicans (0.0643), **Cu** performed best for Independents (0.0113), and **LoRA** obtains the lowest WD for "Other" affiliations (0.0505).

C.11.3 ATP WAVE 50

Topic: Family and Relationship

Subgroup Performance in ATP Wave 50 by Region (CREGION). Table 22 summarizes model performance across U.S. regions for ATP Wave 50, which focuses on Family and Relationship topics. The **Aplaud+** model achieved the highest accuracy in the Northeast (0.7023), South (0.6128) and West (0.6667) regions. Additionally, **Aplaud+** achieves the lowest Wasserstein Distance (WD) values in four regions, highlighting its superior alignment with real response distributions in these regions. The OPPU model attains the highest accuracy in the Midwest (0.6715), along with competitive WD

1404

1405

Table 21: ATP Wave 42: Performance by Political Party (POLPARTY).

Model	Democrat		Republican		Independent		Other	
	Acc	WD	Acc	WD	Acc	WD	Acc	WD
LoRA	0.6976	0.0732	0.7429	0.1286	0.7095	0.0541	0.6869	0.0505
OPPU	0.8244	0.0585	0.8143	0.0714	0.7838	0.0405	0.7273	0.0707
Cu	0.7902	0.0829	0.7929	0.0786	0.7658	0.0113	0.7828	0.0556
PuQu	0.7854	0.0780	0.8000	0.0714	0.7725	0.0180	0.7727	0.0657
Aplaud+	0.8293	0.0732	0.8071	0.0643	0.7748	0.0338	0.7525	0.0657

1413

1414

1415

performance. These results demonstrate that structured personalization, particularly through the **Aplaud+** method, significantly enhances both accuracy and distributional fidelity across geographic subpopulations.

1416

1417

1418

1419

Table 22: ATP Wave 50: Performance by Region (CREGION).

Model	Midwest		Northeast		South		West	
	Acc	WD	Acc	WD	Acc	WD	Acc	WD
LoRA	0.5839	0.4088	0.5878	0.4504	0.6015	0.4286	0.5105	0.4852
OPPU	0.6715	0.2409	0.6794	0.2137	0.5940	0.1316	0.6414	0.2869
Cu	0.6277	0.4015	0.6031	0.4351	0.5677	0.3383	0.5359	0.4641
PuQu	0.6204	0.4088	0.6031	0.4351	0.5639	0.3459	0.5359	0.4641
Aplaud+	0.6642	0.1898	0.7023	0.0992	0.6128	0.0977	0.6667	0.2025

1420

1421

1422

1423

Subgroup Performance in ATP Wave 50 by Gender (SEX). As reported in Table 23, **Aplaud+** achieves the best accuracy for both Female (0.6510) and Male (0.6590) subgroups. In addition, it showed the strongest distributional alignment, with WDs of 0.1000 and 0.2069 respectively. This supports the robustness of our personalized decomposition strategy between genders.

1424

1425

1426

1427

1428

1429

Table 23: ATP Wave 50: Performance by Gender (SEX).

Model	Female		Male	
	Acc	WD	Acc	WD
LoRA	0.5471	0.4333	0.6092	0.4713
OPPU	0.6392	0.1706	0.6322	0.2950
Cu	0.5451	0.3765	0.6322	0.4598
PuQu	0.5431	0.3804	0.6284	0.4636
Aplaud+	0.6510	0.1000	0.6590	0.2069

1430

1431

1432

1433

1434

1435

1436

Subgroup Performance in ATP Wave 50 by Political Affiliation (POLPARTY). Table 24 illustrates the performance across political affiliation subgroups in ATP Wave 50, focusing on family and relationship issues. The **Aplaud+** model demonstrates superior accuracy among Democrats (0.6349) and Republicans (0.7137), as well as competitive performance for Independents (0.5644) and Others (0.6442). Additionally, **Aplaud+** achieves the lowest Wasserstein Distance (WD) for Democrats (0.1905) and Republicans (0.0745). The OPPU method also shows strong performance, especially among Independents, attaining both the highest accuracy (0.5743) and lowest WD (0.0990). These findings emphasize that structured personalization, particularly the **Aplaud+** approach, effectively captures nuanced subgroup differences and improves alignment with real-world response distributions across political affiliations.

1437

1438

1439

1440

1441

1442

1443

1444

1445

C.11.4 ATP WAVE 54

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Topic: Economic Inequality

1458

1459

Table 24: ATP Wave 50: Performance by Political Party (POLPARTY).

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

Subgroup Performance in ATP Wave 54 by Region (CREGION). As shown in Table 25, **Aplaud+** achieves the highest accuracy in the Northeast (0.6176). Additionally, the model OPPU attaining the lowest Wasserstein Distance (WD) in all regions: Midwest (0.1518), Northeast (0.0490), South (0.0889), and West (0.0810).

1473

1474

1475

Table 25: ATP Wave 54: Performance by Region (CREGION).

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

Subgroup Performance in ATP Wave 54 by Gender (SEX). Table 26 presents the subgroup performance by gender for ATP Wave 54. **Aplaud+** achieves the highest accuracy for both Female (0.5000) and Male (0.4980) respondents. In terms of distributional alignment measured by Wasserstein Distance (WD), OPPU performs best, achieving the lowest WD values for both Female (0.1092) and Male (0.0714) groups. This indicates that while **Aplaud+** was effective in maximizing predictive accuracy, OPPU better captures the nuanced distributional patterns across gender groups.

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Table 26: ATP Wave 54: Performance by Gender (SEX).

Model	Female		Male	
	Acc	WD	Acc	WD
LoRA	0.5000	0.2974	0.4306	0.3869
OPPU	0.5086	0.1092	0.4702	0.0714
Cu	0.5043	0.1494	0.4960	0.1806
PuQu	0.5057	0.1566	0.4960	0.1905
Aplaud+	0.5000	0.1408	0.4980	0.1766

Subgroup Performance in ATP Wave 54 by Political Party (POLPARTY). Table 27 summarizes model performance across political party subgroups for ATP Wave 54. **Aplaud+** achieved the highest accuracy among Democrats (0.5317), while **PuQu** had the best accuracy for Republicans (0.5072) and **Cu** had the best accuracy for Independents (0.5072). **LoRA** performed best in terms of accuracy for the "Other" category (0.4833). Regarding Wasserstein Distance (WD), OPPU showed distributional alignment, yielding the lowest WD values for Democrats (0.0952), Independents (0.0560), and "Other" affiliations (0.2611). For Republicans, **Aplaud+** achieves the lowest WD (0.1307).

C.11.5 GSS PANEL (2016–2020)

Topic: General Social Trends

We applied the same stratified evaluation to the General Social Survey panel dataset, using Wave 1a

1512

1513

Table 27: ATP Wave 54: Performance by Political Party (POLPARTY).

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

Model	Democrat		Republican		Independent		Other	
	Acc	WD	Acc	WD	Acc	WD	Acc	WD
LoRA	0.5119	0.3492	0.3750	0.4028	0.4626	0.3376	0.4833	0.3444
OPPU	0.5198	0.0952	0.4583	0.1389	0.4957	0.0560	0.4556	0.2611
Cu	0.5317	0.1865	0.3889	0.2778	0.5072	0.1394	0.4778	0.3056
PuQu	0.5317	0.2024	0.5072	0.1466	0.4833	0.2778	0.3889	0.2778
Aplaud+	0.5317	0.1786	0.5057	0.1307	0.4778	0.3000	0.3750	0.2917

variables (2016). The table below summarizes model performance by subgroup. Unlike ATP, GSS includes different variables for region.

Subgroup Performance in GSS by Region (CREGION). As shown in Table 28, the **Aplaud+** model (APlaud) achieved the highest accuracy and lowest Wasserstein Distance in both SoNew England and Pacific regions, indicating particularly strong performance in these areas. In contrast, simpler models such as LoRA and OPPU perform best in different regions, with LoRA attaining its highest accuracy in the Middle Atlantic (Acc = 0.4171) and OPPU in East North Central (Acc = 0.3596), while OPPU’s lowest WD is observed in the Middle Atlantic (0.2362).

Table 28: GSS: Performance by Sub-Region (CREGION)

Model	East North Central		Middle Atlantic		SoNew England		Pacific	
	Acc	WD	Acc	WD	Acc	WD	Acc	WD
LoRA	0.3483	0.1910	0.4171	0.3266	0.4340	0.3113	0.4545	0.3455
OPPU	0.3596	0.1910	0.4070	0.2362	0.5094	0.2453	0.4364	0.2424
Cu	0.3371	0.2584	0.3970	0.2714	0.5283	0.2264	0.4788	0.2364
PuQu	0.3371	0.2584	0.3970	0.2714	0.5377	0.2170	0.4788	0.2364
Aplaud+	0.3146	0.2360	0.3970	0.2362	0.5566	0.1887	0.5091	0.2061

Subgroup Performance in GSS by Gender (SEX). Table 29 presents performance by gender for the GSS data. **PuQu** achieved the highest accuracy for females (0.4936), while **Cu** attained the highest accuracy for males (0.4873). In terms of Wasserstein Distance (WD), **PuQu** yields the lowest WD for females (0.1911), and OPPU achieved the lowest WD for males (0.1656).

Table 29: GSS: Performance by Gender (SEX).

Model	Female		Male	
	Acc	WD	Acc	WD
LoRA	0.4061	0.3198	0.4682	0.2580
OPPU	0.4162	0.2234	0.4522	0.1656
Cu	0.4289	0.2487	0.4873	0.2006
PuQu	0.4936	0.1911	0.4676	0.1877
Aplaud+	0.4442	0.2081	0.4809	0.1847

Subgroup Performance in GSS by Political Party (POLPARTY). Table 30 presents model performance by political party affiliation. For Democrats, our APlaud approach (**Aplaud+**) achieves the highest accuracy (0.4778). Among Independents and respondents identifying as Other, several models—including OPPU, Cu, PuQu, and Aplaud+—reached the maximum possible accuracy (0.5000). In terms of Wasserstein Distance (WD), both APlaud and OPPU achieve the lowest value (0.1667) for the Other group, while APlaud yielded the lowest WD for Independents (0.2038).

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

Table 30: GSS: Performance by Political Party (POLPARTY)

Model	Democrat		Republican		Independent		Other	
	Acc	WD	Acc	WD	Acc	WD	Acc	WD
LoRA	0.4608	0.1877	0.4088	0.4380	0.4189	0.4038	0.5000	0.1667
OPPU	0.4164	0.2287	0.4891	0.2336	0.4189	0.2226	0.5000	0.1667
Cu	0.4710	0.2014	0.4526	0.3285	0.4340	0.2792	0.5000	0.5000
PuQu	0.4676	0.1877	0.4599	0.3358	0.4340	0.2830	0.5000	0.5000
Aplaud+	0.4778	0.2048	0.4672	0.2628	0.4377	0.2038	0.5000	0.1667

D EXPERIMENTS DETAILS

In this section, we describe the experimental framework used to simulate responses to human surveys using large language models (LLM). Specifically, we present the prompt designs, user profile extraction strategies, and training procedures adopted in our method. Our goal is to enable LLMs to approximate individual-level human responses through structured personalization, achieved via APlaud, a parameter-efficient method that requires orders of magnitude fewer parameters per user.

D.1 PROMPTS FOR USER PROFILE

To simulate natural-language user profiles for survey response modeling, we construct textual summaries that integrate demographic metadata and selected survey responses from ATP data. These profiles serve as personalized inputs for downstream machine learning tasks, such as response generation or classification. Each summary captures a user’s background, financial stressors, and attitudes toward government responsibility. This profile-based approach allows language models to produce outputs that are grounded in realistic user context, improving both personalization and interpretability.

Prompt Template for Simulated User Profile

You are a professional assistant tasked with summarizing a user’s demographic characteristics and their economic attitudes, financial stressors, and beliefs about inequality and government responsibility based on W54 survey data. Your output should be a single, coherent paragraph suitable for input into a machine learning model.

Instructions:

- Write in complete, natural English sentences.
- Begin by summarizing demographic information: age, sex, race, education, marital status, religion, religious attendance, political party, political ideology, income, and region.
- Then summarize the user’s reported financial well-being, including current household finances, experiences growing up, and ability to meet basic needs.
- Include financial worries such as debt, retirement savings, or healthcare expenses.
- Describe the user’s access to financial resources and assets, such as savings accounts, investments, or loans.
- Capture beliefs about economic fairness, hard work, and the role of government in providing housing, healthcare, education, or other forms of support.
- Summarize attitudes toward economic inequality—its perceived causes, who is responsible for fixing it, and which policy proposals are seen as effective.
- Include how the user thinks current economic conditions impact various groups (e.g., middle class, wealthy, poor).
- If available, mention expected future economic conditions and views on powerful actors like corporations or wealthy individuals.

1620

- Skip any questions answered with “Refused” or missing responses.
- Do not add interpretation or sentiment beyond what is explicitly stated.

1621

User demographic metadata: {{metadata}}

1622

Survey responses: {{profile_questions}} **Generate a concise, fluent paragraph summarizing the user:**

1623

1624

D.2 PROMPTS FOR USER PROFILE AND HISTORY Q&A

1625

We extend the simulated user profiling approach by merging each generated profile with a subset of previously answered survey questions and responses. This combined context served as an input prompt to simulate responses to new, unseen test questions. The prompt includes three key components: (1) a natural-language user background summary generated from structured metadata and survey answers, (2) the new survey question to be predicted, and (3) a multiple-choice format with clear answer options. The prompt is explicitly designed to constrain the model’s output to a single valid choice (e.g., A, B, C), allowing for consistent evaluation and comparison across users and items. This approach allowed the language model to condition its predictions on both the inferred user profile and their past answer behavior, enhancing personalization and response coherence.

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

Prompt Template: Simulated Survey Response with Profile + History

1641

You are user {{user_id}}, with the following background summary:

 {{user_profile_paragraph}}

1642

Here is the question:

 {{test_question}}

1643

This is a single-answer multiple choice question. Here are the options:

 {{A. ..., B. ..., C. ..., etc.}}

1644

Please select the most appropriate answer based on your background.

Respond with only the corresponding uppercase letter (e.g., A, B, C), and format your answer exactly like this: A

1645

Do not include any explanation, reasoning, or repeat the question.

1646

1647

1648

1649

1650

1651

1652

1653

D.3 DATA AND PROMPTS FOR GENERATING USER PROFILE

1654

We generate each user profile using **ChatGPT-4**. The profile is constructed from two sources of information:

1655

1656

1657

1658

1659

- **Survey-provided demographic metadata.** These metadata fields come directly from the original survey and include:

- Region (CREGION): Northeast, Midwest, South, West
- Sex (SEX): Male, Female
- Age group (AGE): 18–29, 30–49, 50–64, 65+
- Education level (EDUCATION): Less than high school, High school graduate, Some college, Associate’s degree, College graduate, Postgraduate
- Citizenship (CITIZEN): Yes, No
- Marital status (MARITAL): Married, Divorced, Separated, Widowed, Never married
- Religion (RELIG): Protestant, Catholic, Jewish, Muslim, Buddhist, Hindu, Atheist, Agnostic, Other, Nothing in particular
- Religious attendance (RELIGATTEND): More than once a week, Weekly, Monthly, Few times/year, Seldom, Never
- Political party (POLPARTY): Republican, Democrat, Independent, Other
- Political ideology (POLIDEOLOGY): Very conservative, Conservative, Moderate, Liberal, Very liberal

1674 – Race/ethnicity (RACE): White, Black, Asian, Hispanic, Other
 1675 – Income (INCOME): < 30k, 30 – 50k, 50 – 75k, 75 – 100k, > 100k
 1676
 1677 • **10 survey questions most relevant to user characterization.** These are selected among
 1678 the user’s answered items and reflect personal attitudes, preferences, or values. To avoid
 1679 information leakage, we **remove** these 10 profile-related questions prior to constructing the
 1680 train/validation/test split.

1681
 1682 The generated profile is a neutral paragraph rewriting the demographic metadata and the selected 10
 1683 questions. No additional information is inferred.

1684 The exact prompt used to generate the profile is shown below.

1685
 1686 Prompt for Generating the User Profile
 1687
 1688 **You are a professional assistant tasked with summarizing a user’s demographic information and survey response profile in a clean, coherent paragraph for input into a machine learning model.**
 1689
 1690 **Instructions:**
 1691
 1692 • Use complete, natural English sentences.
 1693 • Start by summarizing demographic information (age, sex, race, education, marital status, religion, political ideology, income, device type, language).
 1694 • Then summarize the user’s self-reported life satisfaction.
 1695 • Then summarize their leadership values and views about business or political leadership, based only on answered questions.
 1696 • Then summarize their beliefs about gender and leadership, if any.
 1697 • Skip any survey questions where the user answered “No answer.”
 1698 • Be neutral and descriptive, without adding interpretation.
 1699
 1700 **User demographic metadata:**
 1701 {metadata}
 1702
 1703 **Survey responses (10 most profile-relevant items):**
 1704 {profile_text}
 1705
 1706 **Generate a concise, fluent paragraph summarizing the user.**

1709
 1710 **E DETAILS ON HUMAN STUDIES DATA: PEW ATP AND GENERAL SOCIETY
 1711 SURVEY**

1712 **E.1 PEW RESEARCH ATP**

1713
 1714 The American Trends Panel (ATP) is a nationally representative panel of U.S. adults conducted by the
 1715 Pew Research Center. ATP is designed to study a wide variety of topics, including politics, religion,
 1716 internet usage, and family life. We analyze sampled questions from four waves, selecting only **ASK ALL**
 1717 questions—that is, questions posed to all respondents regardless of subgroup membership or
 1718 branching logic. In the original ATP design, many questions include randomized Likert-scale options
 1719 (e.g., positive-to-negative or vice versa). To align with this, we also randomize the presentation order
 1720 of answer choices in our LLM prompts.

1721
 1722 **E.1.1 ATP WAVE 36**

1723
 1724 Wave 36 (fielded June 19 – July 2, 2018) explores public attitudes toward gender representation in
 1725 leadership roles. While a majority of Americans express support for having more women in top
 1726 leadership positions, many remain skeptical that gender parity will be achieved. Views vary notably
 1727 by political affiliation and gender, reflecting broader social divides.

1728
1729**Sample Questions from ATP Wave 36**1730
1731
1732

Q1. In general, how important, if at all, is it to you for someone in a top executive business position to provide guidance or mentorship to young employees?
Options: (A) Essential (B) Important, but not essential (C) Not important (D) Refused

1733
1734
1735

Q2. Do you think that men and women in leadership roles are...
Options: (A) Basically similar (B) Basically different (C) Refused

1736
1737

Q3. Who generally has a better approach to leadership?
Options: (A) Women (B) Men (C) Neither (D) Refused

1738
1739
1740

Q4. What is the ideal situation for the number of women in high political office?
Options: (A) More, but still fewer than men (B) Equal (C) More than men (D) Refused

1741
1742

Q5. What is the ideal number of women in top executive business positions?
Options: (A) More, but still fewer than men (B) Equal (C) More than men (D) Refused

1743
1744
1745

Q6. As more women run for office...
Options: (A) Gender parity is inevitable (B) Men will still dominate (C) Refused

1746
1747

Q7. As more women enter management...
Options: (A) Gender parity is inevitable (B) Men will still dominate (C) Refused

1748
1749

Q8. How much would more women in leadership improve life for women?
Options: (A) A lot (B) Some (C) Not much (D) Nothing (E) Refused

1750
1751
1752

Q9. How much would more women in leadership improve life for men?
Options: (A) A lot (B) Some (C) Not much (D) Nothing (E) Refused

1753
1754

Q10. How much would more women in leadership improve life for all Americans?
Options: (A) A lot (B) Some (C) Not much (D) Nothing (E) Refused

1755
1756**ATP WAVE 42**1757
1758
1759
1760
1761
1762
1763
1764
1765
1766

Wave 42 of the American Trends Panel, conducted from January 7 to January 21, 2019, focuses on public attitudes toward scientists, trust in science, and perceptions of the scientific method. The survey explores how Americans view the role of scientists in public policy, their confidence in scientific experts, and whether science is seen as a force for societal good. Respondents were also asked about the objectivity and integrity of scientists, as well as how much trust they place in scientists from different institutional backgrounds (e.g., industry, government, academia). The data provide insight into partisan and demographic divisions in trust toward scientific information and decision-making processes.

1767
1768
1769**Sample Questions from ATP Wave 42**1770
1771
1772

Q1. Compared with twenty years ago, do you think developments in science have made people's lives...
Options: (A) Better (B) Worse (C) About the same

1773
1774
1775

Q2. Looking ahead to the next twenty years, do you think developments in science will make people's lives...
Options: (A) Better (B) Worse (C) About the same

1776
1777
1778

Q3. Overall, would you say science has had a mostly positive effect on our society or a mostly negative effect on our society?
Options: (A) Mostly positive (B) Mostly negative (C) Equal positive and negative effects

1779
1780
1781

Q4. How much confidence, if any, do you have in scientists to act in the best interests of the public?
Options: (A) A great deal (B) A fair amount (C) Not too much (D) No confidence at all

1782

1783 **Q5.** Which of these statements comes closer to your own view?
Options: (A) Scientists should take an active role in public policy debates
 1784 (B) Scientists should stay out of public policy debates

1785

1786 **Q6.** Which of these statements comes closer to your own view?
Options: (A) Public opinion should guide scientific policy
 1787 (B) Issues are too complex for public opinion to guide

1788

1789 **Q7.** In general, would you say scientific experts are...
Options: (A) Usually better (B) Usually worse (C) Neither

1790

1791 **Q8.** When you hear research is reviewed by an independent committee, does this make you...
Options: (A) Trust more (B) Less (C) No difference

1792

1793 **Q9.** Which best describes what you think about the scientific method?
Options: (A) Accurate conclusions (B) Can produce any desired conclusion

1794

1795 **Q10.** Which of these statements comes closer to your view?
Options: (A) Judgments based solely on facts (B) Judgments as biased as others'

1796

1797

1798

1799

1800

1801 ATP WAVE 50

1802

1803 Wave 50 of the American Trends Panel was conducted from June 25 to July 8, 2019, with responses
 1804 from 9,834 U.S. adults. This wave focused on family life, romantic relationships, parenting, cohabitation,
 1805 marriage expectations, and household dynamics. The survey included split-form designs to
 1806 compare attitudes toward men and women across different relationship and parenting roles. Ques-
 1807 tions also explored satisfaction with family life, financial situations, and perceived social support.
 1808 Responses were collected online, with weighting applied to ensure national representativeness across
 1809 demographics such as age, gender, race, education, political affiliation, and internet access.

1810

Sample Questions from ATP Wave 50

1811

1812 **Q1.** In general, how important is it for a **man** to have a job or career he enjoys in order to live a fulfilling
 1813 life?
Options: (A) Essential (B) Important, but not essential (C) Not important

1814

1815 **Q2.** In general, how important is it for a **woman** to have a job or career she enjoys in order to live a fulfilling
 1816 life?
Options: (A) Essential (B) Important, but not essential (C) Not important

1817

1818 **Q3.** What do you think is the ideal situation for **women with young children**?
Options: (A) Working full-time (B) Working part-time (C) Not working for pay

1819

1820 **Q4.** What do you think is the ideal situation for **men with young children**?
Options: (A) Working full-time (B) Working part-time (C) Not working for pay

1821

1822 **Q5.** Do you think **couples who live together before marriage** have a...
Options: (A) Better chance at a successful marriage (B) Worse chance (C) Doesn't make much
 1823 difference

1824

1825 **Q6.** How much pressure, if any, do you feel from **society** to marry your partner?
Options: (A) A lot (B) Some (C) Not too much (D) No pressure at all

1826

1827 **Q7.** How do you feel about the way **household chores** are divided between you and your partner?
Options: (A) Very satisfied (B) Somewhat satisfied (C) Somewhat dissatisfied (D) Very
 1828 dissatisfied

1829

1830 **Q8.** Have you ever **reduced your work hours** due to balancing parenting and career?
Options: (A) Yes (B) No

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

Q9. Do you think couples who are **not married but living together** can raise children as well as married couples?

Options: (A) Yes (B) No

Q10. Do you trust your partner to **handle money responsibly**?

Options: (A) A great deal (B) A fair amount (C) Not much (D) Not at all

ATP WAVE 54

Wave 54 of the American Trends Panel was conducted from September 16 to 29, 2019, with responses from 6,878 U.S. adults. This wave focused on attitudes toward gender roles, parenting, household responsibilities, and societal expectations. Respondents were sampled across five strata to improve representation of underrepresented groups. The survey was administered online, with weights applied to correct for demographic and behavioral differences. The margin of error for the weighted sample is ± 1.59 percentage points.

Sample Questions from ATP Wave 54

Q1. Would you say there is...

Options: (A) Too much economic inequality (B) Too little economic inequality (C) About the right amount

Q2. Do you think the U.S. economic system...

Options: (A) Requires only minor changes (B) Requires major changes (C) Needs to be completely rebuilt

Q3. How much responsibility should the federal government have in reducing economic inequality?

Options: (A) A lot (B) Some (C) Only a little (D) None

Q4. How much does the current tax system contribute to economic inequality?

Options: (A) A great deal (B) A fair amount (C) Not too much (D) Not at all

Q5. Do you think some people start out with more opportunities than others?

Options: (A) Contributes a great deal to inequality (B) A fair amount (C) Not too much (D) Not at all

Q6. How much would raising the federal minimum wage reduce economic inequality?

Options: (A) A great deal (B) A fair amount (C) Not too much (D) Nothing at all

Q7. How much would expanding Medicare to cover all Americans reduce economic inequality?

Options: (A) A great deal (B) A fair amount (C) Not too much (D) Nothing at all

Q8. Should the government invest in education and job training, or give direct financial assistance?

Options: (A) Invest in education and job training (B) Give direct assistance

Q9. Do you think filling out the U.S. census will...

Options: (A) Benefit you personally (B) Harm you personally (C) Neither benefit nor harm

Q10. How important is it for the government to provide a high-quality K–12 education?

Options: (A) Yes, it's the government's responsibility (B) No, it's not

Q11. Thinking about your household's financial situation, how much are you affected by job availability in your area?

Options: (A) A great deal (B) A fair amount (C) Not too much (D) Not at all

Q12. How often do you worry about the cost of health care?

Options: (A) Every day (B) Almost every day (C) Sometimes (D) Rarely (E) Never

Q13. Have you received government assistance such as SNAP, Medicaid, or unemployment benefits in the past 12 months?

Options: (A) Yes (B) No

1890

1891 **Q14.** How much does your family's financial situation affect your children's ability to succeed in life?
 1892 *Options:* (A) A great deal (B) A fair amount (C) Not too much (D) Not at all

1893

1894 **Q15.** How do you rate current U.S. economic conditions?
 1895 *Options:* (A) Excellent (B) Good (C) Only fair (D) Poor

1896

1897

1898 **GENERAL SOCIAL SURVEY (GSS)**

1899

1900 The General Social Survey (GSS) 2016–2020 Panel is a longitudinal dataset that re-interviewed
 1901 respondents from the 2016 and 2018 GSS cross-sectional samples to measure social and attitudinal
 1902 change over time. Participants from these earlier waves were invited to complete a follow-up survey
 1903 in 2020. The resulting three-wave panel study includes responses from 2016 (Wave 1a), 2018 (Wave
 1904 1b), and 2020 (Wave 2).

1905

1906

1907 **Sample Questions from the GSS Panel**

1908

1909 **Q1.** What do you think the chances are these days that a white person won't get a job or promotion while
 1910 an equally or less qualified Black person gets one instead?
 1911 *Options:* 1 = Very likely; 2 = Somewhat likely; 3 = Not very likely

1912 **Q2.** In general, do you think the courts in this area deal too harshly or not harshly enough with criminals?
 1913 *Options:* 1 = Too harshly; 2 = Not harshly enough; 3 = About right

1914

1915 **Q3.** Should divorce in this country be easier or more difficult to obtain than it is now?
 1916 *Options:* 1 = Easier; 2 = More difficult; 3 = Stay as is

1917

1918 **Q4.** Do you feel that the demands of your family life interfere with your job?
 1919 *Options:* 1 = Always; 2 = Often; 3 = Sometimes; 4 = Hardly ever; 5 = Never

1920

1921 **Q5.** Have you ever given up or would you give up good job opportunities for the benefit of your family
 1922 life?
 1923 *Options:* 1 = Yes, and would again; 2 = Yes, but wouldn't again; 3 = No, but would; 4 = No, and
 1924 wouldn't

1925

1926 **Q6.** A working mother can establish just as warm and secure a relationship with her children as a mother
 1927 who does not work.
 1928 *Options:* 1 = Strongly agree; 2 = Agree; 3 = Disagree; 4 = Strongly disagree

1929

1930 **Q7.** It is much better for everyone involved if the man is the achiever outside the home and the woman
 1931 takes care of the home and family.
 1932 *Options:* 1 = Strongly agree; 2 = Agree; 3 = Disagree; 4 = Strongly disagree

1933

1934 **Q8.** Because of past discrimination, employers should make special efforts to hire and promote qualified
 1935 women.
 1936 *Options:* 1 = Strongly agree; 2 = Agree; 3 = Neither; 4 = Disagree; 5 = Strongly disagree

1937

1938 **Q9.** Do you favor or oppose preferential hiring and promotion of women?
 1939 *Options:* 1 = Strongly favor; 2 = Not strongly favor; 3 = Not strongly oppose; 4 = Strongly oppose

1940

1941 **Q10.** Most men are better suited emotionally for politics than are most women.
 1942 *Options:* 1 = Agree; 2 = Disagree

1943

1944 **Q11.** A preschool child is likely to suffer if his or her mother works.
 1945 *Options:* 1 = Strongly agree; 2 = Agree; 3 = Disagree; 4 = Strongly disagree

1946

1947 **Q12.** Should the government promote equality between men and women?
 1948 *Options:* 1 = Definitely should; 2 = Probably should; 3 = Probably should not; 4 = Definitely should
 1949 not

1944
1945
1946
1947

Q13. Compared with American families in general, how would you rate your family income?
Options: 1 = Far below average; 2 = Below average; 3 = Average; 4 = Above average; 5 = Far above average

1948
1949
1950

Q14. Are you satisfied with your present financial situation?
Options: 1 = Pretty well satisfied; 2 = More or less satisfied; 3 = Not satisfied at all

1951
1952

Q15. Do you think there is any area near here where you would be afraid to walk alone at night?
Options: 1 = Yes; 2 = No

1953

1954
1955

F RELATION WITH RECOMMENDER SYSTEM

1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968

Personalization has long been a central theme in recommender systems, where models infer user preferences from historical interactions and estimate item relevance over a large catalog. Conceptually, survey QA prediction has a distant parallel to collaborative filtering. When responses are binarized (yes/no or agree/disagree), a survey can be represented as a *Respondents* \times *Items* matrix where each entry reflects a respondent’s position. For multi-level items such as Likert scales, each question-response option can be expanded into a set of binary indicators—for example, mapping a 5-point item into five item-specific binary variables – yielding a uniform binary representation across all items. Alternatively, when responses reflect ordered categories, these items may be encoded using a single ordinal score (e.g., 1–5), which preserves the inherent ordering of the response levels. Together, these encoding strategies allow heterogeneous survey instruments to be transformed into a structured matrix format that is compatible with downstream modeling. From this perspective, predicting a respondent’s answer to a new item resembles preference completion in recommender systems.

1969
1970
1971
1972
1973
1974
1975
1976
1977

Despite this superficial similarity, the underlying formulation is fundamentally different. Modern recommendation is typically framed as a learning-to-rank problem, whereas personalized survey response prediction does not involve ranking. A second key distinction concerns the observation regime: recommender systems operate under extreme sparsity, where each user interacts with only a tiny fraction of the item space, and models must infer preferences from partial interactions across many users. In contrast, survey datasets provide complete responses over a shared set of questions, and user preference is inferred directly from how individuals semantically interpret and answer natural-language survey items. As a result, our problem is closer to modeling user-specific semantic judgments than to reconstructing latent preference structures from sparse interactions.

1978
1979
1980
1981
1982
1983
1984
1985

Classical recommendation methods such as matrix factorization(32), NeuMF(31), or LightGCN(30) rely exclusively on latent collaborative filtering signals without any item semantics. These approaches treat items as no-semantic indices and assume user-item interactions follow a modeled structure. Such assumptions do not hold in our setting: survey questions have explicit wording and domain meaning, and since every user observes the same question set, collaborative filtering cannot exploit sparsity or cross-user item co-occurrence patterns, nor can it model the semantic structure shared across questions. As a result, traditional recommendation techniques are not directly applicable to personalized survey response generation.

1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

More recently, large language models have been incorporated into recommender systems. Early studies (59; 13; 84) explore LLM’s zero-shot/few-shot potential via in-context learning. The mismatch between LLMs’ general-purpose training and the specific demands of recommendation tasks results in inadequate performance. To better align LLM with the recommendation domain, one research line would formulate recommendation as a sequential generation task and methods such as P5 (23), M6-Rec (12) and serialize user-item histories into natural-language prompts and train an LLM to generate the next item or a ranked list. Another research line would use LLMs as auxiliary modules to enrich representations which leverages LLMs to augment item/user embeddings or to support re-ranking such as GPT4Rec (52), LaMAR (77), LLM4Rec (21). To the best of our knowledge, existing LLM-based recommenders generally adopt a one-size-fits-all design and compress the personalized information into input tokens either by hard or soft prompts. Thus, while conceptually related through the lens of personalization, our framework achieves personalization model-wise and introduces a parameter-efficient personalization not present in current recommender system literature.

1998 Overall, our contribution is orthogonal to the development of recommendation systems. We introduce
1999 (i) an SVD-based *shared subspace* (U, V) tailored specifically for structured survey QA, and (ii) a
2000 *per-user lightweight personalization layer* (C_u, α_u, β_u) learned within that subspace. This design
2001 directly captures individual answer preferences under a shared question structure. To the best of our
2002 knowledge, no existing recommendation method performs LLM-powered low-rank shared-subspace
2003 personalization learning, making our approach distinct in both problem setting and technical design.
2004

2005 G LIMITATION

2006 Our evaluation is confined to a limited set of survey datasets, necessitating future work to validate
2007 generalization across more domains and populations. APlaud’s per-user personalization relies on the
2008 quantity and quality of historical responses. Users with very limited past data (e.g., fewer than 20-40
2009 questions) may experience less robust personalization, potentially leading to overfitting or reduced
2010 accuracy. While effective for survey prediction, APlaud’s direct applicability to other personalized
2011 LLM tasks (e.g., personalized text generation, conversational agents) without further adaptation
2012 remains relatively unexplored.
2013

2014 H LLM USAGE STATEMENT

2015 We used ChatGPT solely for polishing writing at the sentence and paragraph level. The content and
2016 contributions of this paper were created by the authors. All text refined with ChatGPT has been
2017 carefully checked to avoid errors.
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051