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Abstract

3D convolutional neural networks have revealed superior performance in processing
volumetric data such as video and medical imaging. However, the competitive
performance by leveraging 3D networks results in huge computational costs, which
are far beyond that of 2D networks. In this paper, we propose a novel Hilbert curve-
based cross-dimensionality distillation approach that facilitates the knowledge of
3D networks to improve the performance of 2D networks. The proposed Hilbert
Distillation (HD) method preserves the structural information via the Hilbert curve,
which maps high-dimensional (>=2) representations to one-dimensional continuous
space-filling curves. Since the distilled 2D networks are supervised by the curves
converted from dimensionally heterogeneous 3D features, the 2D networks are
given an informative view in terms of learning structural information embedded
in well-trained high-dimensional representations. We further propose a Variable-
length Hilbert Distillation (VHD) method to dynamically shorten the walking
stride of the Hilbert curve in activation feature areas and lengthen the stride in
context feature areas, forcing the 2D networks to pay more attention to learning
from activation features. The proposed algorithm outperforms the current state-
of-the-art distillation techniques adapted to cross-dimensionality distillation on
two classification tasks. Moreover, the distilled 2D networks by the proposed
method achieve competitive performance with the original 3D networks, indicating
the lightweight distilled 2D networks could potentially be the substitution of
cumbersome 3D networks in the real-world scenario.

1 Introduction

Knowledge distillation aims to transfer knowledge from cumbersome models to lightweight models.
The vanilla knowledge distillation [11] collects the logits that contain the cognizance of wrong
classes in the cumbersome model. Forcing the lightweight model to mimic the logits can obviously
strengthen its parsing ability. Recent efforts further devote to improve the distillation effectiveness by
adopting intermediate representations [9, 18, 32, 35, 36] and the relation knowledge [22, 23, 25, 33]
of samples as new distillation mediums. In some real-world scenarios (e.g., video analysis and
medical imaging processing), 3D models typically present overwhelming performance compared
with common 2D models, yet the 3D models suffer from huge computational costs. One way to
mitigate this problem is by leveraging knowledge distillation to encapsulate the parsing ability of 3D
models into 2D models. However, the cross-dimensionality distillation problem, especially 3D-to-2D
distillation, is largely unaddressed in the literature.

Most existing methods that utilize intermediate features for distillation are designed by employing
a metric function (e.g., mean square error (MSE) and Kullback-Leibler (KL) divergence) between
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the pair of feature maps extracted from teacher and student networks. Unfortunately, they are not
applicable in cross-dimensionality distillation tasks due to the inconsistent dimensionality. To get rid
of the constraint, several dimensionality reduction methods such as pooling and convolution that can
completely condense the extra dimension maybe feasible by converting the 3D feature maps (with the
size of D�W �H) to reduced 2D-from-3D representations (with the size of 1�W �H). However,
the reduction tends to dropout the high-dimensional structural information. As a result, they have
limited applicability to deal with volumetric data in the case of lacking the structural information.

In this paper, we propose a new method, namely Hilbert Distillation (HD), to explicitly distill
structural information embedded in intermediate features of 3D models. Our approach preserves
both 3D and 2D features and maps them into one-dimensional representations based on the intrinsic
rules of Hilbert curve [10] in the original feature space. The distilled models with Hilbert curve
retain the relative position information in the high-dimensional space, i.e., the mapped data points
that are close to each other in the 1D space are also adjacent in the original high-dimensional
space, thereby the structural information is highly preserved via the proposed HD method. Hence,
the distilled lightweight 2D models obtain significant improvements by learning the converted
one-dimensional representations from the 3D feature maps. Furthermore, we propose Variable-
length Hilbert Distillation (VHD) to more efficiently transfer the structural knowledge by dynamically
shortening the walking stride when constructing Hilbert curves in activation areas of feature maps [37].
To address the optimization problem in the dynamic process, we also present an approximation
approach by calculating self-adaptive weights when adopting mapping functions of the Hilbert curve.
We conduct extensive cross-dimensionality distillation experiments in activity and medical image
classification domains, where 3D models are typically applied. The proposed method further narrows
the gap between student and teacher networks comparing with the current state-of-the-art in the
distillation benchmark. More importantly, the distilled 2D models by our method achieve competitive
performance with the 3D models, suggesting that the structural information learned by the proposed
method helps promote the generalizability of the 2D models. Hence, the distilled lightweight models
could potentially be the substitution of cumbersome models for analyzing the volumetric data.

2 Related Work

Knowledge Distillation. The vanilla knowledge distillation [11] focuses on transferring knowledge
embedded in the logits, i.e., the model outputs scores before applying Softmax. It also provides
the idea that coarse information would be beneficial to the distillation, and proposes the Softmax
with temperature should be adopted before the calculation of distillation loss. Succeeding efforts
[9, 16, 18, 26, 32, 35, 36] try to utilize intermediate representations further. For example, the Attention
Transfer [36] calculates attention maps by accumulating values in feature maps along with the channel
dimension. The attention maps set out the most informative features for the student model and tackle
the problem of different channel sizes between participated models. Some other works [22,23,25,33]
try to extract the relation knowledge among samples to enable the distillation between models.
For instance, SP [33] calculates the relationships between intermediate feature maps of different
inputs. Conducting the distillation between student and teacher relationship maps results in decent
improvements to the student model. Recent works tend to explore deeper knowledge and transfer the
knowledge in more complicated ways. Ji et al. [14] propose to use feature maps of all layers through
the integration with self-adaptive weights learned by attention mechanism. HKD method [38] designs
a graph-based scheme to distill holistic knowledge, thus the student model is able to learn individual
knowledge and relational knowledge simultaneously.

Dimensionality Reduction. Most of the mentioned methods are not applicable for cross-
dimensionality distillation networks due to the inconsistent dimension. A straightforward way
to cope with this issue is to adopt dimensionality reduction methods. For example, PCA [12] and
LDA [6] are commonly used to obtain low-dimensional representation by projecting data points to a
few principal components. Some non-linear dimensionality reduction methods such as ISOMAP [31]
and LLE [3] are available for more complicated sample distributions. Recent efforts about trans-
former [4,27] provide valuable ideas for learning position coding for complex representations such as
continuous large-scale feature maps. The reduction can also be performed by following the learned
position coding. However, these methods either lose the important structural information for the
cross-dimensionality distillation to a certain extent or divide the original high-dimensional space into
much smaller space where the problem of dimensional inconsistency still exists. This work refers to
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Figure 1: Examples of the Hilbert curve (a-c) and the proposed Variable-length Hilbert curve (d).

a continuous space-filling dimensionality reduction approach, namely Hilbert curve, to address the
above issues. Details are described in the next section.

Cross-dimensionality Distillation. Recently, cross-dimensionality distillation has also been studied
in [2, 13, 19] that have considered adopting 3D models as the distillation participants. However,
their methods still follow the 2D-to-2D distillation by applying customized tricks in order to transfer
3D representations into the 2D form, resulting the 2D models are improved only marginally after
performing the severely diluted knowledge. To this end, we propose a new cross-dimensionality
distillation method by explicitly extracting and transferring the structural knowledge embedded in
high-dimensional feature maps.

3 Method

In this section, we first introduce the Hilbert Distillation for cross-dimensionality scenarios based on
the Hilbert curve. Then we elaborate the proposed Variable-length Hilbert Distillation by dynamically
adjusting the stride of Hilbert curve deduction. Since encoding and optimizing the dynamic progress
is challenging, we further present an approximation solution by mapping the conventional Hilbert
curve into Variable-length Hilbert curve using self-adaptive weights.

3.1 Hilbert Curve

The Hilbert curve [10] is a continuous space-filling curve in the Euclidean space, which provides
a mapping between 1D and high dimension space while preserves space structure fairly well. The
principle behind the Hilbert curve is that the mapped data points which are close to each other in 1D
space are also close to each other in the original high dimension space.

The construction [1, 21] of the Hilbert curve can be different. In this paper, we adopt Lindenmayer-
System [17] (L-System) to describe the construction that produces walking guides recursively. The
system consists of 4 components: 1) two Variables, i.e., A and B; 2) three Constants, i.e., B denotes
move forward, � denotes turn left 90◦, and 	 denotes turn right 90◦; 3) the Axiom A, i.e., the starting
point of recursion; 4) two Production Rules:

Rule 1 : A! �B B 	A B A	 B B� (1)
Rule 2 : B ! 	A B �B B B� B A	 (2)

We denote that order p controls the times of recursion as well as the scale of the curve. When p = 1,
we can generate the walking guides as � B 	 B 	 B � (note that the Variables A and B are only
the placeholder for embedding the rules) based on the Production Rule 1 (Eq. 1) from the starting
point Axiom A. Thus, the simplest Hilbert curve for a 2�2 square space illustrated in Fig. 1(a) can
be constructed by looking right at the start. If p = 2, the Production Rules 2112 are embedded into
BAAB allocated in Production Rule 1 separately. Then we can get the walking guides as � 	 B
� B � B 	 B 	 � B 	 B 	 B � B � B 	 B 	 B � 	 B 	 B � B � B 	 �. It is important
to note that the contiguous Constants � and 	 will be cancelled out and removed from the guides.
Hence, the final walking guides will be B � B � B 	 B B 	 B 	 B � B � B 	 B 	 B B 	 B �
B � B. Fig. 1(b) illustrates the Hilbert curve of order p = 2 for a larger square space based on the
guides. Similarly, the Hilbert curve for higher order can be easily constructed via this method. It can
also be extended and applied in higher dimensional space [1] as shown in Fig. 1(c).
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3.2 Hilbert Distillation

Since the above mentioned curve is able to well preserve the structural information of its original space,
we facilitate the curve to distill knowledge from dimensionally heterogeneous features. Speci�cally,
we aim to supervise the 2D student models by ef�ciently learning the knowledge that they have never
seen in feature maps extracted from the 3D teacher models.

Fig. 2(a) illustrates the pipeline of the proposed Hilbert Distillation framework. Let (D t ; Wt ; H t )
and (Ws; H s) denote the size of the 3D feature map� 3d and 2D feature map� 2d respectively. We
�rst leverage the mapping function of Hilbert curveH n;p (refer to Algorithm 1) to rearrange and
stretch the feature maps. Let parametern denotes the dimension (we use 2 or 3 in this paper, but
theoretically it could be larger), andp denotes the order that controls the curve length as described in
Sec.3.1. We de�ne the following rule to determine the value ofp using the ceiling functiond�e:

pn =3 = dlog2 max(D t ; Wt ; H t )e (3)
pn =2 = dlog2 max(Ws; H s)e (4)

After determining the values ofn andp, we adopt the Lindenmayer-System described in Sec 3.1 to
generate the Hilbert curve with desired scale, and Algorithm 1 helps deduce the mapping function
H n =2 ;p (i; j ) = v that gives the pixel-level surjective mapping rule from spatial feature map� 2d
to a one-dimensional representation�̂ 2d. Although our algorithm describes the case ofn = 2 , it
can synergistically be expanded ton = 3 to get the 3D mapping functionH n =3 ;p (i; j; k ) = v with
the construction of Hilbert curve for 3D space. The output valuev is the new position index of the
original pixel-level feature in the one-dimensional representation with the length2n � p. Thus, the
one-dimensional representations�̂ 3d, �̂ 2d of the feature maps� 3d, � 2d can be calculated by

�̂ 3d(v) = � 3d(i; j; k ) where H n =3 ;p (i; j; k ) = v (5)
�̂ 2d(v) = � 2d(i; j ) where H n =2 ;p (i; j ) = v (6)

At this point, we can de�ne the Hilbert Distillation between cross-dimensionality features by calculat-
ing the loss between the converted one-dimensional representations as

L hd =
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(7)

whereR(�) is the nearest rescaling function that scales the length of�̂ 3d from 23� p to 22� p before the
calculation, andjj�jj 2 andjj�jj 1 are the L2 and L1 normalization. The division between representations
and its L2 norm is intended to eliminate the distribution difference between features from different
modality. As a knowledge distillation method, the distillation process is commonly performed along
with the training process. The �nal loss function for the end-to-end training scheme is given by

L = L CE + � L hd (8)

whereL CE is the cross entropy loss corresponding to the original task of the student network, and
the hyperparameter� is a balance weight between training from distillation and hard labels.

As claimed in the interpretability [15,28,37] and attention [36] research areas, only partial feature
maps are activated and crucial for the �nal task. This conclusion implies the reason why our method
works. In other words, the superiority of the proposed distillation method is that the 2D models
can directly learn the activation features that preserve the 3D structural information as much as
possible. As illustrated in Fig. 2(a), the activated “dog features” in 3D feature maps (leftmost) are
still gathered together after the mapping, as shown in the black area of the bar. Theoretically, our
method could be extended to conduct distillation between networks of any dimensionality since the
Hilbert curve-based mapping approach can be applied in any Euclidean space.

In addition, we also provide several tricks to address the following possible minor obstacles when
applying our method in real-world scenarios:

a. What if the activation features in the converted one-dimensional representations of 2D and
3D models are not relatively aligned. Fig. 2 demonstrates an ideal case that both dogs are located
at the left bottom so that the relative positions of the activation features are well aligned. In reality, in
the medical imaging task that 3D models are commonly applied, the spatial distribution of human
organs are always �xed regardless of the data modality. The activation features from 2D and 3D
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Figure 2: The pipeline of the proposed Hilbert Distillation and Variable-length Hilbert Distillation
between cross-dimensionality feature maps.

Algorithm 1: The Mapping Function of Hilbert CurveH n =2 ;p

1 Initialize i = 0 ; j = 0 ; v = 0
2 Save the mapH n =2 ;p (i; j ) = v
3 while Algorithm 1 is runningdo
4 // Algorithm 1 starts with looking right
5 if B is activatedthen
6 if look up / downthen
7 i = i + 1 = i = i � 1

8 else if look right / left then
9 j = j + 1 = j = j � 1

10 v = v + 1
11 Save the mapH n =2 ;p (i; j ) = v

12 else
13 Waiting forB

14 OutputH n =2 ;p

feature maps are well aligned in the �nal stage of our method. For another task using 3D models, such
as video recognition, a simple length-preserving fully connection layer (FC) for any one-dimensional
representation before the distillation loss calculation is able to address this issue.

b. What if the feature maps do not exactly ful�ll a square or cube space. As the vanilla Hilbert
curve is only applicable in the space with a side length equals a power of 2, we always construct
Hilbert curve for a minimum space that can hold the feature maps according to the side length which
can be calculated by Eqs. 3 and 4, e.g., constructing curve for8� 8� 8 space according to a5� 7� 7
feature map. The mapping functionH only considers the areas where contains features.

3.3 Variable-length Hilbert Distillation

The scale of activation features is relatively small compared with that of context features in most
cases, as the ratio of black and gray parts illustrated in Fig. 2(a). The proportion of activation features
in 3D feature maps may even lower than in 2D feature maps. To make the distillation more focus on
the activation areas where the features are signi�cantly related to semantics, we further propose an
improvement for the construction process of Hilbert curve called Variable-length Hilbert Distillation.

Speci�cally, we dynamically change the walking stride when constructing the Hilbert curve. As
demonstrated in Fig. 2(b), we lengthen the walking stride in areas that consist of context features to
draw sparser curves, and shorten the stride in areas that consist of activation features to draw denser
curves. Those skipped context features will be represented by the nearest valid features located on
the curves. Thus, the proportion of activation features in the calculation of the �nal distillation loss is
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