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Abstract
Transformers have achieved state-of-the-art per-
formance in language modeling tasks. However,
the reasons behind their tremendous success are
still unclear. In this paper, towards a better under-
standing, we train a Transformer model on a sim-
ple next token prediction task, where sequences
are generated as a first-order autoregressive pro-
cess st+1 =Wst. We show how a trained Trans-
former predicts the next token by first learning W
in-context, and then applying a prediction map-
ping. We call the resulting procedure in-context
autoregressive learning. More precisely, focus-
ing on commuting orthogonal matrices W , we
first show that a trained one-layer linear Trans-
former implements one step of gradient descent
for the minimization of an inner objective func-
tion when considering augmented tokens. When
the tokens are not augmented, we characterize
the global minima of a one-layer diagonal linear
multi-head Transformer. Importantly, we exhibit
orthogonality between heads and show that posi-
tional encoding captures trigonometric relations
in the data. On the experimental side, we consider
the general case of non-commuting orthogonal
matrices and generalize our theoretical findings.

1. Introduction
Transformers (Vaswani et al., 2017) have achieved state-of-
the-art performance in natural language processing tasks
(Devlin et al., 2018). They now serve as the backbone for
large language models, such as GPT (Radford et al., 2018;
Brown et al., 2020), Chinchilla (Hoffmann et al., 2022),
PaLM (Chowdhery et al., 2023), LLama (Touvron et al.,
2023) or Mistral (Jiang et al., 2023). These models, which
are causal, are trained to predict the next token sT+1 given
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a sequence (also termed as context) s1:T := (s1, · · · , sT ).
An intriguing property of large Transformers is their ability
to adapt their computations given the context s1:T . In this
work, we make a step towards understanding this in-context
learning ability. More precisely, assuming the tokens satisfy
a relation sT+1 = φW (s1:T ), with W a context-dependent
parameter varying with each sequence, we say that a trained
Transformer autoregressively learns this relation in-context
if it decomposes its prediction into 2 steps: first, estimating
W through an in-context mapping, and then applying a
simple prediction mapping, which is equal or closely related
to φW (see Definition 1).

The goal of this paper is to fully characterize the autore-
gressive in-context learning process for optimally-trained
Transformers. More precisely, building on the work of
Von Oswald et al. (2023b), we focus on a simple autoregres-
sive (AR) process of order 1, where each sequence is gener-
ated following the recursion sT+1 = φW (s1:T ) := WsT ,
and W is a randomly sampled orthogonal matrix, referred
to as the context matrix. Such a process is illustrated in
dimension 3 in Figure 1 for two different matrices W . We
investigate the training of a linear Transformer to predict
the next token in these AR processes, examining how it
estimates W in-context and makes predictions for sT+1.
Depending on the input tokens encoding, the in-context
mapping can correspond to gradient descent on an inner
objective, as suggested by Von Oswald et al. (2023b). Al-
ternatively, the context matrix W might be determined in
closed form if the model possesses sufficient expressiveness.
This paper investigates both scenarios.
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Figure 1. Illustration of the autoregressive process in R3. Dots
and crosses correspond to two different orthogonal matrices W .
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More precisely, we make the following contributions:

• We begin by reviewing the background and previous
works in §2. Then, in §3, we introduce our autoregressive
process, which allows us to mathematically formalize the
notion of in-context autoregressive learning.

• In §4, we demonstrate that if the matrices W commute
and the model parameters possess a block structure, then
a linear Transformer—trained on augmented tokens as
introduced by Von Oswald et al. (2023b)—effectively
implements a step of gradient descent on an underlying
objective function as in-context mapping.

• In §5, we turn our attention to a one-layer linear attention
Transformer that incorporates positional encoding but
does not use augmented tokens. We comprehensively
characterize the minimizers of the training loss. Notably,
these minimizers display an orthogonality property across
different heads. This aspect underscores the significance
of positional encoding in enabling the Transformer to
learn geometric operations between tokens through its
in-context mapping. We also study positional-encoding-
only attention and show that approximate minimum ℓ2
norm solutions are favored by the optimization process.

• On the experimental side, in §6, we extend our analysis
to the more general case where the context matrices W
do not commute. We validate our theoretical findings for
both augmented and non-augmented scenarios. Further-
more, we explore how variations in the distribution of
the context matrices W affect trained positional encod-
ings and lead to structures resembling those of traditional
positional encodings commonly used in Transformers.

Each theoretical result of the paper aims at characterizing
the autoregressive in-context learning mechanism for simple
models and sequence data. Namely, Propositions 2, 3 and
6 give the structure of the minimizers of the training loss
and explicit the corresponding in-context mappings, while
Propositions 4, 5 and 7 focus on the optimization process.

Notations. We use lower cases for vectors and upper
cases for matrices. ∥.∥ is the ℓ2 norm. We denote the
transpose and adjoint operators by ⊤ and ⋆. O(d) (resp
U(d)) is the orthogonal (resp unitary) manifold, that is
O(d) = {W ∈ Rd×d|W⊤W = Id} and U(d) = {W ∈
Cd×d|W ⋆W = Id}. The element-wise multiplication is
⊙. ⟨|⟩ is the canonical dot product in Rd, and ⟨·|·⟩C the
canonical hermitian product in Cd. For λ ∈ Cd, λk is the
element-wise power k of λ: (λk)i = λki .

2. Background and previous works
Causal Language Modelling. Language (or sequence)
modeling refers to the development of models to predict the
likelihood of observing a sequence (x1, . . . , xT ), where

each xt is called a token, and comes from a finite vo-
cabulary. This can be done by using the chain rule of
probability P (X1 = x1, X2 = x2, . . . , XT = xT ) =
P (X1 = x1) × P (X2 = x2|X1 = x1) × . . . × P (XT =
xT |X1 = x1, . . . , XT−1 = xT−1) (Jurafsky & Martin,
2009). Predicting these conditional probabilities can be
done using a parametrized model Fθ to minimize the loss
L(Fθ(x1, ..., xT−1), xT ) across all training samples and se-
quence length T . In common applications, L is chosen as
the cross-entropy loss. In other words, the model is trained
to predict the next token sequentially. Such a model is called
a causal language model: it cannot access future tokens. Re-
cently, the Transformer has emerged as the model of choice
for language modeling.

Transformers. Transformers (Vaswani et al., 2017) pro-
cess sequences of tokens (x1, . . . , xT ) of arbitrary length
T . In its causal form (Brown et al., 2020; Touvron et al.,
2023; Jiang et al., 2023), a Transformer first embeds the
tokens to obtain a sequence (e1, . . . , eT ). It is then com-
posed of a succession of blocks with residual connections
(He et al., 2016). Each block is made of the composition
of a multi-head self-attention module and a multi-layer per-
ceptron (MLP). Importantly, the latter acts on each token
separately, whereas multi-head self-attention mixes tokens,
and corresponds to applying vanilla self-attention in parallel
(Michel et al., 2019). More precisely, each multi-head self-
attention is parametrized by a collection of weight matrices
(Wh

Q,W
h
K ,W

h
V ,W

h
O)1≤h≤H and returns:

(

H∑
h=1

Wh
O

t∑
t′=1

Ah
t,t′W

h
V et′)t∈{1,··· ,T}, (1)

where Ah is the attention matrix (Bahdanau et al., 2014)
and is usually defined as

Ah
t,: = softmax(⟨Wh

Qet,W
h
Ke:⟩),

with ⟨·, ·⟩ a dot product. The sum over t′ in (1) stopping at
t reflects the causal aspect of the model: the future cannot
influence the past. The output at position T is commonly
used to predict the next token eT+1. In practice, to help
the model encode the relative position of the tokens in the
sequence, a positional encoding (PE) is used.

Positional encoding. As described in Kazemnejad et al.
(2023), encoding the position in Transformers amounts to
defining the dot product ⟨·, ·⟩ in the attention matrix, using
additional (learnable or not) parameters. Popular designs
include Absolute PE (Vaswani et al., 2017), Relative PE
(Raffel et al., 2020), AliBI (Press et al., 2021), Rotary (Su
et al., 2024), and NoPE (Kazemnejad et al., 2023). In this
paper, we consider a learnable positional encoding.

2



How do Transformers Perform In-Context Autoregressive Learning?

Linear attention. In its simplest form, linear attention
(Katharopoulos et al., 2020) consists in replacing the
softmax in (1) by the identity. More formally, it consists
in considering that each coefficient in the attention matrix
is Ah

t,t′ = ⟨Wh
Ket′ ,W

h
Qet⟩. The main practical motiva-

tion of linear attention is that it enables faster inference
(Katharopoulos et al., 2020; Fournier et al., 2023). Note
that even though they are called linear Transformers, the
resulting models are non-linear with respect to the input se-
quence and jointly non-linear with respect to the parameters.
From a theoretical perspective, linear attention has become
the model of choice to understand the in-context-learning
properties of Transformers (Mahankali et al., 2023; Ahn
et al., 2023; Zhang et al., 2023).

In-context-Learning in Transformers The seminal
work of Brown et al. (2020) reported an in-context-
learning phenomenon in Transformer language mod-
els: these models can solve few-shot learning problems
given examples in-context. Namely, given a sequence
(x1, f(x1), x2, f(x2), · · · , xn), a trained Transformer can
infer the next output f(xn) without additional parameter up-
dates. This surprising ability has been the focus of recent re-
search. Some works consider the softmax attention without
considering training dynamics (Garg et al., 2022; Akyürek
et al., 2022; Li et al., 2023). Other works focus solely on lin-
ear attention and characterize the minimizers of the training
loss when f is sampled across linear forms on Rd, that is
f(x) = w⊤x for somew (Mahankali et al., 2023; Ahn et al.,
2023; Zhang et al., 2023). In particular, these works discuss
the ability of Transformers to implement optimization al-
gorithms in their forward pass at inference, as empirically
suggested by Von Oswald et al. (2023a). Nevertheless, the
formulations used by Von Oswald et al. (2023a); Mahankali
et al. (2023); Ahn et al. (2023); Zhang et al. (2023) are all
based on concatenating the tokens so that the Transformer’s
input takes the form

( x1 x2 ··· xn

f(x1) f(x2) ··· 0

)
∈ R(d+1)×n. How-

ever, the necessity for this concatenation limits the impact
of these results as there is no guarantee that the Transformer
would implement this operation in its first layer. In addi-
tion, these works explicitly consider the minimization of
an in-context loss, which is different from the next-token
prediction loss in causal Transformers. In contrast, our
work considers the next-token prediction loss and consid-
ers a more general notion of in-context learning, namely
in-context autoregressive learning, that we describe in the
next section.

3. Linear Attention for AR Processes
Token encoding. Building on the framework established
by Von Oswald et al. (2023b), we consider a noiseless
setting where each sequence begins with an initial token
s1 = 1d. This token acts as a start-of-sentence marker. The

subsequent states are generated according to st+1 =Wst,
where W is a matrix referred to as the context matrix. This
matrix is sampled uniformly from a subset CO (respectively,
CU ) of O(d) (respectively, U(d)), and we denote W as the
corresponding distribution: W ∼ W := U(C). Consider-
ing norm-preserving matrices ensures the stability of the
AR process, which is crucial to be able to learn from long
sequences (i.e. using large T ). In this paper, we contrast
CO and CU to showcase how the distribution of in-context
parameters W impacts the in-context mapping learned by
Transformers. In addition, we have the following.

Remark 1. If WU ∈ U(d), then

WO :=

[
Real(WU ) −Imag(WU )
Imag(WU ) Real(WU )

]
is in O(2d) and has pairwise conjugate eigenvalues. WO is
a rotation (because WO is similar to a 2× 2 block diagonal
matrix with rotations). Reciprocally, for any rotation WO

of size 2d corresponds a unitary matrix WU of size d by
selecting half of the eigenvalues (for instance those with
positive imaginary parts).

Therefore, U(d) can be viewed as a subset of O(2d), while
O(d) ⊂ U(d). As such, placing ourselves in U(d) corre-
sponds to a compact way of considering real AR processes
in dimension 2d.

In our analysis, we consider two settings in which the se-
quence s1:T is mapped to a new sequence e1:T . In the
augmented setting (§4), the tokens are defined as et :=
(0, st, st−1), aligning with the setup used by Von Oswald
et al. (2023b). In contrast, the non-augmented setting (§5)
utilizes a simpler definition where the tokens are simply
et := st.

Model and training process. We consider a Transformer
with linear attention, which includes an optionally trainable
positional encoding P ∈ RTmax×Tmax for some Tmax ∈ N:

Ah
t,t′ = Pt,t′⟨Wh

Qet|Wh
Ket′⟩. (2)

Throughout this paper, we will re-parameterize the model
by setting Bh = Wh

OW
h
V and Ah = Wh⊤

K Wh
Q. Note that

such an assumption is standard in theoretical studies on the
training of Transformers (Mahankali et al., 2023; Zhang
et al., 2023; Ahn et al., 2023). The trainable parameters are
therefore θ = ((Ah, Bh, P ))1≤h≤H when the positional
encoding is trainable and θ = ((Ah, Bh))1≤h≤H otherwise.
This defines a mapping Tθ(e1:T ) by selecting a section from
some element τ in the output sequence (1). We focus on the
population loss, defined as:

ℓ(θ) :=

Tmax∑
T=2

EW∼W∥Tθ(e1:T )− sT+1∥2, (3)
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indicating the model’s objective to predict sT+1 given e1:T .
It is important to note that both sT+1 and e1:T appearing
in (3) are computed from a random W and are therefore
random variables.

In-context autoregressive learning. Our goal is to the-
oretically characterize the parameters θ∗ that minimize ℓ,
discuss the convergence of gradient descent to these minima,
and characterize the in-context autoregressive learning of
the model. This learning process is defined as the model’s
ability to learn and adapt within the given context: first by
estimating W (or more generally some power of W ) using
an in-context mapping Γ, then by predicting the next token
using a simple mapping ψ. In the context or AR processes,
we formalize this procedure in the following definition.

Definition 1 (In-context autoregressive learning). We say
that Tθ∗ learns autoregressively in-context the AR process
sT+1 =WsT if Tθ∗(e1:T ) can be decomposed in two steps:
(1) first applying an in-context mapping γ = Γθ∗(e1:T ),
(2) then using a prediction mapping Tθ∗(e1:T ) = ψγ(e1:T ).
This prediction mapping should be of the form ψγ(e1:T ) =
γsτ for some shift τ ∈ {1, · · · , T}. With such a factoriza-
tion, in-context learning arises when the training loss ℓ(θ∗)
is small. This corresponds to having Γθ∗(e1:T ) ≈WT+1−τ

when applied to data e1:T exactly generated by the AR pro-
cess with matrix W .

In this work, we will have either τ = T or τ = T − 1.

Remark 2. We use the word in-context to make explicit
the fact that the matrix W is different for each sequence.
As a consequence, attention-based models are particularly
well suited to such a task because predicting W involves
considering relationships between tokens. In contrast, RNNs
perform poorly in this setting precisely because they do not
consider interactions between tokens. In fact, in its simplest
form, a linear RNN with parameters A and B outputs, for
each t: yt =

∑t
k=1A

t−kBW k−1e1. It is easy to see that
A and B would have to depend on W for yt to be close to
W ts1, which is impossible because W is different for each
sequence.

To fully characterize the in-context mapping Γ and predic-
tion mapping ψ, we rely on a commutativity assumption.

Assumption 1 (Commutativity). The matrices W in C
commute. Hence, they are co-diagonalizable in a uni-
tary basis of Cd×d. Up to a change of basis, we there-
fore suppose CU = {diag(λ1, · · · , λd), |λi| = 1} and
CO = {(λ1, λ̄1, · · · , λδ, λ̄δ), |λi| = 1}, with d = 2δ.

For conciseness, we only consider pairwise conjugate eigen-
values in CO. While assumption 1 is a strong one, it is a
standard practice in the study of matrix-involved learning
problems (Arora et al., 2019). We highlight that, to the best
of our knowledge, this is the first work that provides a theo-

retical characterization of the minima of ℓ. The general prob-
lem involving non-commutative matrices is complex, and
we leave it for future work. Note that recent studies, such as
those by Mahankali et al. (2023); Zhang et al. (2023); Ahn
et al. (2023) focus on linear regression problems x 7→ w⊤x,
which rewrites x 7→ 1⊤d diag(w)x. Therefore, considering
diagonal matrices is a natural extension of these approaches
to autoregressive settings. Note also that imposing commu-
tativity, while a simplification, represents a practical method
of narrowing down the class of models φW . Indeed, in high
dimension, it becomes necessary to restrict the set C, other-
wise, W cannot be accurately estimated when T < d. Note
that however, in §6, we experimentally consider the general
case of non-commuting matrices.

4. In-context mapping with gradient descent
In this section, we consider the augmented tokens et :=
(0, st, st−1). We show that under assumption 1 and an addi-
tional assumption on the structure of θ at initialization, the
minimization of (3) leads to the linear Transformer imple-
menting one-step of gradient descent on an inner objective
as its in-context mapping Γθ∗ . The motivation behind this
augmented dataset is that the tokens et can be computed
after a two-head self-attention layer with a softmax. Indeed,
we have the following result.

Lemma 1. The tokens e1:T can be approximated with arbi-
trary precision given tokens s1:T with a Transformer (1).

For a proof, see Appendix A.1. We suppose that W =
U(CU ), that is we consider unitary matrices. We consider
Tθ to be a one-head attention layer with skip connection and
output the fist d coordinates of the token T . More precisely,
one has

Tθ(e1:T ) =

(
eT +

T∑
t=1

⟨AeT |et⟩CBet

)
1:d

. (4)

Importantly, we do not consider a positional encoding as
the relative position is already stored in each token et. Note
that we use the hermitian product ⟨|⟩C as et ∈ C3d.

We have the following result showing the existence of θ0
such that (4) corresponds to one step of gradient descent on
an inner objective.

Proposition 1 (Von Oswald et al. (2023b)). There exists θ0
such that Γθ0(e1:T ) =W0 − η∇L(W0, e1:T ) with

L(W, e1:T ) =
1

2

T−1∑
t=1

∥st+1 −Wst∥2, (5)

and W0 is any gradient descent initialization.

We now make the following assumption on the structure of
A and B.
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Assumption 2. We parameterize A and B as

A =

 0 0 0
0 A1 A2

0 A3 A4

 and B =

 0 B1 B2

0 0 0
0 0 0

 ,

with Ai = aiI and Bi = biI .

Importantly, while the zero block structure is stable with
gradient descent on loss (3), we do impose the non-zero
blocks to stay diagonal during training. Note that consid-
ering diagonal matrices is a widely used assumption in the
topic of linear diagonal networks (Woodworth et al., 2020;
Pesme et al., 2021). Note also that we consider the general
parametrization for A and B in our experiments in §6.

Under assumption 2, we have the following result, stating
that at optimality, Γθ∗ corresponds to Γθ0 in Proposition 2
with W0 = 0.
Proposition 2 (In-context autoregressive learning with gra-
dient-descent). Suppose C = CU , assumptions 1 and 2.
Then loss (3) is minimal for θ∗ such that a∗1 + a∗4 = a∗2 =

b∗2 = 0 and a∗3b
∗
1 =

∑Tmax
T=2 T∑Tmax

T=2 (T 2+(d−1)T )
. Furthermore, an

optimal in-context mapping Γθ∗ is one step of gradient de-
scent starting from the initialization λ = 0, with a step size
asymptotically equivalent to 3

2Tmax
with respect to Tmax.

For a full proof, see Appendix A.3. Proposition 2 demon-
strates that a single step of gradient descent constitutes the
optimal forward rule for the Transformer Tθ. This finding
aligns with recent research showing that one step of gradi-
ent descent is the optimal in-context learner for one layer
of self-attention in the context of linear regression (Ma-
hankali et al., 2023; Zhang et al., 2023; Ahn et al., 2023).
However, a substantial drawback of considering augmented
tokens is that it requires previous layers to form these tokens
which—although is possible according to Lemma 1—is a
strong assumption. Therefore, in the next section, we con-
sider the non-augmented setting where we do not make
strong assumptions about previous layers.

5. In-context mapping as a geometric relation
In this section, we consider the non-augmented tokens where
et := st, and a multi-head self-attention model Tθ:

Tθ(e1:T ) =
H∑

h=1

T∑
t=1

PT−1,t⟨et|AheT−1⟩CB
het, (6)

that is we consider τ = T −1, the second to last token in the
output, and no residual connections. While not considering
the last token in the output is not done in practice, this small
modification is necessary to achieve zero population loss.
We stress out that we still mask the token we want to predict.

We consider a self-attention module with H heads, and we
define the following assumption.

Assumption 3. Ah and Bh are diagonal for all h: Ah =
diag(ah) and Bh = diag(bh) with (ah, bh) ∈ Rd × Rd.

Importantly, we impose the diagonal structure during train-
ing. This diagonal aspect reflects the diagonal property of
the context matrices. Under assumptions 1 and 3, we have
the following result.
Lemma 2. Suppose assumptions 1 and 3. Writing ah =
(a1h, · · · , adh) and bh = (b1h, · · · , bdh) and letting A :=
(a1, · · · , ad) ∈ RH×d, and B := (b1, · · · , bd), one has for
an input sequence e1:T = (1d, λ, · · · , λT−1) ∈ RT×d :

Tθ(e1:T ) =
T∑

t=1

PT−1,t[B
⊤A]λt−T+1 ⊙ λt−1.

For a full proof, refer to appendix A.4. Note that A and B

correspond to the concatenation of diagonals Wh⊤
K Wh

Q and
Wh

OW
h
V along heads.

It is easily seen from Lemma 2 that the choice of P ∗
T−1,t =

δt=T and B∗⊤A∗ = Id implies Tθ∗(e1:T ) = λT , and there-
fore ℓ(θ∗) = 0. We see that this requires at least d heads. A
natural question is whether there are other optimal solutions
and how to characterize them. To answer this question, we
investigate the case of unitary context matrices before mov-
ing to orthogonal ones. We consider these cases separately
because they both lead to different in-context mappings.
We recall that U(d) can be seen as a subset of O(2d) (see
Remark 1).

5.1. Unitary context matrices.

In this case, coefficients in the context matrices are drawn
independently. This constrains the possible values for θ∗

achieving zero loss. Indeed, we have the following result.
Proposition 3 (Unitary optimal in-context mapping). Sup-
pose assumptions 1 and 3. Any θ∗ = (A∗, B∗, P ∗) achiev-
ing zero of the loss (3) satisfies P ∗

T−1,t = 0 if t ̸= T ,
P ∗
T−1,T (B

∗⊤A∗)ii = 1, and (B∗⊤A∗)ij = 0 for i ̸= j.
Therefore, one must have H ≥ d. An optimal in-context
mapping satisfies Γθ∗(e1:T ) = ēT−1⊙eT and the predictive
mapping ψγ(e1:T ) = γ ⊙ eT .

Proof sketch. At ℓ(θ∗) = 0 one has Tθ∗(e1:T ) = λT . We
notice that Tθ∗(e1:T ) is a polynomial in the λi’s. Identifying
the coefficients leads to the desired results.

For a full proof, refer to appendix A.5. In particular, for
e1:T = (1d, λ, · · · , λT−1), we have Γθ∗(e1:T ) = λ, and
ψΓθ∗ (e1:T ) = λ⊙ λT−1 = λT .

Orthogonality. The equality (B⊤A)ij = 0 for i ̸= j cor-
responds to an orthogonality property between heads. In-
deed, to further understand what Proposition 3 implies in
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terms of learned model, let’s look at the particular case
in which H = d and, at optimality, A∗ = B∗ = Id and
P ∗
T−1,t = δt=T . Therefore, the positional encoding selects

the last token in the input sequence, hence learning the
structure of the training data. In parallel, each attention
matrix captures a coefficient in λ: (Tθ∗(e1:T ))h = λhλ

T−1
h .

When there are more than d heads, some heads are use-
less, and can therefore be pruned. Such a finding can be
related to the work of Michel et al. (2019), where the authors
experimentally show that some heads can be pruned with-
out significantly affecting the performance of Transformers.
Orthogonality in the context of Transformers was also in-
vestigated by directly imposing orthogonality between the
outputs of each attention head (Lee et al., 2019) or on atten-
tion maps (Chen et al., 2022; Zhang et al., 2021). The ability
of the positional encoding to recover the spatial structure
was already shown by Jelassi et al. (2022), which studies
Vision Transformers (Dosovitskiy et al., 2020).

Convergence of gradient descent. Now that we have
characterized all the global minima of the loss (3), we can
study the convergence of the optimization process. We have
the following Proposition, which shows that the population
loss (3) writes as a quadratic form in B⊤A and P , which
enables connections with matrix factorization.

Proposition 4 (Quadratic loss). Under assumptions 1 and
3, loss (3) reads

ℓ(A, B, P ) =

Tmax∑
T=2

l(B⊤A, PT−1)

with l(C, p) = ∥p∥22∥C∥2F + p2T−1S(C
⊤C)− 2Tr(C)pT + d,

where S is the sum of all coefficients operator.

A proof is in Appendix A.6. For an optimal P ∗ with
P ∗
T−1,t = δt=T , ℓ(A, B, P ∗) = (Tmax − 1)∥B⊤A− I∥2F , for

which we can use Theorem 2.2 of Nguegnang et al. (2021)
to argue that for almost all initial values, gradient flow on ℓ
will converge to a global minimum, that is B⊤A = Id. When
training is also done on pT := PT−1,T , the loss is then
ℓ(A, B, P ) =

∑Tmax

T=2 ∥pT B⊤A − I∥2F . Note that even for
Tmax = 2, convergence of gradient descent in (A, B, p2) on
ℓ to a global minimum is an open problem, for which a con-
jecture (Nguegnang et al., 2021; Achour et al., 2021) states
that for almost all initialization, (A, B, p2) will converge to
a global minimum of ℓ. We provide evidence for global
convergence in Figure 3. Yet, we have the following result
in the scalar case H = d = 1. Its proof is in Appendix A.7.

Proposition 5. Consider the loss ℓ(a, b, p) = (pab − 1)2.
Suppose that at initialization, |pab− 1| < 1. Then gradient
flow on (a, b, p) converges to a global minimum satisfying
a∗b∗p∗ = 1.

Role of the softmax. Our results rely heavily on the use
of linear attention. In fact, we could not find a natural way
to express the global minimum of the training loss (3) when
a softmax layer was involved, even in dimension d = 1.
To gain more insight, we conducted an experiment where
we trained different models with and without softmax and
MLP layers. The results are shown in Figure 9 in Appendix
B, where it is clear that in the case of commuting context
matrices, using a softmax is incompatible with learning the
underlying in-context mapping.

5.2. Orthogonal context matrices.

We now turn to the case where the context matrices are in
CO. We recall that this imposes that the λi are pairwise
conjugate. Therefore, the dimension d is even, and we write
it d = 2δ. The context matrices are therefore rotations.
This property changes the optimization landscape and other
solutions are possible, as shown in the following Lemma.

Lemma 3. Suppose assumptions 1, 3. If P ∗
T−1,T−1 =

−1, P ∗
T−1,T = 2 and 0 otherwise, and B∗⊤A∗ =

1
2 diag(J, · · · , J), with J ∈ R2×2 and Jij = 1 for all i, j,
then Tθ∗(e1:T ) = λT .

For a full proof, refer to Appendix A.5. In this case, H =
δ heads are sufficient to reach zero population loss. The
optimal parameters can be exactly characterized.

Proposition 6 (Orthogonal optimal in-context mapping).
Suppose assumptions 1 and 3. Any θ∗ = (A∗, B∗, P ∗) with
ℓ(θ∗) = 0 in (3) satisfies, denoting C∗ = B∗⊤A∗ and p∗ =
P ∗
T−1: p∗t = 0 if t < T − 1, p∗T C

∗
i,i = 1, p∗T C

∗
2i−1,2i +

(C∗2i−1,2i−1 + C∗2i−1,2i)p
∗
T−1 = 0, p∗T C

∗
2i,2i−1 + (C∗2i,2i +

C∗2i,2i−1)p
∗
T−1 = 0, C∗2i−1,j = C∗2i,j = 0 for j ̸= 2i −

1, 2i. An optimal in-context mapping is then, for et = λt−1:
Γθ∗(e1:T ) = λ2, and the corresponding predictive mapping
ψΓθ∗ (e1:T )(e1:T ) = λ2 ⊙ eT−1 = λT .

Proof sketch. Similarly to Proposition 3, we identify the
coefficients of a polynomial, with careful inspection of terms
involving pairwise conjugate contexts (λi, λ̄i).

Similarly to Proposition 3, this result indicates an orthogonal
property between heads. A closer look at the computation
of Γθ∗ reveals that the relation implemented in-context by
the Transformer in Proposition 6 is an extension of a known
formula in trigonometry: 2 cos θRθ − I2 = R2θ, with Rθ

the rotation of parameter θ in R2 (see Figure 2). Importantly,
when δ ≤ H < 2δ = d, the optimal C∗ in Proposition 6 is
of rank δ, which corresponds to Lemma 3. However, when
H ≥ d, full-rank solutions are achievable.

Under the assumptions of Proposition 3, the population
loss (3) is also a quadratic form in P and B⊤A. Similarly
to Proposition 4, global convergence results of gradient
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descent on such loss function are still an open problem
(Achour et al., 2021). We provide experimental evidence
for convergence in Figure 3.

0 1
1.0

0.5

0.0

0.5

1.0
x
R x

2cos( )R x x
R2 x

Figure 2. Trigonometric
formula implemented
by the Transformer
in-context. The minima
of the training loss corre-
spond to implementing,
up to multiplying factors:
2 cos θRθ − I2 = R2θ.

5.3. Positional encoding-only attention.

We end this section by investigating the impact of the context
distribution on the trained positional encoding P . For this,
we consider a positional encoding-only Transformer, that
is, we fix B⊤A = Id. In this case, the problem decomposes
component-wise, and we only need to consider the d = 1
case. We therefore consider the AR process st+1 = λst for
|λ| = 1. We break the symmetry of the context distribution:
for µ ≥ 1 and θ ∼ U(0, 2π), we define λ = eiθ/µ. We
denote W(µ) as the corresponding distribution. Therefore,
we focus on the optimization problem:

min
p∈RT

l(p) := Eλ∼W(µ)|
T∑

t=1

ptλ
2t−T − λT |2. (7)

Here again, the same proof as for Proposition 3 shows that
the optimal positional encoding is p∗ = δt=T , meaning that
we predict the next token using the last token in the context.
However, depending on µ, (7) can be ill-conditioned.

Proposition 7 (Conditioning). The Hessian H ∈ RT×T of
l in (7) is given by

Ht,t′ =
µ

4π(t′ − t)
sin(4(t′ − t)

π

µ
).

Denoting σ1(µ) ≥ · · · ≥ σT (µ) its eigenvalues, one has
σ1(µ) → T and σt>1(µ) → 0 as µ→ +∞.

Therefore, for large µ, H in Proposition 7 is poorly condi-
tioned. In such a setting, gradient descent, even with a large
number of iterations, induces a ℓ2 regularization (Yao et al.,
2007). As an informal consequence, approximate solutions
computed by gradient descent significantly deviate from the
optimal p∗. As demonstrated experimentally in Figure 6 and
§6, the effect of this regularization is a spatial smoothing
of the positional encoding, which leads to entirely different

in-context mappings Γ, hence showing the effect of the opti-
mization process on the in-context autoregressive learning
abilities of Transformers.

6. Experiments
In this section, we illustrate and extend our results through
experiments. Our code in Pytorch (Paszke et al., 2017) and
JAX (Bradbury et al., 2018) is open-sourced at https:
//github.com/michaelsdr/ical. We use the stan-
dard parametrization of Transformers, that is we train on
(WQ,WK ,WV ,WO).
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Original
Shuffled Figure 4. Histograms of

the mean squared errors
(MSE) when fitting an
AR process to sequences
in D (original, in blue)
or Dshuffle (shuffled, in
orange). We only display
MSEs bigger than a
threshold of 10−12.

Validation of the token encoding choice. Throughout the
paper, we assume that the s1:T are generated following an
AR process st+1 = Wst. Even though we acknowledge
that the AR process is an overly simplistic model for real-
word sentences, we provide empirical justification for using
it by showing that such a process better explains real data
than random ones. We use the nltk package (Bird et al.,
2009), and we employ classic literary works, specifically
’Moby Dick’ by Herman Melville sourced from Project
Gutenberg. We use the tokenizer and word embedding layer
of a pre-trained GPT-2 model (Radford et al., 2019), and
end up with about 325000 token representations in dimen-
sion d = 1280, that we reformat in a dataset D of shape
(n, T, d), where T = 5 (we keep the relative order of each
token). We also consider a shuffled counterpart of D where
the shuffling is done across the first two dimensions. In
other words, we create a dataset Dshuffle from a permutation
of the tokens of the book.
We then fit AR processes for each sequence in the two
datasets using loss (5), which we minimize by solving a
linear system. It should be noted that the problem remains
non-trivial for some sequences, despite T being significantly
smaller than d. This complexity arises because certain se-
quences might contain identical elements with differing
successors or predecessors. We hypothesize that when se-
quences are shuffled, the number of such inconsistencies
increases since the language’s structure is lost. This hypothe-
sis is validated in Figure 4, where we display the histograms
of the fitting losses when they are bigger than 10−12. There
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Figure 3. Matrices A, B, B⊤A and P after training model (6) on loss (3) with random initialization. We take d = 10 and T = 15.
Left: Unitary context case with H = 10. Right: Orthogonal context case, with H = 8 < d, which leads to low rank B⊤A. In both cases,
we obtain arbitrarily small final loss. We recover parameters corresponding to our Propositions 3 and 6.

are 4 times more sequences with such an error for the shuf-
fled dataset than for the original. This shows that the AR
process is better suited when data present some semantics.

1 2 3 4 5 6
Depth

5 10 2

10 2

5 10 3

M
SE

Test Train GD

Figure 5. Evolution
of the MSE with
depth L. We com-
pare with L steps of
gradient descent on
the inner loss (5).
At initialization, the
MSE is between 1
and 2.

Augmented setting. We investigate whether the results
of §4 still hold without assumptions 1 and 2. We consider
the model (4) on the augmented tokens et = (0, st, st−1).
We iterate relation (4) with several layers, using layer nor-
malization (Ba et al., 2016). We consider depth values
from 1 to 6. We generate a dataset with n = 214 se-
quences with Tmax = 50 and d = 5 (therefore et ∈ R15)
for training. We test using another dataset with 210 se-
quences of the same shape. We train for 2000 epochs
with Adam (Kingma & Ba, 2014) and a learning rate
of 5 × 10−3 to minimize the mean squared error (MSE)
min ℓ(Θ) :=

∑Tmax

T=2
1
n

∑n
i=1 ∥T L

Θ (ei1:T ) − siT ∥2, where
T L
θ correspond to L layers of (4) (we apply the forward

rule L times, and then consider the section of first d coor-
dinates). We compare the error with L steps of gradient
descent on the inner loss (5), with a step size carefully cho-
sen to obtain the fastest decrease. We find out that even
though the first Transformer layers are competitive with
gradient descent, the latter outperforms the Transformer by
order of magnitudes when L ≥ 3. Results are displayed
in Figure 5. The fact that several steps of gradient descent
outperform the same number of Tθ layers is not surprising,
as Proposition 2 does not generalize to more than one layer.
In contrast, as shown in Appendix B, a full Transformer
with all the bells and whistles as described in Vaswani et al.
(2017) (softmax and MLP applied component-wise to each
Transformer layer) outperforms gradient descent and has a

similar trend, as shown in Figure 10.

Non-Augmented setting. We now investigate whether
the results of §5 still hold without assumptions 1 and 3.
We consider the model Tθ in (6). We parameterize the
positional encoding in the linear Transformer equation (6)
using the softmax of a positional attention-only similarity
cost matrix with learnable parameters WQpos

and WKpos
:

Pt,t′ = softmax(⟨WQpos
pt|WKpos

pt′⟩), as we found it to
stabilize the training process. We use a similar dataset as in
the previous section, i.e., a training set with 214 sequences,
each with 50 elements of dimension d = 10, and we test
using another dataset with 210 sequences of the same shape.

We train models Tθ in (6) for 200 epochs with different
numbers of heads. We use the Adam optimizer with a learn-
ing rate of 10−2. Without further modification, we do not
observe a significant gain as the number of heads increases.
However, when duplicating the data along the dimension
axis, that is et := (st, st), we observe a significant im-
provement, as illustrated in Figure 7. Understanding why
duplicating the data leads to a significant improvement is
left for future work.

100 101 102

# heads

0.06

0.07

0.08

M
SE

Test
Train

Figure 7. Evolution
of the MSE with the
number of heads.
At initialization, the
MSE is between
0.35 and 1.

To further relate our experimental findings to our theory, we
also exhibit an orthogonality property between heads after
training. For this, we take d = 5 to ease the visualization,
and initialize each parameter equally across heads but add a
small perturbation .05×N (0, 1) to ensure different gradient
propagation during training. We then train the model and
compare the quantity (

∑H
h=1(B

⊤
h Bh))(i,j) after training

and at initialization. Note that it corresponds to a measure
of orthogonality of heads. Results are displayed in Figure 8.
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Figure 6. Left: Positional encodings after training for µ ∈ {50, 100, 200, 300}. The first raw corresponds to the matrix P , and the second
raw to a plot of its last raw. Right: Comparison with the cosine absolute positional encoding standardly used in machine translation
(Vaswani et al., 2017) (we display pp⊤). In both cases, we observe an invariance across diagonals. In addition, for high µ (i.e. small
variations of the context), the most recent tokens are more informative, as imposed by the inductive prior of the cosine positional encoding.

We observe that after training, an orthogonality property
appears. In addition, as we are duplicating the tokens across
dimensions, we can see that heads become specialized in
attending to some coordinates across tokens.

TrainedInit.

Figure 8. Matrices (
∑H

h=1(B
⊤
h Bh))(i,j) ∈ R10×10 at initializa-

tion and after training. The trained parameters lead to an orthogo-
nality between heads, as predicted by our theory.

Change in the context distribution. We consider the set-
ting of §5.3, using the empirical loss counterpart of (7),
averaged over T ∈ {2, · · · , Tmax}. We generate a dataset
with 104 examples and Tmax = 30. We train our positional
encoding-only model with gradient descent and stop train-
ing (early stopping) when the loss is smaller than 10−3. We
initialize Pt,t′ = 0. Results are in Figure 6, where we mask
coefficients PT−1,T (which are close to 1 after training)
in the display to investigate the behavior of the extra coef-
ficients. We observe that the trained positional encoding
exhibits an invariance across diagonals. Importantly, each

row Pt has a smooth behavior with t′, that we compare to
absolute cosine positional encodings (Vaswani et al., 2017).

Conclusion
In this work, we study the in-context autoregressive learning
abilities of linear Transformers to learn autoregressive pro-
cesses of the form st+1 =Wst. In-context autoregressive
learning is decomposed into two steps: estimation of W
with an in-context map Γ, followed by a prediction map ψ.
Under commutativity and parameter structure assumptions,
we first characterized Γ and ψ on augmented tokens, in
which case Γ is a step of gradient descent on an inner ob-
jective function. We also considered non-augmented tokens
and showed that Γ corresponds to a non-trivial geometric re-
lation between tokens, enabled by an orthogonality between
trained heads and learnable positional encoding. We also
studied positional encoding-only attention and showed that
approximate solutions of minimum ℓ2 norm are favored by
the optimization. Moving beyond commutativity assump-
tions, we extended our theoretical findings to the general
case through experiments.

Future work. Investigating the case where τ = T in
the non-augmented setting would lead to approximated in-
context mappings, where achieving zero loss is no longer
possible. This investigation would provide further insight
into the role of positional encoding in estimating W in-
context. Another investigation left for future work is to
consider the case of non-commuting context matrices and
to relate the computation of a Transformer to a proxy for a
gradient flow for estimating W in-context, using the con-
nection between Transformers and gradient flows (Sander
et al., 2022).
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Impact Statement
This paper is mainly theoretical and its goal is to advance
our understanding of Transformers.
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the French government under the management of Agence
Nationale de la Recherche as part of the “Investisse-
ments d’avenir” program, reference ANR-19-P3IA-0001
(PRAIRIE 3IA Institute). T. Suzuki was partially sup-
ported by JSPS KAKENHI (24K02905) and JST CREST
(JPMJCR2115, JPMJCR2015). MS thanks Scott Pesme and
Francisco Andrade for fruitful discussions.

References
Achour, E. M., Malgouyres, F., and Gerchinovitz, S. The

loss landscape of deep linear neural networks: a second-
order analysis. arXiv preprint arXiv:2107.13289, 2021.

Ahn, K., Cheng, X., Daneshmand, H., and Sra, S.
Transformers learn to implement preconditioned gra-
dient descent for in-context learning. arXiv preprint
arXiv:2306.00297, 2023.
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A. Proofs
In what follows, as we consider complex numbers, we use the hermitian product over Cd, that is ⟨α, β⟩ := β⋆α =

∑
i αiβ̄i.

We denote Ud = {λ ∈ Cd||λi| = 1∀i ∈ {1, · · · , d}}.

A.1. Proof of Lemma 1.

Proof. Let, for s ∈ Rd, W 1
V s := (0, s, 0) ∈ R3d and W 2

V s := (0, 0, s).

We now simply consider a positional attention-only model, that is, for h ∈ {1, 2}:

Ah
t,: = softmax(Ph

t,:).

We can choose the positional encodings P 1 and P 2 such that A1
t,t′ ≃ δt′=t and A2

t,t′ ≃ δt′=t−1.

Then
2∑

h=1

t∑
t′=1

Ah
t,t′W

h
V st′ ≃ (0, st, st−1) = et.

A.2. Proof of Proposition 1.

Proof. We briefly recall the reasoning as presented in Von Oswald et al. (2023b), and consider the case W0 = 0 for
simplicity. See Von Oswald et al. (2023b) for a full proof. Let

A =

 0 0 0
0 0 0
0 Id 0

 and B =

 0 ηId 0
0 0 0
0 0 0

 . (8)

Then the section vector of the first d coordinates in (4) is η
∑T

t=1 sts
⊤
t−1sT .

The gradient of L at W0 = 0 is:

∇WL(0, e1:T ) = −
T−1∑
t=1

(st+1)s
⊤
t .

Therefore, (4) corresponds to a single step of gradient descent starting from W0 = 0.

A.3. Proof of Proposition 2.

In what follows, the sums over t are from t = 1 to T and the sums over j are from j = 1 to d.

We first consider the following Lemma.

Lemma 4. Under assumptions 1 and 2, the loss of the linear Transformer writes:

ℓ((ai), (bi)) = Eλ

Tmax∑
T=2

d∑
i=1

|
∑

t,j,α∈A,β∈B

cα,βλ
T−t−α
j λt−1+β

i − λTi |2 (9)

with A = {−1, 0, 1} and B = {−1, 0}. We have cα,β = uαvβ for u0 = a1 + a4, u1 = a2, u−1 = a3, v0 = b1 and
v−1 = b2.

Proof. One has AeT = (0, A1sT + A2sT−1, A3sT + A4sT−1). Therefore one has ⟨AeT , et⟩ = s⋆tA1sT + s⋆tA2sT−1 +
s⋆t−1A3sT + s⋆t−1A4sT−1. Since (Bet)1:d = B1st +B2st−1, one obtains through (4):

Tθ(e1:T ) =
∑
t

(a1s
⋆
t sT + a2s

⋆
t sT−1 + a3s

⋆
t−1sT + a4s

⋆
t−1sT−1)(b1st + b2st−1).

13



How do Transformers Perform In-Context Autoregressive Learning?

Developing, we obtain

Tθ(e1:T )i =
∑

t,j,α∈A
uαλ

T−t−α
j

∑
β∈B

vβλ
t−1+β
i =

∑
t,j,α∈A,β∈B

cα,βλ
T−t−α
j λt−1+β

i ,

which implies the result.

Using the notations of Lemma 4, Proposition 2 now writes as follows.

Proposition 8 (In-context autoregressive learning with gradient-descent.). Suppose C = CU , assumptions 1 and 2. Then

loss (9) is minimal for cα,β = 0 if (α, β) ̸= (−1, 0) and c−1,0 =
∑Tmax

T=2 T∑Tmax
T=2 (T 2+(d−1)T )

. Therefore, the optimal in-context map

Γθ∗ is one step of gradient descent starting from the initialization λ = 0, with a step size asymptotically equivalent to 3
2Tmax

with respect to Tmax.

Proof. We develop the term in the sum in (9):

|
∑

t,j,α∈A,β∈B

cα,βλ
T−t−α
j λt+β−1

i − λTi |2

=
∑

t1,j1,α1,β1,t2,j2,α2,β2

cα1,β1cα2,β2λ
T−t1−α1
j1

λ−T+t2+α2
j2

λt1−t2+β1−β2

i

− 2Real(
∑

t,j,α∈A,β∈B

cα,βλ
T−t−α
j λt+β−1

i λ−T
i ) + 1.

We now need to compute the expectations of the first two terms in the sum. Because Eλ(λ
k
i ) = δk=0 and the λi are i.i.d.,

most terms will be zeros.

• For the first term, one needs to look at the different possible values for (j1, j2, i) to calculate
Eλ(λ

T−t1−α1
j1

λ−T+t2+α2
j2

λt1−t2+β1−β2

i ).

- 1) If j1 = j2 = i, it is Eλ(λ
α2−α1+β1−β2

i ) = δα1−α2=β1−β2
.

- 2) If j1 = j2 := j ̸= i, it is Eλ(λ
t2−t1+α2−α1
j )Eλ(λ

t1−t2+β1−β2

i ) = δt2−t1=α1−α2=β1−β2
.

- 3) If j1 ̸= j2, i ̸= j1, i ̸= j2, then Eλ(λ
T−t1−α1
j1

λ−T+t2+α2
j2

λt1−t2+β1−β2

i ) = δt1−t2=β2−β1,T−t1−α1=0,T−t2−α2=0.

- 4) If j1 ̸= j2 and i = j1, the expectation is δT−α1−t2+β1−β2=0,T=t2+α2
, and similarly when j1 ̸= j2 and i = j2.

As a consequence, we see that all the terms that do not satisfy α1 − α2 = β1 − β2 will lead to 0 expectation, which
therefore implies that the first term writes:

Eλ(
∑

t1,j1,α1,β1,t2,j2,α2,β2,α1−α2=β1−β2

cα1,β1cα2,β2λ
T−t1−α1
j1

λ−T+t2+α2
j2

λt1−t2+β1−β2

i ).

• For the second term, we have∑
t,j,α∈A,β∈B

cα,βλ
T−t−α
j λt+β−1

i λ−T
i =

∑
t,α,β

cα,β
∑
j

(λT−t−α
j λt+β−1−T

i ).

- When i ̸= j, the expectation of λT−t−α
j λt+β−1−T

i is not 0 if and only if t + α = T and T = t + β − 1. Given
that A = {−1, 0, 1} and B = {−1, 0}, this implies α = β − 1 and therefore α = −1 and β = 0. But then we have
t = T + 1 which is not possible.

- When i = j, the expectation of λT−t−α
j λt+β−1−T

i = λβ−α−1
i is not 0 if and only if β = α + 1, that is β = 0 and

α = −1.

Therefore, one has
Eλ(

∑
t,α,β

cα,β
∑
j

(λT−t−α
j λt+β−1−T

i )) =
∑
t

c−1,0 = Tc−1,0

and the second term is −2Tc−1,0.

14
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Back to the full expectation, isolating the term in c2−1,0 from the first term, we get

Eλ|
∑

t,j,α∈A,β∈B

cα,βλ
T−1−t−α
j λt+β−1

i − λTi |2 = (10)

Eλ(
∑

t1,j1,α1,β1,t2,j2,α2,β2,α1−α2=β1−β2,(α1,α2,β1,β2) ̸=(−1,−1,0,0)

cα1,β1cα2,β2λ
T−t1−α1
j1

λ−T+t2+α2
j2

λt1−t2+β1−β2

i )

+KT c
2
−1,0 − 2Tc−1,0 + 1,

for some constant KT .

We now examine the terms in the sum within the expectation. We want to show that E1 = E2 where

E1 := {(α1, α2, β1, β2)|α1 − α2 = β1 − β2, (α1, α2, β1, β2) ̸= (−1,−1, 0, 0)}

and
E2 := {(α1, α2, β1, β2)|α1 − α2 = β1 − β2, (α1, β1) ̸= (−1, 0), (α2, β2) ̸= (−1, 0)}.

We already have E2 ⊂ E1. If (α1, α2, β1, β2) ∈ E1\E2, then either (α1, β1) = (−1, 0) or (α2, β2) = (−1, 0). If
(α1, β1) = (−1, 0), since α1 − α2 = β1 − β2, then α2 = β2 − 1, which necessarily implies β2 = 0 and α2 = −1, which
contradicts the fact that (α1, α2, β1, β2) ∈ E1. Similarly, if (α2, β2) = (−1, 0) and α1 − α2 = β1 − β2, then β1 = 0 and
α1 = −1. Therefore, E1 = E2, and

Eλ(
∑

t1,j1,t2,j2,(α1,α2,β1,β2)∈E1

cα1,β1
cα2,β2

λT−t1−α1
j1

λ−T+t2+α2
j2

λt1−t2+β1−β2

i ) =

Eλ(
∑

t1,j1,t2,j2,(α1,α2,β1,β2)∈E2

cα1,β1
cα2,β2

λT−t1−α1
j1

λ−T+t2+α2
j2

λt1−t2+β1−β2

i ) =

Eλ(|
∑

t,j,α∈A,β∈B,(α,β)̸=(−1,0)

cα,βλ
T−t−α
j λt+β−1

i |2) ≥ 0.

We are interested in the minimum of (10). The minimum of KT c
2
−1,0 − 2Tc−1,0 + 1 is reached for c−1,0 ̸= 0. We also just

showed that the first term is non-negative, so the minimum will be reached when (almost surely in λ ∼ U(CU ))∑
t,j,α∈A,β∈B,(α,β)̸=(−1,0)

cα,βλ
T−t−α
j λt+β−1

i = 0.

In particular, the terms corresponding to monomials in λi are∑
t,α∈A,β∈B,(α,β)̸=(−1,0)

cα,βλ
T−α+β−1
i = (T

∑
α∈A,β∈B,(α,β)̸=(−1,0)

cα,β)λ
T−α+β−1
i = 0.

Therefore, identifying the coefficients of this polynomial gives c1,−1 = c−1,−1 + c0,0 = c1,0 + c0,−1 = 0. We want to show
that this implies v−1 = u1 = u0 = 0.

If v−1 ̸= 0, then because c1,−1 = 0, we have u1 = 0. From c1,0 + c0,−1 = 0, it follows c0,−1 = 0 and therefore u0 = 0.
From c−1,−1 + c0,0 = 0, this implies c−1,−1 = 0 and thus u−1 = 0, which contradicts c−1,0 ̸= 0. Therefore, v−1 = 0.

Now, if u1 ̸= 0, then v−1 = 0, and from c−1,−1 + c0,0 = 0, we have c0,0 = 0. But because c−1,0 ̸= 0, we have u0 = 0,
which combined with c1,0 + c0,−1 = 0 implies c1,0 = 0, which is impossible because v0 ̸= 0. Therefore, u1 = 0.

So u1 = v−1 = 0, and c0,0 = 0, so that u0 = 0. This shows that loss (9) is minimal for cα,β = 0 if (α, β) ̸= (−1, 0).

Last, we need to calculate the constant

KT := Eλ(
∑

t1,j1,t2,j2

λT−t1+1
j1

λ−T+t2−1
j2

λt1−t2
i ).
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Back to the different possible values for (j1, j2, i) analyzed above, we get non-zeros when j1 = j2 = i and when j1 = j2 ̸= i.
In cases 3) and 4) we obtain as a necessary condition for non-zero expectation: t2 = T + 1 or t1 = T + 1; which is not
possible. Therefore,

KT = (
∑

j1=j2=i

∑
t1,t2

1) + (
∑

j1=j2 ̸=i

∑
t1=t2

1) = T 2 + (d− 1)T.

We now denote η = a3b1 = c−1,0. Replacing the zero terms in loss (9), we obtain

d

Tmax∑
T=2

(
η2(T 2 + (d− 1)T )− 2ηT + 1

)
,

for which the argmin is given by

η∗ =

∑Tmax

T=2 T∑Tmax

T=2 (T
2 + (d− 1)T )

∼ 3

2Tmax
as Tmax → +∞.

Finally at optimality,

Tθ∗(e1:T ) =
∑
t

η∗s⋆t−1sT st = η∗(
∑
t

sts
⋆
t−1)sT = −η∗∇WL(0, e1:T )sT = Γθ∗(e1:T )sT

with Γθ∗(e1:T ) := −η∗∇WL(0, e1:T ).

A.4. Proof of Lemma 2.

Proof. For a given input sequence e1:T = s1:T = (s, λ⊙ s, · · · , λT−1 ⊙ s), with context λ ∈ Ud, one has

Tθ(e1:T ) =
T∑

t=1

PT−1,t

H∑
h=1

⟨λt−1 ⊙ s, ah ⊙ λT−2 ⊙ s⟩bh ⊙ λt−1 ⊙ s.

We have

(⟨λt−1 ⊙ s, ah ⊙ λT−2 ⊙ s⟩bh ⊙ λt−1 ⊙ s)i =

d∑
j=1

ajhλ
2−T
j λt−1

j bihλ
t−1
i .

Since we precisely have

([B⊤A]λt−T+1 ⊙ λt−1)i =

d∑
j=1

H∑
h=1

biha
j
hλ

t−T+1
j λt−1

i ,

this gives us the desired result.

Remark. In fact, looking at the above proof, considering arbitrary real values for the vector s0 = s, one can absorb the
terms in s2j in each ajh and the terms in si in each bih, since these are learnable parameters. Therefore, our results can be
adapted to any arbitrary initial value s0.

A.5. Proof of Proposition 3.

Proof. Denote C = B⊤A. Let us suppose that we have an optimal solution θ such that l(θ) = 0. Therefore, for almost all
λ ∈ Ud and st = λt−1, one has Tθ(s1:T ) = λT . Then, ∀i ∈ {1, · · · , d}:

T∑
t=1

PT−1,t

d∑
j=1

Cijλ
t−T+1
j λt−1

i = λTi .

By identifying the coefficients of the polynomial in the λi’s, we see that one must have for all T ≥ 2 that PT−1,t = 0 if
t ̸= T , and for all 1 ≤ i ≤ d, pT−1,T Cii = 1, and Cij = 0 for i ̸= j.
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An optimal in-context mapping is then obtained by considering the forward rule of Tθ∗ for optimal parameters. One gets:

Tθ∗(e1:T ) = (ēT−1 ⊙ eT )⊙ (eT ).

A.6. Proof of Proposition 4.

Proof. The loss writes

ℓ(θ) =

Tmax∑
T=2

Ediag λ∼W∥
T∑

t=1

PT−1,tCλ
t−T+1 ⊙ λt−1 − λT ∥2.

We compute the expectation of each term in the sum by first developing it.

One has

∥
T∑

t=1

PT−1,tCλ
t−T+1 ⊙ λt−1 − λT ∥2 =

∑
t,t′

PT−1,tPT−1,t′

∑
i,j,k

CijCikλ
T−t−1
j λt

′−T+1
k λt

′−t
i

−2Real(
∑
t

PT−1,t

∑
i,j

Cijλ
T−t−1
j λT−t+1

i ) + d.

Looking at the expectation of the first term∑
t,t′

PT−1,tPT−1,t′

∑
i,j,k

CijCikE(λT−t−1
j λt

′−T+1
k λt

′−t
i ),

we see that one has to calculate for t, t′, i, j, k

E(λT−t−1
j λt

′−T+1
k λt

′−t
i ).

When j ̸= k, it is δt′=t=T−1. When j = k it is δt′=t.

Therefore∑
t,t′

PT−1,tPT−1,t′

∑
i,j,k

CijCikE(λT−t−1
j λt

′−T+1
k λt

′−t
i ) =

∑
t=t′

P 2
T−1,t

∑
i,j

C2ij + P 2
T−1,T−1

∑
i,j,k

Ci,jCi,k =

∥PT−1∥2∥C∥2F + P 2
T−1,T−1S(C

⊤C).

Similarly, because E(λT−t−1
j λT−t+1

i ) = δt=T,i=j , the second term is

−2E(Real(
∑
t

PT−1,t

∑
i,j

Cijλ
T−t−1
j λT−t+1

i )) = −2PT−1,TTr(C).

This concludes the proof.

A.7. Proof of Proposition 5.

Proof. Let us denote a(t), b(t) and p(t) the functions defined by the gradient flow on loss ℓ, that is ȧ = −∇aℓ(a, b, p) and
similarly for b and p. We start with the result from Nguegnang et al. (2021); Achour et al. (2021), which states that a(t),
b(t), and p(t) are bounded and converge to a stationary point (a∗, b∗, p∗) as t→ ∞:

lim
t→∞

(a(t), b(t), p(t)) = (a∗, b∗, p∗).

The possible stationary points are either global or non-global minima. The conditions for these are:
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• Global minimum if p∗a∗b∗ = 1

• Non-global minimum if a∗b∗ = 0, a∗p∗ = 0 and b∗p∗ = 0 and therefore

p∗a∗b∗ = 0.

If the system were to converge to a non-global minimum, we would therefore have

ℓ(+∞) = |p∗a∗b∗ − 1| = |0− 1| = 1 > ℓ(0)

This is a contradiction because the energy should have decreased over time.

As a result, the only remaining possibility for the stationary points is that they must satisfy p∗a∗b∗ = 1. Therefore, the
functions a(t), b(t), and p(t) must converge to a global minimum.

A.8. Proof of Lemma 3.

Proof. For the announced parameters, the problem simply decomposes into sub-problems in dimension 2. Indeed, we have
for all i ∈ {1, . . . , δ}:

(Tθ∗(e1:T ))2i−1 = −1

2
(λ02i−1 + λ̄02i−1)λ

T−2
2i−1 + (λ12i−1 + λ̄12i−1)λ

T−1
2i−1 = λT−2

2i−1(−1 + λ22i−1 + 1) = λT2i−1.

Similarly,
(Tθ∗(e1:T ))2i = λT2i.

A.9. Proof of Proposition 6.

Proof. The proof is similar to Proposition A.5, by regrouping each λi with λ̄i and identifying coefficients in two polynomials.
More precisely, one must have

T∑
t=1

PT−1,t

d∑
j=1

C2i−1,jλ
t−T+1
j λt−1

2i−1 = λT2i−1.

Therefore, isolating terms in λ2i−1 (recall that λ2i = 1/λ2i−1), and developing, we get, noting p := PT−1:

C2i−1,2i−1(
∑

t<T−1

ptλ
2t−T
2i−1 + pT−1λ

T−2
2i−1 + pTλ

T
2i−1) +

∑
t

ptC2i−1,2iλ
T−2
2i−1 = λT2i−1.

Identifying gives (C2i−1,2i−1 + C2i−1,2i)pT−1 + C2i−1,2ipT = 0, C2i−1,2i−1pT = 1 and pt<T−1 = 0.

Similarly, on the conjugates, (C2i,2i + C2i,2i−1)pT−1 + C2i,2i−1pT = 0, C2i,2ipT = 1.

Identifying the other terms gives C2i,j = C2i−1,j = 0 for j ̸= 2i and j ̸= 2i− 1.

Interpretation. Up to rescaling, the relation pTCi,i = 1 gives pT = Ci,i = 1, and therefore

C2i−1,2i + (1 + C2i−1,2i)pT−1 = C2i,2i−1 + (1 + C2i,2i−1)pT−1 = 0, (11)

which gives C2i−1,2i = C2i,2i−1. Therefore, C is symmetric and has the form diag(Jb, . . . , Jb) with Jb = ((1, b), (b, 1))
and b = −pT−1/(1 + pT−1). If H < d, C cannot be full rank, and therefore necessarily C2i,2i−1 = 1 or −1. But
C2i,2i−1 = −1 is impossible given (11). We then recover Lemma 3.
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A.10. Proof of Proposition 7

Proof. One has that the second order term in the quadratic form (7) writes

⟨p|Hp⟩ =
∑
t,t′

ptpt′Eλ∼W(µ)λ
2(t′−t).

We can calculate this expectation in closed form. Writing α = 2π
µ , it gives

Eλ∼W(µ)λ
2(t′−t) =

1

α

∫ α

0

e2iθ(t
′−t)dθ,

which gives i
2α(t′−t) [1− e2i(t

′−t)α] if t ̸= t′ and 1 otherwise. Since ⟨p|Hp⟩ is real, we can identify the real parts so that

Ht,t′ = (µ/(4π(t′ − t))) sin(4(t′ − t)
π

µ
).

We now turn to the eigenvalues of H . H is a smooth function of α:

H : [0, 2π] → ST ,

where ST are the symmetric matrices of RT×T . Using Th. 5.2 from Kato (2013), we know that the eigenvalues of H can be
parametrized as continuous functions ν1(α) ≥ ν2(α) ≥ · · · νT (α). Since for α = 0, the eigenvalues of H are T, 0, · · · 0,
and recalling that µ = 2π

α , we obtain the result.

B. Additional Experiments
Effect of the addition of softmax layers and MLP layers on the trained solutions. We consider the unitary context
matrix setup of section 5. As mentionned, we could not find a natural way to express the global minimum of the training
loss when a softmax layer was involved, even in dimension 1. To get more insight, we conducted an additional experiment
where we trained different models with and without softmax and MLP layers. We used d = 1, and T = 10, and a hidden
dimension of 32 in the MLP. Results are shown in Figure 9, where it is clear that in the case of commuting context matrices,
using a softmax is incompatible with learning the underlying in-context mapping.
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Figure 9. Training loss with training epoch for different configurations of the Transformer’s architecture, when using a softmax (SM) and
an MLP or not.

Transformer with all the bells and whistles and gradient descent. The experiment displayed in Figure 5 shows that
linear attention fails to compete with gradient descent when there are more than 2 layers. In contrast, a full Transformer
with all the bells and whistles as described in Vaswani et al. (2017) (softmax and MLP applied component-wise to each
transformer layer) outperforms gradient descent and has a similar trend, as shown in Figure 10. The training procedure and
the dataset are identical to those described in the Augmented setting paragraph of Section 6.

19



How do Transformers Perform In-Context Autoregressive Learning?
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Figure 10. Evolution of the mean squared errors (MSE) with depth L for a vanilla Transformer (Vaswani et al., 2017). We compare with
L steps of gradient descent (GD) on the inner loss (5). At initialization, the MSE is between 1 and 2. .
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