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Abstract

This paper focuses on metric learning with Siamese Neural Networks (SNN). Without any prior,

SNNs learn to compute a non-linear metric using only similarity and dissimilarity relationships

between input data. Our SNN model proposes three contributions: a tuple-based architecture,

an objective function with a norm regularisation and a polar sine-based angular reformulation for

cosine dissimilarity learning. Applying our SNN model for Human Action Recognition (HAR) gives

very competitive results using only one accelerometer or one motion capture point on the Multi-

modal Human Action Dataset (MHAD). Performances and properties of our proposals in terms of

accuracy, convergence and complexity are assessed, with very favourable results. Additional exper-

iments on the "Challenge for Multimodal Mid-Air Gesture Recognition for Close Human Computer

Interaction" Dataset (ChAirGest) confirm the competitive comparison of our proposals with state-

of-the-arts models.
Keywords: Siamese Neural Networks, Metric Learning, Human Action Recognition.

1. Introduction

As consumer devices become more and more ubiquitous, new interaction solutions coping with

the large variations and noise in unconstrained environments are required . In this study, we explore

the use of Neural-Network-based approaches for similarity metric learning in the field of Human

Activity Recognition (HAR). While video-based studies propose state-of-the-art performance in5

HAR, with strategies tackling multi-view learning [1] or low-resolution [2]; and neural networks
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we focus here on inertial sensor data, with activities holding a semantic value such as climbing,

running or jumping. In this context of motion-data-based activity or gesture recognition, three main

approaches exist. The earliest methods suggest to model the temporal structure of a gesture class,

for example with Hidden Markov Models (HMM) [3]; while another approach consists in matching10

gestures with reference instances using a non-linear temporal alignment technique generally based

on Dynamic Time Warping (DTW) [4]. Finally, higher-level features, designed to be invariant to

noise and deformations to some extent, can be extracted from gesture signals in order to train

specific classifiers, such as Support Vector Machines (SVM) [5]. For the real-time applications that

we aim at here, speed and delay constraints are critical, leading us to the choice of neural-based15

models. While Extreme Learning Machines (ELM) [6], Bi-Directional Long Short-Term Memory

(BLSTM) [7] and Convolutional Neural Networks (CNN) [8] have already been investigated, the

main issue is to tackle an open-world problem, which does not only require a good classification

performance but also an excellent generalization capability and the possibility to reject unknown

classes and add new classes without retraining the existing model. Our work focuses thus on20

similarity metric learning between gesture sample signatures using the “Siamese” architecture, which

aims at modelling semantic relationships between classes to extract discriminating features. Applied

to the Single/Multiple Feed Forward Neural Network (FNN), this approach is called Siamese Neural

Network (SNN). It differs from other neural-network based similarity metric models where neural

networks are essentially used for dimensionality reduction [9], as the SNN is directly trained on25

semantic similarity information. In this study, after a pre-processing step where the data is filtered

and normalized spatially and temporally, the SNN computes a higher-level representation of the

gesture, where features are collinear for similar gestures, and orthogonal for dissimilar ones. We

propose three contributions to the SNN:

1) We opt for a training strategy that does not require additional parameter fine-tuning. In30

contrast to classical input set selection strategies like pairs of examples: {similar, dissimilar} or

triplets: {reference, similar, dissimilar}, not directly suited to multi-class problems, we propose to

include at the same time a similar sample as well as samples from every available dissimilar class,

resulting in a better structuring of the output space.

2) While the original SNN model gives good results for classification, multiple mathematical35

problems are identified, proving that its discrimination potential is not developed to its best ca-

pacity. Consequently, during training, we apply a regularization on the outputs to better condition
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the objective function.

3) We introduce the notion of polar sine to redefine the angular problem as the maximization of

a normalized volume induced by the outputs of the reference and dissimilar samples, which results40

in a non-linear discriminant analysis. Indeed, this approach is the only one to take into account

the information about every dissimilarity relationship within the training sets, and not only the

relationships involving the reference sample.

With our experimental study on real world datasets, i.e. the Multimodal Human Activity

Database (MHAD) [10] and the Challenge for Multimodal Mid-Air Gesture Recognition for Close45

Human Computer Interaction Dataset (ChAirGest), we show very competitive results compared to

the state-of-the-art for our proposed SNN configurations.

This paper is organized as follows: Section 2 presents related work on SNNs. In Section 3,

we propose our contributions. Then, Sections 4 and 5 describe our experimental protocols and

results. A computational analysis of our proposals are discussed in Section 6. Finally, we draw our50

conclusions and present some perspectives in Section 7.

2. Siamese Neural Networks

A SNN learns a non-linear similarity metric, and essentially differentiates itself from classical

neural networks by its specific training strategy involving sets of samples labelled as similar or

dissimilar. The capabilities of different SNN-based methods depend on four main points: the55

network architecture, the training set selection strategy, the objective function, and the training

algorithm [11]. In the following, we will explain the three first points in more detail as they are

most related to our contributions.

2.1. Architecture

The name "Siamese" historically comes from the necessity to collect the state of a single network60

for two different activation samples during training. It can be seen as using two identical, parallel

neural networks NN sharing the same set of weights W (see Fig. 1). These sub-networks each

receive an input sample X, and produce output feature vectors OX that are supposed to be close

for samples from the same class and far apart for samples from different classes, according to some

distance measure, such as the cosine similarity metric. During the training step, the identical65

networks are joined at their ends by an output layer whose objective function EW is defined by a
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distance between features from each of the input samples. Siamese networks mainly involve two

types of networks: CNN and MLP (Multi-Layer Perceptron).
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Figure 1: Original SNN training architecture.

Bromley et al. [11] introduced the Siamese architecture in 1994, using a Siamese CNN with

two sub-networks for a signature verification system handling time-series of hand-crafted low-level70

features. In 2005, Chopra, Hadsell and LeCun [12] formalized the Siamese architecture applying a

CNN on raw images for face verification, before adapting it to a dimensionality reduction technique

[13]. More recently, Siamese CNNs have been used successfully for various tasks, such as person

re-identification [14], speaker verification [15], and face identification [16].

CNN-based architectures are more specific to image inputs, and several research works propose75

to use feed-forward perceptrons to handle more general vector inputs. For example, Yih et al.

[17] apply SFNNs to learn similarities on text data, Bordes et al. [18] on entities in Knowledge

Bases, and Masci et al. [19] on multi-modal data. Other works on face verification use MLP

Siamese architectures [20, 21] or Restricted Boltzmann Machines (RBM) [22] to learn a non-linear

similarity metric.80

2.2. Training Set Selection

The selection strategy for training examples depends mostly on the application and the kind of

knowledge about similarities that one wants to incorporate in the model. For many applications,

such as face or signature verification, the similarity between samples depend on their “real-world”

origin, i.e. faces/signatures from the same person, and the network allows to determine the genuine-85

ness of a test sample with a binary classification. Most approaches use pairs of training samples

(X1,X2) and a binary similarity relation which takes different values for similar and dissimilar
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Table 1: A summary of notations used in this paper.

Notation Description

Y Similarity label for a pair of samples (similar,dissimilar)

t(Y ) Target value for the similarity metric for a pair of samples

with a similarity label Y

C = {C1, .., CK} Set of K classes

Nk = [1, ..,K] \ {k} Set of class indexes different from class k

Xj ,OXj sample X from class j and its SNN output

NB: X1,X2 may be used as an example pair of random samples

Tk = {Rk,Pk, {Nl, l ∈ Nk}} Tuple training set for an SNN update with a reference sample R

from class k, a similar sample P, and a set of dissimilar samples

W Set of weights for the SNN

EW Error function applied for the SNN training

pairs. Lefebvre et al. [20] expand the information about expected neighbourhoods, and suggest a

more symmetric representation: by considering a reference sample XR for each known relation, it

is possible to define triplets (XR,X+,X−), with X+ forming a genuine pair with the reference XR,90

while X− is a sample from another class.

2.3. Objective Functions

The objective function computes a similarity metric between the higher-level features extracted

from multiple input patterns. Minimizing this function iteratively during training ensures that the

distance between similar patterns gets smaller, and the one between dissimilar gets larger. In this95

regard, different metrics have been used in the literature:

Square Error. Given a network with weights W and two samples X1 and X2 with their labels

Y , a target t(Y ) is defined for the cosine value between the two respective output vectors OX1 and

OX2 as “1” for similar pairs and “−1” (or “0”) for dissimilar pairs [11]:

EW (X1,X2, Y ) = (t(Y )− cos(OX1 ,OX2))2
. (1)
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Triangular Similarity Metric. Zheng et al. [23] imply the same targets and impose additional

constraints on the norms of the output vectors OX1 and OX2 . Integrating a geometrical interpre-

tation using the triangle inequality, the resulting objective function becomes:

EW (X1,X2, Y ) = 1
2 ‖OX1‖

2 + 1
2 ‖OX2‖

2 − ‖OX1 + t(Y ) OX2‖+ 1 . (2)

Triplet Similarity. Lefebvre et al. [20] use simultaneously targets for genuine and impostor pairs

by presenting triplets of a reference XR, a positive X+ and a negative X− sample. The output

of the positive pair (OR,O+) is trained to be collinear, whereas the output of the negative pair

(OR,O−) is trained to be orthogonal. Thus:

EW (XR,X+,X−) = (1− cos(OR,O+))2 + (0− cos(OR,O−))2 (3)

Deviance. Yi et al. [14] use the binomial deviance to define their objective function:

EW (X1,X2, Y ) = ln
(

exp−2t(Y ) cos(OX1 ,OX2) +1
)

(4)

Two Pairs. Yih et al. [17] consider two pairs of vectors, (Xp1,Xq1) and (Xp2,Xq2), the first being

known to have a higher similarity than the second. The main objective is then to maximize

∆ = cos(OXp1 ,OXq1)− cos(OXp2 ,OXq2) (5)

in a logistic loss function

EW (∆) = log(1 + exp(−γ∆)) , (6)

with γ being a scaling factor.

Probability-driven. Nair et al. [22] add a final neuron to their architecture whose activation

function computes the probability P of two samples X1, X2 being from the same class:

P = 1
1 + exp(−(w. cos(OX1 ,OX2) + b)) , (7)

with w and b being scalar parameters.

Norm-Based. Several works [12, 13, 16, 19] propose to use the norm, e.g. `2-norm, between the

output vectors as a similarity measure:

dW (X1,X2) = ‖OX1 −OX2‖2 . (8)
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For example, Chopra et al. [12] define an objective composed of an “impostor” I (t(Y)=1) and a

“genuine” G term (t(Y)=0):

EW (X1,X2, Y ) = (1− t(Y ))EG
W (X1,X2) + t(Y ).EI

W (X1,X2) (9)

with EG
W (X1,X2) = 2

Q
(dW )2, EI

W (X1,X2) = 2Qe(− 2.77
Q dW ) ,where Q is the upper bound of dW .

(10)

Statistical. Chen et al. [15] compute the first and second-order statistics, µ(i) and Σ(i), over sliding

windows on the SNN outputs of a speech sample i, and define the objective function as:

EW (X1,X2, Y ) = (1− t(Y ))(Dm +DS) + t(Y ).(exp(−Dm

λm
) + exp(−DS

λS
)) , (11)

where

Dm =
∥∥∥µ(i) − µ(j)

∥∥∥2

2
, DS =

∥∥∥Σ(i) − Σ(j)
∥∥∥2

F
(12)

are incompatibility measures of these statistics between two samples i and j, λm and λs are tolerance

bounds on these measures, and ‖.‖F is the Frobenius norm.100

Thus, SNNs differ from classical networks essentially by their training strategy involving multiple

samples. However, since they produce “only” a similarity metric in their projection space, it is

necessary to use another model on the projected data to obtain the final decision for classification

(in the simplest case: a KNN classifier).

3. Proposed SNN105

In the following, we propose multiple contributions aiming at increasing the discriminating

potential of the network and improve its convergence for multi-class classification or verification.

Firstly, we suggest a more general way of defining similarities in multi-class problems, with training

sets representing every class at once, since the pair or triplet strategies are not sufficient to define the

complex relationships between the different classes. Indeed, they lead to biased and unclear training110

set selection strategies. Moreover, our mathematical analysis proves that cosine-based objectives

can lead to numerical instabilities. Therefore, we introduce a regularization of the original metric,

giving a simpler and computationally more efficient function. Finally, we propose to modify the

objective function further by including a term based on the polar sine, allowing for a very elegant and

effective solution to manage every similarity and dissimilarity relationship in the training process.115
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Figure 2: Proposed training architecture of the SNN.

3.1. Architecture

In our study, we use an MLP-based architecture with hyperbolic tangent activation functions

for every layer. We choose a squared error cosine-based objective function as in [11] and [20] (see

Eq. 1). We set the target value for dissimilar pairs to 0 instead of −1 to avoid instabilities in the

training, as this target cannot be met for more than two classes.120

However, we do not use the common two-sub-network training architecture, since the latter is

greatly modified by a our specific training set selection strategy presented below.

3.2. Training Set Selection Strategy

Existing training set selection strategies for SNNs consists in defining a subjective number

of similar and dissimilar pairs deemed representative of the global relationships within the data.125

Generally, this induces a bias, since it is difficult to ensure a good coverage for every relationship.

For this reason, we propose a unified approach for multi-class problems (see Fig. 2). Let C =

{C1, .., CK} be the set of classes, ORk
the output vector of the reference sample Rk from the class

Ck presented to the model for update, Pk the output of a different sample Pk from the same class

(i.e. the positive comparison), and ONl
the output of a sample Nl from another class Cl (i.e. a130

negative comparison).

In order to keep symmetric roles for every class and to optimize the update efficiency, we propose

to minimize an error criterion for tuples. Given a class Ck, and the set Nk = [1, ..,K] \ {k} of the

indexes of every other class, a tuple is defined as Tk = {Rk,Pk, {Nl, l ∈ Nk}} involving one

reference sample from the class Ck, one positive sample and one negative sample from every other
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class. The objective function becomes:

EW1(Tk) = (1− cos(ORk
,OPk

))2 +
∑

l∈Nk

(0− cos(ORk
,ONl

))2. (13)

Thus, our network architecture involves as many sub-networks as classes. Every sample is

taken once as a reference, while the others are drawn at random. This facilitates the selection

of representative samples and gives a global, non-parametric approach. Moreover, this strategy is

similar to mini-batch learning, i.e. it limits the number of updates required before convergence.135

3.3. Objective Function

3.3.1. Norm Regularization

In order to improve convergence, we also study the behaviour of a weight update over the

projected samples. In the following, we will analyse the cosine metric as a function of two vectors

of dimension n,

cosX1,X2 : R2n → R | (X1,X2)→ 1
2(1− cos(X1,X2))2. (14)

Let (O1,O2) be a pair of outputs used for update. Given the functions

cosO1 : Rn → R |X→ 1
2(1− cos(O1,X))2

cosO2 : Rn → R |X→ 1
2(1− cos(X,O2))2

(15)

respectively evaluated at the points O2 and O1, the cosX1,X2 directional derivative at (O1,O2) can

be expressed as the concatenation of the two directional derivatives ∇cosO1
(O2) and ∇cosO2

(O1).

We will show here that every stochastic gradient descent will increase the norms for both samples.

Considering the function cosO1 , the update of O2 is

Ot+1
2 = Ot

2 − λ.∇cosO1
(O2), λ ∈ R. (16)

Figure 3 gives a graphical illustration in three dimensions. The line directed by the vector O2
‖O2‖

belongs to the equipotential for the cosO1 function. By definition, we can conclude that the di-

rectional derivative ∇cosO1
(O2) is orthogonal to O2. According to Pythagoras’ theorem, we can

conclude: ∥∥Ot+1
2
∥∥2 =

∥∥Ot
2
∥∥2 + λ2 ∥∥∇cosO1

(O2)
∥∥2 ⇒

∥∥Ot+1
2
∥∥ > ∥∥Ot

2
∥∥ . (17)

140
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Figure 3: An update step on the projection norm for a pair (Ot
1, Ot

2). The sphere centre corresponds to the origin.

The grey cone represents the equipotential surface for the function cosO1 .

Increasing the norms of the output vectors may incur progressive divergence. Moreover, with

hyperbolic tangent activation functions, the output space is a hyper-cube of dimension n, which

restricts the norms to a maximum of
√
n. Therefore, we propose to add constraints on the norms

of every output by forcing them to 1 and thus avoid any undesired saturation effects.

We modify our objective function EW1 (see Eq.13) for a training subset Tk:

EW2(Tk) = EW1(Tk) +
∑

Xp∈Tk

(1−
∥∥OXp

∥∥)2. (18)

Given ∀(O1,O2) ∈ (Rn,Rn), cos(O1,O2) = O1·O2
‖O1‖.‖O2‖ , we also propose to replace the cosine145

distance for each pair by the scalar product of the pair outputs, since the norms of the two outputs

are set to one during training.

Thus, the final objective function for one training subset Tk is defined as:

EW (Tk) = (1−ORk
·OPk

)2 +
∑

l∈Nk

(0−ORk
·ONl

)2 +
∑

Xp∈Tk

(1−
∥∥OXp

∥∥)2. (19)

While this formulation is more suited to handle angular updates, it turns out impractical for

an increasing number of classes. Moreover, in the derivative of the mean squared error objective,150

the cosine error is weighted by the difference between the target and the cosine value which tends

to zero and slows down the convergence. Thus, we propose a new error function that preserves the

targets, while addressing both of these problems.
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3.3.2. Angle Problem Reformulation

In the following, we propose a reformulation of the objective function based on a higher-155

dimensional dissimilarity measure, the polar sine metric. We will then show that this new analysis

leads to a non-linear discriminant analysis.

Inspired by the 2D sine function, Lerman et al. [24] define the polar sine for a set Vm =

{v1, . . . ,vn} of m-dimensional linearly independent vectors (m > n) as a normalized hyper-volume.

Given A =
[
v1 v2 · · · vm

]
and its transpose A>:

PolarSine(v1, . . . ,vn) =
√

det (A>A)∏n
i=1 ‖vi‖

. (20)

In the special case where m = n, the matrix product in the determinant is replaced by the square

matrix A

Given the matrix S so that ∀(i, j) ∈ [1, .., n]2 ,Si,j = cos(vi,vj), this measure can be rewritten

as PolarSine(v1, . . . ,vn) =
√

det (S). For numerical stability reasons during the derivation process

and to make this value independent from the number of classes, we introduce the polar sine metric:

psine(v1, . . . ,vn) = n
√

det (S). (21)

3.3.3. Polar sine for learning dissimilarities160

The polar sine metric only depends on the angles between every vector of the set. It reaches its

maximum value when all the vectors are orthogonal, and thus can be used as another metric for

dissimilarity.

With two comparable similarity estimators whose values are between 0 and 1, one for similar

and one for dissimilar samples, it is now possible to redefine the objective function for our training

sets Tk:
EW3(Tk) = EsimW (Tk) + EsimW (Tk) ,

EsimW (Tk) = (1− cos(ORk
,OPk

))2,

EsimW (Tk) = (1− psine(ORk
,ON1 , . . . ,ONK

))2 .

(22)

Optimizing the polar sine corresponds to assigning a target of 0 to the cosine value of every

pair of outputs from different vectors drawn in Tk \ {Rk}, i.e. we assign a target for every pair165

of dissimilar samples. This actually holds more information than our original cosine or scalar

objective functions, which would only define a target for pairs including the reference sample. As a
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consequence, the psine function allows for a truly complete representation, in every training set, of

every available relationship present in the dataset. Given a set number of sources, the initial inputs

are transformed into maximally independent, multi-dimensional components. Thus, our Siamese170

network, combined with this new objective function presents all the properties of a supervised,

stochastic non-linear Independent Component Analysis, with one more advantage, as the number

of components is adjustable by modifying the network output layer structure.

4. Experiments on the Multimodal Human Action Dataset

We state four hypotheses H1 to H4 about our contributions that we will experimentally validate175

on a small dataset, the Multimodal Human Action Dataset (MHAD):

• H1: an orthogonality objective for the cosine value between negative samples pairs leads to a

better, more stable convergence.

• H2: a tuple-based training set selection strategy allows for a better representation of the

relationships between classes, leading to a better structuring of the output space.180

• H3: the proposed regularization scheme leads to a better convergence and a more stable norm

evolution.

• H4: the polar sine metric-based objective, through a non-linear discriminant analysis, is more

efficient at separating classes than other objective functions.

4.1. Dataset presentation and protocols185

The Multimodal Human Action Dataset [10] comprises the recordings from 12 participants

performing 11 different actions (with 5 repetitions) which were designed to cover diverse dynamics

of different body extremities and which were not specifically explained to the subjects beforehand

in order to collect a representative range of different styles for each action. Figure 4 illustrates the

different action types.190

Although the MHAD comprises data collected from multiple types of sensors, we focus our study

on two main sensors, consisting in the right wrist inertial sensor (A1) and motion capture (M20),

as it gave the best classification results.

12



Figure 4: MHAD actions: jumping, jumping jacks, bending, punching, waving two hands, waving one hand, clapping,

throwing, sit down/stand up, sit down, stand up.

A general amplitude scaling is performed, where each component of every sample forming a

action record is divided by the maximum norm over all the samples of this action. Then, a low-195

pass filter is applied to the inertial signals to filter out the involuntary small shakes and electronic

noise. Finally, the data are temporally normalized, with specific strategies suited to each method to

compare. For the methods requiring a fixed-size input, the three-dimensional 30Hz inertial signal

for each action record is re-sampled to a 135-dimensional (45×3) sample according to the estimated

curvilinear length of the signal.200

The same network architecture is selected for every SNN variant: a 3-layer SFNN, with an

input layer size adapted to the data dimensionality (135 neurons for MHAD), a 45-neuron hidden

layer, and a 90-neuron output layer. The hyperbolic tangent is chosen as the activation function for

every neuron, and the learning rate is set to 0.001. During training, the network is independently

and successively activated with every sample of a training set. Each activation state is stored, and205

reused to compute the weight updates. The computation details are available in [25].

The following aspects are explored:

4.1.1. Negative Target Selection (Hypothesis H1)

The target cosine value for dissimilar pairs can be set to −1 or to 0. We propose an analysis

of both choices. Indeed,the latter allows for a better convergence as the minimum for the error210

function (0) can actually be attained, and it limits the space occupied by the samples. However, it

also requires the output space dimension to be greater or equal to the number of classes represented

in the training set, at the risk of overstraining the system and causing instability.
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4.1.2. Training Set Selection Strategy - pairs, triplets or tuples (Hypothesis H2)

We compare three different SNN selection strategies, and assess their relative complexities and215

computation costs. Let Nc be the number of classes, and Ns the number of samples in the dataset.

The first strategy is the most common [11] and consists in selecting a specific number of pairs

of samples, labelled as "similar" or "dissimilar". Here, we propose to form one similar pair with

every sample of the dataset, where the second element of the pair is drawn at random. Dissimilar

pairs are selected so as to represent every dissimilarity relationship available for every sample of220

the dataset, for a total of Nc − 1 dissimilar pairs per sample. The total number of updates for one

epoch is then equal to Nc ×Ns, with 2(Nc ×Ns) activations.

The second strategy [20] favours a symmetry between similarities and dissimilarities, forming

triplets, with one reference, one similar and one dissimilar sample per set. As for the first strategy,

every dissimilarity relationship is represented. As a consequence, a triplet is formed for each dis-225

similarity, for a total of Nc − 1 positive and negative pairs per sample. As such, the total number

of updates is equal to (Nc − 1)×Ns, with three activations per update.

The third strategy consists in our contribution, which generalizes the triplets approach with

tuples. Each sample is used as a reference once, in a training set representing every similarity and

dissimilarity relationships. This limits the number of updates per epoch, with only Ns updates, for230

[(Nc + 1)×Ns] activations.

4.1.3. Cost Function: (Hypotheses H3, H4)

Our study focuses on the comparison between the initial cosine-based error function, referred

as cos, and our two contributions: the norm regularization, resulting in the scalar product-based

objective function, referred as scal, and the polar sine metric-based function, referred as psine.235

These three points lead to a total of 15 different SNN configurations (where the psine function

is incompatible with −1 targets for negative examples). Each SNN is complemented by a KNN

classifier, with K = 1, and the classification accuracy is reported. A leave-one-out strategy is

adopted, with every sample from 11 users selected for training, and the samples from the last user

for the testing phase.240

4.1.4. Comparison with state-of-the-art models

We propose a comparison between the psine-based SNN and multiple gesture recognition ap-

proaches: geometric-based methods with Dynamic Time Warping (DTW) [4], classifier-based meth-
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Table 2: Recognition rates for our MHAD protocols with different training set selection strategies (pairs, triplets,

tuples) and different negative target values (1 for positives, −1 for negatives: “t-11”, and 0 for negatives: “t01”).

A1 pairs triplets tuples

targets t-11 t01 t-11 t01 t-11 t01

cos 0.901 ± 0.11 0.916 ± 0.10 0.881 ± 0.10 0.916 ± 0.09 0.880 ± 0.09 0.915 ± 0.10

scal 0.883 ± 0.09 0.869 ± 0.09 0.871 ± 0.11 0.869 ± 0.11 0.880 ± 0.08 0.886 ± 0.08

psine - 0.910 ± 0.10 - 0.910 ± 0.08 - 0.918 ± 0.09

ods with the classical Support Vector Machine (SVM) [5], and neural-based methods with the MLP.

We focus on two sensors: the accelerometer A1 and the motion capture sensor M20, with the245

same leave-one-out strategy as described above.

4.2. Results

We subsequently discuss the results of each protocol:

4.2.1. Negative Target Selection

Table 2 shows the classification accuracy for the different configurations. For the cosine-based250

objective function, an orthogonality between negative vectors (target 0) produces better overall

results for every training set selection strategy than the repulsion scheme (target −1). Only the

scalar-based objective function with norm regularization gives a slight advantage to the −1 target

for the negative pairs and triplets-based strategies. This phenomenon can be explained by the

decomposition of the target angle in three sub-targets. The norm objectives have to be met perfectly255

for the scalar product objective to propose the right angle correction. These norms dynamically

change with each update, and norm corrections may be favoured over angle corrections. Thus, a

target equal to −1 amplifies the scalar product error, and gives an extra edge to the amplitude of

the corresponding objective error over the norm objectives error, speeding up the convergence.

Thus, hypothesis H1 is validated for the cosine and polar sine metric-based objective functions.260

4.2.2. Training Set Selection Strategy

The training set selection strategy does not impact significantly the classification scores for the

cosine-based objective function, with similar scores around 91.5% for the three strategies combined

with a zero negative target. It is however interesting to note a reduced standard deviation for the
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triplet set strategy with a cosine-based objective, due to the increased representation of the similarity265

relationships which reduces the intra-class distances. Our proposed tuple selection strategy gives

the best results on average.

Finally, the polar sine metric-based SNN shows a good performance in every case, comparable to

the cosine-based SNN. While the pair and triplet strategies give the advantage to the cosine-based

objective function, the potential of the polar sine metric approach is revealed with tuples, which270

cover every relationship available during training. This method shows then the best accuracy, equal

to 91.8%, with a reduced standard deviation of 9.1% over the cosine-based one, whose accuracy

is equal to 91.5% with a standard deviation of 10.2%. Thus, we can conclude that the polar sine

metric-based objective gives competitive results, as it corrects the cosine values more reliably than

the scalar product-based one. This analysis validates hypothesis H2, with a tuple-based strategy275

producing better or similar results as other strategies for the three objective functions. Moreover, H4

is validated as well, as the polar sine metric-based objective combined with a tuple-based strategy

produces the best classification score. However, the resulting projections differ for every objective

functions, as seen below.

4.2.3. Projection Space Analysis280

As explained in the previous section, a gradient descent update with the cosine function leads

to instabilities in the norms of the outputs. Indeed, for a model where the gradient descent is

simply performed on the components of the output vectors, we proved that these norms increase

with each update. Figures 5a, 5b and 5c show the evolution of the mean norms of the output

and their corresponding standard deviations for the different negative targets and training set285

strategies, respectively combined with a cosine-based, scalar product-based and polar sine metric-

based objective function.

First, one can observe that “−1” negative targets introduce an instability, which leads to the

expected increasing norms for the pairs and triplets strategies, for both cosine and scalar product-

based objective functions. Unexpectedly, with “0” negative targets, the norms tend to decrease290

quickly at first, then slightly but steadily with each update, for both cosine (see Fig. 5a) and

polar sine metric-based (see Fig. 5c) objective functions. The scalar product-based strategy proves

more reliable in that case (see Fig. 5b), although it implies a longer training with 1600 epochs.

Indeed, it is devised to counteract this norm variation phenomenon, and proves to be efficient with
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Figure 5: Mean output norm evolution for each objective function.

mean output norms close to one and small standard deviations for the triplets and tuples strategies.295

While the unit mean norm is not reached for the pairs strategy, it still stabilizes the norm evolution,

validating hypothesis H3, except for tuple and triplet objectives combined with a −1 negative target

whose mathematical instabilities lead to increasing norms.

As a conclusion, angle updates with SNN networks imply a compromise between efficient angle

corrections and output norms stabilization. And the observed adverse effects of some the studied300

SNN variants are most likely accentuated when applied on larger scale problems.
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Figure 6: Classification rate evolution for each objective function.
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Table 3: Comparison with the state of the art on MHAD.

A1 M20

DTW [26] 0.790± 0.107 0.888± 0.076

MLP [26] 0.818± 0.099 0.913± 0.067

SVM [27] 0.867 -

cos 0.915± 0.102 0.906± 0.080

scal 0.886± 0.079 0.910± 0.065

psine 0.918± 0.091 0.924± 0.068

4.3. Comparison with state-of-the-art results

Finally, we compare the performances of each SNN objective function variant with a tuple-based

training selection strategy, denominated cos, scal and psine. The results are shown in Table 3.

For our analysis, we focus on the classification rates obtained from isolated sensor data with the305

accelerometer A1 and the motion capture sensor M20, and we report the results for the DTW and

MLP methods proposed in [26] and the SVM-based approach [27] on these same sensors.

The SNN-based approaches show globally superior results on the inertial sensor A1, with a

lowest score of 88.6% for the SNN-scal, compared to a best score in the literature of 86.7% for

the SVM approach. This shows that a SNN-based approach is very competitive. This conclusion310

is verified for the M20 sensor. Our SNN-psine approach, implementing the polar sine metric and

tuple-based set selection strategies contributions, show the best result of 92.4%.

5. Experiments on the ChAirGest dataset

We make a final hypothesis H5, which we seek to confirm the larger scale, "Challenge for Multi-

modal Mid-Air Gesture Recognition for Close Human Computer Interaction" Dataset (ChAirGest)315

[28]:

• H5: the performance and competitive results of our psine-based SNN contribution can be

generalized to other datasets.
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Figure 7: Visuals of the ChairGest recording setup [28]. On the left, an image captured from the Kinect RGB

stream. On the right, an external view of a subject performing a gesture in pseudo-recording conditions. Note that

the accelerometers were hidden under the subject’s clothes to avoid visual clues.

5.1. Dataset presentation and protocol

This dataset contains 6 hours of continuous multimodal recordings from 10 subjects mimicking320

gestures seen on a computer screen. The data have been acquired from a Kinect camera and 4

Inertial Motion Units (IMUs) attached to the right arm of the subject (see Fig.7). The dataset

contains the 10 following gestures: Swipe left, Swipe right, Push to screen, Take from screen, Palm-

up rotation, Palm-down rotation, Draw a circle I, Draw a circle II, Wave hello and Shake hand.

In the following experiment, we use a concatenation of 3 Kinect points, K2, K6 and K10,325

respectively associated with the head, the right hand, and the left hand. A 10-cross-validation

testing is performed, with 400 samples drawn at random as the training set, 50 samples for the

validation set, and 50 samples for the test set.

The same network architecture is used for our SNN in this experiment: a 3-layer SFNN, with

an input layer size adapted to the data dimensionality (900 neurons for ChAirGest), a 45-neuron330

hidden layer, and a 90-neuron output layer.

We propose to compare our psine-based SNN to the three HAR state-of-the-art models previ-

ously identified on MHAD: DTW, MLP and SVM.

5.2. Results

This trend identified in our MHAD experiments is indeed confirmed on the ChAirGest dataset,335

see Table 4. While the MLP lacks the generalization potential to take into account the inter-subject

variability with a classification rate of 87.8%, other methods such as the SVM or the KNN-based

ones perform better, with a 89.2% rate for the DTW and 90.0% rate for the SVM. Our SNN-psine

20



Table 4: Comparison with the state of the art on ChAirGest.

K2K6K10

DTW 0.892± 0.018

MLP 0.878± 0.038

SVM 0.900± 0.046

SNN-psine 0.910± 0.034

Table 5: Number of relationships per update given a reference, with Nc the number of classes.

pairs triplets tuples

cos 1 2 Nc

scal 1 2 Nc

psine 1 2 Nc(Nc−1)
2 + 1

achieves the best result, with a classification rate of 91.0%. This score is competitive with the best

scores available to this day on this dataset, in particular Cao et al. [29] who obtain a classification340

rate of 0.918% with their HMM decision fusion strategy. It is however important to note that these

results are not directly comparable as they use the whole set of Kinect points, contrary to the 3

points we chose, with a different testing protocol, based on a leave-one-out cross validation.

6. Computational Complexity

Finally, we assess the computational cost of the three proposed training set selection strategies.345

Table 5 shows the difference in the number of relationships represented in each update. The

tuple-based objective function has a much more balanced representation, thus requiring more mem-

ory but at the same time reducing the number of necessary updates.

Table 6 illustrates this trade-off between the memory requirements, the number of back-propaga-

tions and updates necessary to present every available relationship to the model without bias, given a350

reference sample. Furthermore, there is a second trade-off between the required number of updates

and the computational complexity of each update (as illustrated in Fig. 6a-6c). The polar sine

metric-based SNN requires around twice the number of epochs of the cosine-based SNN to reach

its optimum configuration.
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Table 6: Number of updates for each strategy given a reference, with Nc the number of classes.

pairs triplets tuples

networks/update 2 3 Nc + 1

backprop./update 2Nc 3Nc Nc + 1

updates Nc Nc − 1 1

Table 7: Average Time for one update (in ms) on MHAD.

A1 pairs triplets tuples

cos 0.301 0.35 1.61

scal 0.317 0.39 1.72

psine 0.274 0.33 2.05

The cosine and scalar-based objective functions with the tuples strategy imply an error compu-355

tation complexity which is linear in terms of the output dimension NO and the number of classes

Nc, i.e. a complexity in O(NO Nc). While the polar sine metric function involves a matrix inversion

which can be done very efficiently for low-dimensional matrices.

Thus, the global complexity of the error resides in the matrix multiplication between the inverse

cosine matrix and the normalized output matrix, for a final complexity in O(NO N
2
c ). As such, the360

polar sine metric-based method can stay competitive for the most common small to medium-scale

problems. One approach for larger-scale problems would be a decomposition into smaller sets of

relationships in order to limit the amplitude of Nc.

Table 7 reports the average training times for one update on MHAD (Computing times on

an Intel Core i7-4800MQ CPU@2.70GHz), for each training set selection strategy and objective365

function. We can see that the order of magnitude identified above are respected, with a triplet

strategy taking about 20% more time than the pair strategy, while the tuple strategy increases the

update time by more than 400%, which is acceptable as the total number of updates per reference

is divided by the number of classes.
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7. Conclusion370

We proposed an adaptation of the Siamese strategy for neural networks to a multi-class classifi-

cation context with stochastic training. Beyond the typical pairs and triplets of samples labelled as

similar or dissimilar, a generalized training set selection strategy is suggested, which integrates one

sample from every class, effectively simplifying the constitution of these training sets and balancing

the representation of every relationship. Further, following the choice of the cosine similarity metric375

for the output space, mathematical flaws are identified, in particular concerning the uncontrolled

norms of the outputs during training. Simplifying the original cosine function, angle updates are

decomposed into three independent targets for a pair of vectors, namely a target on the scalar prod-

uct between these vectors, and a target on their respective norms. Finally, we proposed a unified

similarity function, the Polar Sine Metric, which holds and represents all the available information380

about dissimilarities in the training set, and leads to a supervised, stochastic non-linear Indepen-

dent Component Analysis learning. We performed a thorough analysis of the different proposed

strategies and SNN configurations and experimentally showed competitive performance on the task

of human action recognition.

Future research may focus on the analysis of the proposed approaches for different tasks and385

types of data, as well as larger scale problems. Also, the possibility to include a temporal aspect in

the model would be of great interest.
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