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Abstract This paper presents a factor graph-based model that takes comorbidities
and clinicalmeasurements as inputs and predicts intensive care unit (ICU) admissions
3 days and 7 days in advance for hospitalized COVID-19 patients. We applied the
proposed model on a COVID-19 cohort from a large medical center in Chicago (with
records fromMarch 2020 to August 2021). We used the first occurrence of the Delta
variant in theU.S., February 2021, as the threshold to divide the dataset into pre-Delta
data (533 patients) and post-Delta data (56 patients). Our model demonstrated 0.82
AUC on the pre-Delta data and 0.87 AUC on the post-Delta data in 7-day predictions.
Our contribution is a model that (i) explains relationships between different clinical
features and provides interpretations for ICU admissions, (ii) outperforms existing
methods for 7-day predictions, and (iii) maintains more robustness than existing
models in predictions under the influence of the Delta variant. The proposed model
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could be used as a predictive tool in clinical practice to help clinicians in decision-
making by predicting which patients will need ICU support in the future.

Keywords COVID-19 prognosis · Predictive biomarkers · Comorbidities · Factor
graph · Probabilistic graphical model

1 Introduction

The spread of COVID-19 has recently been influenced by vaccines [1], which have
stymied the spread of the disease, and the Delta variant [2], which has an altered
pathology progression and has become the dominant variant of the virus [3]. These
changes have presented new challenges in predicting COVID-19 disease progression
among hospitalized patients, and prediction systems that support clinical decision-
making will be crucial for managing patients’ health to reduce fatality rates. In this
paper, we present a probabilistic graphical model (PGM) for inferring ICU admis-
sions in hospitalized COVID-19 patients. We make 3-day and 7-day predictions
on ICU admissions based on a patient’s comorbidities and clinical measurements
(including laboratory tests and vitals). Specifically, the output labels are binary, indi-
cating whether a patient will be admitted to the ICU or not.

Several prognostic models were developed during the early phases of the pan-
demic [4–7], including ones that used logistic regression, support vector machine,
decision tree, and random forest approaches. Although these models performed well
on the pre-Delta data, their performance on post-Delta data has not been evaluated.
The altered pathology progression of the Delta variant is likely to affect the perfor-
mance of models that were trained on pre-Delta data significantly.Moreover, the data
available from the post-Delta period are limited, which poses additional challenges
for training models with a large number of parameters.

To address those challenges, we developed a factor graph (FG) model [8], a
type of PGM that has found success in a variety of applications, such as clinical
diagnosis [9, 10] and cyber-security [11, 12]. FGs allow us tomake predictions based
on longitudinal data. Central to the FG model are factor functions (FFs), which are
mathematical formulae that encode the relationships among clinical measurements,
previous ICU admission status, and future ICU admission status. These relationships
are inspired by domain knowledge and learned from statistical analysis, which can
be reliably done with limited training data. In addition, FGs are more interpretable
due to their graphical representation, which is beneficial in a clinical setting.

We evaluated our model with data from 589 patients hospitalized at the University
of Illinois Hospital, a large academic hospital in Chicago. The data contain electronic
health records (EHR) from March 2020 to August 2021, with 533 patients in the
pre-Delta data and 56 patients in the post-Delta data. To demonstrate our model’s
performance in predicting ICU admissions and the model’s robustness against the
Delta variant, we evaluated the model on both the pre-Delta data and post-Delta data.
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Because of the limited size of the post-Delta data, we trained the model only on the
pre-Delta data. The key results are as follows:

• Our FGmodel outperforms state-of-the-art methods in predicting ICU admissions
7 days in advance (with 0.82 AUC on pre-Delta data, and 0.87 AUC on post-Delta
data) and has comparable performance on 3-day predictions (with 0.81 AUC on
pre-Delta data, and 0.73 AUC on post-Delta data).

• Theproposedmodel’s performance ismore robust than the state-of-the-artmethods
to altered pathology progression in the post-Delta period. While the AUC and
accuracy of most competing methods drop substantially on the post-Delta data,
our model’s AUC and accuracy changes for post-Delta data stabilize within small
ranges (9.9%–13.5%).

• The FFs in ourmodel explained the relationship between greater severity of comor-
bidities and higher risk of ICU admission for COVID-19 patients. Moreover, we
also identified the change in predictive biomarkers for different prediction time
windows.

• Our model can be used as a tool in clinical practice to suggest appropriate place-
ment of patients, either in regular beds or the ICU. The flexibility of our model’s
FF constructions and its ability to work from limited training data allows it to be
easily adapted for other diseases and new viruses with small data samples.

2 Model

In this section, we discuss how we constructed the FG model. We first provide an
overview of the model’s structure and define the variables. Then, we explain the
methods used for variable selection and factor function construction. Finally, we
explain how we perform prediction with the inference algorithms.

2.1 Model Overview

The proposed model (see Fig. 1) builds on FGs to predict the ICU admissions of
COVID-19 patients d days in advance (d = 3 and d = 7). An FG [8] is represented
byG = (V ∪ F, E), where V = {v1, ..., vn} are the variable nodes, F = { f1, ..., fm}
are the factor nodes, and E = {(vp, fq)|vp ∈ Vq , fq ∈ F} are the edges connecting
each factor fq to its neighbors vp ∈ Vq , where Vq ⊆ V . The FG is a bipartite graph
between variables V and factors F , where the factor nodes fq ∈ F represent FFs and
are non-negative. While the values of some nodes E ⊆ V are observed (or provided
in the data), the values of other nodes S ⊆ V are hidden (and need to be inferred),
where V = E ∪ S.

When the above FGmodel is applied to ICU admissions for hospitalized COVID-
19 patients, the observed events are E = EC ∪ EL (where EC = {eci |ci ∈ C} are
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Fig. 1 Approach Overview. a For each comorbidity, lab/vital distributions are plotted with respect
to the label (ICU/No ICU). The thresholds that best separate the distribution are computed. b
Thresholds are used to categorize the lab/vital values and calculate the joint probabilities to construct
FFs. (C) FGs are constructed by connecting FFs with observed events and hidden states. Predictions
are made based on a threshold for the hidden state probabilities learned from the training data.
C = {c1, ..., c6} is a set of comorbidity nodes; L I,tk =

⋃
i∈I Li,tk is a union of the sets of predictive

biomarkers Li for the patient’s comorbidities ci ∈ CI ; fC = { fc1 , ..., fc6 } is a set of Comorbidity
FFs; fCI ,L I =

⋃
i∈I (

⋃
l j∈Li

fci ,l j ) is a union of the Bio FFs

comorbidities and EL = {el j ,t |l j ∈ L , t ∈ Tn} are lab/vital measurements), and the
hidden states S = {st |t ∈ Tn} are the future ICU admissions d days in advance. Tn =
{t1, ..., tn} are the timestamps of the observed events. (The intervals in this model
have the granularity of a single day because labs/vitals are drawn on a daily basis.)
The probabilities of the hidden states are estimated using the belief propagation (BP)
algorithm [13] with a factorized joint probability distribution of E and S:

P(E, S) = 1
Z

∏

a

fa(Va), (1)

where Va = (Ea ∪ Sa), Va ⊆ E ∪ S, and E ∪ S = ⋃
a Va . Z is a constant to normal-

ize the product of factor functions and ensure that P is a valid probability distribution.
While the BP algorithms only compute the probability of each hidden state, a thresh-
old p̂ was learned from the training data to achieve the highest accuracy for the
prediction task. If the probability of ICU admission is greater than p̂, then the future
state is predicted to be ICU admission. Otherwise, it is predicted to be No ICU
admission. The threshold p̂ is the best value that separates the estimated posterior
probability distributions of both the ICU class and the No ICU class, evaluated by
the F1 score.
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2.2 Variable Selection

The input features of the model consist of comorbidities, laboratory tests, and vitals.
We chose 6 comorbidities that are common in the U.S. [14] as the inputs in our FG
model, including hypertension, chronic obstructive pulmonary disease (COPD), type
2 diabetes, renal disease, heart failure, and obesity, represented as C = {c1, ..., c6}.

We converted lab/vital values into binary values to facilitate probabilistic model
construction (see Fig. 1a).More specifically,we plotted the distributions of labs/vitals
across the hidden states (ICU/No ICU) and found the threshold that best distinguishes
the two distributions (that of the ICU states, and that of the No ICU states), when the
F1 score is used as the evaluation metric. We then converted the lab/vital values to
binary depending on whether their values were higher or lower than the thresholds.
We introduced the influence of comorbidities on ICU admission by analyzing the
lab/vital values conditioned on the comorbidity (i.e., we studied the lab/vital dis-
tributions for each comorbidity, and also for patients without comorbidities). For
the purpose of dimensionality reduction, for each comorbidity, we selected only 3
labs/vitals to use in constructing the FGs; we called them predictive biomarkers. This
process was developed in consultation with our clinical co-authors. The predictive
biomarkers were the 3 labs/vitals with the highest F1 scores for each type of comor-
bidity; the 3 labs/vitals with the highest F1 scores were also selected for patients
without comorbidities.

2.3 Factor Function Construction

We designed 3 kinds of FFs to explain the relationship among comorbidities, labo-
ratory tests, vital measurements, and ICU admission after d days, including (i) the
Transition FF, ftrans ; (ii) the Comorbidity FFs, fci ; and (iii) the Bio FFs, fci ,l j . The
mathematical formulae for calculating the FFs are listed in Table 1.

Transition FF. The Transition FF ftrans(stk , stk+1)measures the probability that hid-
den state stk will transition to hidden state stk+1 , P(stk , stk+1).

Comorbidity FFs. The Comorbidity FFs fci (eci , st0) capture the joint probabilities
of the patients’ comorbidities and their initial hidden state st0 , P(eci , st0).

Bio FFs. To incorporate the impact of comorbidities in each step of inference,
we designed the Bio FFs fci ,l j (el j ,t , st ) to capture the joint probabilities of the
patients’ lab/vital values and their hidden state at time t given their comorbidi-
ties, P(el j ,t , st |eci ). l j ∈ Li . el j ,t are the binary lab/vital values categorized using the
thresholds chosen in Sect. 2.2. The FFs of the predictive biomarkers are independent
of each other, so the model can tolerate missing values for some of the predictive
biomarkers when inferring the hidden states.
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Table 1 The formulas to construct factor functions (FFs)
FF(s) Equation Comments

Trans. ftrans(sa, sb) =∑

!,t∈Tn−1

1{stk =sa ,stk+1=sb }
∑

!,tk′ ∈Tn−1,s
′
a ,s

′
b∈B

1{stk′ =s′a ,stk′+1
=s′b }

Each entry is the normalized
frequency of a type of transition

Comorb. fci (c, s) =
∑
!

1{eci =c,st0=s}
∑

!,c′∈B,s′∈B
1{eci =c′,st0=s′}

Each entry is the joint probability that
the patient would (or would not) have
comorbidity ci with initial hidden
state s

Bio fci ,l j (l, s) =∑

!ci ,t∈Tn−1

1{el j ,t=l,st=s}
∑

!ci ,t∈Tn−1,l′,s′∈B
1{el j ,t=l′,st=s′}

Each entry is the joint probability that
patients with comorbidity ci will have
labs/vitals l j above or below the
selected threshold with hidden state s

∗ Abbreviations: Trans., Transition; Comorb., Comorbidity; !, all patients; !ci , all patients with
comorbidity ci ; Tn−1 = {t0, ..., tn−1}; B = {True, False}. Constraints: c, l, s, sa, sb ∈ B

2.4 Inference Algorithms

Each patient’s comorbidity information was first collected upon his or her admission
to the hospital. Thus, the comorbidity nodes were first added as the initial events
eci , and a corresponding initial hidden state st0 was inferred with the Comorbidity
FFs fci . Then, during the patient’s stay in the hospital, his/her labs/vitals were mea-
sured. Depending on the comorbidities CI ⊆ C he/she had, measurements of the
corresponding predictive biomarkers l j ∈ Li , where i ∈ I , were added to the FG as
events el j ,tk . A corresponding hidden state stk was also added. The Bio FFs fci ,l j were
connected to events el j ,tk , eci and to the hidden state stk . The Transition FF ftrans
was connected to the previous hidden state stk−1 and the new hidden state stk . The
probabilities of the hidden states S, denoted by PS = {pt |t ∈ Tn}, were computed
using the BP algorithm, for which pt is the probability that hidden state st is ICU.
When pt is greater than p̂, the hidden state is predicted to be ICU. Otherwise, it is
predicted to be No ICU.

3 Experimental Setup

In this section, we describe our experimental setup and how we evaluated the pro-
posed model, including the cohort characteristics and the evaluation methods.
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Table 2 Demographics and comorbidities of hospitalized COVID-19 patients
Pre-delta Post-delta

d = 3 d = 7 d = 3 d = 7

Total∗, N 364 175 24 11

Age,
median(I QR)

57 (45–68) 60 (49–71) 58 (44–66) 60 (46–66)

Sex, N (%) Female 193 (53.0%) 84 (48.0%) 13 (54.1%) 6 (54.6%)

Male 171 (47.0%) 91 (52.0%) 11 (45.8%) 5 (45.5%)

Comorbidity,
N (%)

N/A 229 (62.9%) 107 (61.1%) 11 (45.8%) 6 (54.5%)

Hypertension 80 (22.0%) 40 (22.9%) 8 (33.3%) 3 (27.3%)

COPD 12 (3.3%) 4 (2.3%) 0 (0.0%) 0 (0.0%)

Type 2
diabetes

66 (18.1%) 32 (18.3%) 6 (25.0%) 4 (36.4%)

Renal disease 35 (9.6%) 19 (10.9%) 5 (20.8%) 2 (18.2%)

Heart failure 12 (3.3%) 5 (2.9%) 1 (4.2%) 0 (0.0%)

Obesity 13 (3.6%) 6 (3.4%) 0 (0.0%) 0 (0.0%)
∗Only patients with at least one lab/vital measurement were included in our analysis. Hence, our
dataset was reduced to 388 patients in total. Depending on the prediction tasks (d = 3 or d = 7),
the number of valid patients in each dataset varies. Abbreviations: N/A, no comorbidity; COPD,
chronic obstructive pulmonary disease

3.1 Dataset

We validated the proposed model on a COVID-19 dataset collected from the Uni-
versity of Illinois Hospital in Chicago, Illinois. This dataset contains EHRs of 589
patients who were hospitalized with COVID-19 between March 2020 and August
2021, with 533 patients in the pre-Delta data and 56 in the post-Delta data. Demop-
graphics and comorbidity information of the patients are listed in Table 2. When the
data contain multiple measurements of the same lab/vital within the same day, we
used only the latest lab/vital value for that day. Since we want to predict the patients’
ICU admissions d days in advance (d = 3 and d = 7), we treated future ICU admis-
sion status as a hidden state to be inferred using current clinical measurements.

3.2 Model Evaluation

We evaluated the model performance with an 80:20 split into training and testing
sets on the pre-Delta data. Since the events and states are time-dependent, it would
not have made sense to randomly split the data; doing so might result in use of future
data points to train the model and predict data points in the past. Thus, the training set
consists of the records of the first 80% of the patients admitted during the pre-Delta
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period, and the testing set consists of the records of the remaining 20% of the pre-
Delta-period patients. We performed variable selection and trained the FFs as well as
the threshold p̂ on the training set. The accuracy of ICU admission predictions was
evaluated on both the testing set and the post-Delta data, using AUC and accuracy
as the metrics. We compared the prediction performance of the proposed framework
with that of other state-of-the-art methods, which used logistic regression, support
vector machine, decision tree, and random forest approaches [4–6]. Furthermore,
to evaluate the value of using previous ICU admission status to predict future ICU
admission status, we assessed the proposed model without the Transition FFs, i.e.,
the case when the previous hidden state does not share an edge with the current
hidden state (w/o Tr.).

4 Results

In this section, we discuss the experimental results for the FGmodel in making 3-day
and 7-day predictions on ICU admissions of hospitalized COVID-19 patients. We
provide details on the predictive biomarkers of each comorbidity and their thresholds,
and we explain the model performance on different prediction tasks.

4.1 Predictive Biomarkers

We selected 3 predictive biomarkers for each group, including the group without
comorbidities, and the groups with each comorbidity (see Table 3). The dataset for
7-day prediction does not contain enough patients (N < 10)with the comorbidities of
COPD, heart failure, and obesity, so we merged those patients into the group without
comorbidities. From the results, we found that some of the predictive biomarkers are
indicators of the severity of the comorbidities.Moreover, we found that the predictive
biomarkers differ between the 3-day and 7-day predictions. These findings can help
us better understand the critical factors for predicting ICU admission of hospitalized
COVID-19 patients and design the factor functions using domain knowledge.

4.2 Model Validation

We validated the ability of our model to infer ICU admissions for hospitalized
COVID-19 patients after d days (d = 3 and d = 7) given their comorbidities, labora-
tory tests, and vital measurements. Themodel’s performancewas comparedwith that
of several state-of-the-art models (see Table 4). Compared to the existing methods,
our model achieved the best performance for 7-day predictions and comparable per-
formance on 3-day predictions. Moreover, the proposed model outperformed the FG
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Table 3 Predictive biomarkers for ICU admission given the comorbidities
Comorbidity
(ci )

d = 3 d = 7

N Labs/Vitals
(Li )

ICU
admission

N Labs/Vitals
(Li )

ICU
admission

N/A 229 ALB
%LYMPH
RBC

≤3.4 g/dL
≤15.0%
≤4.2 M/uL

107 CRP
ALB
AST

> 32.4 mg/L
≤ 3.5 g/dL
> 23.0 U/L

Hypertension 80 ALB
WBC
RBC

≤3.4 g/dL
> 5.8 K/uL
≤4.6 M/uL

40 %LYMPH
WBC
RBC

≤34.0%
> 3.3 K/uL
≤ 4.6 M/uL

COPD 12 CRP
WBC
%MONO

> 19.8 mg/L
> 6.0 K/uL
≤11.1%

4 –
–
–

–
–
–

Type 2
diabetes

66 RBC
CRP
HGB

≤4.6 M/uL
> 129.6 mg/L
≤11.6 g/d

32 CRP
WBC
ALB

> 55.8 mg/L
> 5.0 K/uL
≤3.5 g/dL

Renal disease 35 WBC
ALB
%MONO

> 6.6 K/uL
≤ 3.4 g/dL
≤8.3%

19 WBC
AST
ALB

> 4.1 K/uL
> 16.0 U/L
≤3.5 g/dL

Heart failure 12 HGB
RBC
WBC

≤11.6 g/dL
≤3.9 M/uL
> 7.1

5 –
–
–

–
–
–

Obesity 13 ALB
%LYMPH
BUN

≤3.8 g/dL
≤17.5%
> 16.1 mg/dL

6 –
–
–

–
–
–

∗Abbreviations: N/A, no comorbidity; COPD, chronic obstructive pulmonary disease; ALB, albu-
min; AST, aspartate aminotransferase; BUN, blood urea nitrogen; CRP, C-reactive protein; HGB,
hemoglobin;%LYMPH, lymphocyte percentage;%MONO,monocytes percentage; RBC, red blood
cell; WBC, white blood cell

model without Transition FF, demonstrating that a combination of past and current
observations improves prediction performance. Our model also demonstrated better
robustness in prediction for data affected by the Delta variant; it had a relatively
small decrease (9.9% to 13.5%) in performance on the post-Delta data relative to
pre-Delta data, while most of the other methods (listed in Table 4) showed a large
decline. Nevertheless, the contribution of the post-Delta data versus the pre-Delta
data requires a deeper level of analysis than this paper provides. Specifically, we
believe a molecular-level analysis is necessary [15, 16].

Summary. The success of our model is due to its ability to integrate past
state/observations and current observations to make predictions. The decrease in pre-
diction performance of the proposed model without the Transition FF demonstrates
the importance of temporal information in prediction. The existing state-of-the-art
methods do not take into account temporal variables and have lower prediction accu-
racy.
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Table 4 Prediction performance. Changes in performance w.r.t. pre-Delta period are provided in
parentheses
Method Pre-delta Post-delta

d = 3 d = 7 d = 3 d = 7

AUC ACC AUC ACC AUC ACC AUC ACC

Proposed 0.81 0.74 0.82 0.75 0.73
(-9.9%)

0.64
(-13.5%)

0.87
(+6.1%)

0.66
(−12.0%)

Proposed
w/o Tr.

0.76 0.68 0.69 0.75 0.67
(−11.8%)

0.62
(−8.8%)

0.67
(−2.9%)

0.62
(−17.3%)

LR 0.85 0.77 0.83 0.74 0.62
(−27.1%)

0.57
(−26.0%)

0.57
(−31.3%)

0.57
(−23.0%)

SVM 0.86 0.80 0.82 0.72 0.66
(−23.3%)

0.58
(−27.5%)

0.57
(−30.5%)

0.50
(−30.6%)

Random
Forest

0.88 0.79 0.69 0.70 0.70
(−20.5%)

0.50
(−36.7%)

0.73
(+5.8%)

0.57
(−18.6%)

Decision
Tree

0.63 0.63 0.54 0.65 0.60
(−4.8%)

0.53
(−15.9%)

0.71
(+9.2%)

0.67
(+3.1%)

∗The best AUC/ACC in each column is in bold. Abbreviations: Tr., Transition factor function; AUC,
area under the ROC curve; ACC, accuracy; LR, logistic regression; SVM, support vector machine

5 Limitations and Future Work

One limitation of our work is that we only constructed the factor functions with joint
probabilities supported by statistical analysis and have not experimented with more
sophisticated factor functions. For example, we could include domain knowledge
from clinical experts to construct multivariate factor functions that better explain the
relationships between the variables. Second, the proposed model only considers cur-
rent lab/vital measurements, not patterns/trends in past measurements, when making
predictions.

Future work will extend the model to capture the temporal trend, i.e., the rate of
change in the lab/vital measurements, of the events. In addition, performing hyper-
parameter tuning to emphasize different weights among the factor functions may
improve the prediction performance and demonstrate the contributions of different
factors. The model will be implemented as a toolset to provide advice to triaging
physicians. Subsequent work will incorporate the impact of vaccines and emerging
mutations automatically as a learning paradigm.

6 Conclusion

We proposed a factor graph-based framework that predicts ICU admissions of hospi-
talized COVID-19 patients d days in advance. Our model demonstrates comparable
and better performance than the state-of-the-art machine learning methods on 3-day
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and 7-day predictions, respectively. The relationships between comorbidities and
labs/vitals captured by the model shed light on understanding ICU admissions for
COVID-19, for which greater severity of comorbidities introduces a higher risk of
ICU admissions. Most importantly, the model’s prediction performance is robust for
the post-Delta data.
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