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ABSTRACT

In this paper, we introduce and study the problem of personalized survey response
prediction using fine-tuned large language models (LLMs). This task poses unique
challenges: limited per-user training data, scalability of model storage, and the need
to exploit shared survey structures. To address these issues, we propose APlaud
(Adaptive Personalized Low-rank and User-specific Nested Decomposition), a
lightweight and scalable framework for LLM personalization. APlaud extends the
LoRA paradigm by separating adaptation into a frozen, shared low-rank basis and a
compact user-specific correction, augmented with a rank-one residual for finer per-
sonalization. To further reduce per-user parameter cost and mitigate overfitting, the
correction matrix can be factorized into an even lower-rank form. Empirical results
demonstrate that APlaud achieves efficient, scalable personalization across users
while outperforming state-of-the-art LoRA-based personalized LLM approaches in
both generalization and inference efficiency.

1 INTRODUCTION

Surveys and polls such as the Pew Research Survey (61), the General Social Survey (GSS) (70),
the Gallup World Poll (20), and the American National Election Studies (ANES) (2) have long
been indispensable for informing public policy, advancing social science, and guiding marketing
decisions (26; 78; 54; 10; 18). Beyond these canonical examples, fields such as marketing research,
product design, social and political science, biomedicine and psychology, and education all rely
heavily on surveys and interviews as primary tools for understanding human perspectives. Yet these
instruments now face mounting challenges, including rising costs, declining response rates, and
persistent concerns over accuracy and representativeness (43; 11; 44). Driven by surging demand
in the multi-billion-dollar global survey and market-research sector, researchers and practitioners
are increasingly turning to synthetic participants – LLM-generated respondents – as a scalable
alternative for augmenting or partially replacing traditional data collection (5; 40; 1; 33; 16; 28; 65;
53; 63; 36; 45; 7; 72; 91; 71; 29; 4). Industry adoption has accelerated rapidly: the Qualtrics 2025
marketing trend report (64) highlights synthetic responses as a direct substitute for human respondents,
while enterprises such as YouGov and Kantar, along with startups including SyntheticUsers (73),
OpinioAI (58), Delve.ai (15), and PersonaLive.ai (60), have begun offering synthetic survey responses
at scale, underscoring the growing momentum of synthetic subject modeling across both research
and commercial applications.

However, the majority of existing research (primarily from the domain sciences) has focused
on directly applying LLMs with simple prompting strategies that condition responses on ba-
sic demographic attributes—a setting we refer to as persona-level (subpopulation) predic-
tion (5; 1; 33; 67; 47; 4; 68; 83; 42; 22; 24; 79). Such studies typically test whether LLMs inherently
capture the correct distribution of answers for a target demographic subpopulation. Results consis-
tently show that LLM-generated responses often exhibit cultural and in-group/out-group biases, lack
demographic nuance, and tend to produce homogenized opinions with reduced diversity and greater
predictability compared to real human participants (68; 83; 47; 42; 22; 24; 79; 56).

More recently, a small but growing body of work has sought to mitigate these limitations by align-
ing persona-level response distributions (e.g., demographics, socioeconomic status, or ideology)
with empirical human data through fine-tuning or reinforcement learning with human feedback
(RLHF) (38; 90; 71). Yet these approaches remain constrained to the subpopulation level, leaving
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open the critical challenge of modeling survey response personalization at the level of individual
users.

The Personalized Survey Response Prediction Problem. To move beyond subpopulation-level
modeling and address personalization at the level of individual users, we formally introduce and
investigate the personalized survey response prediction problem: Can a fine-tuned (personalized)
LLM replicate, predict, or simulate an individual’s responses to new survey questions, given their
answers to a previous set of questions in an existing survey? This problem has immediate real-world
relevance. In both public and private sectors, organizations frequently conduct large-scale surveys and
retain ownership of the resulting data. When new, related questions arise, it is natural to want to follow
up with the original participants. Yet re-contacting respondents is often costly, time-consuming, or
infeasible. As a result, stakeholders are increasingly turning to LLMs to generate synthetic responses
as a preliminary step before committing resources to new data collection (64).

This problem lies at the heart of the emerging notion of digital twins, where the goal is to simulate
user behavior or preferences in a way that reflects individual-specific characteristics rather than
merely subpopulation-level distributions (73; 60). It also connects directly to ongoing advances in
recommendation and personalization, where the development of personalized LLMs—or personalized
alignment—has become a central objective (90; 27). Our work is further motivated by direct industry
collaborations that revealed a critical operational bottleneck: organizations frequently need to pose
follow-up questions to respondents who are unavailable or prohibitively costly to re-contact due
to attrition, survey fatigue, or escalating incentive expenses. Personalized synthetic respondents
offer a direct solution to this problem by enabling practitioners to ask new questions to modeled
representations of original respondents, thereby preserving continuity of analysis without repeated
recruitment. The overarching aim of this line of research is to align model outputs with the preferences,
stylistic tendencies, and behavioral patterns of specific individuals. Yet, to the best of our knowledge,
personalized LLMs have not been systematically developed or evaluated for individual-level survey
response prediction—a critical and largely unexplored opportunity that our work seeks to address.

Finally, from a benchmarking perspective, individual-level survey response prediction provides a
rigorous and interpretable testbed for evaluating both digital twins and personalized LLMs. While
benchmarks such as LaMP (66) assess personalization across tasks such as citation generation, tagging,
product rating, and title creation, survey response prediction offers a complementary, domain-specific
benchmark focused on capturing users’ latent preferences, behavioral patterns, and opinions. To our
knowledge, this work is the first to explicitly formulate and study the survey prediction problem in
the personalized LLM setting.

1.1 RESEARCH CHALLENGES AND OUR APPROACH

The main challenges of the problem are threefold. First, the number of survey questions in existing
datasets and real-world scenarios is typically modest—ranging from tens to, at most, a few thousand.
This means the amount of personalized data available per user is often much smaller than the size of
the personalized parameters, which can easily lead to severe overfitting. Second, the number of users
can be extremely large—ranging from thousands to tens of millions in industry-scale applications.
Even though PEFT methods like LoRA reduce the number of trainable parameters relative to full
fine-tuning, each per-user adapter can still involve hundreds of millions of parameters (albeit a small
fraction of the base model). At scale, maintaining such adapters quickly becomes prohibitively
expensive in terms of both storage and deployment, making per-user fine-tuning impractical. Third,
surveys typically ask the same set of questions across users, which naturally induces shared semantics
and correlations. An effective personalization strategy should exploit this inherent structure, rather
than treating each user entirely in isolation.

To address these challenges, we propose APlaud, a framework for developing truly personalized
LLMs by leveraging existing survey questions and responses. Our approach is designed to balance
scalability, data efficiency, and structural exploitation. An overview of the proposed framework for
the personalized survey response prediction problem is shown in Figure 1.

The key idea of APlaud is to utilize the shared space introduced by the standard LoRA training AB,
and then apply singular value decomposition (SVD) to uncover the orthogonal decomposition UΣV .
We hypothesize that the subspaces U and V are relatively stable across users, enabling us to introduce
a small personalized matrix Cu to capture individual user preferences. Specifically, APlaud builds on
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the LoRA paradigm by decoupling adaptation into a frozen, shared low-rank basis and a compact,
user-specific residual correction. Concretely, we decompose a LoRA update via SVD into orthogonal
matrices U , Σ, and V , and inject a learnable user-specific matrix Cu, yielding an adapted weight of
the form

W = W0 + U(Σ + Cu)V
⊤,

where U and V are shared across users while Cu encodes personalization. To further enhance
expressiveness, APlaud augments this formulation with a small, user-specific low-rank residual term.
Finally, to reduce parameter overhead and mitigate overfitting, the personalized matrix Cu is itself
factorized into a lower-rank form PuQu. This design directly addresses the three key challenges
identified earlier: (1) compact user-specific parameters mitigate overfitting when per-user data is
limited; (2) low-rank factorization further minimizes per-user storage and parameter overhead; and
(3) shared subspaces maximize the utilization of semantic information common across users.

Our Contributions. The contributions of this work are threefold:

• We introduce the personalized survey response prediction problem, a novel and practically
important task that bridges survey research and the development of personalized LLMs, and
propose it as a new benchmark for personalization.

• We present APlaud, a scalable and parameter-efficient framework that combines shared
LoRA-derived subspaces with lightweight, user-specific corrections via SVD-based decom-
position and residual terms.

• We provide extensive empirical evaluation showing that APlaud reduces the per-user param-
eter cost of state-of-the-art personalized LLM methods (e.g., OPPU) by orders of magnitude,
while achieving comparable or superior predictive accuracy.

In real operational settings, our method provides survey companies, market-research organizations,
and enterprise stakeholders with a scalable and cost-efficient alternative to traditional respondent
workflows. Concretely, our framework alleviates key deployment pressures by enabling organizations
to: (i) generate reliable follow-up responses without re-contacting participants; (ii) substantially
reduce recruitment, incentive, and panel-maintenance costs; (iii) rapidly prototype, iterate on, and
validate new survey instruments; and (iv) extend panel longevity through persistent, personalized
synthetic respondents calibrated to each user’s historical responses.

Figure 1: Overview of APlaud for personalized survey response prediction. The framework combines
shared LoRA-derived subspaces with user-specific low-rank corrections to achieve scalable and data-
efficient personalization.

2 PRELIMINARY: LORA AND PERSONALIZED LLM
2.1 LORA AND ITS VARIANTS

LoRA (Low-Rank Adaptation) is one of the most widely adopted parameter-efficient fine-tuning
(PEFT) techniques (35). It is motivated by the low intrinsic dimensionality hypothesis (3), which
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suggests that fine-tuning can often be effectively performed in a lower-dimensional subspace. LoRA
achieves this by introducing low-rank updates to the dense layers of a pre-trained neural network,
instead of modifying the full parameter matrix.

Formally, let W0 ∈ Rd×k denote the original weight matrix of a dense layer. LoRA introduces a
trainable update ∆W ∈ Rd×k such that the updated layer is parameterized by:

W = W0 +∆W.

Rather than learning ∆W directly, LoRA factorizes it as the product of two low-rank matrices:

W = W0 + sAB,

where A ∈ Rd×r, B ∈ Rr×k, and r ≪ min{d, k}. The matrix A is typically initialized with a
Gaussian distribution, while B is initialized to zero. The scalar s is a scaling factor used to stabilize
and control the magnitude of the update.

This factorization significantly reduces the number of trainable parameters from d× k (in full fine-
tuning) to r× (d+k) in LoRA, offering a substantial efficiency gain. For simplicity of exposition, we
assume in the remainder of this paper that W0 is a square matrix (i.e., d = k), which is commonly the
case in transformer-based architectures. Nonetheless, our method generalizes naturally to non-square
matrices.

We note that several recent approaches have explored the use of Singular Value Decomposition (SVD)
to enhance LoRA training. For example, given the SVD of a pre-trained weight matrix W0 = UΣV ⊤,
one can initialize the LoRA adapters using the factorized components—setting A = UΣ1/2 and
B = Σ1/2V ⊤—to provide a data-informed starting point for fine-tuning.

Some methods adopt SVD-inspired parameterizations directly during training. For instance,
AdaLoRA (89) approximates the weight update matrix as ∆W = PΣQ⊤, where P and Q are
constrained to be approximately orthogonal via regularization terms ∥P⊤P − I∥ and ∥Q⊤Q− I∥,
and Σ is a learnable diagonal matrix. PiSSA (Principal Singular Values and Singular Vectors Adapta-
tion) (55) initializes LoRA adapters using the top singular components of the pre-trained weights
via SVD while freezing the remaining components. This strategy improves convergence speed and
accuracy by aligning updates with the most informative subspace. In contrast, MiLoRA (81) and
KASA (80) propose to freeze the top singular components and instead fine-tune the minor singular
directions, emphasizing complementary subspaces for adaptation. To the best of our knowledge, our
approach (Aplaud) is the first to leverage SVD-based decomposition strategies to support personalized
LLM adaptation and personalized alignment.

2.2 PERSONALIZED LLM

Prompt-based Personalization. User information—such as demographics, preferences, behavioral
signals, and historical activity – derived from user-generated content or contextual background, is
typically encoded into prompts (87; 1; 5; 51; 6; 19; 48; 88; 50). When user history is extensive,
techniques such as prompt refinement (49) and retrieval-augmented generation (RAG) (82) can be
employed to construct more informative and scalable prompts.

In the context of personalized survey response prediction, the number of available questions and
responses per user typically ranges from a few dozen to a few thousand–sufficient to fit within the
context window of commercial LLMs such as ChatGPT. However, when using open-source models
with more limited context capacity, it may be necessary to summarize prior interactions or apply
RAG-based mechanisms to generate compact, user-specific prompts.

Encoding-based Personalization. In this class of approaches, user data and preferences are com-
pressed into vector representations or embeddings (57; 49; 69), which are then integrated into the
model to modulate token-level processing and output generation for personalization. Similarly, user-
specific latent variables and reward models have been developed to enable personalization through
reinforcement learning (62; 25; 9).

While these methods allow for individualized conditioning, they typically rely on a shared transformer
backbone, resulting in a uniform inference architecture across all users. This shared structure
implicitly assumes a common "thinking process" for all individuals, which may be too restrictive to
accurately capture the full range of human variability in preferences, reasoning patterns, and response
styles.
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Parameter-based Personalization. In this category, the first class of methods encodes user prefer-
ences directly into model parameters via full-parameter personalization, where a separate model is
trained for each user by fine-tuning (41; 49; 85) or optimizing via reinforcement learning (38; 86) all
model weights. While offering maximal flexibility, this approach is often prohibitively expensive in
both storage and computation. The second class of methods leverages parameter-efficient fine-tuning
(PEFT), which introduces per-user adaptation modules—such as LoRA, while keeping the base
model frozen (74; 14; 37). Next, we will introduce OPPU (One PEFT Per User) (75), which is the
current SOTA per-user LLM framework and provides a straightforward way to the personalized
survey response prediction problem.

OPPU for Personalized Survey Response Prediction. OPPU (One PEFT Per User) (75) builds
an independent parameter-efficient fine-tuning (PEFT) model for each user. In practice, this often
entails assigning each individual their own LoRA (Low-Rank Adaptation) module (35). Formally,
the parameterization can be expressed as

Wu = W0 + s1AB + s2AuBu ,

where W0 denotes the pretrained model weights, AB is a shared low-rank adaptation trained on the
entire dataset using standard LoRA (first stage, with s1 to its scaling factor), and AuBu represents
the user-specific low-rank parameters. In this setup, the shared component AB captures global
adaptation across all users, while personalization is introduced in a second stage by training the
individual-specific parameters (Au, Bu) on top of the updated weights W0 + AB (with s2 as its
scaling factor).

Note that a follow-up study (74) extends OPPU by allowing target users to select and assemble
personalized PEFT modules from a shared pool using their historical data. This reduces storage
costs by avoiding one fully independent PEFT per user, but it sacrifices accuracy relative to fully
personalized models. Other approaches have proposed reinforcement learning to incorporate user-
specific preferences via reward models (90; 27). However, even with these advances, a foundational
challenge remains: how to represent each user within the LLM architecture in a way that is parameter-
efficient, storage-optimized, structure-aware, and resistant to overfitting given the limited data
available for each individual?

3 APLAUD APPROACH

APlaud (Adaptive Personalized Low-rank and User-specific Nested Decomposition) is a novel
parameter-efficient fine-tuning method designed to personalize large language models (LLMs) at
the per-user level. It extends the standard LoRA framework by enabling scalable and expressive
user-specific adaptation while minimizing the per-user parameter footprint. Figure 2 illustrates the
APlaud method in comparison with LoRA, which provides only global (non-personalized) adaptation.
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Figure 2: LoRA vs. APlaud Overview

3.1 MODEL DETAILS: COMPACT CORRECTIONS AND RESIDUAL REFINEMENT

To address the limitations of existing personalized LLMs such as OPPU (74), which assigns each
user an independent pair of matrices (Au, Bu), APlaud instead reuses the shared low-rank update

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

AB learned in the first stage of a standard LoRA adaptation. Specifically, we apply singular value
decomposition (SVD) to the global LoRA update:

∆W = AB = UΣV ⊤,

where U ∈ Rd×r and V ∈ Rd×r are orthogonal matrices capturing dominant update directions, and
Σ ∈ Rr×r is a diagonal matrix of singular values (σ1, . . . , σr).

Intuitively, each singular vector Vi in V corresponds to a semantic direction against which the input
x is measured. The projection V ⊤

i x is scaled by the singular value σi and then mapped to the
corresponding output direction Ui, yielding a transformed coordinate σi(V

⊤
i x)Ui. Because user-

specific datasets are small and the semantic structure of survey questions is relatively stable across
users, we hypothesize that the shared subspaces U and V capture most of the semantic directions
needed for personalization.

Building on this, instead of training new (Au, Bu) for each user, we inject a compact, user-specific
correction matrix Cu ∈ Rr×r into the singular spectrum:

Wu = W0 +∆Wu = W0 + sU(Σ + Cu)V
⊤,

where W0 is the base model weight and s is a scaling factor. The shared U and V are fixed across all
users, while Cu provides personalized adjustments. Importantly, Cu is extremely lightweight: for
rank r = 8, it requires only 64 parameters, and even for rank r = 64, only 4096, on the order of a
single singular vector.

Compared with UΣV ⊤, the modified form U(Σ + Cu)V
⊤ remains in the subspace spanned by U ,

i.e.,
U(Σ + Cu)V

⊤x ∈ Span(Col(U)).

However, Cu enables each user to reweight and mix semantic directions in V , thereby reflecting their
individual preferences and importance weights.

To capture fine-grained, idiosyncratic nuances beyond the shared subspace, APlaud augments the
representation with a lightweight personalized residual:

Wu = W0 + sU(Σ + Cu)V
⊤ + αuβ

⊤
u ,

where αu, βu ∈ Rd are learned per-user vectors. This rank-one residual enables APlaud to adjust
beyond the shared low-rank structure, modeling distinctive patterns that cannot be expressed solely
within the subspace spanned by U and V . In principle, the residual can be extended to higher rank, but
we find that a rank-one correction is generally sufficient in our experimental settings (see Appendix
for detailed results).

Aplaud+: Nested Low-Rank Factorization. To further compress the user-specific component and
improve regularization, we factorize the correction matrix as

Cu ≈ PuQu,

yielding the personalized update

Wu = W0 + sU(Σ + PuQu)V
⊤ + αuβ

⊤
u ,

where Pu, Qu ∈ Rr×k.

APlaud and Aplaud+ drastically reduce the per-user parameter footprint. For APlaud, with rank
r = 64, the correction matrix Cu requires only 64× 64 = 4096 parameters. For Aplaud+, using a
nested inner rank of k = 16, the factorization PuQu requires only 2rk = 2048 parameters per user
for each weight matrix W . The residual vectors αu, βu ∈ Rd introduce an additional 2d parameters.
By contrast, OPPU requires 2dr = 524,288 parameters when d = 4096. Thus, APlaud and Aplaud+
achieve approximately 128× and 256× parameter reduction, respectively, without residual terms,
and still over 42× and 50× reduction, respectively, when including the residual terms – all while
preserving expressive capacity.
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3.2 TRAINING PROCEDURE FOR APLAUD

The training procedure for APlaud consists of two stages, similar to other personalized LLM
frameworks such as OPPU (75).

Stage 1: Global Adaptation with LoRA-style Training.
We begin with a standard parameter-efficient fine-tuning (PEFT) procedure such as LoRA, applied
across the full training dataset comprising all users’ responses. Specifically, we learn a global
low-rank update:

W = W0 +∆W = W0 +AB,

where W0 ∈ Rd×d is the pre-trained weight matrix, and A ∈ Rd×r, B ∈ Rr×d are trainable low-rank
matrices. Following LoRA convention, A is initialized from a standard Gaussian distribution and B
is initialized to zero, ensuring the pretrained model behavior is preserved at initialization. This stage
captures population-level adaptation trends.

After training, we compute the singular value decomposition (SVD):

AB = UΣV ⊤,

where U, V ∈ Rd×r and Σ ∈ Rr×r. These components define a shared low-rank subspace, which
remains fixed for all users in the personalization stage.

Stage 2: Personalized Fine-tuning of Cu and Residual Terms.
For each user u, we fine-tune a compact correction matrix Cu together with residual vectors αu, βu.
We initialize Cu = 0, set αu ∼ N (0, I), and βu = 0. To stabilize training, we normalize αu and
introduce a scaling factor m, yielding:

Wu = W0 + sU(Σ + Cu)V
⊤ +m

αu

∥αu∥
β⊤
u .

Here, s controls the global scaling, while m modulates the strength of the residual correction.

3.3 APLAUD+ TRAINING PROCESS

In Aplaud+, the correction matrix Cu is further factorized into a nested low-rank form PuQu.
Training proceeds in three substages:

Stage 2(a): Training Cu. We first learn the full correction matrix Cu ∈ Rr×r using user u’s data:

Wu = W0 + sU(Σ + γCu)V
⊤,

where γ is a scaling factor similar to LoRA.

Stage 2(b): Low-Rank Factorization of Cu. Next, we compress Cu via SVD:

Cu = UCΣCV
⊤
C .

Truncating to a smaller rank k ≪ r, we initialize:

Pu = UCΣ
1/2
C , Qu = Σ

1/2
C V ⊤

C ,

and re-train using user u’s data:

Wu = W0 + sU(Σ + PuQu)V
⊤.

Stage 2(c): Residual Learning. Finally, we fine-tune residual vectors αu, βu:

Wu = W0 + sU(Σ + PuQu)V
⊤ +m

αu

∥αu∥
β⊤
u .

Remarks. These substages serve distinct purposes: Stage 2(a) help initialize Pu, Qu from a learned
Cu; Stages 2(b) and 2(c) then train the nested low-rank and residual components. While they could
in principle be trained jointly, we find that separating them improves stability. Despite the per-user

7
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independence of these stages, the small size of survey datasets (20–40 responses) allows training
each user’s model in just 1–2 minutes on a single A100 GPU.

Personalized Parameter Size Summary. - For APlaud, each user is represented by a correction
Cu ∈ Rr×r plus an optional rank-one residual αuβ

⊤
u , for a total of r2 + 2d parameters per weight

matrix. - For Aplaud+, we use Pu ∈ Rr×k, Qu ∈ Rk×r with residual vectors, for a total of 2rk + 2d
parameters per weight matrix.

Thus, APlaud and Aplaud+ provide fine-grained personalization with dramatically reduced per-user
memory footprint, leveraging shared U, V,Σ for structure while adapting lightweight corrections and
residuals for individual flexibility.

4 EXPERIMENT

Datasets For survey data, we utilize data from two prominent sources of US public opinion: the
annual Pew American Trends Panel (ATP) and the General Society Survey (GSS) (8)(70) for LLM
simulation of survey and opinions(68)(71). We further evaluate our methods on LAMP Movie-
Tagging(66), a publicly available personalized dataset from a non-survey domain to guarantee dataset
diversity. The ATP is an annual longitudinal survey conducted by the Pew Research Center, based on
a nationally representative panel of approximately 10,000 US participants recruited over multiple
years, many of whom respond to repeated survey waves. From this dataset, we selected four specific
waves that cover a diverse range of public opinion topics, including gender and leadership, trust in
science, family and relationships, and economic inequality. For the GSS, we focus on Panel 20, a
longitudinal cohort that provides rich repeated measurement data on topics such as political trust,
social norms, religiosity, and inequality. This panel enables the study of temporal dynamics in US
social attitudes and is particularly well-suited for evaluating user-specific LLM adaptation over time.

To explore user-level personalization and simulate LLM “ownership”, we focus on the most engaged
participants. Specifically, we retain respondents with at least 10 valid answers and remove “Refused”
responses. Since each wave contains over 100 ASK-ALL items, the filtered dataset provides roughly
50 answered questions per person on average—sufficient for robust personalization and learning stable
user embeddings (More details in Appendix A.2). After this filtering, we selected 200 users with
the highest response rates and validated their responses across approximately 130 survey questions.
To align the model output with the preferences and behavioral tendencies of the individual user, we
first identify a subset comprising 30% of questions that capture key aspects of user personality and
behavioral traits. This subset is used to construct a user-specific profile through LLM-based prompting.
Then we split the rest of the question into three sections, 80% for training, 10% for validation, 10%
for testing. This setup enables evaluation of each model’s ability to simulate personalized responses
with minimal supervision. For LAMP Movie Tagging dataset, we follow the work of OPPU to choose
the top 100 users and also split the data with 8:1:1 ratio.

Baseline We compare our proposed method, APlaud, with several set of baseline approaches,
including: (1) Non-personalized LoRA and its variatns: LoRA(34), PiSSA(55), MiLoRA(81),
AdaLoRA(89) and QLoRA(17); (2) GPT-5 with profile only as best zero shot baseline; (3) Retrival-
based approach, where we also use GPT-5 and augments the prompt with the five most relevant
historical QA pairs, inserted as few-shot exemplars; (4) Personalized per user LLM: such as OPPU(75).
We employ both Mistral-7B-v0.2-Instruct (39) and LLaMA-2-7B (76) as backbone models to verify
the robustness of our approach under different base architectures.

Evaluation Metrics We evaluate model performance using three complementary metrics. Accuracy
measures the proportion of correctly predicted survey responses compared to ground truth, providing
a direct indicator of prediction reliability. F1 Score (macro) captures the balance between precision
and recall, particularly useful when evaluating multi-class or imbalanced response distributions.
Wasserstein Distance (WD)(see corresponding results in appendix) quantifies the distributional
difference between the predicted and actual answer distributions, offering a fine-grained assessment
of how closely the model captures user-specific response patterns.

Experimental Settings Due to space limitations, we leave more experimental details to the ap-
pendix. Our Code is available at https://anonymous.4open.science/r/ICLR2026_
Aplaud-4EEF/README.md
Experimental Performance We first report our main results in Table 1 and Table 2. We also report
the Relative of Improvement Results using one of our methods(Aplaud+) in Table 13 and Table 14 in
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Table 1: Performance comparison across different datasets with llama2-7B backbone. Bold numbers
indicate the best results within each dataset. Dataset names: G&L = ATP Gender & Leadership, TS =
ATP Trust in Science, F&R = ATP Family and Relationships, EI = ATP Economic Inequality, GSS =
General Social Survey. LAMP MV = LAMP Movie Tagging

Method G&L TS F&R EI GSS LAMP MV

ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1

Non-Personalized
LoRA 0.6393 0.6140 0.7052 0.5343 0.5772 0.3348 0.4617 0.3308 0.3785 0.2479 0.6214 0.5076
PiSSA 0.6296 0.6142 0.7386 0.5620 0.5473 0.3427 0.4783 0.3722 0.3559 0.2333 0.6201 0.5280
MiLoRA 0.6714 0.6634 0.7406 0.5768 0.5551 0.3503 0.4618 0.3522 0.3836 0.2681 0.6308 0.5341
AdaLoRA 0.6700 0.6675 0.7779 0.5965 0.5564 0.3602 0.4716 0.3689 0.3907 0.2834 0.6146 0.5058
QLoRA 0.6618 0.6475 0.7467 0.5316 0.5408 0.3411 0.4683 0.3296 0.3738 0.2531 0.6302 0.5253

Personalized
GPT5-profile 0.5394 0.5340 0.6170 0.3448 0.4954 0.2879 0.4566 0.3491 0.4689 0.2570 0.5478 0.4507
GPT5-RAG 0.6377 0.6306 0.7001 0.6169 0.6174 0.3542 0.5213 0.4117 0.5106 0.3520 - -
OPPU 0.6651 0.6559 0.7548 0.6275 0.6096 0.3612 0.5008 0.4091 0.3701 0.2588 0.6336 0.5147
Cu 0.6651 0.6453 0.7497 0.6423 0.5994 0.3475 0.4975 0.3611 0.3870 0.2590 0.6414 0.5358
Aplaud 0.6731 0.6581 0.7761 0.6637 0.6151 0.3669 0.5042 0.3945 0.3912 0.2715 0.6442 0.5366
Aplaud+ 0.6828 0.6642 0.7974 0.6824 0.6381 0.3704 0.5183 0.4180 0.3969 0.2719 0.6593 0.5529

Table 2: Performance comparison across different datasets with Mistral-7B backbone. Bold numbers
indicate the best results within each dataset. Dataset names: G&L = ATP Gender & Leadership, TS =
ATP Trust in Science, F&R = ATP Family and Relationships, EI = ATP Economic Inequality, GSS =
General Social Survey. LAMP MV = LAMP Movie Tagging

Method G&L TS F&R EI GSS LAMP MV

ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1

Non-Personalized
Lora 0.6554 0.6342 0.7072 0.4186 0.5681 0.2372 0.4708 0.3356 0.4336 0.2624 0.6669 0.5035
PiSSA 0.6521 0.6466 0.7375 0.5169 0.5408 0.2387 0.4525 0.3119 0.4110 0.2832 0.6801 0.5114
MiLoRA 0.6586 0.6499 0.7446 0.5039 0.5539 0.2572 0.4633 0.3297 0.4532 0.3146 0.6823 0.5014
AdaLoRA 0.6425 0.6318 0.7071 0.4768 0.6005 0.3653 0.4708 0.3114 0.5649 0.3573 0.6635 0.5349
QLoRA 0.6505 0.6368 0.7183 0.5127 0.5422 0.2486 0.4700 0.3307 0.4435 0.2903 0.7047 0.5517
Personalized
GPT5-profile 0.5394 0.5340 0.6170 0.3448 0.4954 0.2879 0.4566 0.3491 0.4689 0.2570 0.5478 0.4507
GPT5-RAG 0.6377 0.6306 0.7001 0.6169 0.6174 0.3542 0.5213 0.4117 0.5106 0.3520 - -
OPPU 0.6731 0.6560 0.7852 0.6962 0.6368 0.3654 0.4925 0.3936 0.4322 0.2906 0.6917 0.4401
Cu 0.6828 0.6691 0.7781 0.6338 0.5746 0.2796 0.5008 0.3868 0.4548 0.2917 0.6982 0.5014
Aplaud 0.6828 0.6707 0.7852 0.7127 0.6278 0.3842 0.5042 0.3921 0.4506 0.3385 0.7159 0.5116
Aplaud+ 0.6876 0.6742 0.7862 0.7204 0.6537 0.4369 0.4992 0.3859 0.4605 0.3459 0.7081 0.5204

Appendix C.9. Aplaud families demonstrates markedly superior personalization capability across
different datasets. Typically, on the Llama2-7B backbone, Aplaud+ delivers consistent gains of
6–10% in ACC and 11–15% in Macro-F1 over state-of-the-art non-personalized PEFT methods, and
outperforms even SOTA general-purpose model (GPT5-profile) by 17.2% ACC and 33.2% Macro-F1
on average. Compared with the strong personalized adapter-based baseline OPPU, Aplaud also
outperforms with a significant margin, improving 4.6% in ACC and 4.5% in Macro-F1. On the
Mistral-7B backbone, the improvements is also pronounced, reaching 8–10% ACC and 24–36%
Macro-F1 over non-personalized methods; surpassing retrieval-based approach (GPT5-RAG) 2.4%
ACC and 7.8% Macro-F1 and outperform OPPU by 2.5% ACC and 10.2% Macro-F1.

Firstly, personalized approaches on average consistently surpass their non-personalized counterparts
in terms of both accuracy (ACC) and macro-F1, highlighting the benefits of modeling user-specific
adaptation. While adaptive non-personalized methods such as AdaLoRA and MiLoRA demonstrate
relatively competitive performance, they remain inferior to personalized strategies on most datasets.

When comparing with stronger zero-shot general-purpose models and retrieval-based approaches
(GPT-5 profile / GPT-5 RAG), our methods (Aplaud and Aplaud+) also demonstrate clear superiority.
For example, in F&R data and with Mistral-7B as backbone, Aplaud+ achieves as large as 51.8% on
Macro-F1, compared with zero-shot GPT and also 23.3% compared with GPT-RAG. This disparity
reflects a fundamental limitation of retrieval-based personalization: Although free of training, the
quality of each generated response relies on a narrow subsample of history records, which inevitably
cannot capture a respondent’s full behavioral signature, thus lacking personalization expressiveness.
Especially in survey prediction tasks, a few retrieved samples rarely reflect the full spectrum of a user’s
attitudes and easily omit key signals. In contrast, our lightweight adapter architecture accumulates
user-specific signals across the full interaction history and encodes them as persistent parametric
memory, forming a holistic and stable representation of user preferences. This enables long-term
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Table 3: Parameter count comparison per user per layer. We assume using Mistral-7B as foundation
model and all LoRA-based PEFT with rank 64. For the SVD step, we retain the top 16 dimensions
and bias term with rank 1.

Per-user per layer private parameter Calculation #params Percentage

OPPU 4096×64×2×2 + (4096×64 + 1024×64)×2
+(4096×64 + 14336×64)×3 5,242,880 100%

SVD (64×16×2)×7 14,336 0.27%
Aplaud (64×64)×7 + (4096×1×2×2 + (4096×1 + 1024×1)×2

+ (4096×1 + 14336×1)×3 110,599 2.11%
Aplaud+ (64×16×2)×7 + 4096×1×2×2

+ (4096×1 + 14336×1)×3 96,263 1.84%

personalization rather than episodic conditioning, explaining why Aplaud/Aplaud+ substantially
outperform retrieval-based baselines despite using far smaller models.

Compared with the representative personalized benchmark OPPU, our proposed Aplaud framework
achieves consistent improvements across most datasets, yielding more balanced gains in both ACC and
macro-F1. Notably, the enhanced variant Aplaud+ establishes new state-of-the-art performance on the
majority of datasets, with average ACC improvements 4.6%, 2.5% and Macro-F1 improvements 4.5%,
and 10.2% on Llama2-7B and Mistrial-7B, respectively. These results underscore that Aplaud not
only advances beyond non-personalized tuning but also surpasses existing personalized approaches
such as OPPU, thereby demonstrating the effectiveness of incorporating user-specific signals to
enhance robustness and generalization across diverse domains.

Taken together, these results demonstrate the effectiveness of our proposed method: while existing
non-personalized PEFT approaches capture generalizable knowledge, incorporating user-level person-
alization (as in Aplaud and Aplaud+) leads to more robust and balanced performance across diverse
datasets.

Model Parameter Efficiency. Table 3 compares the per-user parameter count per layer across
methods. A standard OPPU design requires over 5M parameters per user per layer, since it places
independent adapters on all seven weight matrices in each transformer block: four in the attention
module (Wq,Wk,Wv,Wo) and three in the feed-forward module (Wup,Wgate,Wdown). This heavy
footprint makes OPPU impractical to scale across large user populations.

By contrast, our methods dramatically reduce this overhead. The pure SVD (Cu ≈ PuQu ) variant
compresses the personalization into a compact shared subspace, achieving a 99.7% reduction in
parameter size. APlaud introduces lightweight user-specific corrections and a rank-one residual,
requiring only about 2% of the OPPU footprint, while Aplaud+ further factorizes the corrections to
reduce usage to under 2%. These results highlight the strong parameter efficiency of our framework,
which balances compactness with sufficient expressive capacity to yield substantial performance
improvements.

Finally, we note that the ablation study and additional experiments can be found in the Appendix.

5 CONCLUSION

In this work, we introduced APlaud, a scalable and lightweight framework for personalizing large
language models (LLMs) at the individual user level in the context of survey response prediction.
APlaud leverages a shared low-rank subspace obtained through global LoRA fine-tuning, while
enabling user-specific adaptation via a nested low-rank correction and an optional rank-one residual.
This design achieves strong personalization with minimal per-user parameter overhead.

Our approach addresses key challenges in user modeling—such as data sparsity and scalability –
while consistently outperforming existing LoRA-based personalized methods in both accuracy and
parameter efficiency. These results highlight the promise of APlaud for simulating individualized
behavior in large-scale settings, offering a principled bridge between global adaptation and fine-
grained user representation.

In future work, we plan to extend APlaud to a broader range of personalization tasks, including
recommendation systems, writing assistants, and other applications where lightweight and expressive
user modeling is critical. We also plan to integrate it with the quantization approach to further reduce
parameter space.
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Table 4: Dataset statistics across six benchmarks. “# Qs” denotes the number of questions, and “Avg
Q length” is measured in tokens.

G&L TS F&R EI GSS LAMP Movie Tagging

# Users top 200 top 200 top 200 top 200 top 200 top 100
# Qs 6104 7582 9036 9596 6161 8860
Avg Q length 1343.2 1678.1 1384.5 1597.7 1195.6 572.3

A EXPERIMENT SETTING

A.1 ENVIRONMENTAL SETTING

All experiments were conducted on a single cluster node equipped with a Dell PowerEdge C6620
and NVIDIA H100 GPUs with 94 GB of memory.

A.2 MORE DETAILS ON DATA STATISTICS

In this sections, we first provide all six data statistics we used in this paper in Table 4

We also disclose more details on the missing/incompleteness data statistics and analysis: Across
the four ATP waves used in our study, the total number of survey items varies by design (W36:
139 questions, W42: 129, W50: 127, W54: 115). Consistent with ATP’s rotating-module structure,
raw item-level missingness ranges from 28% to 62%, reflecting that different sub-samples receive
different topical modules rather than indicating data quality issues. After applying our quality-control
filter (retaining respondents with at least 10 valid answers), missingness decreases in every wave (e.g.,
W36: 62.1% → 56.1%; W42: 41.4% → 39.5%; W50: 54.8% → 34.4%; W54: 28.4% → 24.4%).

A.3 TRAINING DETAILS

For a fair comparison, all experiments were trained for 5 epochs. In the Table1, we set the LoRA rank
and dimension of Cu to be 64. Subsequently, we selected the top 16 SVD dimension as the starting
state for the second training phase, and set the residual module Au and Bu to rank 1, respectively.
Since the initialization of m significantly influence the final result, we tuned its initialization from
{50.0, 30.0, 20.0, 10.0, 5.0, 2.0, 1.0, 0.1, 0.01, 0.01} and reported the best result. These choices are
based on our ablation study, where we explored the LoRA rank from {8, 16, 32, 64, 128}, SVD dimen-
sion from {4, 8, 16, 32}, training epochs from {5, 7, 9, 10} and residual term rank from {1, 2, 4, 8}.
We found that reducing the rank of the pretrained LoRA may boosted performance, while changes in
other hyperparameters had less impact.

B ABLATION STUDY

In this section, we systematically explore the effect of 4 hyperparameters: LoRA Rank, SVD dim (i.e.,
rank of Pu and Qu), number of training epochs, and residual dimension (i.e., rank of Au and Bu) on
our framework’s performance. This analysis helps identify the optimal range for each setting and
provides insight into the robustness of our approach. We conduct ablation study on our textbfAplaud+
model. The results of our ablation study are presented in Table 5 and Fig 3. Specifically, in Table 3
(a), we fix the training epoch at 5 and set the residual dimension to 1. Given that the SVD dimension
must remain smaller than Cu (i.e., the LoRA rank), we experiment with the following (LoRA rank,
SVD dim) pairs: (128, 16), (64, 16), (32, 16), (16, 8), and (8, 4). In Table 5 (b), we set LoRA
rank to be 64, SVD dim 16, residual dimension to be 1 and experiment on training epochs from
{5, 7, 9, 10}. In Table 5 (c), we set LoRA rank to be 64, training epoch to be 5, residual dimension to
be 1 and experiment on SVD dimension from {32, 16, 8, 4}. In Table 5 (d), we set LoRA rank to be
64, training epoch to be 5, SVD dimension to be 16 and experiment on different residual dimension
from {1, 2, 4, 8}.
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Table 5: Ablation studies across four key hyperparameters. All reported values are test accuracy.
G&L = Gender & Law, TS = Twitter Stance, F&R = Finance & Risk, EI = Emotional Intensity, GSS
= General Social Survey.

(a) LoRA rank

Rank G&L TS F&R EI GSS

128 0.6715 0.7730 0.6278 0.5000 0.4463
64 0.6876 0.7862 0.6537 0.4992 0.4605
32 0.6989 0.7781 0.6667 0.4950 0.4647
16 0.6940 0.7801 0.6550 0.4983 0.4944
8 0.6957 0.7649 0.6368 0.4883 0.5071

(b) Training epoch

Epoch G&L TS F&R EI GSS

5 0.6876 0.7862 0.6537 0.4992 0.4605
7 0.6924 0.7781 0.6459 0.5042 0.4449
9 0.6924 0.7730 0.6515 0.5025 0.4322
10 0.6957 0.7690 0.6433 0.5042 0.4364

(c) SVD dimension

SVD dim G&L TS F&R EI GSS

32 0.6860 0.7822 0.6537 0.4933 0.4576
16 0.6876 0.7862 0.6537 0.4992 0.4605
8 0.6876 0.7882 0.6459 0.5025 0.4590
4 0.6795 0.7893 0.6472 0.4950 0.4590

(d) Residual dimension

Res dim G&L TS F&R EI GSS

1 0.6876 0.7862 0.6537 0.4992 0.4605
2 0.6892 0.7852 0.6511 0.4967 0.4633
4 0.6892 0.7852 0.6519 0.4967 0.4576
8 0.6876 0.7761 0.6329 0.4975 0.4449
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Figure 3: Ablation study on different hyperparameters.

B.1 LORA RANK

We observe that the impact of the pretrained LoRA rank on model performance is not consistent
across datasets. For example, while accuracy on G&L and F&R improves as the rank decreases,
the performance on TS and EI slightly drops when the rank is reduced to 8. This inconsistency
suggests that the optimal LoRA rank may vary depending on the dataset characteristics. To ensure a
fair comparison under a uniform setting, we additionally conduct experiments using pretrained LoRA
with a fixed rank of 8 for all models. The results, summarized in Table 6, show that our framework
continues to outperform all baselines under this constrained low-rank setting.

B.2 TRAINING EPOCH

We evaluate the effect of training epochs by varying the number of fine-tuning epochs from 5 to 10.
Our observations indicate that extending training beyond 5 epochs does not consistently improve
performance. For example, on TS, accuracy decreased from 0.7862 (epoch 5) to 0.7690 (epoch 10),
and on F&R, it dropped from 0.6537 to 0.6433. This suggests that the model begins to overfit the
limited personalized data after a few epochs. Overall, 5 epochs already yield strong performance, with
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additional training offering diminishing or even negative returns, thus emphasizing the importance of
early stopping or lightweight adaptation.

B.3 SVD DIMENSION

To assess the role of the low-rank SVD projection dimension, we compared the SVD dimension (rank
of Pu and Qu) of 4, 8, 16, and 32. The best overall performance was achieved using 16 dimensions,
which served as our default setting. While increasing the SVD dimension to 32 maintained similar
performance on F&R and G&L, it slightly degraded on EI and GSS. Conversely, reducing the
dimension to 4 caused a more noticeable drop in performance, particularly on G&L (0.6795). These
trends indicate that although the method is robust to reasonable SVD compression, extremely low
dimensions may under-represent user-specific variation.

B.4 RESIDUAL DIMENSION

We varied the dimension of the user-specific residual component (residual dimension, the rank of Au

and Bu) from 1 to 8 to assess its effect. Performance remained relatively stable when increasing from
1 to 4 dimensions, showing minor fluctuations across datasets. For example, on TS, performance
was nearly unchanged between 1 and 4 dimensions (0.7862 vs. 0.7852), suggesting that even a very
low-rank residual term is sufficient to capture key personalization signals. However, setting the
residual dimension to 8 lead to a performance drop on several datasets (e.g., G&L and F&R), likely
due to overfitting. This result highlights the effectiveness of an extreme small residual dimension.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 RANK-8 PRETRAINED LORA BASED EXPERIMENTAL RESULT

As ablation studies indicated that rank of pretrained LoRA may influence our three-phase training
performance across different datasets, for a fair and more comprehensive comparison, we also report
experimental results (including baseline results) based on rank-8 pretrained LoRA in Table 6 for
better comparison. The experiment setting is as follow: LoRA rank is set to be 8, training epoch is set
to be 5, SVD dimension to be 4, rank of residual term (Au and Bu) to be 1, we tune the initlization of
m from {50.0, 30.0, 20.0, 10.0, 5.0, 2.0, 1.0, 0.1, 0.01, 0.01} and reported the best result. Compared
with Table 1, the following conclusions can be drawn:

• While all models are affected by the choice of LoRA rank, APlaud tends to benefit more
from lower ranks compared to baseline methods, which sometimes exhibit marginal or
negative effects, particularly on datasets like GSS.

• Our APlaud framework outperforms baseline models across all datasets, with the largest
improvements reaching up to 12.8% in accuracy and 6.17% in macro-F1.

• These results further highlight the robustness of our model, as it consistently outperforms
baselines in personalization tasks regardless of the pre-trained LoRA setup, and does so
with substantially fewer parameters.

Table 6: Performance comparison across different datasets based on pretrained rank-8 LoRA. Bold
numbers indicate the best results within each dataset. Dataset names: G&L = ATP Gender &
Leadership, TS = ATP Trust in Science, F&R = ATP Family and Relationships, EI = ATP Economic
Inequality, GSS = General Social Survey.

Method G&L TS F&R EI GSS

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

LoRA 0.6312 0.6209 0.7123 0.4216 0.5681 0.2655 0.4117 0.3219 0.4901 0.3165
OPPU 0.6828 0.6761 0.7822 0.7004 0.6174 0.3569 0.4950 0.4103 0.5014 0.3349
Cu 0.6908 0.6824 0.7903 0.6598 0.5863 0.3100 0.4925 0.3982 0.5042 0.3269
Aplaud+ 0.7005 0.6921 0.7994 0.7436 0.6498 0.4028 0.5008 0.4161 0.5240 0.3484
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Table 7: Performance comparison across different datasets with LLaMA-2 backbone with profile
being removed from prompts. Dataset names: G&L = ATP Gender & Leadership, TS = ATP Trust
in Science, F&R = ATP Family and Relationships, EI = ATP Economic Inequality, GSS = General
Social Survey.
Method G&L TS F&R EI GSS

ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1

LoRA 0.4576 0.3106 0.6454 0.3249 0.5486 0.2598 0.4725 0.3028 0.3583 0.2139
OPPU 0.6271 0.6030 0.7528 0.6115 0.5970 0.3462 0.4942 0.4005 0.3686 0.2322
Cu 0.6151 0.5798 0.6991 0.5838 0.5681 0.2975 0.4942 0.3602 0.3743 0.2545
Aplaud 0.6457 0.6225 0.7599 0.6165 0.6148 0.3498 0.4942 0.3614 0.3743 0.2604
Aplaud+ 0.6329 0.6079 0.7639 0.6231 0.6200 0.3599 0.5083 0.3918 0.3757 0.2617

Table 8: Generation Task Performance on LaMP News Headline Dataset.

Method R-1 R-L
GPT5-profile 0.1312 0.1177
OPPU 0.1987 0.1832
Cu 0.1987 0.1825
Aplaud 0.2003 0.1838
Aplaud+ 0.1987 0.1830

C.2 PERFORMANCE RESULT WITHOUT PROFILE INPUT

Our user profile is constructed from survey-provided demographic metadata and the 10 survey
questions most relevant to user characterization. These questions are selected from the user’s
answered items and capture personal attitudes, preferences, and values. To avoid information leakage,
we remove these 10 profile-related questions before forming the train/validation/test split. See D.3 on
the data and prompt we use for profile generation.

To verify the importance of profile information and to evaluate each model’s ability to learn user
preferences without explicit profile signals, we conduct an additional ablation in which all models are
trained and evaluated without any profile input. As shown in Table 7, removing profile information
leads to a consistent performance drop across all methods, demonstrating that user profiles provide
valuable preference cues. Nevertheless, Aplaud and Aplaud+ remain highly competitive and often
surpass OPPU across multiple datasets, despite using significantly fewer per-user parameters. These
results indicate that our lightweight modules can effectively recover stable preference patterns even
in the absence of explicit profile features, highlighting the robustness and parameter efficiency of our
approach.

C.3 ADDITIONAL EVALUATION ON GENERATION TASK

We further evaluate our approach on the LAMP News Headline generation task to assess whether the
proposed personalization mechanism also benefits a text generation setting. As shown in Table 8, our
Aplaud and Aplaud+ models achieve performance comparable to the strong OPPU baseline while
using only about 1% of its per-user parameters.

C.4 ADDITIONAL RESULT WHERE STAGE 1 DOES NOT USE TRAIN/TEST USER

To ensure that Stage 1 pretraining does not unintentionally encode information about users who later
appear in personalization, we conduct an additional experiment in which Stage 1 is trained on a
20% subsample of users that does not overlap with any train/test users. This setup guarantees that
none of the evaluation users contribute to Stage 1 and thus eliminates any possibility of user-level
information leaking across stages. As shown in Table 9, the performance of Aplaud and Aplaud+
remains virtually unchanged, confirming that Stage 1 captures only general task knowledge, while
Stage 2 is solely responsible for learning user-specific preferences. This further demonstrates that
task-level learning and personalization are cleanly disentangled in our framework.
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Table 9: Performance comparison across different datasets with LLaMA-2 backbone where users in
Stage 1 pretraining does not overlap with users in Stage 2

Method G&L TS F&R EI GSS

ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1

LoRA 0.5749 0.5344 0.6667 0.3736 0.4929 0.2416 0.4642 0.3687 0.3136 0.1707
OPPU 0.6667 0.6529 0.7305 0.5995 0.6135 0.3471 0.5042 0.3951 0.3771 0.2909
Cu 0.6441 0.6425 0.7305 0.5987 0.6196 0.3440 0.5208 0.3955 0.3775 0.2943
Aplaud 0.6506 0.6506 0.7599 0.6335 0.6265 0.3695 0.5167 0.3927 0.4124 0.3259
Aplaud+ 0.6860 0.6717 0.7639 0.6401 0.6291 0.3706 0.5208 0.3981 0.3969 0.3147

Table 10: Pratical Running Time and Memory Usage
Method SVD Time Time GPU Mem # Per User Param

LoRA – 29 min 49.18 GB 100%
OPPU – 72 min 53.96 GB 100%
APlaud+:Stage1 17 min 38 min 67.09 GB 0.54%
APlaud+:Stage2(a) – 33 min 62.04 GB 0.27%
APlaud+:Stage2(b) 46 s 34 min 61.12 GB 1.84%
APlaud+:Stage2(c) 18 min 105 min 67.09 GB 1.84%

C.5 PRATICAL RUNNING TIME AND MEMORY USAGE

In this section, we show practical running time and memory in table 10

C.6 SENSITIVITY ANALYSIS

We conducted sensitivity analyses to assess the robustness of APlaud to imperfect initializations of
the shared subspace and to examine potential error propagation during subsequent training stages.

To simulate noisy conditions, we added Gaussian noise ϵ · N (0, 1) to the global LoRA matrices A
and B prior to performing SVD:

(U,Σ, V ) = SVD(AB + ϵ · N (0, 1)).

This perturbation introduces stochasticity into the shared subspace and allows us to observe the
impact of initialization noise on downstream personalization.

We specifically use ϵ = 10−3 and 10−4, which introduce non-trivial yet controlled noise magnitudes.
These values are chosen to reflect realistic perturbations relative to the typical scale of LoRA updates,
where AB often has entries on the order of 10−2 or smaller.

As shown in our experimental results (Table 11), APlaud demonstrates strong robustness to such
perturbations, consistently exhibiting low performance variance across runs. This suggests that
APlaud does not rely heavily on precise early-stage decompositions and can generalize effectively
even in the presence of moderate noise during shared initialization.

C.7 SHARED SUBAPACE SIMILARITY ANALYSIS

In this section, we analyze the similarity of different shared subpace U and V across different topics.
Specifically, we computed average (across different modules within the same layer) Centered Kernel
Alignment (CKA) (46) similarities of the SVD components U and V between two different topics
(G&L vs. TS) as shown in Fig 4: (i) V is relatively stable across topics, while (ii) U varies more.
This confirms that U and V serve different purposes: V acts as a coordinate generator which could
be relevant across different topics, whereas U serves as different semantic subspaces built on top of
V . Despite this, both remain well-aligned across topics, supporting our shared-subspace design.

We would like to mention again that our method does not assume that a single pair of (U, V ) must
generalize across all tasks or topics. In practice, the model learns different (U, V ) for different
tasks/topics, as also supported by our CKA analysis. The personalized parameters (Cu, αu, βu) are
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Table 11: Robustness study under random noise injection. We report mean ± std for ACC and
Macro-F1.

Method ACC Macro-F1

Cu 0.6626 ± 0.0031 0.6455 ± 0.0070
PuQu 0.6618 ± 0.0039 0.6411 ± 0.0038
Aplaud+ 0.6856 ± 0.0051 0.6686 ± 0.0062
Cu 0.6642 ± 0.0009 0.6435 ± 0.0011
PuQu 0.6626 ± 0.0059 0.6424 ± 0.0058
Aplaud+ 0.6852 ± 0.0016 0.6677 ± 0.0020
Cu 0.6611 ± 0.0060 0.6401 ± 0.0058
PuQu 0.6654 ± 0.0038 0.6432 ± 0.0048
Aplaud+ 0.6755 ± 0.0093 0.6593 ± 0.0050
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Figure 4: Average CKA similarity of U, V under different layers across different topic

then learned in Stage 2 within the subspace defined by that task/topic-specific (U, V ). This design
ensures that personalization is performed inside an already aligned subspace, without requiring
cross-topic invariance of (U, V ).

Regarding drift across waves and time, our current datasets mix users from different time points within
each topic, so we cannot cleanly isolate purely temporal drift in this paper. We view a more fine-
grained, time-indexed analysis as important future work. However, in real survey practice, questions
within the same topic typically evolve slowly and remain within a relatively narrow semantic range.
Combined with the high CKA stability of V that we observe, this gives us good reason to believe that
subspace drift across waves and time within a topic is gradual rather than catastrophic in the survey
setting we target.

C.8 SIGNIFICANCE

We conducted 5 runs with different random seeds on two representative datasets with Llama2
backbone and compared against SOTA. The results, reported in 12, show that APlaud consistently
and robustly outperforms baselines. Due to time constraints, we could not repeat all settings, but we
will include the full repeated results in the camera-ready version.

C.9 RELATIVE OF IMPROVEMENT PERFORMANCE OVER DIFFERENT BASELINES

In this section, we present the Relative of Improvement (ROI) of our method (we report results of
Aplaud+ as a representative here) over all other baselines in Table 13 and Table 14.

Compared with non-personalized PEFT methods (LoRA, PiSSA, MiLoRA, AdaLoRA, QLoRA),
Aplaud+ provides clear and stable gains. For example, on Llama2-7B it improves Macro-F1 by
+27.7% on TS and +10.6% on F&R over LoRA, and on Mistral-7B it further increases TS Macro-F1
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Table 12: Siginificance performance comparison across different methods (mean ± std over 5 runs).

Method G&L LAMP Movie Tagging
ACC F1 ACC F1

Non-Personalized
LoRA 0.6402 ± 0.0052 0.6174 ± 0.0083 0.6220 ± 0.0082 0.5037 ± 0.0074
QLoRA 0.6315 ± 0.0149 0.6192 ± 0.0175 0.6257 ± 0.0097 0.5045 ± 0.0247
PiSSA 0.6588 ± 0.0116 0.6501 ± 0.0127 0.6274 ± 0.0103 0.5172 ± 0.0074
MiLoRA 0.6620 ± 0.0079 0.6581 ± 0.0130 0.6297 ± 0.0068 0.5298 ± 0.0063
AdaLoRA 0.6637 ± 0.0113 0.6503 ± 0.0148 0.6201 ± 0.0139 0.5102 ± 0.0083

Personalized
OPPU 0.6602 ± 0.0094 0.6423 ± 0.0187 0.6356 ± 0.0106 0.5174 ± 0.0115
Cu 0.6627 ± 0.0071 0.6507 ± 0.0263 0.6410 ± 0.0103 0.5289 ± 0.0137
Aplaud+ 0.6785 ± 0.0040 0.6657 ± 0.0082 0.6602 ± 0.0079 0.5512 ± 0.0091

Table 13: Relative of Improvements of Aplaud+ over different baselines across datasets with llama2-
7B backbone.

Method G&L TS F&R EI GSS LAMP MV Avg ACC Gain Avg F1 Gain
ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1

Non-Personalized
LoRA +6.8% +8.2% +13.1% +27.7% +10.6% +10.6% +12.3% +26.4% +4.9% +9.7% +6.1% +8.9% +8.9% +15.2%
PiSSA +8.4% +8.1% +8.0% +21.4% +16.6% +8.1% +8.4% +12.3% +11.5% +16.5% +6.3% +4.7% +9.9% +11.9%
MiLoRA +1.7% +0.1% +7.7% +18.3% +15.0% +5.7% +12.2% +18.7% +3.5% +1.4% +4.5% +3.5% +7.4% +8.0%
AdaLoRA +1.9% -0.5% +2.5% +14.4% +14.7% +2.8% +9.9% +13.3% +1.6% -4.1% +7.3% +9.3% +6.3% +5.9%
QLoRA +3.2% +2.6% +6.8% +28.4% +18.0% +8.6% +10.7% +26.8% +6.2% +7.4% +4.6% +5.3% +8.2% +13.2%

Personalized
GPT5-profile +26.6% +24.4% +29.2% +97.9% +28.8% +28.7% +13.5% +19.7% -15.4% +5.8% +20.4% +22.7% +17.2% +33.2%
GPT5-RAG +7.1% +5.3% +13.9% +10.6% +3.4% +4.6% -0.6% +1.5% -22.3% -22.8% – – +0.3% -0.1%
OPPU +2.7% +1.3% +5.6% +8.7% +4.7% +2.5% +3.5% +2.2% +7.2% +5.1% +4.1% +7.4% +4.6% +4.5%

by +51.1% over AdaLoRA. These results indicate that generic finetuning cannot capture user-specific
heterogeneity, while Aplaud+ effectively personalizes model behavior.

Compared with retrieval-based personalization (GPT5-profile / GPT5-RAG), Aplaud+ delivers
significantly higher and more robust performance. On Llama2-7B, it surpasses GPT5-profile by
+17.2% ACC and +33.2% Macro-F1 on average. Aplaud avoids dependence on prompt context
quality and instead encodes stable user preferences in parameters.

Compared with OPPU, a strong personalized baseline, Aplaud still achieves consistent improvements.
On Llama2-7B it yields +4.6% ACC and +4.5% Macro-F1 gains on average, and on Mistral-7B the
gains reach +2.5% ACC and +10.2% Macro-F1. This demonstrates the superiority of our meticulously
designed personalized modules to capture user preferences.

C.10 WASSERSTEIN DISTANCE RESULT

As an addition to Table 1, Table 15 presents the results on approximating human responses for
Pew Research Center surveys and the General Social Survey under the same setting. We report
Accuracy (ACC), F1 Score (F1), and Wasserstein Distance (WD), with WD measuring the average
distributional distance between real human subjects and simulated virtual subjects across test survey
questions. A lower WD indicates better distributional alignment. Across all datasets, the Aplaud+
method consistently achieves the lowest Wasserstein Distance (WD), indicating superior alignment
between the distributions of human and simulated responses. For instance, on the GSS dataset,
the WD achieved by Aplaud+ is 0.1949, outperforming both the LoRA baseline (0.2782) and other
personalized approaches. This trend holds across various survey domains:

• In Gender and Leadership (G&L), our method achieves a WD of 0.0097, which is
substantially lower than LoRA (0.1111) and OPPU (0.0725).

• In Trust in Science (TS), Cu records a WD of 0.0203, outperforming LoRA (0.0294) and
OPPU (0.0324).

• For Friendship and Relationships (F&R), the WD drops to 0.1362, compared to 0.4462
with LoRA and 0.2127 with OPPU.
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Table 14: Relative of Improvements of Aplaud+ over different baselines with Mistral-7B backbone.
Method G&L TS F&R EI GSS LAMP MV Avg ACC Gain Avg F1 Gain

ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1 ACC Macro-F1

Non-Personalized
LoRA +4.9% +6.3% +11.2% +72.1% +15.1% +84.2% +6.0% +14.9% +6.2% +31.8% +6.2% +3.4% +8.3% +35.5%
PiSSA +5.4% +4.3% +6.6% +39.4% +20.9% +83.0% +10.3% +23.8% +12.0% +22.2% +4.1% +1.8% +9.9% +29.1%
MiLoRA +4.4% +3.7% +5.6% +42.9% +18.0% +69.8% +7.7% +17.0% +1.6% +9.9% +3.8% +3.8% +6.9% +24.5%
AdaLoRA +7.0% +6.7% +11.2% +51.1% +8.9% +19.6% +6.0% +23.9% -18.5% -3.2% +6.7% -2.7% +3.5% +15.8%
QLoRA +5.7% +5.9% +9.5% +40.5% +20.5% +75.7% +6.2% +16.7% +3.8% +19.3% +0.5% -5.7% +7.7% +25.4%

Personalized
GPT5-profile +27.4% +26.3% +27.4% +108.9% +31.9% +51.8% +9.3% +10.6% -1.7% +34.6% +29.2% +15.4% +20.6% +41.3%
GPT5-RAG +7.8% +6.9% +12.3% +16.8% +5.9% +23.3% -4.2% -6.3% -9.8% -1.7% – – +2.4% +7.8%
OPPU +2.1% +2.8% +0.1% +3.5% +2.7% +19.6% +1.3% -1.9% +6.5% +19.0% +2.4% +18.3% +2.5% +10.2%

Table 15: WD Performance across all survey datasets.

Method G&L TS F&R EI GSS

ACC F1 WD ACC F1 WD ACC F1 WD ACC F1 WD ACC F1 WD

LoRA 0.6554 0.6342 0.1111 0.7072 0.4186 0.0294 0.5681 0.2372 0.4462 0.4708 0.3356 0.3350 0.4336 0.2624 0.2782
OPPU 0.6731 0.6560 0.0725 0.7852 0.6962 0.0324 0.6368 0.3654 0.2127 0.4925 0.3936 0.0933 0.4322 0.2906 0.1977
Cu 0.6828 0.6691 0.0097 0.7781 0.6338 0.0203 0.5746 0.2796 0.4047 0.5008 0.3868 0.1625 0.4548 0.2917 0.2274
Aplaud+ 0.6876 0.6742 0.0097 0.7862 0.7204 0.0324 0.6537 0.4369 0.1362 0.4992 0.3859 0.1558 0.4605 0.3459 0.1949

• In Economic Inequality (EI), our model achieves a WD of 0.1558, improving over LoRA
(0.3350) and slightly increasing to OPPU (0.0933).

• In Economic Inequality (EI), our model achieves a WD of 0.1558, improving over LoRA
(0.3350) and slightly increasing to OPPU (0.0933).

The results underscore the effectiveness of structure-aware personalization, particularly the bias-
corrected matrix factorization Aplaud+, in accurately capturing subtle, user-specific behavioral
patterns across diverse survey domains.

C.11 SUBGROUP COMPARISONS ACROSS DEMOGRAPHIC VARIABLES

To assess how well each personalized model generalizes across diverse population subgroups, we
conduct stratified evaluations along three key demographic dimensions: geographic region (CRE-
GION), sex (SEX), and political affiliation (POLPARTY). This analysis spans four waves of the Pew
American Trends Panel (ATP)—Waves 36, 42, 50, and 54—as well as the 2016–2020 General Social
Survey (GSS) Panel.

For each dataset, we report model performance within each subgroup using two metrics: classification
accuracy (ACC) and Wasserstein Distance (WD). We highlight the best-performing results in each
subgroup to assess the consistency, fairness, and personalization quality of different adaptation
methods.

Subgroup definitions:

• CREGION ∈ {Northeast, Midwest, South, West}

• SEX ∈ {Male, Female}

• POLPARTY ∈ {Republican, Democrat, Independent, Other}

C.11.1 ATP WAVE 36

Subgroup Performance in ATP Wave 36 by Region (CREGION). As shown in Table 16,
Aplaud+ yields the highest accuracy in the West (0.7671) and consistently performs well across
other regions. In contrast, OPPU achieved the lowest Wasserstein Distance in the Northeast (0.0323),
indicating stronger distributional alignment in that specific subgroup. Overall, these results reinforce
the strength of structured personalization in APlaud, which combines shared matrix decomposition
with user-specific adaptation.

Subgroup Performance in ATP Wave 36 by Gender (SEX). As shown in Table 17, Aplaud+
achieves the highest classification accuracy for both Female (0.6849) and Male (0.6914) respondents.
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Table 16: ATP Wave 36: Performance by Region (CREGION).

Model Midwest Northeast South West
Acc WD Acc WD Acc WD Acc WD

LoRA 0.6552 0.1437 0.5376 0.1613 0.6683 0.0913 0.7123 0.0685
OPPU 0.6782 0.0920 0.5914 0.0323 0.6394 0.0817 0.7671 0.0753
Cu 0.6667 0.0345 0.6559 0.1075 0.6538 0.0529 0.7603 0.0753
PuQu 0.6724 0.0230 0.6452 0.0968 0.6538 0.0577 0.7671 0.0890
Aplaud+ 0.6782 0.0287 0.6559 0.1075 0.6538 0.0577 0.7671 0.0616

In terms of distributional alignment, our method showed significant gains. For Female users, PuQu
achieved a Wasserstein Distance (WD) of 0.0055, representing a relative reduction of 92.8% compared
to LoRA (0.0767), and 90.4% compared to OPPU (0.0575). For Male users, Aplaud+ yields the
lowest WD (0.0469), making a 70.7% improvement over LoRA (0.1602), and 50.0% better than
OPPU (0.0938).

Table 17: ATP Wave 36: Performance by Gender (SEX). Best values per column are bolded.

Model Female Male
Acc WD Acc WD

LoRA 0.6521 0.0767 0.6602 0.1602
OPPU 0.6685 0.0575 0.6797 0.0938
Cu 0.6795 0.0219 0.6875 0.0547
PuQu 0.6795 0.0055 0.6914 0.0547
Aplaud+ 0.6849 0.0164 0.6914 0.0469

Subgroup Performance in ATP Wave 36 by Political Affiliation (POLPARTY). Table 18
presents model performance stratified by political affiliation—Democrat, Republican, Independent,
and Other—based on ATP Wave 36. Aplaud+ achieved the highest classification accuracy for both
Democrats (0.7095) and Independents (0.6968), while Cu and PuQu also demonstrated consistently
strong generalization across subgroups.

In terms of distributional alignment, OPPU achieved the lowest Wasserstein Distance for Democrats
(0.0207) and Independents (0.0194), whereas Aplaud+ performs best for Republicans (0.0733)
and users classified as Other (0.1176). These findings suggest that structured personalization ap-
proaches, such as APlaud can effectively adapt to diverse political profiles, yielding both accurate
and distributionally faithful response simulations.

Table 18: ATP Wave 36: Performance by Political Party (POLPARTY).

Model Democrat Republican Independent Other
Acc WD Acc WD Acc WD Acc WD

LoRA 0.6763 0.0830 0.6492 0.3455 0.6258 0.1161 0.6765 0.1471
OPPU 0.6805 0.0207 0.6649 0.1675 0.6839 0.0194 0.6176 0.1471
Cu 0.7054 0.0456 0.6545 0.0785 0.6903 0.0258 0.6471 0.1176
PuQu 0.7012 0.0373 0.6649 0.0995 0.6903 0.0258 0.6471 0.1176
Aplaud+ 0.7095 0.0498 0.6597 0.0733 0.6968 0.0258 0.6471 0.1176

C.11.2 ATP WAVE 42

Topic: Trust in Science

Subgroup Performance in ATP Wave 42 by Region (CREGION). Table 19 presents the subgroup
performance across geographic regions. The Cu model achieved the highest accuracy in the Midwest
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(0.8008) and the lowest Wasserstein Distance (WD) of 0.0456, indicating strong performance in
this region. In the Northeast, PuQu attains the best accuracy (0.7574) and the lowest WD (0.0221),
reflecting excellent distributional alignment. While Aplaud+ demonstrates the highest accuracy
in both the South (0.8232) and West (0.7766), it did not achieve the lowest WD in these regions,
suggesting that its distributional alignment was not optimal compared to other models.

Table 19: ATP Wave 42: Performance by Region (CREGION).

Model Midwest Northeast South West
Acc WD Acc WD Acc WD Acc WD

LoRA 0.7178 0.0539 0.6985 0.0368 0.7226 0.0244 0.6844 0.0390
OPPU 0.7759 0.0705 0.7574 0.0294 0.8171 0.0396 0.7695 0.0142
Cu 0.8008 0.0456 0.7426 0.0221 0.7866 0.0274 0.7660 0.0177
PuQu 0.7967 0.0498 0.7574 0.0221 0.7835 0.0305 0.7695 0.0142
Aplaud+ 0.7801 0.0664 0.7279 0.0809 0.8232 0.0396 0.7766 0.0213

Subgroup Performance in ATP Wave 42 by Gender (SEX). Table 20 presents model performance
by gender for ATP Wave 42, focusing on Trust in Science. Aplaud+ achieves the highest accuracy
among female respondents (0.7805), whereas OPPU yields the highest accuracy for male respondents
(0.7955). In terms of Wasserstein Distance, reflecting distributional alignment, Cu, PuQu, and
Aplaud+ achieve equally strong alignment (WD = 0.0561) among female respondents. For male
respondents, PuQu demonstrates the best distributional alignment, achieving the lowest WD (0.0035).
These results underscore that structured personalization methods, particularly those incorporating
low-rank decomposition and residual correction, effectively enhance prediction accuracy and response
alignment across gender subgroups.

Table 20: ATP Wave 42: Performance by Gender (SEX).

Model Female Male
Acc WD Acc WD

LoRA 0.7098 0.0756 0.7054 0.0451
OPPU 0.7707 0.0585 0.7955 0.0139
Cu 0.7780 0.0561 0.7782 0.0052
PuQu 0.7780 0.0561 0.7799 0.0035
Aplaud+ 0.7805 0.0561 0.7903 0.0191

Subgroup Performance in ATP Wave 42 by Political Affiliation (POLPARTY). Table 21
summarizes performance across political affiliation subgroups for ATP Wave 42, focused on Trust in
Science. Aplaud+ achieves the highest accuracy among Democrats (0.8293), while OPPU yielded the
best accuracy for Republicans (0.8143) and Independents (0.7838). Cu provided the highest accuracy
among respondents identifying as "Other" (0.7828). Regarding Wasserstein Distance (WD), OPPU
has the lowest WD among Democrats (0.0585), Aplaud+ achieved the lowest WD for Republicans
(0.0643), Cu performed best for Independents (0.0113), and LoRA obtains the lowest WD for "Other"
affiliations (0.0505).

C.11.3 ATP WAVE 50

Topic: Family and Relationsihp

Subgroup Performance in ATP Wave 50 by Region (CREGION). Table 22 summarizes model
performance across U.S. regions for ATP Wave 50, which focuses on Family and Relationship topics.
The Aplaud+ model achieved the highest accuracy in the Northeast (0.7023), South (0.6128) and
West (0.6667) regions. Additionally, Aplaud+ achieves the lowest Wasserstein Distance (WD) values
in four regions, highlighting its superior alignment with real response distributions in these regions.
The OPPU model attains the highest accuracy in the Midwest (0.6715), along with competitive WD
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Table 21: ATP Wave 42: Performance by Political Party (POLPARTY).

Model Democrat Republican Independent Other
Acc WD Acc WD Acc WD Acc WD

LoRA 0.6976 0.0732 0.7429 0.1286 0.7095 0.0541 0.6869 0.0505
OPPU 0.8244 0.0585 0.8143 0.0714 0.7838 0.0405 0.7273 0.0707
Cu 0.7902 0.0829 0.7929 0.0786 0.7658 0.0113 0.7828 0.0556
PuQu 0.7854 0.0780 0.8000 0.0714 0.7725 0.0180 0.7727 0.0657
Aplaud+ 0.8293 0.0732 0.8071 0.0643 0.7748 0.0338 0.7525 0.0657

performance. These results demonstrate that structured personalization, particularly through the
Aplaud+ method, significantly enhances both accuracy and distributional fidelity across geographic
subpopulations.

Table 22: ATP Wave 50: Performance by Region (CREGION).

Model Midwest Northeast South West
Acc WD Acc WD Acc WD Acc WD

LoRA 0.5839 0.4088 0.5878 0.4504 0.6015 0.4286 0.5105 0.4852
OPPU 0.6715 0.2409 0.6794 0.2137 0.5940 0.1316 0.6414 0.2869
Cu 0.6277 0.4015 0.6031 0.4351 0.5677 0.3383 0.5359 0.4641
PuQu 0.6204 0.4088 0.6031 0.4351 0.5639 0.3459 0.5359 0.4641
Aplaud+ 0.6642 0.1898 0.7023 0.0992 0.6128 0.0977 0.6667 0.2025

Subgroup Performance in ATP Wave 50 by Gender (SEX). As reported in Table 23, Aplaud+
achieves the best accuracy for both Female (0.6510) and Male (0.6590) subgroups. In addition, it
showed the strongest distributional alignment, with WDs of 0.1000 and 0.2069 respectively. This
supports the robustness of our personalized decomposition strategy between genders.

Table 23: ATP Wave 50: Performance by Gender (SEX).

Model Female Male
Acc WD Acc WD

LoRA 0.5471 0.4333 0.6092 0.4713
OPPU 0.6392 0.1706 0.6322 0.2950
Cu 0.5451 0.3765 0.6322 0.4598
PuQu 0.5431 0.3804 0.6284 0.4636
Aplaud+ 0.6510 0.1000 0.6590 0.2069

Subgroup Performance in ATP Wave 50 by Political Affiliation (POLPARTY). Table 24 illus-
trates the performance across political affiliation subgroups in ATP Wave 50, focusing on family and
relationship issues. The Aplaud+ model demonstrates superior accuracy among Democrats (0.6349)
and Republicans (0.7137), as well as competitive performance for Independents (0.5644) and Others
(0.6442). Additionally, Aplaud+ achieves the lowest Wasserstein Distance (WD) for Democrats
(0.1905) and Republicans (0.0745). The OPPU method also shows strong performance, especially
among Independents, attaining both the highest accuracy (0.5743) and lowest WD (0.0990). These
findings emphasize that structured personalization, particularly the Aplaud+ approach, effectively
captures nuanced subgroup differences and improves alignment with real-world response distributions
across political affiliations.

C.11.4 ATP WAVE 54

Topic: Economic Inequality
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Table 24: ATP Wave 50: Performance by Political Party (POLPARTY).

Model Democrat Republican Independent Other
Acc WD Acc WD Acc WD Acc WD

LoRA 0.5516 0.4405 0.6380 0.5460 0.5686 0.4118 0.4950 0.3861
OPPU 0.5952 0.2460 0.6980 0.2078 0.5743 0.0990 0.6442 0.4356
Cu 0.5595 0.4286 0.5922 0.3725 0.5050 0.3168 0.6135 0.4969
PuQu 0.5556 0.4325 0.5922 0.3765 0.4950 0.3267 0.6135 0.4969
Aplaud+ 0.6349 0.1905 0.7137 0.0745 0.5644 0.0990 0.6442 0.2822

Subgroup Performance in ATP Wave 54 by Region (CREGION). As shown in Table 25,
Aplaud+ achieves the highest accuracy in the Northeast (0.6176). Additionally, the model OPPU
attaining the lowest Wasserstein Distance (WD) in all regions: Midwest (0.1518), Northeast (0.0490),
South (0.0889), and West (0.0810).

Table 25: ATP Wave 54: Performance by Region (CREGION).

Model Midwest Northeast South West
Acc WD Acc WD Acc WD Acc WD

LoRA 0.4167 0.3690 0.5539 0.3431 0.4578 0.3333 0.5048 0.2762
OPPU 0.4821 0.1518 0.5539 0.0490 0.4822 0.0889 0.4714 0.0810
Cu 0.4613 0.1994 0.6078 0.1618 0.4844 0.1667 0.4952 0.1333
PuQu 0.4613 0.1935 0.6029 0.1716 0.4867 0.1733 0.5000 0.1381
Aplaud+ 0.4583 0.1964 0.6176 0.1422 0.4778 0.1578 0.4952 0.1381

Subgroup Performance in ATP Wave 54 by Gender (SEX). Table 26 presents the subgroup
performance by gender for ATP Wave 54. Aplaud+ achieves the highest accuracy for both Female
(0.5000) and Male (0.4980) respondents. In terms of distributional alignment measured by Wasserstein
Distance (WD), OPPU performs best, achieving the lowest WD values for both Female (0.1092) and
Male (0.0714) groups. This indicates that while Aplaud+ was effective in maximizing predictive
accuracy, OPPU better captures the nuanced distributional patterns across gender groups.

Table 26: ATP Wave 54: Performance by Gender (SEX).

Model Female Male
Acc WD Acc WD

LoRA 0.5000 0.2974 0.4306 0.3869
OPPU 0.5086 0.1092 0.4702 0.0714
Cu 0.5043 0.1494 0.4960 0.1806
PuQu 0.5057 0.1566 0.4960 0.1905
Aplaud+ 0.5000 0.1408 0.4980 0.1766

Subgroup Performance in ATP Wave 54 by Political Party (POLPARTY). Table 27 summarizes
model performance across political party subgroups for ATP Wave 54. Aplaud+ achieved the highest
accuracy among Democrats (0.5317), while PuQu had the best accuracy for Republicans (0.5072) and
Cu had the best accuracy for Independents (0.5072). LoRA performed best in terms of accuracy for
the "Other" category (0.4833). Regarding Wasserstein Distance (WD), OPPU showed distributional
alignment, yielding the lowest WD values for Democrats (0.0952), Independents (0.0560), and
"Other" affiliations (0.2611). For Republicans, Aplaud+ achieves the lowest WD (0.1307).

C.11.5 GSS PANEL (2016–2020)

Topic: General Social Trends
We applied the same stratified evaluation to the General Social Survey panel dataset, using Wave 1a
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Table 27: ATP Wave 54: Performance by Political Party (POLPARTY).

Model Democrat Republican Independent Other
Acc WD Acc WD Acc WD Acc WD

LoRA 0.5119 0.3492 0.3750 0.4028 0.4626 0.3376 0.4833 0.3444
OPPU 0.5198 0.0952 0.4583 0.1389 0.4957 0.0560 0.4556 0.2611
Cu 0.5317 0.1865 0.3889 0.2778 0.5072 0.1394 0.4778 0.3056
PuQu 0.5317 0.2024 0.5072 0.1466 0.4833 0.2778 0.3889 0.2778
Aplaud+ 0.5317 0.1786 0.5057 0.1307 0.4778 0.3000 0.3750 0.2917

variables (2016). The table below summarizes model performance by subgroup. Unlike ATP, GSS
includes different varialbes for region.

Subgroup Performance in GSS by Region (CREGION). As shown in Table 28, the Aplaud+
model (APlaud) achieved the highest accuracy and lowest Wasserstein Distance in both SoNew
England and Pacific regions, indicating particularly strong performance in these areas. In contrast,
simpler models such as LoRA and OPPU perform best in different regions, with LoRA attaining
its highest accuracy in the Middle Atlantic (Acc = 0.4171) and OPPU in East North Central (Acc =
0.3596), while OPPU’s lowest WD is observed in the Middle Atlantic (0.2362).

Table 28: GSS: Performance by Sub-Region (CREGION)

Model
East North Central Middle Atlantic SoNew England Pacific

Acc WD Acc WD Acc WD Acc WD

LoRA 0.3483 0.1910 0.4171 0.3266 0.4340 0.3113 0.4545 0.3455
OPPU 0.3596 0.1910 0.4070 0.2362 0.5094 0.2453 0.4364 0.2424
Cu 0.3371 0.2584 0.3970 0.2714 0.5283 0.2264 0.4788 0.2364
PuQu 0.3371 0.2584 0.3970 0.2714 0.5377 0.2170 0.4788 0.2364
Aplaud+ 0.3146 0.2360 0.3970 0.2362 0.5566 0.1887 0.5091 0.2061

Subgroup Performance in GSS by Gender (SEX). Table 29 presents performance by gender
for the GSS data. PuQu achieved the highest accuracy for females (0.4936), while Cu attained the
highest accuracy for males (0.4873). In terms of Wasserstein Distance (WD), PuQu yields the lowest
WD for females (0.1911), and OPPU achieved the lowest WD for males (0.1656).

Table 29: GSS: Performance by Gender (SEX).

Model Female Male
Acc WD Acc WD

LoRA 0.4061 0.3198 0.4682 0.2580
OPPU 0.4162 0.2234 0.4522 0.1656
Cu 0.4289 0.2487 0.4873 0.2006
PuQu 0.4936 0.1911 0.4676 0.1877
Aplaud+ 0.4442 0.2081 0.4809 0.1847

Subgroup Performance in GSS by Political Party (POLPARTY). Table 30 presents model
performance by political party affiliation. For Democrats, our APlaud approach (Aplaud+) achieves
the highest accuracy (0.4778). Among Independents and respondents identifying as Other, several
models—including OPPU, Cu, PuQu, and Aplaud+—reached the maximum possible accuracy
(0.5000). In terms of Wasserstein Distance (WD), both APlaud and OPPU achieve the lowest value
(0.1667) for the Other group, while APlaud yielded the lowest WD for Independents (0.2038).
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Table 30: GSS: Performance by Political Party (POLPARTY)

Model
Democrat Republican Independent Other

Acc WD Acc WD Acc WD Acc WD

LoRA 0.4608 0.1877 0.4088 0.4380 0.4189 0.4038 0.5000 0.1667
OPPU 0.4164 0.2287 0.4891 0.2336 0.4189 0.2226 0.5000 0.1667
Cu 0.4710 0.2014 0.4526 0.3285 0.4340 0.2792 0.5000 0.5000
PuQu 0.4676 0.1877 0.4599 0.3358 0.4340 0.2830 0.5000 0.5000
Aplaud+ 0.4778 0.2048 0.4672 0.2628 0.4377 0.2038 0.5000 0.1667

D EXPERIMENTS DETAILS

In this section, we describe the experimental framework used to simulate responses to human
surveys using large language models (LLM). Specifically, we present the prompt designs, user profile
extraction strategies, and training procedures adopted in our method. Our goal is to enable LLMs
to approximate individual-level human responses through structured personalization, achieved via
APlaud, a parameter-efficient method that requires orders of magnitude fewer parameters per user.

D.1 PROMPTS FOR USER PROFILE

To simulate natural-language user profiles for survey response modeling, we construct textual
summaries that integrate demographic metadata and selected survey responses from ATP data. These
profiles serve as personalized inputs for downstream machine learning tasks, such as response
generation or classification. Each summary captures a user’s background, financial stressors, and
attitudes toward government responsibility. This profile-based approach allows language models
to produce outputs that are grounded in realistic user context, improving both personalization and
interpretability.

Prompt Template for Simulated User Profile

You are a professional assistant tasked with summarizing a user’s demographic charac-
teristics and their economic attitudes, financial stressors, and beliefs about inequality
and government responsibility based on W54 survey data. Your output should be a
single, coherent paragraph suitable for input into a machine learning model.
Instructions:

• Write in complete, natural English sentences.
• Begin by summarizing demographic information: age, sex, race, education, marital

status, religion, religious attendance, political party, political ideology, income, and
region.

• Then summarize the user’s reported financial well-being, including current household
finances, experiences growing up, and ability to meet basic needs.

• Include financial worries such as debt, retirement savings, or healthcare expenses.
• Describe the user’s access to financial resources and assets, such as savings accounts,

investments, or loans.
• Capture beliefs about economic fairness, hard work, and the role of government in

providing housing, healthcare, education, or other forms of support.
• Summarize attitudes toward economic inequality—its perceived causes, who is

responsible for fixing it, and which policy proposals are seen as effective.
• Include how the user thinks current economic conditions impact various groups (e.g.,

middle class, wealthy, poor).
• If available, mention expected future economic conditions and views on powerful

actors like corporations or wealthy individuals.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

• Skip any questions answered with “Refused” or missing responses.
• Do not add interpretation or sentiment beyond what is explicitly stated.

User demographic metadata: {{metadata}}
Survey responses: {{profile_questions}} Generate a concise, fluent paragraph
summarizing the user:

D.2 PROMPTS FOR USER PROFILE AND HISTORY Q&A

We extend the simulated user profiling approach by merging each generated profile with a subset of
previously answered survey questions and responses. This combined context served as an input prompt
to simulate responses to new, unseen test questions. The prompt includes three key components:
(1) a natural-language user background summary generated from structured metadata and survey
answers, (2) the new survey question to be predicted, and (3) a multiple-choice format with clear
answer options. The prompt is explicitly designed to constrain the model’s output to a single valid
choice (e.g., A, B, C), allowing for consistent evaluation and comparison across users and items. This
approach allowed the language model to condition its predictions on both the inferred user profile
and their past answer behavior, enhancing personalization and response coherence.

Prompt Template: Simulated Survey Response with Profile + History

You are user {{user_id}}, with the following background summary:
{{user_profile_paragraph}}

Here is the question:
{{test_question}}

This is a single-answer multiple choice question. Here are the options:
{{A. ..., B. ..., C. ..., etc.}}

Please select the most appropriate answer based on your background.
Respond with only the corresponding uppercase letter (e.g., A, B, C), and format your answer
exactly like this: A
Do not include any explanation, reasoning, or repeat the question.

D.3 DATA AND PROMPTS FOR GENERATING USER PROFILE

We generate each user profile using ChatGPT-4. The profile is constructed from two sources of
information:

• Survey-provided demographic metadata. These metadata fields come directly from the
original survey and include:

– Region (CREGION): Northeast, Midwest, South, West
– Sex (SEX): Male, Female
– Age group (AGE): 18–29, 30–49, 50–64, 65+
– Education level (EDUCATION): Less than high school, High school graduate, Some

college, Associate’s degree, College graduate, Postgraduate
– Citizenship (CITIZEN): Yes, No
– Marital status (MARITAL): Married, Divorced, Separated, Widowed, Never married
– Religion (RELIG): Protestant, Catholic, Jewish, Muslim, Buddhist, Hindu, Atheist,

Agnostic, Other, Nothing in particular
– Religious attendance (RELIGATTEND): More than once a week, Weekly, Monthly,

Few times/year, Seldom, Never
– Political party (POLPARTY): Republican, Democrat, Independent, Other
– Political ideology (POLIDEOLOGY): Very conservative, Conservative, Moderate,

Liberal, Very liberal
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– Race/ethnicity (RACE): White, Black, Asian, Hispanic, Other
– Income (INCOME): < 30k, 30− 50k, 50− 75k, 75− 100k, > 100k

• 10 survey questions most relevant to user characterization. These are selected among
the user’s answered items and reflect personal attitudes, preferences, or values. To avoid
information leakage, we remove these 10 profile-related questions prior to constructing the
train/validation/test split.

The generated profile is a neutral paragraph rewriting the demographic metadata and the selected 10
questions. No additional information is inferred.

The exact prompt used to generate the profile is shown below.

Prompt for Generating the User Profile

You are a professional assistant tasked with summarizing a user’s demographic informa-
tion and survey response profile in a clean, coherent paragraph for input into a machine
learning model.
Instructions:

• Use complete, natural English sentences.
• Start by summarizing demographic information (age, sex, race, education, marital

status, religion, political ideology, income, device type, language).
• Then summarize the user’s self-reported life satisfaction.
• Then summarize their leadership values and views about business or political leader-

ship, based only on answered questions.
• Then summarize their beliefs about gender and leadership, if any.
• Skip any survey questions where the user answered “No answer.”
• Be neutral and descriptive, without adding interpretation.

User demographic metadata:
{metadata}

Survey responses (10 most profile-relevant items):
{profile_text}

Generate a concise, fluent paragraph summarizing the user.

E DETAILS ON HUMAN STUDIES DATA: PEW ATP AND GENERAL SOCIETY
SURVEY

E.1 PEW RESEARCH ATP

The American Trends Panel (ATP) is a nationally representative panel of U.S. adults conducted by the
Pew Research Center. ATP is designed to study a wide variety of topics, including politics, religion,
internet usage, and family life. We analyze sampled questions from four waves, selecting only ASK
ALL questions—that is, questions posed to all respondents regardless of subgroup membership or
branching logic. In the original ATP design, many questions include randomized Likert-scale options
(e.g., positive-to-negative or vice versa). To align with this, we also randomize the presentation order
of answer choices in our LLM prompts.

E.1.1 ATP WAVE 36

Wave 36 (fielded June 19 – July 2, 2018) explores public attitudes toward gender representation in
leadership roles. While a majority of Americans express support for having more women in top
leadership positions, many remain skeptical that gender parity will be achieved. Views vary notably
by political affiliation and gender, reflecting broader social divides.
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Sample Questions from ATP Wave 36

Q1. In general, how important, if at all, is it to you for someone in a top executive business position to
provide guidance or mentorship to young employees?
Options: (A) Essential (B) Important, but not essential (C) Not important (D) Refused

Q2. Do you think that men and women in leadership roles are...
Options: (A) Basically similar (B) Basically different (C) Refused

Q3. Who generally has a better approach to leadership?
Options: (A) Women (B) Men (C) Neither (D) Refused

Q4. What is the ideal situation for the number of women in high political office?
Options: (A) More, but still fewer than men (B) Equal (C) More than men (D) Refused

Q5. What is the ideal number of women in top executive business positions?
Options: (A) More, but still fewer than men (B) Equal (C) More than men (D) Refused

Q6. As more women run for office...
Options: (A) Gender parity is inevitable (B) Men will still dominate (C) Refused

Q7. As more women enter management...
Options: (A) Gender parity is inevitable (B) Men will still dominate (C) Refused

Q8. How much would more women in leadership improve life for women?
Options: (A) A lot (B) Some (C) Not much (D) Nothing (E) Refused

Q9. How much would more women in leadership improve life for men?
Options: (A) A lot (B) Some (C) Not much (D) Nothing (E) Refused

Q10. How much would more women in leadership improve life for all Americans?
Options: (A) A lot (B) Some (C) Not much (D) Nothing (E) Refused

ATP WAVE 42

Wave 42 of the American Trends Panel, conducted from January 7 to January 21, 2019, focuses on
public attitudes toward scientists, trust in science, and perceptions of the scientific method. The survey
explores how Americans view the role of scientists in public policy, their confidence in scientific
experts, and whether science is seen as a force for societal good. Respondents were also asked about
the objectivity and integrity of scientists, as well as how much trust they place in scientists from
different institutional backgrounds (e.g., industry, government, academia). The data provide insight
into partisan and demographic divisions in trust toward scientific information and decision-making
processes.

Sample Questions from ATP Wave 42

Q1. Compared with twenty years ago, do you think developments in science have made people’s lives...
Options: (A) Better (B) Worse (C) About the same

Q2. Looking ahead to the next twenty years, do you think developments in science will make people’s
lives...
Options: (A) Better (B) Worse (C) About the same

Q3. Overall, would you say science has had a mostly positive effect on our society or a mostly negative
effect on our society?
Options: (A) Mostly positive (B) Mostly negative (C) Equal positive and negative effects

Q4. How much confidence, if any, do you have in scientists to act in the best interests of the public?
Options: (A) A great deal (B) A fair amount (C) Not too much (D) No confidence at all
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Q5. Which of these statements comes closer to your own view?
Options: (A) Scientists should take an active role in public policy debates

(B) Scientists should stay out of public policy debates

Q6. Which of these statements comes closer to your own view?
Options: (A) Public opinion should guide scientific policy

(B) Issues are too complex for public opinion to guide

Q7. In general, would you say scientific experts are...
Options: (A) Usually better (B) Usually worse (C) Neither

Q8. When you hear research is reviewed by an independent committee, does this make you...
Options: (A) Trust more (B) Less (C) No difference

Q9. Which best describes what you think about the scientific method?
Options: (A) Accurate conclusions (B) Can produce any desired conclusion

Q10. Which of these statements comes closer to your view?
Options: (A) Judgments based solely on facts (B) Judgments as biased as others’

ATP WAVE 50

Wave 50 of the American Trends Panel was conducted from June 25 to July 8, 2019, with responses
from 9,834 U.S. adults. This wave focused on family life, romantic relationships, parenting, cohabi-
tation, marriage expectations, and household dynamics. The survey included split-form designs to
compare attitudes toward men and women across different relationship and parenting roles. Ques-
tions also explored satisfaction with family life, financial situations, and perceived social support.
Responses were collected online, with weighting applied to ensure national representativeness across
demographics such as age, gender, race, education, political affiliation, and internet access.

Sample Questions from ATP Wave 50

Q1. In general, how important is it for a man to have a job or career he enjoys in order to live a fulfilling
life?
Options: (A) Essential (B) Important, but not essential (C) Not important

Q2. In general, how important is it for a woman to have a job or career she enjoys in order to live a
fulfilling life?
Options: (A) Essential (B) Important, but not essential (C) Not important

Q3. What do you think is the ideal situation for women with young children?
Options: (A) Working full-time (B) Working part-time (C) Not working for pay

Q4. What do you think is the ideal situation for men with young children?
Options: (A) Working full-time (B) Working part-time (C) Not working for pay

Q5. Do you think couples who live together before marriage have a...
Options: (A) Better chance at a successful marriage (B) Worse chance (C) Doesn’t make much
difference

Q6. How much pressure, if any, do you feel from society to marry your partner?
Options: (A) A lot (B) Some (C) Not too much (D) No pressure at all

Q7. How do you feel about the way household chores are divided between you and your partner?
Options: (A) Very satisfied (B) Somewhat satisfied (C) Somewhat dissatisfied (D) Very
dissatisfied

Q8. Have you ever reduced your work hours due to balancing parenting and career?
Options: (A) Yes (B) No
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Q9. Do you think couples who are not married but living together can raise children as well as married
couples?
Options: (A) Yes (B) No

Q10. Do you trust your partner to handle money responsibly?
Options: (A) A great deal (B) A fair amount (C) Not much (D) Not at all

ATP WAVE 54

Wave 54 of the American Trends Panel was conducted from September 16 to 29, 2019, with responses
from 6,878 U.S. adults. This wave focused on attitudes toward gender roles, parenting, household
responsibilities, and societal expectations. Respondents were sampled across five strata to improve
representation of underrepresented groups. The survey was administered online, with weights applied
to correct for demographic and behavioral differences. The margin of error for the weighted sample
is ±1.59 percentage points.

Sample Questions from ATP Wave 54

Q1. Would you say there is...
Options: (A) Too much economic inequality (B) Too little economic inequality (C) About the
right amount

Q2. Do you think the U.S. economic system...
Options: (A) Requires only minor changes (B) Requires major changes (C) Needs to be com-
pletely rebuilt

Q3. How much responsibility should the federal government have in reducing economic inequality?
Options: (A) A lot (B) Some (C) Only a little (D) None

Q4. How much does the current tax system contribute to economic inequality?
Options: (A) A great deal (B) A fair amount (C) Not too much (D) Not at all

Q5. Do you think some people start out with more opportunities than others?
Options: (A) Contributes a great deal to inequality (B) A fair amount (C) Not too much (D)
Not at all

Q6. How much would raising the federal minimum wage reduce economic inequality?
Options: (A) A great deal (B) A fair amount (C) Not too much (D) Nothing at all

Q7. How much would expanding Medicare to cover all Americans reduce economic inequality?
Options: (A) A great deal (B) A fair amount (C) Not too much (D) Nothing at all

Q8. Should the government invest in education and job training, or give direct financial assistance?
Options: (A) Invest in education and job training (B) Give direct assistance

Q9. Do you think filling out the U.S. census will...
Options: (A) Benefit you personally (B) Harm you personally (C) Neither benefit nor harm

Q10. How important is it for the government to provide a high-quality K–12 education?
Options: (A) Yes, it’s the government’s responsibility (B) No, it’s not

Q11. Thinking about your household’s financial situation, how much are you affected by job availability in
your area?
Options: (A) A great deal (B) A fair amount (C) Not too much (D) Not at all

Q12. How often do you worry about the cost of health care?
Options: (A) Every day (B) Almost every day (C) Sometimes (D) Rarely (E) Never

Q13. Have you received government assistance such as SNAP, Medicaid, or unemployment benefits in the
past 12 months?
Options: (A) Yes (B) No
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Q14. How much does your family’s financial situation affect your children’s ability to succeed in life?
Options: (A) A great deal (B) A fair amount (C) Not too much (D) Not at all

Q15. How do you rate current U.S. economic conditions?
Options: (A) Excellent (B) Good (C) Only fair (D) Poor

GENERAL SOCIAL SURVEY (GSS)

The General Social Survey (GSS) 2016–2020 Panel is a longitudinal dataset that re-interviewed
respondents from the 2016 and 2018 GSS cross-sectional samples to measure social and attitudinal
change over time. Participants from these earlier waves were invited to complete a follow-up survey
in 2020. The resulting three-wave panel study includes responses from 2016 (Wave 1a), 2018 (Wave
1b), and 2020 (Wave 2).

Sample Questions from the GSS Panel

Q1. What do you think the chances are these days that a white person won’t get a job or promotion while
an equally or less qualified Black person gets one instead?
Options: 1 = Very likely; 2 = Somewhat likely; 3 = Not very likely

Q2. In general, do you think the courts in this area deal too harshly or not harshly enough with criminals?
Options: 1 = Too harshly; 2 = Not harshly enough; 3 = About right

Q3. Should divorce in this country be easier or more difficult to obtain than it is now?
Options: 1 = Easier; 2 = More difficult; 3 = Stay as is

Q4. Do you feel that the demands of your family life interfere with your job?
Options: 1 = Always; 2 = Often; 3 = Sometimes; 4 = Hardly ever; 5 = Never

Q5. Have you ever given up or would you give up good job opportunities for the benefit of your family
life?
Options: 1 = Yes, and would again; 2 = Yes, but wouldn’t again; 3 = No, but would; 4 = No, and
wouldn’t

Q6. A working mother can establish just as warm and secure a relationship with her children as a mother
who does not work.
Options: 1 = Strongly agree; 2 = Agree; 3 = Disagree; 4 = Strongly disagree

Q7. It is much better for everyone involved if the man is the achiever outside the home and the woman
takes care of the home and family.
Options: 1 = Strongly agree; 2 = Agree; 3 = Disagree; 4 = Strongly disagree

Q8. Because of past discrimination, employers should make special efforts to hire and promote qualified
women.
Options: 1 = Strongly agree; 2 = Agree; 3 = Neither; 4 = Disagree; 5 = Strongly disagree

Q9. Do you favor or oppose preferential hiring and promotion of women?
Options: 1 = Strongly favor; 2 = Not strongly favor; 3 = Not strongly oppose; 4 = Strongly oppose

Q10. Most men are better suited emotionally for politics than are most women.
Options: 1 = Agree; 2 = Disagree

Q11. A preschool child is likely to suffer if his or her mother works.
Options: 1 = Strongly agree; 2 = Agree; 3 = Disagree; 4 = Strongly disagree

Q12. Should the government promote equality between men and women?
Options: 1 = Definitely should; 2 = Probably should; 3 = Probably should not; 4 = Definitely should
not
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Q13. Compared with American families in general, how would you rate your family income?
Options: 1 = Far below average; 2 = Below average; 3 = Average; 4 = Above average; 5 = Far above
average

Q14. Are you satisfied with your present financial situation?
Options: 1 = Pretty well satisfied; 2 = More or less satisfied; 3 = Not satisfied at all

Q15. Do you think there is any area near here where you would be afraid to walk alone at night?
Options: 1 = Yes; 2 = No

F RELATION WITH RECOMMENDER SYSTEM

Personalization has long been a central theme in recommender systems, where models infer user
preferences from historical interactions and estimate item relevance over a large catalog. Concep-
tually, survey QA prediction has a distant parallel to collaborative filtering. When responses are
binarized (yes/no or agree/disagree), a survey can be represented as a Respondents× Items matrix
where each entry reflects a respondent’s position. For multi-level items such as Likert scales, each
question–response option can be expanded into a set of binary indicators–for example, mapping a
5-point item into five item-specific binary variables – yielding a uniform binary representation across
all items. Alternatively, when responses reflect ordered categories, these items may be encoded
using a single ordinal score (e.g., 1–5), which preserves the inherent ordering of the response levels.
Together, these encoding strategies allow heterogeneous survey instruments to be transformed into
a structured matrix format that is compatible with downstream modeling. From this perspective,
predicting a respondent’s answer to a new item resembles preference completion in recommender
systems.

Despite this superficial similarity, the underlying formulation is fundamentally different. Modern
recommendation is typically framed as a learning-to-rank problem, whereas personalized survey
response prediction does not involve ranking. A second key distinction concerns the observation
regime: recommender systems operate under extreme sparsity, where each user interacts with only a
tiny fraction of the item space, and models must infer preferences from partial interactions across
many users. In contrast, survey datasets provide complete responses over a shared set of questions,
and user preference is inferred directly from how individuals semantically interpret and answer
natural-language survey items. As a result, our problem is closer to modeling user-specific semantic
judgments than to reconstructing latent preference structures from sparse interactions.

Classical recommendation methods such as matrix factorization(32), NeuMF(31), or LightGCN(30)
rely exclusively on latent collaborative filtering signals without any item semantics. These approaches
treat items as no-smenantic indices and assume user–item interactions follow a modeled structure.
Such assumptions do not hold in our setting: survey questions have explicit wording and domain
meaning, and since every user observes the same question set, collaborative filtering cannot exploit
sparsity or cross-user item co-occurrence patterns, nor can it model the semantic structure shared
across questions. As a result, traditional recommendation techniques are not directly applicable to
personalized survey response generation.

More recently, large language models have been incorporated into recommender systems. Early
studies (59; 13; 84) explore LLM’s zero-shot/few-shot potential via in-context learning. The
mismatch between LLMs’ general-purpose training and the specific demands of recommendation
tasks results in inadequate performance. To better align LLM with the recommendation domain,
one research line would formulate recommendation as a sequential generation task and methods
such as P5 (23), M6-Rec (12) and serialize user–item histories into natural-language prompts and
train an LLM to generate the next item or a ranked list. Another research line would use LLMs as
auxiliary modules to enrich representations which leverages LLMs to augment item/user embeddings
or to support re-ranking such as GPT4Rec (52), LaMAR (77), LLM4Rec (21). To the best of
our knowledge, existing LLM-based recommenders generally adopt a one-size-fits-all design and
compress the personalized information into input tokens either by hard or soft prompts. Thus, while
conceptually related through the lens of personalization, our framework achieves personalization
model-wise and introduces a parameter-efficient personalization not present in current recommender
system literature.
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Overall, our contribution is orthogonal to the development of recommendation systems. We introduce
(i) an SVD-based shared subspace (U, V ) tailored specifically for structured survey QA, and (ii) a
per-user lightweight personalization layer (Cu, αu, βu) learned within that subspace. This design
directly captures individual answer preferences under a shared question structure. To the best of our
knowledge, no existing recommendation method performs LLM-powered low-rank shared-subspace
personalization learning, making our approach distinct in both problem setting and technical design.

G LIMITATION

Our evaluation is confined to a limited set of survey datasets, necessitating future work to validate
generalization across more domains and populations. APlaud’s per-user personalization relies on the
quantity and quality of historical responses. Users with very limited past data (e.g., fewer than 20-40
questions) may experience less robust personalization, potentially leading to overfitting or reduced
accuracy. While effective for survey prediction, APlaud’s direct applicability to other personalized
LLM tasks (e.g., personalized text generation, conversational agents) without further adaptation
remains relatively unexplored.

H LLM USAGE STATEMENT

We used ChatGPT solely for polishing writing at the sentence and paragraph level. The content and
contributions of this paper were created by the authors. All text refined with ChatGPT has been
carefully checked to avoid errors.
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