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ABSTRACT

Hierarchical optimization is attracting significant attentions as it can be applied to a
broad range of machine learning tasks. Recently, many algorithms are proposed to
improve the theoretical results of minimax and bilevel optimizations. Among these
works, a core issue that has not been well studies is to escape saddle point and find
local minimum. In this paper, thus, we investigate the methods to achieve second-
order optimality for nonconvex minimax and bilevel optimization. Specifically, we
propose a new algorithm named PRGDA without the computation of second order
derivative of the primal function. In nonconvex-strongly-concave minimax opti-
mization, we prove that our algorithm can find a second-order stationary point with
the gradient complexity that matches state-of-the-art result to find first-order sta-
tionary point. To our best knowledge, PRGDA is the first stochastic algorithm that
is guaranteed to obtain the second-order stationary point for nonconvex minimax
problems. In nonconvex-strongly-convex bilevel optimization, our method also
achieves better gradient complexity to find local minimum. Finally, we conduct
two numerical experiments to validate the performance of our new method.

1 INTRODUCTION
Hierarchical optimization (including minimax and bilevel optimization ) is a popular and important
optimization framework which has been applied to a wide range of machine learning problems,
such as Generative Adversarial Net (Goodfellow et al. (2014)), adversarial training (Madry et al.
(2018)), multi-agent reinforcement learning (Wai et al. (2018)), meta-learning (Franceschi et al.
(2018); Bertinetto et al. (2018)) and hyperparameter optimization (Shaban et al. (2019); Feurer &
Hutter (2019)). In this paper, we study the following stochastic hierarchical optimization problem

min
x∈Rd1

Φ(x) := f(x, y∗(x)) = Eξ∈D[F (x, y∗(x); ξ)] (1)

s.t. y∗(x) = arg min
y∈Rd2

g(x, y) = Eζ∈D′ [G(x, y; ζ)],

where the upper-level function f(x, y∗(x)) = Eξ∈D[F (x, y∗(x); ξ)] is smooth and possibly non-
convex, and the lower-level function g(x, y) = Eζ∈D′ [G(x, y; ζ)] is smooth and strongly-convex
in variable y so that y∗(x) and Φ(x) can be well defined. ξ and ζ are samples drawn from data
distribution D and D′. Stochastic problem is a general form that covers a couple of optimization
tasks, including online optimization and finite-sum optimization. When g(x, y) = −f(x, y), ξ = ζ
and D = D′, the above hierarchical optimization (i.e., bilevel optimization) is reduced to a standard
minimax optimization which can be rewritten as Eq. (2)

min
x∈Rd1

max
y∈Y⊆Rd2

f(x, y) = Eξ∈D[F (x, y; ξ)] (2)

where Y is a convex domain (not required to be compact). The loss function f(x, y) is smooth and
possibly nonconvex w.r.t. x, and is smooth and strongly-concave w.r.t. y.

1.1 MINIMAX OPTIMZATION

Recently, there are plenty of works studying minimax optimization problem in a variety of research
fields in machine learning. Many deterministic and stochastic algorithms with asymptotic or non-
asymptotic convergence analysis have been developed, such as Gradient Descent Ascent (GDA)
(Du & Hu (2019); Nemirovski (2004)) and Stochastic Gradient Descent Ascent (SGDA) (Lin et al.
(2020a)). Some algorithms adopt a single loop structure (Heusel et al. (2017); Lin et al. (2020a);
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Table 1: Comparison of properties between related algorithms for minimax optimization.

Name Reference Stochastic Local Minimum Pure First-Order

SGDA (Lin et al. (2020a))
√

×
√

Cubic-GDA (Chen et al. (2021b)) ×
√

×
MCN (Luo & Chen (2021)) ×

√
×

Perturbed GDmax (Huang et al. (2022b)) ×
√ √

PRGDA (ours)
√ √ √

Xu et al. (2020)) while the others use a nested loop to update y more frequently so that they can
obtain a better estimation of the maximum y∗(x) (Jin et al. (2019); Nouiehed et al. (2019)). Besides,
some algorithms have been proposed to improve the theoretical results of minimax optimization,
such as SREDA (Luo et al. (2020)) and Acc-MDA (Huang et al. (2022a)) which take advantage of
variance reduction to accelerate the convergence rate and reduce the gradient complexity. Moreover,
on deterministic setting some recently proposed algorithms (Lin et al. (2020b)) have already matched
the optimal lower bound (Zhang et al. (2021)).

However, most of these works only consider the criterion of finding first-order stationary point. In
nonconvex setting, convergence to first-order stationary point is not always satisfactory because a
first-order stationary point could be a local minimum, saddle point or even local maximum. Therefore,
second-order stationary point that reaches local minimum becomes a popular and important issue
in nonconvex optimization. Since finding global minimum in nonconvex optimization is usually an
NP-hard problem (Hillar & Lim (2013)), in some situations we attempt to find a local minimum
instead. Moreover, in some machine learning tasks such as tensor decomposition (Ge et al. (2015)),
matrix sensing (Bhojanapalli et al. (2016); Park et al. (2017)), and matrix completion (Ge et al.
(2016)), finding local minimum is equivalent to finding global minimum, which makes second-order
stationary point more crucial.

Therefore, we are motivated to study the method that obtains second-order stationary point for
minimax (and bilevel) optimization which captures local minimum and escapes saddle point of Φ(x).
In section 3 we can see that under certain conditions the objective function Φ(x) is twice differentiable
and ∇2Φ(x) is Lipschitz continuous. An O(ϵ, ϵH) second-order stationary point satisfies ∥∇Φ(x)∥ ≤
O(ϵ) and λmin(∇2Φ(x)) ≥ −ϵH where λmin(·) means the smallest eigenvalue.

Although several recent works have been proposed to study the second-order stationary point for
nonconvex-strongly-concave minimax optimization based on cubic-regularized gradient descent
ascent (Chen et al. (2021b); Luo & Chen (2021)) or perturbed gradient (Huang et al. (2022b)),
they are only adaptive to deterministic gradient oracle and finite-sum problem. The study of the
second-order stationary point for stochastic nonconvex minimax problem where the full gradient
is not available is still limited. A comparison of properties between related works for minimax
optimization is demonstrated in Table 1.

Thus, to fill this gap, we propose a new algorithm named Perturbed Recursive Gradient Descent
Ascent (PRGDA) to search second-order stationary point for stochastic nonconvex problem (2). To
our best knowledge, PRGDA is the first algorithm that is guaranteed to obtain second-order stationary
point for stochastic nonconvex minimax optimization problems. Furthermore, our method is a pure
first-order algorithm that only requires the computation of gradient oracle. Neither Hessian matrix nor
Hessian vector product is required, which makes our method more efficient to implement. We will
also provide the analysis results to show that the gradient complexity of our algorithm is Õ(κ3ϵ−3)
to achieve O(ϵ,

√
ρΦϵ) second-order stationary point where κ is the condition number and ρΦ is

the Lipschitz constant of ∇2Φ(x, y) (defined in section 3), which matches the best result of finding
first-order stationary point for the same minimax optimization problem.

1.2 BILEVEL OPTIMIZATION

Recently, many algorithms have been studied to solve bilevel optimization. Some optimization
algorithms are deterministic such as AID-BiO and ITD-BiO (Ji et al. (2021)) while the others
consider stochastic algorithms including BSA (Ghadimi & Wang (2018)), TTSA (Hong et al. (2020))
and StocBiO (Ji et al. (2021)). These methods are proposed to improve the convergence analysis of
bilevel optimization since most earlier works (Domke (2012); Pedregosa (2016)) only provide the
asymptotic convergence analysis without specific convergence rates.
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Table 2: Comparison of complexity between related algorithms for bilevel optimization. We use p(κ)
for some algorithms that do not provide the explicit dependence on κ.

Name Reference Gc(f, ϵ) Gc(g, ϵ) Local Minimum

StocBiO (Ji et al. (2021)) O(κ5ϵ−4) O(κ9ϵ−4) ×
SUSTAIN (Khanduri et al. (2021)) O(p(κ)ϵ−3) O(p(κ)ϵ−3) ×

MRBO/VRBO (Yang et al. (2021)) O(p(κ)ϵ−3) O(p(κ)ϵ−3) ×
StocBiO + iNEON (Huang et al. (2022b)) Õ(κ5ϵ−4) Õ(κ10ϵ−4)

√

PRGDA (ours) Õ(κ3ϵ−3) Õ(κ7ϵ−3)
√

StocBiO algorithm (Ji et al. (2021)) is a recent work to solve stochastic nonconvex-strongly-convex
bilevel optimization via AID. In this paper, we also study the convergence of our method under
this condition where Φ(x) is stochastic and probably nonconvex. According to previous studies of
bilevel optimization, when f(x, y) and g(x, y) are differentiable and g(x, y) is strongly-convex with
respect to y, Φ(x) is also differentiable and automatically ∥∇Φ(x)∥ ≤ ϵ is a criterion of first-order
stationary point. Notice that in (Ji et al. (2021)) ∥∇Φ(x)∥2 ≤ ϵ is used as the criterion. In this paper,
we will uniformly adopt ∥∇Φ(x)∥ ≤ ϵ as the convergence criterion. More recently, many stochastic
algorithms with variance reduction are proposed, such as RSVRB (Guo & Yang (2021)), SUSTAIN
(Khanduri et al. (2021)), MRBO and VRBO (Yang et al. (2021)). The gradient complexity of bilevel
optimization is enhanced to O(ϵ−3), which is the best theoretical result as far as we know. StocBiO
with iNEON (Huang et al. (2022b)) is another recent work that combines StocBiO algorithm with
pure first-order method inexact negative curvature originated from noise (iNEON) to escape saddle
point and find second-order stationary point for nonconvex-strongly-convex bilevel optimization.

Although these works are proposed to improve the performance of algorithms for bilevel optimization,
the complexity of current methods that achieve second-order stationary point are still high. Actually,
the complexity of StocBiO with iNEON is even higher than the standard StocBiO algorithm in order
to find a local minimum with high probability. Thus, to fill these gap, we are motivated to propose an
accelerated algorithm with variance reduction that requires lower complexity to find second-order
stationary point for stochastic nonconvex-strongly-convex bilevel optimization.

The comparison of gradient complexity between our method and related works to find O(ϵ) first-
order stationary point or O(ϵ,

√
ρΦϵ) second-order stationary point is shown in Table 2. In Table

2, Gc(f, ϵ) and Gc(g, ϵ) are the numbers of gradient evaluations of function f(x, y) and g(x, y)
respectively. The last column represents whether the algorithm is able to escape saddle point and
find local minimum. Notation Õ hides the logarithm term. StocBiO with iNEON and our PRGDA
algorithm involve a logarithm term in the complexity because they converge to second-order stationary
point with high probability, considering all randomness including the stochastic gradient while other
algorithms only consider the expectation over stochastic gradients. From Table 2 we can see our
PRGDA algorithm improves the gradient complexity Gc(f, ϵ) and Gc(g, ϵ) of StocBiO with iNEON
algorithm significantly and matches state-of-the-art complexity O(ϵ−3), which is one of the most
important contribution of this paper.

1.3 CONTRIBUTIONS

We summarize our main contributions as follows:
• We propose a new PRGDA algorithm which is the first algorithm to reach second-order stationary

point for stochastic nonconvex minimax optimization problem. Our method is pure first-order and
does not require any calculation of second-order derivatives. Our method does not involve nested
loops either, which makes it more efficient to implement.

• We prove that the gradient complexity of our algorithm is Õ(κ3ϵ−3) to achieve O(ϵ,
√
ϵ) second-

order stationary point in stochastic nonconvex minimax optimization, which matches the best result
of finding first-order stationary point in the same problem.

• Our PRGDA algorithm can also be applied to nonconvex bilevel optimization and we can prove
that the gradient complexity is Gc(f, ϵ) = Õ(κ3ϵ−3) and Gc(g, ϵ) = Õ(κ7ϵ−3) to find O(ϵ,

√
ϵ)

second-order stationary point in stochastic nonconvex bilevel optimization, which outperforms the
previous best theoretical results and matches state-of-the-art to find first-order stationary point.

2 RELATED WORK

In this section we will summarize the background of related works and some details of methods that
are important to our work will be further discussed in the Appendix.
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2.1 STOCHASTIC MINIMAX OPTIMIZATION

Many algorithms are proposed to solve stochastic nonconvex-strongly-concave minimax problem,
including intuitive methods SGDmax (Jin et al. (2019)) and Stochastic Gradient Descent Ascent
(SGDA) (Lin et al. (2020a)). More recently in (Yang et al. (2022)), a new method Stoc-Smoothed-
AGDA is proposed to achieve better complexity with a weaker PL condition instead of strong
concavity. Besides, some methods integrate variance reduction with minimax problem to accelerate
the convergence, such as Stochastic Recursive gradiEnt Descent Ascent (SREDA) (Luo et al. (2020)),
Hybrid Variance-Reduced SGD (Tran-Dinh et al. (2020)) and Acc-MDA (Huang et al. (2022a)).
There are also some works that study the weakly-convex concave minimax optimization such as
(Rafique et al. (2021)) and (Yan et al. (2020)). More related to this work, Cubic-Regularized
Gradient Descent Ascent (Cubic-GDA) (Chen et al. (2021b)) and Minimax Cubic Newton (MCN)
(Luo & Chen (2021)) are two recent algorithms that can reach the second-order stationary point in
nonconvex-strongly-concave minimax optimization.

2.2 PERTURBED GRADIENT DESCENT

Perturbed Gradient Descent (PGD) (Jin et al. (2017)) was proposed to find second-order stationary
point for nonconvex optimization which introduces a perturbation under specific condition. It is a
deterministic gradient based algorithm and only involves first-order oracle. To extend Perturbed
Gradient Descent to the stochastic setting and incorporate it with variance reduction, SSRGD Li
(2019) was proposed to reach second-order stationary point with SFO of O(ϵ−3.5). After that Pullback
algorithm (Chen et al. (2021a)) was proposed to improve the complexity to O(ϵ−3).

2.3 STOCBIO WITH INEON
In (Huang et al. (2022b)), algorithms for both minimax and bilevel optimization are proposed to find
second-order stationary point. However, for minimax optimization only the deterministic problem is
studied. In the proposed Perturbed GDmax algorithm, perturbed gradient descent is used to solve the
issue in this case. As we have mentioned, perturbed gradient descent in deterministic and stochastic
are totally different. Therefore, it is essential to investigate the stochastic minimax optimization
algorithm that converge to second-order stationary point. For bilevel optimization, the stochastic
problem is considered and the StocBiO with iNEON algorithm is proposed. The algorithm is inspired
by NEON (Xu et al. (2018); Allen-Zhu & Li (2018)), which is a method to find local minimum
merely based on first-order oracles. Inexact NEON is a variant of NEON since the exact gradient in
bilevel optimization is unavailable. However, it requires an extra nested loop to solve a subproblem
that extracts a negative curvature descent direction. Besides, the gradient complexity of StocBiO
with iNEON is also higher than the vanilla StocBiO. Therefore, we are motivated to propose a more
efficient bilevel optimization algorithm that converges to second-order stationary point.

3 PRELIMINARY

In this section we will present the notations used in this paper and introduce some basic assumptions
to further illustrate the problem setting. We assume that upper-level function f(x, y) is twice
differentiable. Lower-level g(x, y) is three times differentiable (only required in bilevel optimization).
The partial derivative is denoted by ∇x and ∇y , e.g., ∇f(x, y) = [∇xf(x, y),∇yf(x, y)]. Similarly,
∇2

x and ∇2
y represent the Hessian. ∇2

xy and ∇2
yx represent the Jacobian. We use ∥ · ∥2 and ∥ · ∥F

to denote the spectral norm and Frobenius norm of matrix respectively. Notation Õ(·) means the
complexity after hiding logarithm terms. First, we assume that lower-level function g(x, y) is
strongly-convex with respect to y so that y∗(x) and Φ(x) can be well defined.
Assumption 1. The lower-level function g(x, y) is µ-strongly-convex with respect to y, i.e., there
exists a constant µ such that

g(x, y) + ⟨∇yg(x, y), y
′ − y⟩+ µ

2
∥y′ − y∥2 ≤ g(x, y′) (3)

for any x, y and y′.

Notice that in minimax optimization g(x, y) is the same as −f(x, y) so we merge these two cases
into one statement. With Assumption 1, objective function Φ(x) is also differentiable and the gradient
is formulated as follows (Ji et al. (2021))

∇Φ(x) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))[∇2

yg(x, y
∗(x))]−1∇yf(x, y

∗(x)) (4)

We can see the Hessian of g is automatically involved in the gradient of Φ. Notice that in this paper
first-order method means only using the first-order information of Φ. In minimax optimization, since
we always have ∇yf(x, y

∗(x)) = 0, the expression of ∇Φ(x) is simplified by
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∇Φ(x) = ∇xf(x, y
∗(x)) (5)

Next, we introduce the following assumptions about Lipschitz continuity of first and second order
derivatives. These assumptions are commonly used in the convergence analysis of minimax and
bilevel optimization (Luo et al. (2020); Luo & Chen (2021); Ji et al. (2021); Huang et al. (2022b)).
Assumption 2. The gradients of component functions F (x, y; ξ) and G(x, y; ζ) are L-Lipschitz
continuous, i.e., there exists a constant L such that

∥∇F (z; ξ)−∇F (z′; ξ)∥ ≤ L∥z − z′∥, ∥∇G(z; ζ)−∇G(z′; ζ)∥ ≤ L∥z − z′∥ (6)

for any z = (x, y) and z′ = (x′, y′).
Assumption 3. The second order derivatives ∇2

xf(x, y), ∇2
xyf(x, y), ∇2

yf(x, y), ∇2
xyg(x, y) and

∇2
yg(x, y) are ρ-Lipschitz continuous.

The condition number κ of the hierarchical optimization problem is defined by κ = L/µ. According
to previous works, in minimax optimization under Assumptions 1, 2 and 3, Φ(x) is twice differentiable.
y∗(x) is κ-Lipschitz continuous, ∇Φ(x) is LΦ-Lipschitz continuous and ∇2Φ(x) is ρΦ-Lipschitz
continuous. According to (Ghadimi & Wang (2018); Ji et al. (2021)), we know in bilevel optimization
function y∗(x) is also κ-Lipschitz continuous, but we need an additional Assumptions 4 to guarantee
Φ(x) has LΦ-Lipschitz gradient.
Assumption 4. The upper-level function f(x, y) is M -Lipschitz continuous, i.e., there exists a
constant M such that

∥f(z)− f(z′)∥ ≤ M∥z − z′∥ (7)
for any z = (x, y) and z′ = (x′, y′).

Since in this paper we study the convergence to second-order stationary point, we also need the
following Assumption 5 which is also assumed in (Huang et al. (2022b)) that makes function Φ(x)
twice differentiable and have ρΦ-Lipschitz Hessian.We should notice that Assumption 4 and 5 are
only used for bilevel optimization.
Assumption 5. The third order derivatives ∇3

xyxg, ∇3
yxyg and ∇3

yg are ν-Lipschitz continuous.

4 PROPOSED ALGORITHM FOR MINIMAX OPTIMIZATION

In this section, we will propose our PRGDA algorithm for the special case of minimax optimization.
The description of our PRGDA algorithm is demonstrated in Algorithm 1. Similar to SREDA,
the initial value y0 is also yield by PiSARAH algorithm to make it close to y∗(x0), which is a
conventional strongly-convex optimization subproblem. In our convergence analysis this step costs
the gradient complexity of Õ(κ2ϵ−2). We use vt and ut to represent the gradient estimator of
∇xf(xt, yt) and ∇yf(xt, yt) respectively. In each iteration, yt+1, vt and ut are computed by an
inner loop updater with K iterations, which is shown in Algorithm 2. In Algorithm 2, we use the
SPIDER gradient estimator to update yt,k, vt,k and ut,k. S1 is the large batchsize that is loaded every
q iterations of t. S2 is the small batchsize. λ is the stepsize to update variable y. The output of the
inner loop updater depends on the minimum value of the norm of G̃λ(yt,k) and its corresponding
index, which is defined by G̃λ(yt,k) = (yt,k − ΠY(yt,k + λut,k))/λ. We will show that gradient
estimator vt satisfies ∥vt −∇Φ(xt)∥ ≤ O(ϵ) based on this inner loop updater.
Inspired by perturbed gradient descent, our PRGDA is also composed of a descent phase and
an escaping phase. In the descent phase our PRGDA algorithm follows the iterative update rule
of SPIDER that xt+1 = xt − (η/∥vt∥)vt until the norm of vt satisfies ∥vt∥ ≤ O(ϵ). After the
descent phase is terminated, we use ms to denote the current counter t and uniformly draw a
perturbation ξ from ball B0(r) where parameter r is the perturbation radius. We add the perturbation
to the current status xt and start the escaping phase. In the escaping phase, parameter tthres is
maximum number of iterations of the phase and D̄ is the average moving distance which is used
to determine if the escaping phase should be stopped. The stepsize of x in this phase is denoted
by ηH which is typically larger than η in the descent phase. We use D to denote the accumulated
squared moving distance. If the averaged squared moving distance is larger than D̄ then we pull
it back (line 17 in Algorithm 1) and break the escaping phase. In this case we consider xms

as a saddle point and continue to run next descent phase. Otherwise, if the escaping phase is
not broken after tthres iterations, we claim that xms

is a second-order stationary point with high
probability. This is because when λmin(∇2Φ(xms)) < −ϵH , the stuck region S defined by the area

5
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Algorithm 1 Perturbed Recursive Gradient Descent Ascent
Input: initial value x0, y0
Parameter: stepsize η and ηH , perturbation radius r, escaping phase threshold tthres, average
movement D̄, tolerance ϵ, maximum iteration T .

1: Set escape = false, s = 0, esc = 0.
2: for t = 0, 1, . . . , T − 1 do
3: Update yt+1, vt, ut from Algorithm 2 (Minimax) or Algorithm 3 (Bilevel).
4: if escape = false then
5: if ∥vt∥ ≥ ϵ then
6: Update xt+1 = xt − (η/∥vt∥)vt.
7: else
8: Let ms = t, s = s+ 1, escape = true, esc = 0.
9: Draw perturbation ξ ∼ B0(r) and update xt+1 = xt + ξ.

10: end if
11: else
12: Compute D =

∑t
j=ms+1 η

2
H∥vj∥2.

13: if D > (t−ms)D̄ then
14: Set ηt s.t.

∑t
j=ms+1 η

2
j ∥vj∥2 = (t−ms)D̄.

15: Update xt+1 = xt − ηtvt. Set escape = false.
16: else
17: Set ηt = ηH . Update xt+1 = xt − ηtvt, esc = esc+ 1.
18: Return xms if esc = tthres.
19: end if
20: end if
21: end for
Output: xms

{ξ ∈ B0(r)| the sequence started from xms+1 = xms
+ ξ does not break the escaping phase} has

a small volume. Specifically, similar to Lemma 6 in (Li (2019)) and Lemma D.3 in (Chen et al.
(2021a)), we can prove if we suppose after the perturbation there are two coupled sequences started
from two points xms+1 and x′

ms+1 respectively within a small distance ∥xms+1 − x′
ms+1∥ = r0

in the smallest eigenvector direction of Hessian matrix ∇2Φ(xms
), then there must be at least one

sequence {xms+1} or {x′
ms+1} that breaks the escaping phase. Informally, this means the stuck

region S must be contained in a “narrow band” or “thin disk” in a high dimensional space which
cannot have a large measure. Since the perturbation ξ is uniformly generated from ball B0(r), the
probability that ξ belongs to the stuck region is low.
5 PROPOSED ALGORITHM FOR BILEVEL OPTIMIZATION
In this section we propose our PRGDA algorithm to solve the more general bilevel optimization.
Actually, we only need to switch the inner loop updater in Algorithm 2 to the bilevel mode, which
is demonstrated in Algorithm 3 in Appendix. Similar to the case of minimax optimization, here
we also need a initialization algorithm to initialize y0 with the cost of Gc(g, ϵ) = Õ(κ6ϵ−2) in the
convergence analysis. Next we will elaborate the inner loop updater for bilevel optimization. We
also use the update rule of SPIDER to compute v

(1)
t,k , v(2)t,k and ut,k, which represent the estimator

of ∇xf(x, y), ∇yf(x, y) and ∇yg(x, y) respectively. We should notice that the large and small
batchsize of computing ut,k are different from that of v(1)t,k or v(2)t,k . After the inner loop to compute
yt+1, we calculate the Jacobian Jt with a batch of size S5. Then we compute vt, the estimator of
∇Φ(x) via AID. Here we follow the method used in StocBiO, which is

zQt = α

Q−1∑
q=−1

Q∏
j=Q−q

(I − α∇2
yG(xt, yt+1;Bj))v

(2)
t , vt = v

(1)
t − Jtz

Q
t (8)

where Bj is the set of samples to calculate the stochastic estimator of Hessian ∇2
yg(xt, yt+1).

6 CONVERGENCE ANALYSIS

In this section we will illustrate the main theorem and provide the convergence analysis of our
algorithm. First, we need to assume that Φ(x) is lower bounded by Φ∗. Then we will present the
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Algorithm 2 Updater of Inner Loop (Minimax)
Input: status xt, xt−1, yt, vt−1, ut−1 and t
Parameter: stepsize λ, inner loop size K, batchsize S1 and S2, period q.

1: Set xt,−1 = xt−1, xt,k = xt when k ≥ 0, yt,−1 = yt,0 = yt.
2: if mod(t, q) = 0 then
3: Draw S1 samples {ξ1, . . . , ξS1

}
4: Compute vt,−1 = 1

S1

∑S1

i=1 ∇xF (xt, yt; ξi), ut,−1 = 1
S1

∑S1

i=1 ∇yF (xt, yt; ξi).
5: else
6: Let vt,−1 = vt−1, ut,−1 = ut−1.
7: end if
8: for k = 0 to K − 1 do
9: Draw S2 samples {ξ1, . . . , ξS2

}
10: Compute vt,k = vt,k−1 +

1
S2

∑S2

i=1(∇xF (xt,k, yt,k; ξi)−∇xF (xt,k−1, yt,k−1; ξi))

11: Compute ut,k = ut,k−1 +
1
S2

∑S2

i=1(∇yF (xt,k, yt,k; ξi)−∇yF (xt,k−1, yt,k−1; ξi))

12: yt,k+1 =
∏

Y(yt,k + λut,k).
13: end for
14: Select st = argmink ∥G̃λ(yt,k)∥. Let yt+1 = yt,st , vt = vt,st , ut = ut,st .
Output: yt+1, vt, ut.

main theorems of our PRGDA algorithm. In this paper, we set ϵH =
√
ρΦϵ as the tolerance of the

second-order stationary point. We leave the proof of Theorem 1 and 2 to the Appendix.
6.1 MAIN THEOREM FOR MINIMAX OPTIMIZATION

Theorem 1. Under Assumption 1, 2 and 3, we set stepsize η = Õ( ϵ
κL ), ηH = Õ( 1

κL ) and λ =

O( 1
L ), batchsize S1 = Õ(κ2ϵ−2) and S2 = Õ(κϵ−1), period q = O(ϵ−1), inner loop K =

O(κ), perturbation radius r = min{Õ(
√

ϵ
κ3ρ ), Õ( ϵ

κL )}, threshold tthres = Õ( L√
κρϵ ) and average

movement D̄ = Õ( ϵ2

κ2L2 ). Then our PRGDA algorithm requires Õ(κ3ϵ−3) SFO complexity to achieve
O(ϵ,

√
ρΦϵ) second-order stationary point with high probability.

6.2 MAIN THEOREM FOR BILEVEL OPTIMIZATION

Theorem 2. Under Assumption 1, 2, 3, 4 and 5, we set stepsize η = Õ( ϵ
κ3L ), ηH = Õ( 1

κ3L ),
λ = O( 1

L ) and α = O( 1
L ), batchsize S1 = Õ(κ2ϵ−2), S2 = Õ(κ−1ϵ−1), S3 = Õ(κ6ϵ−2),

S4 = Õ(κ3ϵ−1), S5 = Õ(κ2ϵ−2) and B = Õ(κ2ϵ−2), period q = O(κ2ϵ−1), inner loop K = O(κ)

and Q = Õ(κ), perturbation radius r = min{Õ(
√

ϵ
ρΦ

), Õ( ϵ
κ3L )}, threshold tthres = Õ( κ3L√

ρΦϵ ) and

average movement D̄ = Õ( ϵ2

κ6L2 ). Then our PRGDA algorithm requires complexity of Gc(f, ϵ) =

Õ(κ3ϵ−3), Gc(g, ϵ) = Õ(κ7ϵ−3), JV (g, ϵ) = Õ(κ5ϵ−4) and HV (g, ϵ) = Õ(κ6ϵ−4) to achieve
O(ϵ,

√
ρΦϵ) second-order stationary point with high probability.

7 EXPERIMENTS

In this section we conduct the matrix sensing (Bhojanapalli et al. (2016); Park et al. (2017)) experiment
to validate the performance of out PRGDA algorithm for solving both minimax and bilevel problem.
As a result of existing study on matrix sensing problem (Ge et al. (2017)), there is no spurious
local minimum in this circumstance, i.e., every local minimum is a global minimum. Therefore, the
capability of escaping saddle points of our algorithm can be verified by this experiment. We follow the
experiment setup of (Chen et al. (2021a)) to recover a low-rank symmetric matrix M∗ = U∗(U∗)T

where U∗ ∈ Rd×r. Suppose we have n sensing matrices {Ai}ni=1 with n observations bi = ⟨Ai,M
∗⟩.

Here the inner product of two matrices is defined by the trace ⟨X,Y ⟩ = tr(XTY ). Then the
optimization problem can be defined by

min
U∈Rd×r

1

2

n∑
i=1

Li(U), Li(U) = (⟨Ai, UUT ⟩ − bi)
2 (9)

The code of our algorithms is uploaded in the Supplementary Material.
7.1 ROBUST OPTIMIZATION

Similar to the problem setting of (Yan et al. (2019)), we also introduce another variable y and add a
robust term to make the model robust. Therefore, the optimization problem can be formulated by
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Figure 1: Experimental results of our robust low-rank matrix sensing task. Figure (a) to (c) show
the loss function value of Φ(U) against the number of gradient oracles with d = 50, d = 75, and
d = 100 respectively. Figure (d) to (f) show the ratio of distance ∥UUT −M∗∥2F /∥M∗∥2F against
the number of gradient oracles with d = 50, d = 75, and d = 100 respectively.

Figure 2: Experimental results of our hyper-representation learning of low-rank matrix sensing task.
The ratio of distance ∥UUT −M∗∥2F /∥M∗∥2F is shown against the number of gradient oracles with
d = 50, d = 75, and d = 100 respectively.

min
U∈Rd×r

max
y∈∆n

f(U, y) =
1

2

n∑
i=1

yiLi(U)− (yi −
1

n
)2 (10)

where ∆n = {y ∈ Rn|0 ≤ yi ≤ 1,
∑n

i=1 yi = 1} is the simplex in Rn and Li(U) is defined in Eq.
(9). The number of rows of matrix U is set to d = 50, d = 75 and d = 100 respectively and the
number of columns is fixed as r = 3 in the main manuscript. The results of different ranks will be
shown in the Appendix. The ground truth low-rank matrix M∗ is generated by M∗ = U∗(U∗)T

where each entry of U∗ is drawn from Gaussian distribution N (0, 1/d) independently. We randomly
generate n = 20d samples of sensing matrices {Ai}ni=1, Ai ∈ Rd×d from standard Gaussian
distribution and calculate the corresponding labels bi = ⟨Ai,M

∗⟩ hence there is no noise in the
synthetic data. The global minimum of loss function value Φ(U) should be 0 which can be achieved
at point U = U∗ and y = 1/n.

Following the setup in (Chen et al. (2021a)), we randomly generalize a vector u0 from Gaussian
distribution and multiply it by a scalar such that it satisfies the condition ∥u0∥ ≤ λmax(M

∗) where
we denote λmax(·) as the maximum eigenvalue. The initial value is set to U = [u0,0,0]. Each
optimization algorithm shares the same initialization. Apart from our PRGDA algorithm, we run
three baseline algorithms, SGDA, Acc-MDA and SREDA. The code is implemented on matlab. We
choose η = 0.001, ηH = 0.1, λ = 0.01, D̄ = r = 0.01, tthres = 20, K = 5, S2 = 40 and q = 25.

8
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We evaluate the performance of each algorithm by two criteria, loss function value of Φ(U) and the
ratio of distance to the optimum ∥UUT −M∗∥2F /∥M∗∥2F . The experimental results of these two
quantities versus the number of gradient oracles are shown in Figure 1.

From the experimental results we can see SGDA, Acc-MDA and SREDA cannot escape saddle points
because the loss function value is far away from the global minimum 0, which is equivalent to local
minimum in this task because of the strict saddle property. In contrast, we can see our PRGDA
algorithm eventually converges to the global optimum U∗ and achieves the best loss function value
that is close to 0, which indicates its ability to escape saddle point. Especially in the case of d = 50,
we can see clearly that our PRGDA algorithm jumps out of the trap of saddle point. Besides, in our
experiment we also list the smallest eigenvalue of the Hessian matrix ∇2Φ(U) for each algorithm
after they have converged. Each algorithm is run for 5 times and the mean value is reported in Table 3.
We can see the value λmin(∇2Φ(U)) of our method is the closest to 0 in all cases, which also verifies
the performance of our PRGDA algorithm to find second-order stationary point.

7.2 HYPER-REPRESENTATION LEARNING

Table 3: Smallest eigenvalue of ∇2Φ(U).

Algorithm d = 50 d = 75 d = 100

SGDA -0.0788 -0.0688 -0.0360
Acc-MDA -0.0677 -0.0420 -0.0257
SREDA -0.0746 -0.0414 -0.0259
PRGDA -0.0018 -0.0074 -0.0071

We conduct a hyper-representation learning ex-
periment to verify the ability of our method to
reach second-order stationary point in bilevel
optimization. Recently, many methods in
meta learning Finn et al. (2017); Nichol &
Schulman (2018) are designed to learn hyper-
representations via two steps and separated
dataset. The backbone is trained to extract bet-
ter feature representations which can be applied
to many different tasks. Based on these features
a classifier is further learned on specific type of
training data, which eventually forms a bilevel problem. In this experiment we also consider the
matrix sensing task but conduct it in the hyper-representation learning manner.

The generation of U∗, M∗, Ai and bi are the same as Section 7.1. We also set d = 50, d = 75 and
d = 100. The number of samples is n = 20d. We split all samples into two dataset: a train dataset
D1 with 70% data and a validation dataset D2 with 30% data. We define variable x to be the first
r − 1 columns of U and variable y to be the last column. The objective function is formulated by

min
x∈Rd×(r−1)

1

2|D1|
∑
i∈D1

Li(x, y
∗(x)), where y∗(x) = arg min

y∈Rd

1

2|D2|
∑
i∈D2

Li(x, y) (11)

Here Li(·) is defined in Eq. (9) since U is the concatenation of x and y.

We follow the initialization in Section 7.1 to set x = [u0,0] and y = 0. We compare our PRGDA
algorithm with four baselines, StocBiO, MRBO, VRBO and StocBiO + iNEON. We choose η =
0.001, ηH = 0.1, λ = 0.01, D̄ = r = 0.01, tthres = 20, K = 5, S2 = 40 and q = 25. We also
use the ration of distance to optimum, i.e. ∥UUT −M∗∥2F /∥M∗∥2F as the metric to evaluate the
performance. The experimental results are shown in Figure 2.

The experimental results indicate our PRGDA algorithm shows the best performance to reach second-
order stationary point and approach the expected optimum. MRBO and VRBO do not escape saddle
points during the experiment. In the case of d = 50, StocBiO performs better than MRBO and VRBO
because the randomness of stochastic gradient serves as a kind of perturbation, while in variance-
reduced algorithms the gradient estimator is closer to the full gradient. This result indicates the
necessity of our method to make variance-reduced bilevel algorithm escape saddle points. StocBiO +
iNEON also escapes saddle point probably but its convergence is slower than our method.

8 CONCLUSION

In this paper, we propose a new algorithm PRGDA for stochastic nonconvex hierarchical optimization
which is the first algorithm to find second-order stationary point for stochastic nonconvex minimax
optimization. We prove that our method obtains the gradient complexity of Õ(ϵ−3) to achieve
O(ϵ,

√
ρΦϵ) second-order stationary point, which matches the best results of searching first-order sta-

tionary point under same conditions. We also conduct two numerical experiments, robust optimization
and hyper-representation learning to verify the performance of our algorithm.

9
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A DETAILS OF RELATED WORK

A.1 STOCHASTIC MINIMAX OPTIMIZATION

In recent years, many algorithms for solving stochastic minimax optimization were proposed, and the
majority of them were studied under the nonconvex-strongly-concave condition. SGDmax (Jin et al.
(2019)) is an intuitive double loop algorithm that extends SGD to minimax problem and achieves
SFO complexity of O(κ3ϵ−4log(1/ϵ)) where κ is the condition number. Stochastic Gradient Descent
Ascent (SGDA) (Lin et al. (2020a)) is a single loop algorithm to solve nonconvex-strongly-concave
and nonconvex-concave minimax problems. For nonconvex-strongly-concave problem, it requires
O(κ3ϵ−4) SFO complexity to find an ϵ-stationary point of Φ(x). More recently in (Yang et al. (2022)),
a new method Stoc-Smoothed-AGDA is proposed to achieve the SFO complexity of O(κ2ϵ−4) with
a weaker PL condition instead of strong concavity.

Stochastic Recursive gradiEnt Descent Ascent (SREDA) (Luo et al. (2020)) is a double loop algorithm
that achieves O(κ3ϵ−3) SFO complexity which is state-of-the-art of stochastic nonconvex-strongly-
concave minimax optimization. It accelerates SGDA by using SPIDER, which is a variance reduction
technique and utilizes the newest gradient information (Fang et al. (2018); Nguyen et al. (2017)).
SREDA also involves a separated initialization algorithm called PiSARAH (Nguyen et al. (2021)) to
ensure the convergence. Hybrid Variance-Reduced SGD (Tran-Dinh et al. (2020)) takes advantage of
another variance reduction technique named STORM or hybrid variance reduced stochastic gradient
descent (Cutkosky & Orabona (2019)) to accelerate the algorithm for a special case of minimax
optimization. Acc-MDA (Huang et al. (2022a)) also uses STORM to realize acceleration for minimax
optimization and it achieves the SFO complexity of O(κ4.5ϵ−3) without large batches. There are
also some works that study the weakly-convex concave minimax optimization such as (Rafique et al.
(2021)) and (Yan et al. (2020)). More recently, there are many other works that are proposed to
improve the efficiency of stochastic nonconvex minimax optimization algorithms in various aspects,
such as adaptive gradient (Guo et al. (2021); Huang & Huang (2021)) and decentralization (Liu et al.
(2019); Xian et al. (2021)).

A.2 CUBIC-GDA AND MINIMAX CUBIC NEWTON

Cubic-Regularized Gradient Descent Ascent (Cubic-GDA) (Chen et al. (2021b)) and Minimax Cubic
Newton (MCN) (Luo & Chen (2021)) are two recent algorithms that can reach the second-order
stationary point of envelope function Φ(x) in nonconvex-strongly-concave minimax optimization.
Both of these two algorithms are inspired by cubic regularization and designed for deterministic
problem. Cubic regularization was first proposed in (Nesterov & Polyak (2006)) which is a standard
method that converges to second-order stationary point in conventional nonconvex optimization.
Cubic-GDA incorporates cubic regularization with GDA which alternately updates y by gradient
descent and updates x following the iterative rule of cubic regularization algorithm. (Chen et al.
(2021b)) analyzes the asymptotic convergence rate of Cubic-GDA to guarantee it converges to
second-order stationary point eventually.

MCN algorithm is another minimax algorithm based on regularization to find second-order stationary
point. It adopts Accelerated Gradient Descent (AGD) (Nesterov (2003)) to update variable y and
evaluate the maximum y∗(x). Then it updates x by constructing inexact first-order and second-order
information of Φ(x) and solving the cubic regularized quadratic problem. In (Luo & Chen (2021))
the authors provide the non-asymptotic convergence analysis to show that MCN algorithm requires
Õ(κ2√ρϵ−1.5) first-order oracle calls and O(κ1.5√ρϵ−1.5) second-order oracle calls or Õ(κ1.5ϵ−2)

Hessian vector product calls to achieve O(ϵ,
√
κ3ρϵ) second-order stationary point.

As is mentioned, Cubic-GDA and MCN are both designed for deterministic problem and neither
of them works for the stochastic minimax problem (2) considered in this paper. Therefore, we
are motivated to propose an algorithm that is suitable for the stochastic problem. Besides, Cubic-
GDA and MCN involves the calculation of second-order oracle or Hessian vector product while our
method only requires the first-order information, which indicates that our method is more efficient to
implement because the computation cost of Hessian matrix could be extremely high.
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A.3 PERTURBED GRADIENT DESCENT

Perturbed Gradient Descent (PGD) algorithm (Jin et al. (2017)) was proposed to find second-order
stationary point for nonconvex optimization which introduces a perturbation under specific condition.
It is a deterministic gradient based algorithm and only involves first-order oracle. It requires Õ(ϵ−2)
gradient oracles to achieve O(ϵ,

√
ρϵ) second-order stationary point which is the same as vanilla

Gradient Descent if hiding logarithm. Perturbed Gradient Descent algorithm consists of two phases,
a descent phase and an escaping phase. In the descent phase, the algorithm runs gradient descent
to make the function value decrease until the magnitude of the gradient is smaller than a certain
threshold. In the escaping phase, it first introduces a perturbation drawn from a uniform distribution
on the ball B0(r) with center 0 and radius r. After certain iterations of gradient descent, if the
function value is reduced by a significant threshold then it indicates that the algorithm escapes a
saddle point and it will do the descent phase again. Otherwise, it can be proven that the point where
the last descent terminates is second-order stationary with high probability.

Pullback algorithm (Chen et al. (2021a)) extends Perturbed Gradient Descent to the stochastic setting
and incorporates it with variance reduction techniques SPIDER (Fang et al. (2018)) and STORM
(Cutkosky & Orabona (2019)). It requires Õ(ϵ−3+ϵ−6

H ) SFO complexity to achieve O(ϵ, ϵH) second-
order stationary points. Different from the deterministic case, perturbed stochastic gradient method in
stochastic problem encounters more challenges since the exact objective function value and gradient
cannot be accessed. In the escaping phase Pullback determines when to break the phase according to
the average moving distance D̄. If the accumulated squared moving distance excesses D̄, then the
approached first-order stationary point is a saddle point with high probability.

B DESCRIPTION OF ALGORITHM 3

Algorithm 3 Updater of Inner Loop (Bilevel)

Input: status xt, xt−1, yt, v
(1)
t−1, v(2)t−1, ut−1 and t

Parameter: stepsize λ and α, inner loop size K and Q, batchsize B, S1, S2, S3, S4 and S5, period q.
1: Set xt,−1 = xt−1, xt,k = xt when k ≥ 0, yt,−1 = yt,0 = yt.
2: if mod(t, q) = 0 then
3: Draw S1 samples {ξ1, . . . , ξS1

}, S3 samples {ζ1, . . . , ζS3
}

4: v
(1)
t,−1 = 1

S1

∑S1

i=1 ∇xF (xt, yt; ξi), v
(2)
t,−1 = 1

S1

∑S1

i=1 ∇yF (xt, yt; ξi),

5: ut,−1 = 1
S3

∑S3

i=1 ∇yG(xt, yt; ζi).
6: else
7: v

(1)
t,−1 = v

(1)
t−1, v(2)t,−1 = v

(2)
t−1, ut,−1 = ut−1.

8: end if
9: for k = 0 to K − 1 do

10: Draw S2 samples {ξ1, . . . , ξS2}, S4 samples {ζ1, . . . , ζS4}
11: v

(1)
t,k = v

(1)
t,k−1 +

1
S2

∑S2

i=1(∇xF (xt,k, yt,k; ξi)−∇xF (xt,k−1, yt,k−1; ξi))

12: v
(2)
t,k = v

(2)
t,k−1 +

1
S2

∑S2

i=1(∇yF (xt,k, yt,k; ξi)−∇yF (xt,k−1, yt,k−1; ξi))

13: ut,k = ut,k−1 +
1
S4

∑S4

i=1(∇yG(xt,k, yt,k; ζi)−∇yG(xt,k−1, yt,k−1; ζi))

14: yt,k+1 =
∏

Y(yt,k − λut,k).
15: end for
16: Select st = argmink ∥G̃λ(yt,k)∥. Let yt+1 = yt,st , v(1)t = v

(1)
t,st , v(2)t = v

(2)
t,st , ut = ut,st .

17: Compute Jacobian Jt =
1
S5

∑S5

i=1 ∇2
xyG(xt, yt+1; ζi).

18: Compute vt via AID in Eq. (8) based on v
(1)
t , v(2)t and Jt.

Output: yt+1, vt, ut.

C ADDITIONAL EXPERIMENTAL RESULTS

In this section we will show some additional results in the robust matrix sensing experiment. We
demonstrate the experimental results under different choices of the rank of matrix in Figure 3.
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Figure 3: Experimental results of our robust low-rank matrix sensing task. Figure (a) to (c) show the
loss function value of Φ(U) against the number of gradient oracles with r = 3, r = 5, and r = 7
respectively. Figure (d) to (f) show the ratio of distance ∥UUT −M∗∥2F /∥M∗∥2F against the number
of gradient oracles with r = 3, r = 5, and r = 7 respectively.

D MINIMAX OPTIMIZATION

D.1 PROOF SKETCH OF THEOREM 1

First, we define the following notations.

Gλ(x, y) =
y −

∏
Y(y + λ∇yf(x, y))

λ
, γt = Gλ(xt, yt+1),

ϵt = vt −∇xf(xt, yt+1), θt = ut −∇yf(xt, yt+1) (12)

Additionally, we assume that each component function F (x, y; ξ) satisfies bounded variance, i.e.,

∥∇F (x, y; ξ)−∇f(x, y)∥ ≤ σ (13)

Then we have the following estimation of ϵt, θt and γt in Lemma 1 to show their magnitude are
bounded by O(κ−1ϵ) and ∥vt −∇Φ(xt)∥ is bounded by O(ϵ).

Lemma 1. Set stepsize η ≤ κ−1ϵ
160 log(4/δ1)LC1

, λ = 1
6L , batchsize S2 ≥ 819200 log2(4/δ1)κϵ

−1,

S1 ≥ 204800 log2(4/δ1)σ
2κ2ϵ−2, period q = ϵ−1, inner loop K ≥ 2304κ, perturbation radius

r ≤ κ−1ϵ
160 log(4/δ1)LC1

and average movement D̄ ≤ κ−2ϵ2

25600 log2(4/δ1)L2C2
1

where C1 = Õ(1) is a

constant to be decided later. The initial value of y0 satisfies ∥Gλ(x0, y0)∥ ≤ κ−1ϵ
4C1

. With probability

at least 1− 4δ1, for ∀t we have ∥ϵt∥ ≤ κ−1ϵ
160C1

, ∥θt∥ ≤ κ−1ϵ
160C1

and ∥γt∥ ≤ κ−1ϵ
4C1

. Moreover, we have
∥vt −∇Φ(x)∥ ≤ ϵ

C1
.

Proof. According to the definition of ϵt and θt, when mod(t+ 1, q) ̸= 0 we have

ϵt+1 − ϵt =
1

S2

st∑
k=1

S2∑
i=1

(
∇xF (xt+1, yt+1,k; ξk,i)−∇xF (xt+1, yt+1,k−1; ξk,i)

− (∇xf(xt+1, yt+1,k)−∇xf(xt+1, yt+1,k−1))
)
+

1

S2

S2∑
i=1

∇xF (xt+1, yt+1; ξi)

−∇xF (xt, yt+1; ξi)− (∇xf(xt+1, yt+1)−∇xf(xt, yt+1)) (14)
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and

θt+1 − θt =
1

S2

st∑
k=1

S2∑
i=1

(
∇yF (xt+1, yt+1,k; ξk,i)−∇yF (xt+1, yt+1,k−1; ξk,i)

− (∇yf(xt+1, yt+1,k)−∇yf(xt+1, yt+1,k−1))
)
+

1

S2

S2∑
i=1

∇yF (xt+1, yt+1; ξi)

−∇yF (xt, yt+1; ξi)− (∇yf(xt+1, yt+1)−∇yf(xt, yt+1)) (15)

Applying Azuma-Hoeffding inequality (Lemma 7) and union bound, for ∀t, with probability at least
1− 2δ1 we have

∥ϵt+1∥2 ≤ 4 log(4/δ1)
(σ2

S1
+

4L2

S2

t∑
i=⌊t/q⌋q

(∥xi+1 − xi∥2 +
si∑

k=1

∥yi+1,k − yi+1,k−1∥2)
)

(16)

∥θt+1∥2 ≤ 4 log(4/δ1)
(σ2

S1
+

4L2

S2

t∑
i=⌊t/q⌋q

(∥xi+1 − xi∥2 +
si∑

k=1

∥yi+1,k − yi+1,k−1∥2)
)

(17)

We define

∆t,k = ⟨yt,k − yt,k−1, ut,k − ut,k−1 − (∇yf(xt, yt,k)−∇yf(xt, yt,k−1))⟩

=
1

S2

S2∑
i=1

⟨yt,k − yt,k−1,∇yF (xt, yt,k; ξk,i)−∇yF (xt, yt,k−1; ξk,i)

− (∇yf(xt, yt,k)−∇yf(xt, yt,k−1))⟩ (18)

Then by Lemma 8 we can obtain

∥yt,k+1 − yt,k∥2

≤ (1− 2λµL

µ+ L
)∥yt,k − yt,k−1∥2 − (

2λ

µ+ L
− λ2)∥∇yf(xt, yt,k)−∇yf(xt, yt,k−1)∥2

+ 2λ⟨yt,k − yt,k−1, ut,k − ut,k−1 − (∇yf(xt, yt,k)−∇yf(xt, yt,k−1))⟩

≤ (1− 2λµL

µ+ L
)∥yt,k − yt,k−1∥2 + 2λ∆t,k (19)

Here in the second inequality we use the relation λ ≤ 1
L . Sum Eq. (19) and we have

st−1∑
k=1

∥yt,k+1 − yt,k∥2 ≤ (1− 2λµL

µ+ L
)

st−1∑
k=0

∥yt,k+1 − yt,k∥2 + 2λ

st−1∑
k=1

∆t,k (20)

Moving the first term on the right side of Eq. (20) to the left side and applying Azuma-Hoeffding
inequality to ∆t,k, we have

t∑
i=⌊t/q⌋q

si∑
k=1

∥yi+1,k − yi+1,k−1∥2

≤ λ(µ+ L)

2µL

t∑
i=⌊t/q⌋q

∥yi+1,1 − yi+1,0

λ
∥2 + µ+ L

µL

t∑
i=⌊t/q⌋q

si−1∑
k=1

∆i+1,k

≤ λκ

L

t∑
i=⌊t/q⌋q

∥yi+1,1 − yi+1,0

λ
∥2 + (1 + κ)

L

4L log(4/δ1)

S2

t∑
i=⌊t/q⌋q

si−1∑
k=1

∥yi+1,k − yi+1,k−1∥2

(21)

From Lemma 12 in (Luo et al. (2020)) we know

∥yi,1 − yi,0
λ

∥2 ≤ 3∥ui,0 −∇yf(xi, yi)∥2 + 3L2∥xi − xi−1∥2 + 3∥γi−1∥2

≤ 9∥θi−1∥2 + 21L2∥xi − xi−1∥2 + 3∥γi−1∥2 (22)
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In the second inequality we use Cauchy-Schwartz inequality and Assumption 2 since

ui,0 = ui−1 +
1

S2

S2∑
j=1

∇yF (xi, yi; ξi,j)−∇yF (xi−1, yi; ξi,j) (23)

Then by the choice of S2 ≥ 8κ log(4/δ1) we can obtain
t∑

i=⌊t/q⌋q

si∑
k=1

∥yi+1,k − yi+1,k−1∥2 ≤ 2λκ

L

t∑
i=⌊t/q⌋q

∥yi+1,1 − yi+1,0

λ
∥2

≤ 6λκ

L

t∑
i=⌊t/q⌋q

(3∥θi∥2 + 7L2∥xi+1 − xi∥2 + ∥γi∥2) (24)

Using the choice of λ ≤ 1
6L we can further conclude

∥ϵt+1∥2 ≤ 4 log(4/δ1)
(σ2

S1
+

4κ

S2

t∑
i=⌊t/q⌋q

(8L2∥xi+1 − xi∥2 + 3∥θi∥2 + ∥γi∥2)
)

(25)

∥θt+1∥2 ≤ 4 log(4/δ1)
(σ2

S1
+

4κ

S2

t∑
i=⌊t/q⌋q

(8L2∥xi+1 − xi∥2 + 3∥θi∥2 + ∥γi∥2)
)

(26)

Next we will estimate the bound of ∥γt∥. Define

ȳt,k+1 = ΠY(yt,k + λ∇yf(xt, yt,k)) (27)

Then according to the proof of SREDA (Lemma 10 Eq. (9) in (Luo et al. (2020))), we have

f(xt, yt,k) ≤ f(xt, yt,k+1)− (
1

2λ
− L

2
)∥yt,k+1 − yt,k∥2 − (

1

3λ
− L)∥ȳt,k+1 − yt,k∥2

+ λ∥ut,k −∇yf(xt, yt,k)∥2

≤ f(xt, yt,k+1)− (
1

2λ
− L

2
)∥yt,k+1 − yt,k∥2 − (

1

3λ
− L)∥ȳt,k+1 − yt,k∥2

+ 4λ log(4/δ1)(∥ut,0 −∇yf(xt, yt,0)∥2 +
L2

S2

k−1∑
i=0

∥yt,i+1 − yt,i∥2) (28)

where in the second inequality Azuma-Hoeffding inequality is applied to ∥ut,k −∇yf(xt, yt,k)∥2
which is similar to Eq. (17) to get

∥ut,k−∇yf(xt, yt,k)∥2 ≤ 4 log(4/δ1)(∥ut,0−∇yf(xt, yt,0)∥2+
L2

S2

k−1∑
i=0

∥yt,i+1−yt,i∥2) (29)

Applying recursion on Eq. (28), for any k ≤ K we have

f(xt, yt,1) ≤ f(xt, yt,k)−
k∑

i=1

(
1

2λ
− L

2
− 4L2λ log(4/δ1)

S2
)∥yt,i+1 − yt,i∥2 − (

1

3λ
− L)

·
k∑

i=1

∥ȳt,i+1 − yt,i∥2 + 4kλ log(4/δ1)(∥ut,0 −∇yf(xt, yt,0)∥2 +
L2

S2
∥yt,1 − yt,0∥2)

≤ f(xt, yt,k)− 2L2
k∑

i=1

∥yt,i+1 − yt,i∥2 − Lλ2
k∑

i=1

∥Gλ(xt, yt,i)∥2

+ 4kλ log(4/δ1)(∥ut,0 −∇yf(xt, yt,0)∥2 +
L2

S2
∥yt,1 − yt,0∥2) (30)

where we have used λ ≤ 1
6L and the definition of Gλ(x, y). Let k = K we achieve

K∑
k=1

∥Gλ(xt, yt,k)∥2 ≤ f(xt, y
∗(xt))− f(xt, yt,1)

Lλ2
− 2L

λ2

K∑
k=1

∥yt,k+1 − yt,k∥2
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+
4K log(4/δ1)

Lλ
(∥ut,0 −∇yf(xt, yt,0)∥2 +

L2

S2
∥yt,1 − yt,0∥2) (31)

Due to the definition of G̃λ(yt,k), we have

∥G̃λ(yt,k)− Gλ(xt, yt,k)∥ =
1

λ2
∥ΠY(yt,k + λut,k)−ΠY(yt,k + λ∇yf(xt, yt,k))∥2

≤ ∥ut,k −∇yf(xt, yt,k)∥2 (32)

because of the non-expansion property of projection. Recall the selection of st. Then by Cauchy-
Schwartz inequality, Eq. (29) and λ = 1

6L we have

∥Gλ(xt, yt,st)∥2

≤ 2∥G̃λ(yt,st)∥2 + 2∥ut,st −∇yf(xt, yt,st)∥2

≤ 2

K

K∑
k=1

∥G̃λ(yt,k)∥2 + 2∥ut,st −∇yf(xt, yt,st)∥2

≤ 4

K

K∑
k=1

(∥Gλ(xt, yt,k)∥2 + ∥ut,k −∇yf(xt, yt,k)∥2) + 2∥ut,st −∇yf(xt, yt,st)∥2

≤ 4

K

K∑
k=1

∥Gλ(xt, yt,k)∥2 + 24 log(4/δ1)(∥ut,0 −∇yf(xt, yt,0)∥2 +
L2

S2
∥yt,1 − yt,0∥2)

≤ 144κ

K
∥Gλ(xt, yt,0)∥2 + (

144κ

K
+ 120 log(4/δ1))∥ut,0 −∇yf(xt, yt,0)∥2

+
120 log(4/δ1)L

2

S2
∥yt,1 − yt,0∥2 (33)

According to Lemma 8 in (Luo et al. (2020)) and Cauchy-Schwartz inequality we have

∥Gλ(xt, yt,0)∥2 ≤ 2L2∥xt − xt−1∥2 + 2∥γt−1∥2 (34)

Therefore, combining Eq. (22), Eq. (33) and Eq. (34), for ∀t we can conclude

∥γt+1∥2 ≤ (
288κ

K
+

10 log(4/δ1)

S2
)∥γt∥2 + (

432κ

K
+ 390 log(4/δ1))∥θt∥2

+ (
1152κ

K
+ 750 log(4/δ1))L

2∥xt+1 − xt∥2 (35)

Applying union bound, with probability at least 1−4δ1, Eq. (25), Eq. (26) and Eq. (35) hold for ∀t. In
the descent phase we have ∥xt+1 − xt∥2 ≤ η2. At the perturbation step we have ∥xt+1 − xt∥2 ≤ r2.
In the escaping phase, on average we have ∥xt+1 − xt∥2 ≤ D̄. Thus, we have

∥xt+1 − xt∥2 ≤ max{η2, r2, D̄} ≤ ϵ2

25600 log2(4/δ1)κ2L2C2
1

(36)

According to the choices that q = ϵ−1, K ≥ 2304κ, S1 ≥ 204800 log2(4/δ1)σ
2κ2ϵ−2 and S2 ≥

819200 log2(4/δ1)κϵ
−1, by induction we can prove for ∀t, the following bounds hold

∥ϵt∥2 ≤ ϵ2

25600 log(4/δ1)κ2C2
1

≤ ϵ2

25600κ2C2
1

(37)

∥θt∥2 ≤ ϵ2

25600 log(4/δ1)κ2C2
1

≤ ϵ2

25600κ2C2
1

(38)

∥γt∥2 ≤ ϵ2

16κ2C2
1

(39)

where the case of t = 0 is satisfied by the choice of S1 and the PiSARAH initialization ∥γ0∥ ≤
∥Gλ(x0, y0)∥ ≤ ϵ

4κC1
. By Lemma 9 we can further obtain ∥vt−∇Φ(x)∥ ≤ ∥ϵt∥+2κ∥γt∥ ≤ ϵ

C1
.

Next we will show the result of the decreasing of loss function value Φ(x) in the descent phase.
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Lemma 2. In the descent phase, let stepsize η ≤ ϵ
2LΦ

. Then for ∀s we have

Φ(xts)− Φ(xms
) ≥ (ms − ts)ηϵ

8
(40)

Proof. Let ηt = η/∥vt∥, then we have

Φ(xt+1) ≤ Φ(xt) + ⟨∇Φ(xt), xt+1 − xt⟩+
LΦ

2
∥xt+1 − xt∥2

≤ Φ(xt)− (
ηt
2

− LΦη
2
t

2
)∥vt∥2 +

ηt
2
∥vt −∇Φ(xt)∥2 ≤ Φ(xt)−

ηϵ

8
(41)

where the first inequality is derived by Assumption 2, the second inequality is derived by 2⟨a, b⟩ =
∥a∥2+ ∥b∥2−∥a− b∥2, the third inequality is derived by Cauchy-Schwartz inequality and Lemma 9,
and the last inequality is derived by Lemma 1 with C1 ≥ 2, η ≤ ϵ

2LΦ
and the condition ∥vt∥ ≥ ϵ.

The conclusion of Lemma 2 can be reached by telescoping Eq. (41).

From Lemma 2 we can see the average descent of Φ(x) in the descent phase is O(ηϵ). Next
we will show when our algorithm converges to a saddle point after the descent phase, i.e.,
λmin(∇2Φ(xms)) ≤ −ϵH , our algorithm will break the escaping phase with high probability.

Lemma 3. Set stepsize ηH ≤ min{1/8LΦ log(ηHϵH
√
dLΦ

CρΦδ2r
), 1/4CLΦ log tthres}, escaping phase

threshold tthres = 2 log(ηHϵH
√
dLΦ

CρΦδ2r
)/ηHϵH = Õ( 1

ηHϵH
), perturbation radius r ≤ LΦηHϵH

CρΦ
and

average movement D̄ ≤ L2
Φη

2
Hϵ2H/(C2ρ2Φt

2
thres) where C = Õ(1). Then for any s, if our PRGDA al-

gorithm does not break the escaping phase, then we have λmin(∇2Φ(xms)) ≥ −ϵH , with probability
at least 1− 4δ1 − δ2.

Proof. Let {xt}, {x′
t} be two coupled sequences by running PRGDA algorithm from xms+1 =

xms
+ ξ and x′

ms+1 = xms
+ ξ′ with xms+1 − x′

ms+1 = r0e1, where ξ, ξ′ ∈ B0(r), r0 = δ2r√
d

and
e1 denotes the smallest eigenvector direction of ∇2Φ(xms). When λmin(∇2Φ(xms)) ≤ −ϵH , by
Lemma 10 we have

max
ms<t≤ms+tthres

{∥xt − xms∥, ∥x′
t − xms∥} ≥ LΦηHϵH

CρΦ

with probability as least 1− 4δ1. Let S be the set of xms+1 that will not generate a sequence moving
out of the ball with center xms and radius LηHϵH

Cκ2ρ . Then the projection of S onto direction e1 should
not be larger than r0. By integration we can calculate volume of ball and stuck region in d-dimension
and further check that the probability of xms+1 ∈ S is smaller than δ2 as ξ is drawn from uniform
distribution, which is shown in Eq. (42)

Pr(xms+1 ∈ S) ≤ r0Vd−1(r)

Vd(r)
≤

√
dr0
r

≤ δ2 (42)

where Vd(r) is the volume of d-dimension ball with radius r. Applying union bound, with probability
at least 1− 4δ1 − δ2 we have

∃ms < t ≤ ms + tthres, ∥xt − xms+1∥ ≥ LΦηHϵH
CρΦ

(43)

If the PRGDA algorithm does not break the escaping phase, then for ∀ms < t ≤ ms + tthres we
have

∥xt − xms+1∥ <

√√√√(t−ms)

t−1∑
i=ms+1

∥xi+1 − xi∥2 ≤ (t−ms)
√

D̄ (44)

which is derived by Cauchy-Schwartz inequality. By the choice of parameters tthres and D̄, we have

∥xt − xms+1∥ < tthres
√

D̄ ≤ LΦηHϵH
CρΦ

(45)

Therefore, when λmin(∇2Φ(xms
)) ≤ −ϵH , with probability at least 1 − 4δ1 − δ2 our PRGDA

algorithm will break the escaping phase.
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Finally, we show the following Lemma 4 of localization, which indicates the decreasing value of
Φ(x) in the escaping phase.
Lemma 4. Let δ2, tthres and C be the same as Lemma 3 and δ1 be the same as Lemma 1. Set stepsize

ηH = min{1/320LΦ log(4/δ1) log(
ηHϵH

√
dLΦ

CρΦδ2r
), 1/4CLΦ log tthres} = Õ(

1

LΦ
) (46)

perturbation radius r = min{LΦηHϵH
CρΦ

, ϵ
640 log(4/δ1)LΦC1

} and parameter

D̄ = min{ L2
Φη

2
Hϵ2H

C2ρ2Φt
2
thres

,
ϵ2

25600 log2(4/δ1)L2
ΦC

2
1

} = Õ(
ϵ2

L2
Φ

) (47)

where C1 = 32C log2(ηHϵH
√
dLΦ

CρΦδ2r
) = Õ(1). Notice that in Eq. (47) we have used ϵH =

√
ρΦϵ.

Suppose the PRGDA algorithm breaks the escaping phase started at xms
, then we have

Φ(xms)− Φ(xts+1) ≥ (ts+1 −ms)
ηHϵ2

2C2
1

(48)

Proof. Similar to Eq. (41), we have

Φ(xt+1) ≤ Φ(xt) + ηH∥vt −∇Φ(xt)∥2 − (
1

2ηH
− LΦ

2
)∥xt+1 − xt∥2 (49)

since ηt ≤ ηH for all ms < t < ts+1. According to the definition of r and D̄, we can see they satisfy
the condition in Lemma 1 and Lemma 3. Telescoping the inequality Eq. (49) we obtain

Φ(xms+1)− Φ(xts+1) ≥
1

4ηH

ts+1−1∑
t=ms+1

∥xt+1 − xt∥2 − ηH

ts+1−1∑
t=ms+1

∥vt −∇Φ(xt)∥2

≥ (ts+1 −ms − 1)(
D̄

4ηH
− ηHϵ2

C2
1

) ≥ (ts+1 −ms − 1)
ηHϵ2

C2
1

(50)

where the second inequality uses Lemma 1 and the last inequality uses the definition of ηH , D̄ and C1

in that whichever option D̄ takes in Eq. (47), the inequality always holds. Since ∥xms+1−xms
∥ = r,

from Eq. (41) we have

Φ(xms+1) ≤ Φ(xms) + (∥vt −∇Φ(xt)∥+
LΦ

2
r)r ≤ Φ(xms) +

ηHϵ2

2C2
1

(51)

which is obtained by the definition of r. Combining Eq. (50), Eq. (51) and the fact that ts+1−ms ≥ 2,
we have

Φ(xms
)− Φ(xts+1

) ≥ (ts+1 −ms)
ηHϵ2

2C2
1

(52)

which finishes the proof.

According to Lemma 2 and 4, the average descent for each step of PRGDA algorithm is

min{ηϵ
8
,
ηHϵ2

2C2
1

} = Õ(
ϵ2

LΦ
) = Õ(

ϵ2

κL
) (53)

where we use the choices of η = Õ( ϵ
LΦ

) = Õ( ϵ
κL ) and ηH = Õ( 1

LΦ
) = Õ( 1

κL ). Therefore, the
PRGDA algorithm is guaranteed to terminate and the total number of iterations should be bounded by

T ≤ Õ(
LΦ(Φ(x0)− Φ∗)

ϵ2
) = Õ(

κL(Φ(x0)− Φ∗)

ϵ2
) (54)

The total SFO complexity can be expressed by

I + T · S2 ·K +
T

q
· S1 (55)

where I represents the complexity of the initialization stage which is Õ(κ2ϵ−2) according to (Nguyen
et al. (2021); Luo et al. (2020)). With the choices of S1, S2, q and K in Theorem 1, we can obtain
the total SFO complexity of Õ(κ3ϵ−3). Thus, we have finished the proof of Theorem 1.
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D.2 EXTENSION TO FINITE-SUM PROBLEM

The result of Theorem 1 is achieved under the condition that the problem is stochastic. In a special
case where the problem has the form of finite sum with n samples, we can also guarantee the
convergence of our algorithm. We replace the large mini-batch of size S1 with the full gradient
in Algorithm 1. The analysis is similar to Theorem 1 and we only need to keep the relations that
S2 = κq and q · S2 ·K = S1 = n. Hence we omit the proof in this paper.

Corollary 1. For finite-sum problem, when n ≥ κ2, we set batch size S2 = Õ(
√
n), period

q = O(κ−1
√
n). Other parameters keep the same as the stochastic case. Then our PRGDA algorithm

requires Õ(n+ κ2
√
nϵ−2) SFO complexity to achieve O(ϵ,

√
κ3ρϵ) second-order stationary points

with high probability. When n < κ2, we have q = 1, which means vt and ut are deterministic and
we always have ∥ϵt∥ = ∥θt∥ = 0. In this case we can set S2 = Õ(1) and the total SFO complexity is
Õ((κ2 + κn)ϵ−2) to achieve O(ϵ,

√
κ3ρϵ) second-order stationary points with high probability.

E BILEVEL OPTIMIZATION

In bilevel optimization, the definitions in Eq. (12) should be modified as follows since Y = Rd2 in
the bilevel case .

Gλ(x, y) = ∇yg(x, y)), γt = Gλ(xt, yt+1),

ϵ
(1)
t = v

(1)
t −∇xf(xt, yt+1), ϵ

(2)
t = v

(2)
t −∇yf(xt, yt+1), θt = ut −∇yg(xt, yt+1) (56)

Additionally, we assume that each component function G(x, y; ξ) satisfies bounded variance, i.e.,

∥∇G(x, y; ζ)−∇g(x, y)∥ ≤ σ (57)

Then we can obtain a similar lemma to Lemma 1 as follows.

Lemma 5. Set stepsize η ≤ ϵmin{1, L2

2ρM }
320 log(4/δ0)κ3LC1

, λ = 1
6L , batchsize S2 ≥ 819200 log2(4/δ0)κ

−1ϵ−1,

S1 ≥ 819200 log2( 4
δ0
)σ2κ2ϵ−2 max{1, 4ρ2M2

L4 }, S3 ≥ 819200 log2( 4
δ0
)σ2κ6ϵ−2 max{1, 4ρ2M2

L4 },
S4 ≥ 819200 log2(4/δ0)κ

3ϵ−1, period q = κ2ϵ−1, inner loop K ≥ 2304κ, perturbation radius

r ≤ ϵmin{1, L2

2ρM }
320 log(4/δ0)κ3LC1

and average movement D̄ ≤
ϵ2 min{1, L4

4ρ2M2 }
102400 log2(4/δ0)κ6L2C2

1
where C1 = Õ(1) is a

constant to be decided later. The initial value of y0 satisfies ∥Gλ(x0, y0)∥ ≤ ϵmin{1, L2

2ρM }
8κ3C1

. With

probability at least 1 − 5δ0, for ∀t we have ∥ϵ(1)t ∥ ≤ κ−1ϵ
320C1

, ∥ϵ(2)t ∥ ≤ κ−1ϵ
320C1

, ∥θt∥ ≤ κ−3ϵ
320C1

and

∥γt∥ ≤ ϵmin{1, L2

2ρM }
8κ3C1

. Moreover, we have L∥yt+1 − y∗(xt)∥ ≤ 2κ∥γt∥ ≤ ϵmin{1, L2

2ρM }
4κ2C1

.

Proof. Similar to Lemma 1 we have

ϵ
(1)
t+1 − ϵ

(1)
t =

1

S2

st∑
k=1

S2∑
i=1

(
∇xF (xt+1, yt+1,k; ξk,i)−∇xF (xt+1, yt+1,k−1; ξk,i)

− (∇xf(xt+1, yt+1,k)−∇xf(xt+1, yt+1,k−1))
)
+

1

S2

S2∑
i=1

∇xF (xt+1, yt+1; ξi)

−∇xF (xt, yt+1; ξi)− (∇xf(xt+1, yt+1)−∇xf(xt, yt+1)) (58)

ϵ
(2)
t+1 − ϵ

(2)
t =

1

S2

st∑
k=1

S2∑
i=1

(
∇yF (xt+1, yt+1,k; ξk,i)−∇yF (xt+1, yt+1,k−1; ξk,i)

− (∇yf(xt+1, yt+1,k)−∇yf(xt+1, yt+1,k−1))
)
+

1

S2

S2∑
i=1

∇yF (xt+1, yt+1; ξi)

−∇yF (xt, yt+1; ξi)− (∇yf(xt+1, yt+1)−∇yf(xt, yt+1)) (59)

θt+1 − θt =
1

S4

st∑
k=1

S4∑
i=1

(
∇yG(xt+1, yt+1,k; ζk,i)−∇yG(xt+1, yt+1,k−1; ζk,i)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

− (∇yg(xt+1, yt+1,k)−∇yg(xt+1, yt+1,k−1))
)
+

1

S4

S4∑
i=1

∇yG(xt+1, yt+1; ζi)

−∇yG(xt, yt+1; ζi)− (∇yg(xt+1, yt+1)−∇yg(xt, yt+1)) (60)

for mod(t+ 1, q) ̸= 0. Using Azuma-Hoeffding inequality, with probability at least 1− 3δ0 we have

∥ϵ(1)t+1∥2 ≤ 4 log(4/δ0)
(σ2

S1
+

4L2

S2

t∑
i=⌊t/q⌋q

(∥xi+1 − xi∥2 +
si∑

k=1

∥yi+1,k − yi+1,k−1∥2)
)

(61)

∥ϵ(2)t+1∥2 ≤ 4 log(4/δ0)
(σ2

S1
+

4L2

S2

t∑
i=⌊t/q⌋q

(∥xi+1 − xi∥2 +
si∑

k=1

∥yi+1,k − yi+1,k−1∥2)
)

(62)

∥θt+1∥2 ≤ 4 log(4/δ0)
(σ2

S3
+

4L2

S4

t∑
i=⌊t/q⌋q

(∥xi+1 − xi∥2 +
si∑

k=1

∥yi+1,k − yi+1,k−1∥2)
)

(63)

By Eq. (18) to (24), the estimation
t∑

i=⌊t/q⌋q

si∑
k=1

∥yi+1,k − yi+1,k−1∥2 ≤ 6λκ

L

t∑
i=⌊t/q⌋q

(3∥θi∥2 + 7L2∥xi+1 − xi∥2 + ∥γi∥2) (64)

is still satisfied when S4 ≥ 8κ log(1/δ0), where we only need to replace f with −g, u with −u and
S2 with S4. Using the choice of λ ≤ 1

6L we can further conclude

∥ϵ(1)t+1∥2 ≤ 4 log(4/δ0)
(σ2

S1
+

4κ

S2

t∑
i=⌊t/q⌋q

(8L2∥xi+1 − xi∥2 + 3∥θi∥2 + ∥γi∥2)
)

(65)

∥ϵ(2)t+1∥2 ≤ 4 log(4/δ0)
(σ2

S1
+

4κ

S2

t∑
i=⌊t/q⌋q

(8L2∥xi+1 − xi∥2 + 3∥θi∥2 + ∥γi∥2)
)

(66)

∥θt+1∥2 ≤ 4 log(4/δ0)
(σ2

S3
+

4κ

S4

t∑
i=⌊t/q⌋q

(8L2∥xi+1 − xi∥2 + 3∥θi∥2 + ∥γi∥2)
)

(67)

We can mimic the steps in Lemma 1 to obtain the estimation of γt that

∥γt+1∥2 ≤ (
288κ

K
+

10 log(4/δ0)

S4
)∥γt∥2 + (

432κ

K
+ 390 log(4/δ0))∥θt∥2

+ (
1152κ

K
+ 750 log(4/δ0))L

2∥xt+1 − xt∥2 (68)

The difference of xt+1 and xt can be bounded by

∥xt+1 − xt∥2 ≤ max{η2, r2, D̄} ≤
ϵ2 min{1, L4

4ρ2M2 }
102400 log2(4/δ0)κ6L2C2

1

(69)

According to S1 ≥ 819200 log2(4/δ0)σ
2κ2ϵ−2 max{1, 4ρ2M2

L4 }, S2 ≥ 819200 log2(4/δ0)κ
−1ϵ−1,

S3 ≥ 819200 log2(4/δ0)σ
2κ6ϵ−2 max{1, 4ρ2M2

L4 }, S4 ≥ 819200 log2(4/δ0)κ
3ϵ−1, q = κ2ϵ−1 and

K ≥ 2304κ, by induction we can prove for ∀t, the following bounds hold

∥ϵ(1)t ∥2 ≤
ϵ2 min{1, L4

4ρ2M2 }
102400 log(4/δ0)κ2C2

1

≤ ϵ2

102400κ2C2
1

(70)

∥ϵ(2)t ∥2 ≤
ϵ2 min{1, L4

4ρ2M2 }
102400 log(4/δ0)κ2C2

1

≤ ϵ2

102400κ2C2
1

(71)

∥θt∥2 ≤
ϵ2 min{1, L4

4ρ2M2 }
102400 log(4/δ0)κ6C2

1

≤ ϵ2

102400κ6C2
1

(72)

∥γt∥2 ≤
ϵ2 min{1, L4

4ρ2M2 }
64κ6C2

1

(73)
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where the case of t = 0 is satisfied by the choice of S1 and the PiSARAH initialization ∥γ0∥ ≤

∥Gλ(x0, y0)∥ ≤ ϵmin{1, L2

2ρM }
8κ3C1

.

Next, we can give the estimation of ∥vt −∇Φ(xt)∥.

Lemma 6. Let δ1 = 7δ0/4 where δ0 is defined in Lemma 5. Let |Bj | = BQ(1−αµ)Q−j , Q = Õ(κ)
and B = 512C2

1 log(4/δ0)M
2κ2ϵ−2 Then we have ∥vt −∇Φ(xt)∥ ≤ ϵ

C1
with probability 1− 4δ1.

Proof. By Eq. (4) we have
vt −∇Φ(xt)

= (v
(1)
t − Jtz

Q
t )− (∇xf(xt, y

∗(xt))−∇2
xyg(xt, y

∗(xt))[∇2
yg(xt, y

∗(xt))]
−1∇yf(xt, y

∗(xt)))

= v
(1)
t −∇xf(xt, yt+1) +∇xf(xt, yt+1)−∇xf(xt, y

∗(xt))− (Jt −∇2
xyg(xt, y

∗(xt)))

· [∇2
yg(xt, y

∗(xt))]
−1∇yf(xt, y

∗(xt))−Jt(z
Q
t − [∇2

yg(xt, y
∗(xt))]

−1∇yf(xt, y
∗(xt))) (74)

As S5 ≥ 64C2
1 log

2(4/δ0)M
2κ2ϵ−2, by Azuma-Hoeffding inequality we have

∥Jt −∇2
xyg(xt, y

∗(xt))∥ ≤ Lϵ

8κMC1
(75)

with probability 1− δ0. According to Lemma 5 we have

∥vt −∇Φ(xt)∥ ≤ ∥ϵ(1)t ∥+ L∥yt+1 − y∗(xt)∥+
M

µ
∥Jt −∇2

xyg(xt, y
∗(xt))∥

+ L∥zQt − [∇2
yg(xt, y

∗(xt))]
−1∇yf(xt, y

∗(xt))∥

≤ ϵ

2C1
+ L∥zQt − [∇2

yg(xt, y
∗(xt))]

−1∇yf(xt, y
∗(xt))∥ (76)

Next, we will estimate ∥zQt − [∇2
yg(xt, y

∗(xt))]
−1∇yf(xt, y

∗(xt))∥. First, we have

∥[∇2
yg(xt, yt+1)]

−1∇yf(xt, yt+1)− [∇2
yg(xt, y

∗(xt))]
−1∇yf(xt, y

∗(xt))∥
= ∥([∇2

yg(xt, yt+1)]
−1 − [∇2

yg(xt, y
∗(xt))]

−1)∇yf(xt, yt+1)

+ [∇2
yg(xt, y

∗(xt))]
−1(∇yf(xt, yt+1)−∇yf(xt, y

∗(xt)))∥

≤ ρM

µ2
∥yt+1 − y∗(xt)∥+

L

µ
∥yt+1 − y∗(xt)∥ = (

ρM

µ2
+ κ)∥yt+1 − y∗(xt)∥ (77)

We also have estimation
∥zQt − [∇2

yg(xt, yt+1)]
−1∇yf(xt, yt+1)∥

= ∥(α
Q−1∑
q=−1

Q∏
j=Q−q

(I − α∇2
yG(xt, yt+1;Bj))− [∇2

yg(xt, yt+1)]
−1)v

(2)
t

+ [∇2
yg(xt, yt+1)]

−1(v
(2)
t −∇yf(xt, yt+1))∥

≤ 2M∥α
Q−1∑
q=−1

Q∏
j=Q−q

(I − α∇2
yG(xt, yt+1;Bj))− [∇2

yg(xt, yt+1)]
−1∥+ 1

µ
∥ϵ(2)t ∥ (78)

The first term can be estimated by

∥α
Q∑

q=0

(I − α∇2
yg(xt, yt+1))

q − [∇2
yg(xt, yt+1)]

−1∥ ≤ α

+∞∑
q=Q+1

(1− αµ)q =
(1− αµ)Q+1

µ

(79)

When |Bj | = BQ(1− αµ)Q−j , by Azuma-Hoeffding inequality and the proof of proposition 3 in (Ji
et al. (2021)), we have

∥α
Q−1∑
q=−1

Q∏
j=Q−q

(I − α∇2
yG(xt, yt+1;Bj))− α

Q∑
q=0

(I − α∇2
yg(xt, yt+1))

q∥2
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≤ α2κ2 log(4/δ0)

B(1− αµ)
≤ 2α2κ2 log(4/δ0)

B
(80)

with probability 1− δ0. In the second inequality we use α = 1
2L . Combine Eq. (77) to (80) and we

can obtain

L∥zQt − [∇2
yg(xt, y

∗(xt))]
−1∇yf(xt, y

∗(xt))∥

≤ 2κ2(1 +
ρM

L2
κ)∥γt∥+ κ∥ϵ(2)t ∥+ 2κM(1− αµ)Q+1 + κM

√
2 log(4/δ0)

B
≤ ϵ

2C1
(81)

where we have used Lemma 5 and the choices of Q = Õ(κ) and B = 512C2
1 log(4/δ0)M

2κ2ϵ−2 in
the last inequality. Therefore, by union bound we have

∥vt −∇Φ(xt)∥ ≤ ϵ

C1
(82)

with probability 1− 7δ0.

Now we have reached the same conclusion as the case of minimax optimization. The rest part
of the proof for Theorem 2 is almost the same as Theorem 1 since in Lemma 2 to Lemma 4 and
Lemma 10 we do not need the specific expression of vt, LΦ or ρΦ. We only use the bound for
∥vt −∇Φ(xt)∥. The only thing different is that we have to check if r and D̄ in Lemma 4 satisfy the
condition in Lemma 5, which is affirmative as LΦ ≥ κ3ρM

L . Therefore, the average descent is Õ( ϵ2

LΦ
)

and T = Õ(LΦ

ϵ2 ) = Õ(κ3ϵ−2). Finally, we have

Gc(f, ϵ) = TS2K +
T

q
S1 = Õ(κ3ϵ−3), Gc(g, ϵ) = I + TS4K +

T

q
S3 = Õ(κ7ϵ−2) (83)

JV (G, ϵ) = TS5 = Õ(κ5ϵ−4), HV (G, ϵ) = T

Q−1∑
j=0

BQ(1− αµ)j =
TBQ

αµ
= Õ(κ6ϵ−4) (84)

F AUXILIARY PROPOSITIONS AND LEMMAS

In this section we provide some auxiliary propositions and lemmas used in the proof.
Proposition 1. (Lemma 4.3 in (Lin et al. (2020a))) Suppose function f satisfies Assumption 2 and
Assumption 1. Then function y∗(x) is κ-Lipschitz continuous, i.e.,

∥y∗(x1)− y∗(x2)∥ ≤ κ∥x1 − x2∥
for ∀x1, x2 ∈ Rd1 . Function Φ(x) is differentiable with gradient ∇Φ(x) = ∇xf(x, y

∗(x)) and the
gradient is LΦ-Lipschitz continuous where LΦ = L+ κL.
Proposition 2. (Lemma 2, Lemma 3 in (Luo & Chen (2021))) Suppose function f satisfies Assump-
tion 2 to Assumption 1. Then function Φ(x) is twice differentiable and the Hessian is ρΦ-Lipschitz
continuous where ρΦ = 4

√
2κ3ρ.

Proposition 3. (Lemma 2.2 in (Ghadimi & Wang (2018))) Under Assumptions 1 to 3, the gradient of
Φ(x) is LΦ-Lipschitz continuous and the Lipschitz constant LΦ = O(κ3) with formula

LΦ = L+
2L2 + ρM

µ
+

L3 + 2LρM

µ2
+

L2ρM

µ3
. (85)

Proposition 4. (Lemma 3.4 in (Huang et al. (2022b))) Under Assumptions 1 to 5, the Hessian of
Φ(x) is ρΦ-Lipschitz continuous and the Lipschitz constant ρΦ = O(κ5).

Next, we will present the Azuma-Hoeffding inequality.
Lemma 7. (Lemma D.1 in (Chen et al. (2021a))) Let ϵ1:k ∈ Rd be a vector-valued martingale
difference sequence with respect to Fk, i.e., for each k ∈ [K], E[ϵk|Fk] = 0 and ∥ϵk∥ ≤ Bk, then
with probability 1− δ we have

∥
K∑

k=1

ϵk∥2 ≤ 4 log(4/δ)

K∑
k=1

B2
k (86)
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Next we will introduce some lemmas from the convergence analysis of SREDA.
Lemma 8. (Lemma 2 in (Luo et al. (2020))) Suppose f is a µ-strongly convex function and has
L-Lipschitz gradient. Then for any x and x′ we have

⟨∇f(x)−∇f(x′), x− x′⟩ ≥ µL

µ+ L
∥x− x′∥2 + 1

µ+ L
∥∇f(x)−∇f(x′)∥2 (87)

Lemma 9. (Corollary 1 in (Luo et al. (2020))) For any y ∈ Y we have
µ

2
∥y − y∗(xt)∥ ≤ ∥Gλ(xt, y)∥ (88)

As Φ(x) has (L+ κL)-Lipschitz gradient and (4
√
2κ3ρ)-Lipschitz Hessian, similar to Lemma D.3

in (Chen et al. (2021a)) and Lemma 6 in (Li (2019)) we have the following Lemma 10.

Lemma 10. Set stepsize ηH ≤ min{1/8LΦ log(ηHϵHLΦ

CρΦr0
), 1/4CLΦ log tthres} = Õ( 1

κL ), perturba-

tion radius r ≤ LΦηHϵH
CρΦ

and threshold tthres = 2 log(ηHϵHLΦ

CρΦr0
)/ηHϵH = Õ( 1

ηHϵH
), where r0 ≤ r

and C = Õ(1). Suppose −γ = λmin(∇2Φ(xms)) ≤ −ϵH . Let {xt}, {x′
t} be two coupled sequences

by running PRGDA from xms+1 = xms + ξ and x′
ms+1 = xms + ξ′ with xms+1 − x′

ms+1 = r0e1,
where ξ, ξ′ ∈ B0(r) and e1 denotes the smallest eigenvector direction of ∇2Φ(xms). Then with
probability at least 1− 4δ1 (for δ1 in Lemma 1), we have

max
ms<t≤ms+tthres

{∥xt − xms
∥, ∥x′

t − xms
∥} ≥ LΦηHϵH

CρΦ
(89)

Proof. To prove this lemma, we assume the contrary.

∀ms < t ≤ ms + tthres, ∥xt − xms
∥ <

LΦηHϵH
CρΦ

, ∥x′
t − xms

∥ <
LΦηHϵH
CρΦ

(90)

Define wt = xt − x′
t and νt = vt −∇Φ(xt)− (v′t −∇Φ(x′

t)). We have

wt+1 = wt − ηH(vt − v′t) = wt − ηH(∇Φ(xt)−∇Φ(x′
t))− ηHνt

= (I − ηHH)wt − ηH(∆twt + νt) (91)

where

H = ∇2Φ(xms
), ∆t =

∫ 1

0

[∇2Φ(x′
t + θ(xt − x′

t))−H]dθ (92)

Let

pt+1 = (I − ηHH)t−mswms+1, qt+1 = ηH

t∑
τ=ms+1

(I − ηHH)t−τ (∆τwτ + ντ ) (93)

and apply recursion to Eq. (91), we can obtain

wt+1 = pt+1 − qt+1 (94)

Next, we will inductively prove

∥qt∥ ≤ ∥pt∥/2, ∀ms < t ≤ ms + tthres (95)

First, when t = ms + 1 the conclusion holds since ∥qms+1∥ = 0. Suppose Eq. (95) is satisfied for
τ ≤ t. Then we have

∥wτ∥ ≤ ∥pτ∥+ ∥qτ∥ ≤ 3

2
∥pτ∥ =

3

2
(1 + ηHγ)τ−ms−1r0 (96)

Then for the case τ = t+ 1, by Eq. (93) and (96) we have

∥qt+1∥ ≤ ηH(1 + ηHγ)t−ms
3

2

t∑
τ=ms+1

∥∆τ∥r0 + ηH

t∑
τ=ms+1

(1 + ηHγ)t−τ∥ντ∥

≤ (1 + ηHγ)t−ms(
3LΦη

2
HϵHtthres
2C

r0 +
1

4
r0)
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≤ 1

2
(1 + ηHγ)t−msr0 = ∥pt+1∥/2 (97)

which finishes the induction of Eq. (95). In the second inequality, we use Lipschitz Hessian and
Eq. (90) to obtain ∥∆τ∥ ≤ LΦηHϵH/C and we use Lemma 1 in minimax problem or Lemma 5 in
bilevel problem and the fact at+1 − 1 = (a− 1)

∑t
s=0 a

s to obtain ∥ντ∥ ≤ ϵHr0/4 with probability
1− 4δ1 by choosing constant C1 ≥ 8ϵ

ϵHr0
. The last inequality can be achieved by the definitions of

ηH and tthres. Now we have

1

2
(1 + ηHγ)t−ms−1r0 ≤ ∥wt∥ ≤ ∥xt − xms∥+ ∥x′

t − xms∥ (98)

which conflicts with Eq. (90) due to the choice of tthres.
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