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ABSTRACT

Graph Neural Networks (GNNs) are widely recognized as leading architectures
for addressing classification problems involving graphical data. In this paper, we
formally define the challenge of effectively constructing edges within a dataset and
training a GNN over this graph and introduce SHIKI - a novel method to tackle
this task. We provide a comprehensive theoretical analysis demonstrating how
graph convolutions can improve expected performance by leveraging edges. Our
study focuses on the node classification problem within a non-linearly separable
Gaussian mixture model, combined with a stochastic block model, and we visu-
ally demonstrate its applicability to real-world datasets. Specifically, we show that
a single graph convolution in the second layer can reduce the expected loss when
applying a heuristic for edge creation. We validate our findings through extensive
experiments on both synthetic and real-world datasets, including those related to
the entity matching problem and textual review classification. For the synthetic
data, we conduct experiments based on the dataset’s difficulty and various hyper-
parameters in our method, drawing connections between the two. Additionally, we
perform an ablation study by systematically removing components of our method
and testing the resulting degraded approach, which highlights the necessity of our
full method. We employ several GNN architectures in the experiments, including
GCN, GraphSAGE, and GAT.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a powerful tool for learning from graph-structured
data, with applications spanning social networks Ding et al. (2019), molecular biology Gaudelet
et al. (2021), recommender systems Wu et al. (2018), and more. Aside from tasks where graph-
structure lends itself well to the domain, GNNs were also shown to be useful in tasks where the data
is not inherently structured, e.g., entity matching (Genossar et al., 2023b).

Graph convolutional models Kipf & Welling (2017) are among the most popular approaches for
learning on relational data, leveraging the idea of aggregating the features of a node’s neighbors
rather than just its own. While numerous empirical studies on GCN variants Chen et al. (2020)
have demonstrated that graph convolutions can outperform traditional classification methods like
multi-layer perceptrons (MLPs), there has been little theoretical progress in explaining how graph
convolutions enhance node classification in multi-layer networks, especially on non-graphical data.

Baranwal et al. recently showed, both theoretically and empirically, that even for applications with-
out inherent graph structure, synthetically created edges can boost performance Baranwal et al.
(2022). Specifically, they demonstrate an improvement in performance where the data poses a train-
ing challenge for a simple multi-layer perceptron (MLP). In their work, edges are created according
to prior knowledge of the sample label, and no method for incorporating edge creation into the learn-
ing pipeline was proposed. We aim to bridge this gap, proposing a heuristic to create useful edges
on top of an MLP that models non-structural data in a self-supervised manner, followed by training
a GNN model over it using the generated edges. Our contribution is threefold:

• We propose and formulate a novel method for adding edges to a non-graphical data.

• We show the effectiveness of our method in terms of expected loss.
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• We empirically verify the formal results of our method using basic and known GNN ar-
chitecture such as GCN Kipf & Welling (2017), GraphSAGE Hamilton et al. (2018), GAT
Veličković et al. (2018), showing improvement over MLP training.

An open source anonymous access to SHIKI implementation is available here.

The rest of the paper is organized as follows. In Section 2, we provide a description of the data
model. In Section 3 we state our objective and provide a problem definition. In Section 4 we
describe our proposed solution. We also provide our notion of improvement and show results on
the expected improvement. In Section 5 we detail our experiments on synthetic and real-world data,
including an ablation analysis, to demonstrate the proposed method performance quality. We present
relevant related work in Section 6 and conclude with some directions for future work in Section 7.

2 PRELIMINARIES

In this work, we use the XOR-GMM model Baranwal et al. (2022) to generate synthetic data. The
model serves as a basis to our formal and empirical analysis.

Let n and d be positive integers, where n represents the number of data points (sample size) and d
denotes the dimension of features. Let ϵ1, . . . , ϵn ∼ Ber

(
1
2

)
and η1, . . . , ηn ∼ Ber

(
1
2

)
be Bernoulli

random variables. Also, let Cb = {i ∈ [n] | ϵi = b} for b ∈ {0, 1} be two classes. Let µ and ν be
fixed vectors in Rd, such that ∥µ∥2= ∥ν∥2 and ⟨µ, ν⟩ = 0. Let X ∈ Rn×d be the data matrix where
each row-vector Xi ∈ Rd is an independent Gaussian random vector with distribution

Xi ∼ N
(
(2ηi − 1)((1− ϵi)µ+ ϵiν), σ

2Id
)

(1)

We use the notation X ∼ XOR-GMM(n, d, µ, ν, σ2) to denote data sampled from this model.

(a) Example of a difficult dataset can be created by
the model, with distance between centers of ||µ−
ν||= 2.5, and standard deviation σ = 0.7.

(b) Example of an easy dataset can be created by
the model, with distance between centers of ||µ−
ν||= 4.5, and standard deviation σ = 0.7.

Figure 1: Different data characteristic possible with the synthetic model

Example 1. Through the use of specific parameters of the model, including the distance between
centers ||µ − ν||, the variance σ2, and number of points n, we can control the difficulty of classifi-
cation models to achieve their goal, when trained with the data. We illustrate this difference using
Figure 1. Figure 1a illustrates a more challenging classification setting than Figure 1b due to the
shorter distance between the cluster centers. The mix between the blue and the red instances makes
it harder to train a classification model.

We use the XOR-GMM model to support our formal analysis. Despite its synthetic nature, we
observe that multiple real-world datasets exhibit behavior that can be captured by this model. For
illustration, we present next two well-known tasks, namely review classification on Amazon dataset1
and entity matching on the Walmart-Amazon dataset.2

1https://www.kaggle.com/datasets/drshoaib/amazon-videogames-reviews
2https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

2

https://anonymous.4open.science/r/SHIKI-B54F/README.md
https://www.kaggle.com/datasets/drshoaib/amazon-videogames-reviews
https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The Amazon videogames reviews dataset contains users’ reviews for video games on Amazon. For
each review, details are given about the reviewer, the product, the review text, and the overall rating
ranging in [1, 5]. The learning task involves predicting the overall rating given the other details.

(a) Amazon dataset embeddings after fine-tuning
bert and dimension reduction using TSNE.

(b) Synthetically generated data according to the
model’s version modelling the Amazon dataset.

Figure 2: Visual comparison between real-world data and synthetically generated data for the Ama-
zon review dataset

Figure 2 illustrates the vector space of data points from the Amazon videogames review dataset
(left) and a simulation of the data using a variation of the XOR-GMM model, keeping ϵi, ηi, Cb

unchanged. We note that, unlike the theoretical model where centers of the same class are on
opposites sides, in this dataset, the centers of each class are on the same side, creating the elongated
shapes. Therefore, the GMM distributions becomes Xi ∼ N

(
(2ϵi − 1)((1− ηi)µ+ ηiν), σ

2Id
)
.

We swap the roles of ηi and ϵi, meaning, points from class 1 will have the centers µ, ν, and points
from class 0 will have the centers −µ,−ν. The result is given in Figure 2b.

The Walmart-Amazon dataset is taken from the Magellan data repository (Konda et al., 2016). It is
a well-known dataset for evaluation of entity matching solutions. This dataset contains product data
from Walmart and Amazon. The original dataset contained two tables, and a golden standard match.

To better understand the matching task, we briefly present the entity matching problem. Let D =
{r1, r2, ..., rn} be a set of data records (dataset) and E = {e1, e2, ..., em} a set of real-world entities
(m ≤ n). Each record is associated with an entity in E using an entity mapping (mapping for short)
θ : D → E. Whenever θ is unknown, for example, due to the absence of unique keys to identify
entities, entity resolution solutions aim to pair records in D such that if {ri, rj} ⊆ D are paired
together then θ(ri) = θ(rj). D is usually characterized by a set of attributes A = {a1, a2, ..., ak},
such that a record ri = ⟨ri.a1, ri.a2, ..., ri.ak⟩ is assigned with values to all attributes (some of
which may be null values).

For the Walmart-Amazon entity matching dataset, Figure 3a provides a two dimensional illustration
of representative vectors (with dimension of 768) of a fully trained models. We observe that positive
pairs tend to gather together, surrounded by a background of negative pairs. Unlike the theoretical
model where each class has two centers, this dataset has class imbalance, and the classes are repre-
sented by a single positive center and three negative centers instead of balanced two centers for each
class. To capture imbalance, one center has less points than each center from the other class. Thus,
we need to model further imbalance for the center. We model this by giving a lower probability for
a point to be in this center.

To achieve this setting with the XOR-GMM model, we define w0 to be the probability of a node
being in class 0, and w1 in class 1. Obviously 0 < w0 = 1 − w1 < 1, in order to achieve the
phenomena of a small center, we use 0 < w1 < 1

2 . The definitions for ϵi, Xi stay unchanged,

while we set ηi = Ber

(
1
2 + ϵi

(
w1 − 1

2

))
, and set Cb to be C0 = {i ∈ [n] | ϵi = 0 ∨ ηi = 0},

C1 = {i ∈ [n] | ϵi = 1 ∧ ηi = 1}. Data points from class 1 have a single center ν, and points from
class 0 have three centers µ,−µ,−ν. The result is given in Figure 3b.

3
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(a) Visualization of pairs distribution by t-SNE,
partitioned into match and non-match pairs.
Taken from (Genossar et al., 2023a).

(b) Synthetically generated data according to the
model’s version modelling the Walmart-Amazon
Entity Matching dataset

Figure 3: Visual comparison between real world data and Synthetically generated data for the
Walmart-Amazon entity matching dataset

These models deviate from the original one by either class imbalance, or shifted centers. Due to
the high similarities of these models, in Appendix B we demonstrate that given the original model,
each such deviation retains the nice theoretical properties of the original XOR-GMM model, and in
Appendices C and D we formally prove these nice theoretical properties.

We conclude the section with a description of the process of creating the graph over a XOR-GMM
generated dataset, following (Baranwal et al., 2022). Although we do not use this process, its de-
scription assists in defining our proposed method. The graph is represented as an adjacency matrix,
A = (aij), i, j ∈ [n] , which corresponds to an undirected graph including self-loops, and is sam-
pled as follows. aij ∼ Ber(p) if ϵi = ϵj and aij ∼ Ber(q) if ϵi ̸= ϵj . Therefore, for any two
nodes, if they share a class, we create an edge with probability p, otherwise we create an edge with
probability q. We call it XOR-CSBM, and denote (A,X) ∼ XOR-CSBM(n, d, µ, ν, σ2, p, q).

3 PROBLEM STATEMENT

In Section 2 we have demonstrated, using two real-world datasets, an interesting spatial effect. Using
MLP, we can construct an embedded vector space in which data items from the same class tend to
cluster together. Such a phenomenon provides us with a good starting point when constructing a
graph structure that serves in training a GNN to improve the outcome of a classification problem.
Our goal in this paper, is therefore, to enhance MLP usage of node features by connecting similar
nodes of the same class and use GNN’s message-propagation to improve the generated embedded
space. We focus our attention on a careful selection of edges to connect nodes of the same class.
In this work we offer a comparative analysis of artificially created graph convolutions with those of
a traditional MLP that does not incorporate graphical information. In particular, we are interested
in answers to the following two questions. First, is it possible to create edges from a non-graphical
data in a way that takes advantage of the performance improvement GNN provides in a graphical
data? Then, we are interested in identifying provable improvements.

Let X ∼ XOR-GMM(n, d, µ, ν, σ2) be as defined above. Our goal is to design fGNN =
G(X,E), a function that takes as a parameter the data X , and outputs a graph from X in a way
that supports our overall goal of improved training. The nodes of G are the data points, V = X and
E ⊆ V × V . We define improvement in terms of expectation over the normal distribution of Eq. 1.
We treat n, d, µ, ν as constants. Therefore,

EX(f(X)) ≡ EX(f(X)|n, d, µ, ν) (2)

The MLP and the GNN share most of the characteristics, as can be seen in Table 1. They differ only
in the node computation f (l)(X). kl denotes the number of graph convolutions placed in layer l.
The learnable parameters are θ(W(l), b(l))l∈[L]. For the loss we use a standard cross-entropy loss

4
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Table 1: MLP and GCN Characteristics

Characteristic MLP GCN Comments
H(0) = X X

f (l)(X) = H(l−1)W (l) + b(l) (D−1A)klH(l−1)W (l) + b(l) for l ∈ [L]

H(l) = ReLU(f (l)(X)) ReLU(f (l)(X)) for l ∈ [L]

ŷ = φ(f (L)(X)) φ(f (L)(X))

defines as L(X/G) = − 1
n

∑
i∈[n] yi log(ŷi)+(1−yi) log(1− ŷi). Problem 1 summarizes our goal,

as follows.
Problem 1. Let X ∼ XOR-GMM(n, d, µ, ν, σ2). Design fGNN (X) s.t.

fGNN (X) = G(X,E) s.t. EX(LGNN (G)) < EX(LMLP (X)) (3)

Problem 1 is defined in a way that closely follows the results of Baranwal et al. (2022), in that it
seeks a graph that offers a provable improvement over the MLP performance, by expectation. We
observe that this problem can be extended to a more general optimization problem of finding an
optimal graph, as follows.
Problem 2. Let X ∼ XOR-GMM(n, d, µ, ν, σ2). Find G(X,E) s.t.

G = argminG′∈GEX(LGNN (G)) (4)

Following Baranwal et al. (2022), we focus on solving Problem 1, leaving Problem 2 for future
work.

4 SHIKI: A HURISTIC APPROACH

Figure 4: An Illustration of the SHIKI pipeline

Solving Problem 1, we present SHIKI: a Self-supervised Heuristic approach for Improving MLPs’
Knowledge by Integrating GNNs. We use a heuristic similar to the graph creation described in Sec-

tion 2. We observe that the GNN loss in Baranwal et al. (2022) depends upon
∣∣∣∣p−q
p+q

∣∣∣∣ (see Section 2),

and for a GNN to be effective, we want p and q to be as different as possible. Had we known in
advance the ground truth labels, we could directly control p and q. However, we do not have a direct
knowledge on the ground truth during test time. Therefore, we need to resort to approximating them.

Figure 4 illustrates a pipeline, in which a training dataset D is effectively train by combining some
MLP and through an effective selection of edges for a graph over the data items, trains a GNN.
The pipeline contains five processing steps, to be detailed next. We conclude this section with some
results on the improvement that can be gained by using SHIKI.

4.1 MLP TRAINING

The first step in the pipeline involves training and MLP on the data. The training yields three
outcomes that are useful for us. First, it yields a label for each trained dataset. Second, it provides a
confidence in the classification task. Finally, it generates a latent vector space.

The latent vector space offers a notion of a distance. In general, such a distance measure does
not have to rely entirely on the outcome of the MLP. For tabular data, we can use the columns as

5
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dimensions in a vector space. For textual data, we can create embeddings using an LLM, capturing
the latent vector space of the last layer. Finally, for vector data, we can use the vectors themselves,
or alternatively use an MLP’s hidden-layer embeddings.

4.2 CONFIDENCE OF WEAK LABELS

In this step we get the confidence score from the trained MLP, thus using weak labels. Weak labels
are noisy and uncertain labels that may differ from the true labels. Using weak labels runs the risk
of predicting the wrong labels to nodes in the graph. Wrong labels hurt the training in general and
in particular will harm the process of edge creation. In particular, weak labels, when used in edge
creation are likely to increase q, the probability of connecting mismatched nodes, which leads to
deteriorated performance.

For each instance x, the MLP first calculates a score |MLP (x)|∈ (−∞,∞), on which we apply the
sigmoid function to generate a distribution in [0, 1]. Nodes with high absolute values are assumed to
be nodes the model are confident in their prediction, and we call them confident nodes. We assume
(and later prove) that more confident nodes tend to produce more accurate predictions.

4.3 CONFIDENT NODES SELECTION

In this step we determine the set of confident nodes to be labeled and participate in edge creation
with respect to these weak labels, using the method in (Baranwal et al., 2022). We consider two
possible ways to select confident nodes, as follows.

Top percentile: We order the nodes according to the scores the MLP assigns with them, and define
any node x that is within the top percent of the scores, where percent is some hyper-
parameter to be a confident node.

Confidence threshold: Given a threshold τ > 0, a node x is defined to be a confident node if
|MLP (x)|> τ .

We note that highly parameterized models, including transformer-based pre-trained language mod-
els, often generate uncalibrated confidence scores (Guo et al., 2017; Jiang et al., 2021; Genossar
et al., 2023a). These scores tend to be mostly dichotomous, clustering near 0 or 1, making them
unreliable. Thus, one needs to be careful directly using a LLM (instead of a simple MLP) as part of
our model.

4.4 EDGE CREATION

Edge creation is done in the same manner as described in Section 2, taking into account only confi-
dent nodes. This method, which we refer to as main strategy, is based solely on node labels.

We observe that in real-world graphs, edges tend to connect nodes that are in close proximity. Thus,
we propose a strategy that takes into account also node distances. We propose two strategies, as
follows.

Proximity Strategy: Following the observation above, closer nodes will be more likely to be con-
nected.

Diversity Strategy: Nodes that are further away are assigned with higher probability to be con-
nected. This strategy aims at diversity to increase the information gain.

4.5 MEASURING IMPROVEMENT

We conclude with the definition of an evaluation measure, with which we measure the performance
of the variations of the SHIKI approach. We measure performance in terms of improvement over a
basic MLP. For that we calculate expectation of each loss (eqs. 5 and 6) and compare (Eq. 7).

EX∼XOR-GMM(n,d,µ,ν,σ2)(LMLP ) (5)

EX∼ XOR-GMM(n,d,µ,ν,σ2)(LSHIKI) (6)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

imp ≡ EX∼XOR-GMM(n,d,µ,ν,σ2)(LMLP -LSHIKI)

= EX∼XOR-GMM(n,d,µ,ν,σ2)(LMLP )− EX∼XOR-GMM(n,d,µ,ν,σ2)

(7)

Intuitively speaking, when dealing with an easy data, the task is easy enough for MLP to succeed on
its own, and adding GNN does not affect the performance. Also, when the data is too difficult, creat-
ing the edges using self-supervision is not effective, and the GNN may even worsen the performance
as compared to simply applying MLP. Thus, we seek to identify the region of improvement, where
the data is difficult enough for a plain MLP to perform quite poorly, yet sufficiently easy for a GNN
to perform well and boost performance. This is controlled by three parameters, namely n, γ, σ2.

We also expect the improvement to depend on SHIKI’s hyper-parameters, namely τ or percent. In
what follows we shall discuss only the impact of τ . When τ is too small, we wind up considering
all nodes, which we expect to lead to poor performance. On the other hand, when τ too large, we
barely choose any node, limiting the impact of the GNN.

When analyzing the losses, we use two measure. ατ is the probability of getting the right prediction
given a confident node and βτ represents the probability of a node being confident.

Theorem 1. Let X ∼ XOR-GMM(n, d, µ, ν, σ2), with the edge creation created as above we
have:

1. EX(LMLP ) = 2
√
2σ2ϕ( γ′

√
2σ

)− 2σ2ϕ(γ
′

σ )

2. EX(LSHIKI) = P (confident) · EX(LGNN ) + EX(LMLP |not confident)

EX(LSHIKI) ≈ βτ · exp
(
−p−q

p+q
2γ′2

σ (2ατ − 1)2
)
+(

2σ2ϕ(γ
′

σ )(2(1− Φ( τσ ))− 1) +

2
√
2σ2

(
ϕ( γ′

√
2σ

)− ϕ(−γ′+τ√
2σ

)Φ(−γ′−τ√
2σ

)− ϕ(γ
′+τ√
2σ

)Φ(γ
′−τ√
2σ

)
))

Where ϕ(x) and Φ(x) denote the pdf and cdf of a standard Gaussian.

Proof sketch To calculate the expected MLP loss, we use the plain definition of probability times
value, calculating the probability followed by the expectation. To calculate our method’s loss, we
first separate the loss to the MLP part and the GNN part. For the MLP, we calculate the expectation
similarly to the first part. For the GNN part, we know from Baranwal et al. (2022) its value. Then
all is left is combining theses in the right way. □

Figure 5: MLP vs SHIKI loss, blue - MLP, green - SHIKI

We next visualize in Figure 5 the losses’ behavior by plotting the loss of each model, as a function
of x-axis = γ′

σ , y-axis = τ
σ , with σ = 5. As observed, SHIKI’s expected loss is generally lower than

that of the MLP, with the exception of instances where the y-axis values become significantly large.
Even in these cases, it suggests a stronger integration of the GNN is necessary. Additionally, this
may be due to the fact that the losses are only approximated.

7
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5 EXPERIMENTS

In this section, we present empirical evidence to support our claims that the SHIKI model outper-
forms the standard MLP.

Datasets: We verify our method’s result for both the real-world datasets, tailored for node clas-
sification tasks and the synthetic data model. Both intuitively and formally, we wish to choose a
large p value and a small q value, to connect more nodes of the same class. Thus, in our experi-
ments, we focus on this case, and choose p ∈ {0.7, 0.8}, q ∈ {0.1, 0.2}. Furthermore, we use with
τ ∈ {0.7, 0.8, 0.9}, percent ∈ {0.1, 0.2}.

In terms of real-world datasets, we tested the SHIKI model on the Amazon reviews and the Walmart-
Amazon datasets (see Section 2). The structure of the data cannot be controlled to conform in full
to our proposed model and the controlled parameters are p, q, τ and percent.

For the Walmart-Amazon data, we use DITTO Li et al. (2020), a state-of-the-art tool for entity
matching, using RoBERTa Liu et al. (2019). The extracted pair embeddings serve us in the training
of the MLP and the GNN.

By controlling the distance between the means, as demonstrated in Section 2, we separate the ex-
periments with the synthetic data into two regimes, namely hard and easy. In the hard case, the
distance spans from .3 to 1.5, with jumps of .15. In the easy case, the distance spans from 1.5 to 5,
with jumps of .3. For the hard case, we use f-score, to prevent the learner from simply classifying
all the data points as the same class. For the easy case, it is suffice to check for accuracy.

For set splits, we used train/test splits with the bigger subset used for training.

Baseline: As a baseline, we compare SHIKI to a popular graph creation heuristic, namely KNN
(k-nearest-neighbors), where we connect each node to its k closest nodes.

Evaluation measures: For evaluation, we use three evaluation measures. The mean number of
edges constructed by the method, the mean improvement over the MLP and standard deviation of
the improvement. For the improvement, we applied all of SHIKI’s strategies described in 4.4, and
chose the best one.

System Details: All experiments use PyTorch Geometric (Fey & Lenssen, 2019) and were per-
formed on a server with 2 NVIDIA GeForce GTX 1080 Ti and a Rocky Linux release 9.4 (Blue
Onyx) operating system. Networks were implemented using PyTorch Paszke et al. (2019) and Py-
Torch Geometric (Fey & Lenssen, 2019).

5.1 RESULTS

We present next partial results of our. Due to space limitations, we present the results for the
Walmart-Amazon dataset and results for the hard XOR-GMM model case only. The Amazon
reviews dataset results the analysis of the easy case are given in Appendix E.

SHIKI knn No confident
nodes

No labels No confident
nodes and la-
bels

GCN2 1179941.125,
0.541 +
0.032 ± 0.058

31355.0,
0.557 +
-0.05 ± 0.057

1813669.875,
0.537 +
-0.005 ±
0.044

921473.4,
0.528 +
0.05 ± 0.058

1491614.5,
0.53 +
-0.015 ±
0.021

GraphSAGE2 898606.35,
0.554 +
0.122 ± 0.051

31355.0,
0.59 +
-0.018 ±
0.033

1479780.25,
0.608 +
0.071 ± 0.062

704871.5,
0.571 +
0.104 ± 0.077

918501.0,
0.58 +
0.09 ± 0.042

GAT2 1288287.275,
0.538 +
0.057 ± 0.071

31355.0,
0.545 +
0.035 ± 0.059

2711898.75,
0.519 +
0.106 ± 0.016

926080.4,
0.53 +
0.078 ± 0.068

1455389.5,
0.535 +
0.08 ± 0.071

Table 2: Improvement of the SHIKI method with different strategies on multiple GNN types on the
Walmart-Amazon dataset.
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SHIKI knn No confident
nodes

No labels No confident
nodes and la-
bels

GCN2 37179.719,
0.319 +
0.213 ± 0.087

9137.0,
0.323 +
0.23 ± 0.071

143112.812,
0.302 +
0.137 ± 0.071

17521.375,
0.342 +
0.189 ± 0.077

104540.125,
0.363 +
0.109 ± 0.025

GraphSAGE2 54268.725,
0.395 +
0.181 ± 0.218

9137.0,
0.516 +
-0.086 ±
0.193

116882.531,
0.32 +
0.243 ± 0.277

44714.9,
0.387 +
0.182 ± 0.216

73274.5,
0.323 +
0.243 ± 0.299

GAT2 43145.069,
0.363 +
0.225 ± 0.211

9137.0,
0.385 +
-0.129 ±
0.287

192782.938,
0.41 +
0.204 ± 0.3

35336.525,
0.387 +
0.204 ± 0.204

142004.0,
0.409 +
0.211 ± 0.322

Table 3: Improvement of the SHIKI method with different strategies on multiple GNN types on the
hard XOR-GMM synthetic model.

Tables 2 and 3 present the results for the Walmart-Amazon and XOR-GMM synthetic model data
sets, respectively. Each row represents a different GNN architecture (GCN, GraphSAGE, GAT),
where the GNN layer is only available at the second layer. Consider for now the first two columns
in the table, representing our full SHIKI model and the KNN baseline. Each cell corresponds to
a certain GNN architecture and a specific edge creation method. In each cell we present the mean
number of edges constructed with the method, the mean MLP accuracy, and the mean and stan-
dard deviation of the improvement in the following format: #edges,mean MLP accuracy +
mean improvement± improvement standard deviation.

Best performing algorithm, in terms of accuracy improvement is marked in bold. It is evident that
SHIKI consistently outperforms both MLP and KNN.

Additionally, SHIKI demonstrates consistent performance across all GNN architectures, with only
slight variations in their results. A more detailed discussion is provided in the Appendix E.

(a) Plot of the SHIKI model improvement across
all ablations and baselines on a real-world dataset.

(b) Plot of the SHIKI model improvement across
all ablations and baselines on a synthetic dataset.

Figure 6: Plots of real-world and synthetic data comparing SHIKI to multiple ablations and base-
lines.

The results are also presented visually (Figure 6) for ease of understandings. Similarly to the tables,
the first bar group is our full SHIKI model and the second is the KNN baseline. Each bar group
consists of the three GNN architectures. The colored bar represents the mean MLP accuracy with
its corresponding GNN architecture. The gray bar above represents the mean improvement (no such
bar means no improvement) with the standard deviation as the black line. The visual representation
provides a clear illustration of SHIKI’s superior performance over the baseline.

We also provide an ablation study, using three different variation, as follows.

No confident nodes: Instead of taking only the most confident nodes, we take all of the nodes, and
apply edge creation considering all of the nodes.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

No labels: Instead of considering the weak labels of the most confident nodes, for each pair of
nodes, we create an edge between them with probability of 0.5. This is done by setting
p = q = 0.5.

No labels, No confident nodes: We take all nodes and for each pair of node, we create an edge
between them with probability of 0.5, rendering the weak-labels useless. Note that we
randomly create edges between nodes.

The three right-most columns of tables 2 and 3 and three right-most sets of bars of each of the graphs
in Figure 6 provide the ablation study analysis. Clearly, SHIKI outperforms its subsets, justifying
the use of confident nodes and applying spatial consideration when generating edges.

6 RELATED WORK

There is a significant body of theoretical work on unsupervised learning for random graph models
where node features are absent, and only relational information is available (Decelle et al., 2011;
Massoulié, 2014; Mossel et al., 2018; 2015; Abbe & Sandon, 2015; Abbe et al., 2015; Bordenave
et al., 2015; Deshpande et al., 2015; Montanari & Sen, 2016; Banks et al., 2016; Abbe & Sandon,
2018; Li et al., 2019; Kloumann et al., 2017; Gaudio et al., 2022). In contrast, for data models that
include both node features and relational information, numerous studies have addressed the semi-
supervised node classification problem, such as (Scarselli et al., 2009; Cheng et al., 2011; Gilbert
et al., 2012; Dang & Viennet, 2012; Günnemann et al., 2013; Yang et al., 2013; Jin et al., 2019;
Mehta et al., 2019; Chien et al., 2022; Yan et al., 2021). These works offer valuable empirical
insights into the benefits of incorporating graph structure. Our study addresses a slightly different
settings, where node features are available, yet relational information is missing.

In Deshpande et al. (2018); Lu & Sen (2020), the authors investigate the fundamental thresholds
for classifying a significant portion of nodes with linear sample complexity and large, but finite, de-
grees. In Fountoulakis et al. (2022), the authors present a theoretical analysis of the graph attention
mechanism (GAT), identifying the conditions under which the attention mechanism is effective (or
not) for node classification tasks. Our research, however, focuses on graph convolutions rather than
attention-based methods. While several studies examine the expressive power, extrapolation, and
the oversmoothing phenomenon in GNNs (see, e.g., Balcilar et al. (2021); Xu et al. (2021); Oono &
Suzuki (2020); Li et al. (2018)), we aim to compare the strengths and limitations of graph convolu-
tions with those of traditional MLPs when both do not leverage built-in relational information.

In Li et al. (2024); Chen et al. (2023), the authors also utilize artificial edges using standard k-
nearest-neighbors procedure in their node-classification process. However, their setting still requires
an existing built-in graph, while we focus on constructing the graph.

7 CONCLUSION AND OPEN QUESTIONS

In this work, we defined the challenge of effectively constructing edges within a dataset for improved
training using GNNs and introduced a novel method to tackle this task. We formally shown and em-
pirically demonstrated how graph convolutions could improve expected performance by leveraging
these created edges. The results were empirically confirmed through extensive experiments on both
synthetic and real-world datasets, including those involving the entity matching problem and text
prediction.

Our analysis is limited to the SHIKI heuristic. Other heuristics will require a new analysis. Fur-
thermore, we did not solve or claimed to solve the optimality problem (Problem 2). Thus, in future
work we intend to investigate effective solutions to this problem by either finding the optimal graph,
or showing a way to optimize the task directly.

Finally, our analysis is limited to graph convolution. A possible future direction is to test whether
our theoretical insights also apply to graph attention networks (GAT).
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Laurent Massoulié. Community detection thresholds and the weak ramanujan property. In Proceed-
ings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, pp. 694–703, 2014.

N. Mehta, C. L. Duke, and P. Rai. Stochastic blockmodels meet graph neural networks. In Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97, pp. 4466–4474,
2019.

A. Montanari and S. Sen. Semidefinite programs on sparse random graphs and their application to
community detection. In Proceedings of the forty-eighth annual ACM Symposium on Theory of
Computing, pp. 814–827, 2016.

E. Mossel, J. Neeman, and A. Sly. Consistency thresholds for the planted bisection model. In
Proceedings of the forty-seventh annual ACM Symposium on Theory of computing, pp. 69–75,
2015.

E. Mossel, J. Neeman, and A. Sly. A proof of the block model threshold conjecture. Combinatorica,
38(3):665–708, 2018.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations, 2020.

D. B. Owen. A table of normal integrals. Communications in Statistics-Simulation and Computation,
9(4):389–419, 1980.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
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A CALCULATIONS FOR THE MAIN RESULTS

A.1 ASSUMPTIONS AND NOTATION

Assumption 1. We use similar assumptions and notation as in (Baranwal et al., 2022). For all the
variations of the XOR-GMM data model variations, the means of the Gaussian mixture are such
that ⟨µ, ν⟩ = 0 and ∥µ∥2= ∥ν∥2.

We denote [x]+ = RELU(x) and φ(x) = sigmoid(x) = 1
1+e−x , applied element-wise on the

inputs. For any vector v, v̂ = v
∥v∥2

denotes the normalized v. We use γ = ∥µ − ν∥2 to denote the
distance between the means of the inter-class components of the mixture model, and γ′ to denote
the norm of the means, γ′ = γ√

2
= ∥µ∥2= ∥ν∥2.

We present the calculations for the algorithm’s version with the threshold τ , noting the case with the
top percentile is more complicated, and serves no additional purpose.

A.2 DATA DIFFICULTY

A.2.1 PERFECT CLASSIFIER

Assuming γ′ = Ω(σ(log n)
1
2+ϵ), then, according to Baranwal et al. (2022), both MLP and GNN

perfectly classifies the data w.h.p. Thus, rendering this scenario not interesting since our model
won’t be able to improve the loss and performance of an MLP.

A.2.2 PARTIALLY RIGHT

In order for our method to succeed in improving the performance, we need the MLP to be wrong a
meaningful percentage of the times. Thus, we would look at the case where γ′ = Ω(Kσ). In this

case, the MLP is bound to make mistakes. And for the GNN we have Ω

(
σ
√
logn

4
√
n(p+ q)

)
≤ Ω(σK)

when p, q = Ω( log
2 n
n ). Thus, the GNN is expected to classify the data well. Meaning, we are most

likely to improve in this area.

A.3 MLP LOSS

First, let’s exactly calculate the expected MLP loss.
Define zi = |⟨xi, µ̂⟩|−|⟨xi, ν̂⟩|, the expected MLP loss will be:

E(LMLP ) =
∫∞
−∞ p(z = t)L(t)dt

We also have:

E(LMLP |x ∼ |µ|) =
∫∞
−∞ p(z = t|x ∼ |µ|)L(t|x ∼ |µ|)dt

Notice that when (z|x ∼ |µ|) > 0, we are right in our prediction, subsequently, the loss approaches
0, thus we will ignore this case. Also, note that for (z|x ∼ |µ|) < 0, since we use the cross-entropy
loss, we have L(z|x ∼ |µ|) = ln(1 + e−z) ≈ −z.
Finally, due to symmetry we have:

E(LMLP ) = E(LMLP |x ∼ |µ|) ≈
∫ 0

−∞ p(z = t|x ∼ |µ|) · (−t)dt

We will need some more auxiliary calculations to help us in the way.

A.4 LEMMAS

Here we prove some basic lemmas to help us calculate the loss.
Let’s define A = −γ′

σ , B = t
σ , C = A−B = −γ′

σ − t
σ , C

′ = −A−B = γ′

σ − t
σ , b

′ = max(−B, 0).
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Lemma 1.

P (zi = t|zi ∼ |µ|) =
√
2ϕ(

−γ′

σ
√
2
− t

σ
√
2
)Φ(

−γ′

σ
√
2
+

t

σ
√
2
)+

√
2ϕ(

γ′

σ
√
2
− t

σ

√
2)Φ(

γ′

σ
√
2
+

t

σ
√
2
)

Proof. First notice Xi = µ + σgi. In order to exactly calculate the probability, we will separate it
to the cases ⟨Xi, µ⟩ ≥ 0 and when ⟨Xi, µ⟩ < 0.

P (zi = t|zi ∼ |µ|) = P (|⟨Xi, µ⟩|−|⟨Xi, ν⟩|= t) = P (|γ′ + σ⟨gi, µ̂i⟩|−σ|⟨gi, ν̂i⟩|= t) =

P (γ′ + σ⟨gi, µ̂i⟩ − σ|⟨gi, ν̂i⟩|= t)P (⟨gi, µ̂i⟩ ≥ −γ′

σ ) + P (−γ′ − σ⟨gi, µ̂i⟩ − σ|⟨gi, ν̂i⟩|=
t)P (⟨gi, µ̂i⟩ ≤ −γ′

σ ) =

P (γ
′−t
σ = |⟨gi, ν̂⟩|−⟨gi, µ̂⟩)P (−⟨gi, µ̂i⟩ ≤ γ′

σ ) + P (−γ′−t
σ = |⟨gi, ν̂⟩|+⟨gi, µ̂⟩)P (⟨gi, µ̂i⟩ ≤ −γ′

σ )

This expression contains 2 sub-expressions within it. We will calculate the first half, and the second
half will be very similar.
We now define random variables Z1 = ⟨gi, ν̂⟩ and Z2 = ⟨gi, µ̂⟩ and note that Z1, Z2 ∼ N(0, 1) and
E[Z1Z2] = 0. We have:

P (γ
′−t
σ = |⟨gi, ν̂⟩|−⟨gi, µ̂⟩|⟨gi, µ̂⟩ ≥ −γ′

σ ) = P (|Z1|−Z2 = A−B|Z2 ≥ −A) = 2P (Z1 − Z2 =

A−B,Z1 ≥ 0|Z2 ≥ −A) = 2
∫∞
b′

ϕ(w)P (−Z2 = A−B − w|−Z2 ≤ A)dw =

2
∫∞
b′

ϕ(w)P (−Z2=C−w)
P (Z2≤A) dw = 2

P (Z2≤A)

∫∞
b′

ϕ(w)P (Z2 = C − w) =

2
P (Z2≤A)

∫ −b′

−∞ ϕ(w)ϕ(C + w)dw =

√
2ϕ( C√

2
)

Φ(A) Φ(−
√
2b′ + C√

2
)

Where b′ = max(−B, 0).
Second to last equality is change of parameters, last equality, to evaluate the integral above, we used
Owen (1980), Table 1:110.
Similarly for the second expression:

P (−γ′−t
σ = |⟨gi, ν̂⟩|+⟨gi, µ̂⟩|⟨gi, µ̂⟩ ≤ −γ′

σ ) = P (|Z1|+Z2 = −A−B|Z2 ≤ −A) =

P (|Z1|−(−Z2) = A′ −B|−Z2 ≥ −A′) =

√
2ϕ( C′

√
2
)

Φ(A′) Φ(−
√
2b′ + C′

√
2
) =

√
2ϕ( C′

√
2
)

Φ(−A) Φ(−
√
2b′ + C′

√
2
)

Summing those two expression, we get:

p(zi = t|zi ∼ |µ|) = P (γ
′−t
σ = |⟨gi, ν̂⟩|−⟨gi, µ̂⟩)P (−⟨gi, µ̂i⟩ ≤ γ′

σ ) + P (−γ′−t
σ =

|⟨gi, ν̂⟩|+⟨gi, µ̂⟩)P (⟨gi, µ̂i⟩ ≤ −γ′

σ ) =
√
2ϕ( C√

2
)

Φ(A) Φ(−
√
2b′ + C√

2
) · Φ(A) +

√
2ϕ( C′

√
2
)

Φ(−A) Φ(−
√
2b′ + C′

√
2
) · Φ(−A) =

√
2ϕ( C√

2
)Φ(−

√
2b′ + C√

2
) +

√
2ϕ( C′

√
2
)Φ(−

√
2b′ + C′

√
2
) =

√
2ϕ(

−γ′
σ − t

σ√
2

)Φ( t
σ

√
2 +

−γ′
σ − t

σ√
2

) +
√
2ϕ(

γ′
σ − t

σ√
2

)Φ( t
σ

√
2 +

γ′
σ − t

σ√
2

) =
√
2ϕ( −γ′

σ
√
2
− t

σ
√
2
)Φ( −γ′

σ
√
2
+ t

σ
√
2
) +

√
2ϕ( γ′

σ
√
2
− t

σ

√
2)Φ( γ′

σ
√
2
+ t

σ
√
2
)

To give some intuition to how this expression behaves, we will plot it as a function of t, where
γ′ = σ = 1:

Lemma 2. For t ≥ 0:
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Figure 7: Lemma 1’s expression, we can observe that when t < 0 or when t is pretty big, this ex-
pression approaches 0, suggesting the most likely case is for the expression to be somewhat positive

P (zi > t|zi ∼ |µ|) = Φ(A−B√
2
)2 +Φ(−A−B√

2
)2

For t < 0:

P (zi > t|zi ∼ |µ|) ≈
2Φ(−B)− 1− 2( 12 − Φ(B))(Φ(A−B) + Φ(−A−B)) + Φ(A−B√

2
)2 +Φ(−A−B√

2
)2

Proof. We will start the proof for both cases similarly to A.4, using the same notations:

P (z > t|z ∼ |µ|) = P (|γ′ + σ⟨gi, µ̂i⟩|≥ σ|⟨gi, ν̂i⟩|+t) = P (γ′ + σ⟨gi, µ̂i⟩ ≥
σ|⟨gi, ν̂i⟩+ t||⟨gi, µ̂i⟩ > −γ′

σ )P (⟨gi, µ̂i⟩ > −γ′

σ )) + P (−γ′ − σ⟨gi, µ̂i⟩ ≥ σ|⟨gi, ν̂i⟩|+t|⟨gi, µ̂i⟩ <
−γ′

σ )P (⟨gi, µ̂i⟩ < −γ′

σ )) = P (γ′ − t ≥ σ|⟨gi, ν̂i⟩|−σ⟨gi, µ̂i⟩|⟨gi, µ̂i⟩ > −γ′

σ )P (⟨gi, µ̂i⟩ >
−γ′

σ )) + P (−γ′ − t ≥ σ|⟨gi, ν̂i⟩|+σ⟨gi, µ̂i⟩|⟨gi, µ̂i⟩ < −γ′

σ )P (⟨gi, µ̂i⟩ < −γ′

σ ))

We will now separate the calculations depending on the sign of t.
For t ≥ 0, again separating the expression, we get:

P (|Z1|−Z2 ≤ A−B|Z2 ≥ −A) = 2P (Z1 − Z2 ≤ A−B|Z2 ≥ −A) = 2
∫∞
0

ϕ(w)P (−Z2 ≤
A−B−w|Z2 ≥ −A)dw = 2

∫∞
0

ϕ(w)P (−Z2≤A−B−w)
P (−Z2≤A) dw = 2

Φ(A)

∫∞
0

ϕ(w)Φ(A−B−w)dw =

2
Φ(A)

∫ 0

−∞ ϕ(w)Φ(A−B + w)dw = 2
Φ(A) ·

Φ(A−B√
2

)2

2 =
Φ(A−B√

2
)2

Φ(A)

Where we evaluate the integral using Owen (1980) Table 1:10,010.7. For the second sub-expression
a very similar calculation can be done. Combining both expressions we get:

P (z > τ |z ∼ |µ|) = Φ(A) ·
Φ(A−B√

2
)2

Φ(A) +Φ(−A) ·
Φ(−A−B√

2
)2

Φ(−A) = Φ(A−B√
2
)2 +Φ(−A−B√

2
)2

For t < 0, separating the expression, we get:

P (|Z1|−Z2 ≤ A−B|Z2 ≥ −A) = 2P (Z1 − Z2 ≤ A−B|Z2 ≥ −A) = 2
∫∞
0

ϕ(w)P (−Z2 ≤
A−B − w|Z2 ≥ −A)dw = 2

∫ −B

0
ϕ(w)P (−Z2 ≤ A−B − w|Z2 ≥ −A)dw +

2
∫∞
−B

ϕ(w)P (−Z2 ≤ A−B − w|Z2 ≥ −A)dw = 2
∫ −B

0
ϕ(w)1dw + 2

∫∞
−B

ϕ(w)P (−Z2 ≤
A−B − w|Z2 ≥ −A) = 2

(
(Φ(−B)− 1

2 ) +
1

Φ(A)

∫ B

−∞ ϕ(w)Φ(A−B + w)dw
)

where we changed the probability to 1 because:

P (−Z2 ≤ A−B − w|Z2 ≥ −A) = P (−Z2 ≤ A+ (−B)− w|−Z2 ≤ A)
0 < w < −B → B < −w < 0 → 0 < −B − w < −B → A < A+ (−B)− w < A−B →

(−Z2 ≤ A → −Z2 ≤ A+ (−B)− w)
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Unfortunately, we can’t directly evaluate this integral, since as seen in Owen (1980) Table
1:10,010.4, this expression doesn’t have a closed form, so we will result to approximate it.

2
(
(Φ(−B)− 1

2 ) +
1

Φ(A)

∫ B

−∞ ϕ(w)Φ(A−B + w)dw
)
=

2
(
(Φ(−B)− 1

2 ) +
1

Φ(A)

(∫ 0

−∞ ϕ(z)Φ(A−B + w)dw −
∫ 0

B
ϕ(w)Φ(A−B + w)dw

))
≈

2
(
(Φ(−B)− 1

2 ) +
1

Φ(A)

(∫ 0

−∞ ϕ(w)Φ(A−B + w)dw −
∫ 0

B
ϕ(w)Φ(A−B)dw

))
=

2
(
(Φ(−B)− 1

2 ) +
1

Φ(A)

(
1
2Φ(

A−B√
2
)2 − Φ(A−B)(Φ(0)− Φ(B))

))
=

2
(
(Φ(−B)− 1

2 ) +
1

Φ(A)

(
1
2Φ(

A−B√
2
)2 − Φ(A−B)( 12 − Φ(B))

))
And the full expression:

P (z > τ |z ∼ |µ|) = 2
(
(Φ(−B)− 1

2 ) +
1

Φ(A)

(
1
2Φ(

A−B√
2
)2 − Φ(A−B)( 12 − Φ(B))

))
·

Φ(A) + 2
(
(Φ(−B)− 1

2 ) +
1

Φ(−A)

(
1
2Φ(

−A−B√
2

)2 − Φ(−A−B)( 12 − Φ(B))
))

· Φ(−A) =

2
(
Φ(A)(Φ(−B)− 1

2 ) +
(

1
2Φ(

A−B√
2
)2 − Φ(A−B)( 12 − Φ(B))

))
+

2
(
Φ(−A)(Φ(−B)− 1

2 ) +
(

1
2Φ(

−A−B√
2

)2 − Φ(−A−B)( 12 − Φ(B))
))

=

2Φ(−B)− 1− 2( 12 − Φ(B))(Φ(A−B) + Φ(−A−B)) + Φ(A−B√
2
)2 +Φ(−A−B√

2
)2

To give some intuition to how this expressions behaves, we will plot them as a function of t, where
γ′ = σ = 1.

Figure 8: Lemma 2’s expression as a combination of the two expressions in the respected cases. We
can observe that generally speaking, this function is monotonically decreasing.

Lemma 3.

βτ = P (confident) ≈ 2Φ(
A−B√

2
) + 2Φ(

−A−B√
2

)− 2Φ(B)+

2(
1

2
− Φ(−B))(Φ(A+B) + Φ(−A+B))

Proof. We will first do some intermediate calculations.
In Lemma 2 we calculated P (z > τ |z ∼ |µ|), now note:

P (z > τ |z ∼ |ν|) = P (z < −τ |z ∼ |µ|) = 1− P (z > −τ |z ∼ |µ|)

Now we will also calculate, P (z > τ):

P (z > τ) = P (z > τ |z ∼ |µ|)P (z ∼ |µ|) + P (z > τ |z ∼ |ν|)P (z ∼ |ν|) = 1
2

(
P (z > τ |z ∼

|µ|) + P (z > τ |z ∼ |ν|)
)

= 1
2

(
P (z > τ |z ∼ |µ|) + 1− P (z > −τ |z ∼ |µ|)

)
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And now we can calculate βτ using above expressions.

βτ = P (|z|> τ) = P (z > τ) + P (z < −τ) = P (z > τ) + (1− P (z > −τ)) =

1

2
[P (z > τ |z ∼ |µ|) + 1− P (z > −τ |z ∼ |µ|)]+

1−
(
1

2
[P (z > −τ |z ∼ |µ|) + 1− P (z > τ |z ∼ |µ|)]

)
=

1 + P (z > τ |z ∼ |µ|)− P (z > −τ |z ∼ |µ|) ≈

1 +

(
Φ(

A−B√
2

)2 +Φ(
−A−B√

2
)2−(

2Φ(B)− 1− 2(
1

2
−Φ(−B))(Φ(A+B) + Φ(−A+B)) + Φ(

A+B√
2

)2 +Φ(
−A+B√

2
)2
))

=

1 +

(
Φ(

A−B√
2

)2 +Φ(
−A−B√

2
)2 − 2Φ(B) + 1+

2(
1

2
− Φ(−B))(Φ(A+B) + Φ(−A+B))− Φ(

A+B√
2

)2 − Φ(
−A+B√

2
)2
)

=

2 +

(
Φ(

A−B√
2

)2 − Φ(
A+B√

2
)2 +Φ(

−A−B√
2

)2−

Φ(
−A+B√

2
)2 − 2Φ(B) + 2(

1

2
− Φ(−B))(Φ(A+B) + Φ(−A+B))

)
=

2+

(
2Φ(

A−B√
2

)−1+2Φ(
−A−B√

2
)−1−2Φ(B)+2(

1

2
−Φ(−B))(Φ(A+B)+Φ(−A+B))

)
=

2Φ(
A−B√

2
) + 2Φ(

−A−B√
2

)− 2Φ(B) + 2(
1

2
− Φ(−B))(Φ(A+B) + Φ(−A+B))

To give some intuition to how this expression behaves, we will plot it as a function of t, where
γ′ = σ = 1.

Figure 9: Lemma 3’s expression where τ ≥ 0. We can observe that generally speaking, this function
is monotonically decreasing, and its maximum value is 1 when τ = 0.

Lemma 4. ατ = P (right classification|confident) ≈
Φ( γ′

σ
√

2
− τ

σ
√

2
)2+Φ(− γ′

σ
√

2
− τ

σ
√

2
)2

2Φ(
γ′
σ

− τ
σ√

2
)+2Φ(

− γ′
σ

− τ
σ√

2
)−2Φ( τ

σ )+2( 1
2−Φ(− τ

σ ))(Φ( γ′
σ + τ

σ )+Φ(− γ′
σ + τ

σ ))

Proof. Notice that
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ατ = P (right classification|confident) = P (right classification||z|> τ) =
P (|z|>τ |right classification)P (right classification)

P (|z|>τ) =
P (|z|>τ |right classification,z∼|µ|)P (right classification|z∼|µ|)

βτ
= P (z>τ |z>0,z∼|µ|)P (z>0|z∼|µ|)

βτ
=

P (z>τ,z>0|z∼|µ|)
P (z>0|z∼|µ|) P (z>0|z∼|µ|)

βτ
= P (z>τ |z∼|µ|)

βτ

Where we switch to z ∼ |µ| due to symmetry, and right classification knowing this implies z > 0.
But from Lemma 3 we have:

βτ ≈ 2Φ(
γ′
σ − τ

σ√
2

) + 2Φ(
− γ′

σ − τ
σ√

2
)− 2Φ( τσ ) + 2( 12 − Φ(− τ

σ ))(Φ(
γ′

σ + τ
σ ) + Φ(−γ′

σ + τ
σ ))

P (z > τ |z ∼ |µ|) = Φ( γ′

σ
√
2
− τ

σ
√
2
)2 +Φ(− γ′

σ
√
2
− τ

σ
√
2
)2

And dividing these two expression completes the proof.

Lemma 5. Given we choose p, q as in Baranwal et al. (2022), we do the edge creation process with
the predicted labels instead of the real labels. Thus, we want to calculate the real rp, rq that are
actually being used.

rp = P (edge between two inputs of the same class) = P (edge|inputs of the same class) =
P (edge|yi = yj) = P (ŷi = ŷi|yi = yj) ∗ P (edge|ŷi = ŷj) + P (ŷi ̸= ŷj |yi = yj) ∗ P (edge|ŷi ̸=

ŷi) = p(ατ
2 + (1− ατ )

2) + q(2ατ (1− ατ ))

Proof. Now we calculate P (ŷi = ŷi|yi = yj) and P (ŷi ̸= ŷi|yi = yj). First:

P (ŷi = ŷi|yi = yj) = ατ
2 + (1− ατ )

2

P (ŷi ̸= ŷi|yi = yj) = 2ατ (1− ατ )

Similarly,

rq = P (edge between two inputs of different class) =
P (edge|inputs of different class) = P (edge|yi ̸= yj) = P (ŷi = ŷi|yi ̸= yj) ∗ P (edge|ŷi =

ŷj) + P (ŷi ̸= ŷj |yi ̸= yj) ∗ P (edge|ŷi ̸= ŷi) = q(ατ
2 + (1− ατ )

2) + p(2ατ (1− ατ ))

Now let’s see how they are integrated with the GNN loss.

rp = p(ατ
2 + (1− ατ )

2) + q(2ατ (1− ατ )), rq = q(ατ
2 + (1− ατ )

2) + p(2ατ (1− ατ ))
rp− rq = (p− q)

(
ατ

2 + (1− ατ )
2 − 2ατ (1− ατ )

)
= (p− q)

(
4ατ

2 − 4ατ + 1
)
=

(p− q) (2ατ − 1)
2

rp+ rq = p+ q
rp−rq
rp+rq = p−q

p+q (2ατ − 1)2

A.5 LOSSES

Having calculated all the lemmas, we are finally ready to calculate the losses.

Theorem (Restatement of part one of Theorem 1). The expected MLP loss is:

EX(LMLP ) ≈ 2
√
2σ2ϕ(

γ′
√
2σ

)− 2σ2ϕ(
γ′

σ
)

Proof. Recall that we have:
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Figure 10: The expression in Lemma 5 as a function of ατ , for p = 0.8, q = 0.2. The Black line
is the expression with the original p, q, The Blue line is the expression with the real p, q. As we
can see, as we get farther from ατ = 0.5 (meaning we are more confident), the real expression gets
closer to the original expression.

E(LMLP ) ≈ −
∫ 0

−∞ t · p(z = t|z ∼ |µ|)dt
P (z = t|z ∼ |µ|) =

√
2ϕ( −γ′

σ
√
2
− t

σ
√
2
)Φ( −γ′

σ
√
2
+ t

σ
√
2
) +

√
2ϕ( γ′

σ
√
2
− t

σ

√
2)Φ( γ′

σ
√
2
+ t

σ
√
2
)

Let’s define:

P.5(t, γ
′) ≡

√
2ϕ( −γ′

σ
√
2
− t

σ
√
2
)Φ( −γ′

σ
√
2
+ t

σ
√
2
)

In order to evaluate the integral we will calculate:

−
∫ 0

−∞ tP.5(t, γ
′) + tP.5(t,−γ′)dt =

∫ 0

−∞ −tP.5(t, γ
′) +

∫ 0

−∞ −tP.5(t,−γ′)

Let’s calculate:

−tP.5(t, γ
′) = −

√
2tϕ( −γ′

σ
√
2
− t

σ
√
2
)Φ( −γ′

σ
√
2
+ t

σ
√
2
) = 2σ ·

(
−γ′
σ − t

σ√
2

)
ϕ( −γ′

σ
√
2
− t

σ
√
2
)Φ( −γ′

σ
√
2
+

t
σ
√
2
) +

√
2γ′ϕ( −γ′

σ
√
2
− t

σ
√
2
)Φ( −γ′

σ
√
2
+ t

σ
√
2
) ≡ 2σP.5,1(t, γ

′) +
√
2γ′P.5,2(t, γ

′)

We’ll calculate each expression separately. In order to calculate the first part, we’ll make the follow-
ing change of parameters:

u1
t =

−γ′
σ − t

σ√
2

, u2
t =

γ′
σ − t

σ√
2

α2 = α1 = −1

β1 = −β2 = −2γ′

σ
√
2

Then we can integrate it with Owen (1980) Table 1:10,011.1.

∫
P.5,1(γ

′, t)dt =
∫ ( −γ′

σ − t
σ√

2

)
ϕ(

−γ′
σ − t

σ√
2

)Φ(
√
2 t
σ +

−γ′
σ − t

σ√
2

)dt = −σ
√
2
∫
u1
tϕ(u

1
t )Φ(β1 +

α1u
1
t )du = −σ

√
2
(

α1

s ϕ(β1

s )Φ(u1
t s+

α1β1

s )− ϕ(u1
t )Φ(β1 + α1u

1
t

)
, s =

√
1 + α1

2 =
√
2

For the same reasons as before, we can’t exactly calculate the second part, so let’s approximate it:

∫ l

−∞ P.5,2(γ
′, t)dt ≡

∫ l

−∞ ϕ(
−γ′
σ − t

σ√
2

)Φ(
√
2 t
σ +

−γ′
σ − t

σ√
2

)dt ≈∫ l

−∞ ϕ(
−γ′
σ − t

σ√
2

)Φ(
√
2 l
σ +

−γ′
σ − l

σ√
2

)dt = Φ(
√
2 l
σ +

−γ′
σ − l

σ√
2

) ·
∫ l

−∞ ϕ(
−γ′
σ − t

σ√
2

) =

Φ(
√
2 l
σ +

−γ′
σ − l

σ√
2

) · −1
σ
√
2

(
Φ(

−γ′
σ − t

σ√
2

)

∣∣∣∣l
−∞

)
= Φ(

√
2 l
σ +

−γ′
σ − l

σ√
2

) · −σ
√
2

(
Φ(

−γ′
σ − l

σ√
2

)− 1

)
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Combining these two expressions, and the expressions from P.5,1(t,−γ′) and P.5,2(t,−γ′), we get:

∫ l

−∞ L(t)P (z = t) ≈
∫ l

−∞ −tp(t) ≈
∫ l

−∞ −t(p.5(γ
′, t) + p.5(−γ′, t)) =∫ l

−∞ 2σp.5,1(γ
′, t) +

√
2γ′p.5,2(γ

′, t) + 2σp.5,1(−γ′, t) +−
√
2γ′p.5,2(−γ′, t) =

2σ
∫ l

−∞ p.5,1(γ
′, t) +

√
2γ′ ∫ l

−∞ p.5,2(γ
′, t) + 2σ

∫ l

−∞ p.5,1(−γ′, t) +−
√
2γ′

Applying the integral boundaries
Having calculated the general form for every upper limit l, let’s calculate the MLP loss.
For the MLP loss, the boundaries are 0,−∞ . The second expressions:

√
2γ′ ∫ 0

−∞ P.5,2(γ
′, t) = −2σγ′Φ(− γ′

σ
√
2
)(Φ(− γ′

σ
√
2
)− 1)

−
√
2γ′ ∫ 0

−∞ P.5,2(−γ′, t) = −2σγ′Φ( γ′

σ
√
2
)(Φ( γ′

σ
√
2
)− 1)

Calculating the first expression, for P.5,1(γ
′, t) we have:

2σ
∫ l

−∞ P.5,1(γ
′, t) = −2

√
2σ2

(
α1

s ϕ(β1

s )Φ(u1
t s+

α1β1

s )− ϕ(u1
t )Φ(β1 + α1u

1
t

) ∣∣∣∣0
−∞

, s =√
1 + α2

1

−2
√
2σ2

(
α1

s ϕ(β1

s )Φ(u1
t s+

α1β1

s )− ϕ(u1
t )Φ(β1 + α1u

1
t

) ∣∣∣∣0
−∞

= −2
√
2σ2

(
α1

s ϕ(β1

s )Φ( −γ′

σ
√
2
t+

α1β1

s )− ϕ( −γ′

σ
√
2
)Φ(β1 + α1

−γ′

σ
√
2
)−

(
α1

s ϕ(β1

s )Φ(∞s+ α1β1

s )− ϕ(∞)Φ(β1 + α1∞)
))

=

−2
√
2σ2

(
α1

s ϕ(β1

s )Φ( −γ′

σ
√
2
t+ α1β1

s )− ϕ( −γ′

σ
√
2
)Φ(β1 + α1

−γ′

σ
√
2
)− α1

s ϕ(β1

s )

)

and similarly for P.5,1(−γ′, t):

2σ
∫ l

−∞ P.5,1(−γ′, t) = −2
√
2σ2

(
α2

s ϕ(β2

s )Φ(u2
t s+

α2β2

s )− ϕ(u2
t )Φ(β2 + α2u

2
t

) ∣∣∣∣0
−∞

, s =√
1 + α2

2

−2
√
2σ2

(
α2

s ϕ(β2

s )Φ(u2
t s+

α2β2

s )− ϕ(u2
t )Φ(β2 + α2u

2
t

) ∣∣∣∣0
−∞

= −2
√
2σ2

(
α2

s ϕ(β2

s )Φ( γ′

σ
√
2
t+

α2β2

s )− ϕ( γ′

σ
√
2
)Φ(β2 + α2

γ′

σ
√
2
)−

(
α2

s ϕ(β2

s )Φ(∞s+ α2β2

s )− ϕ(∞)Φ(β2 + α2∞)
))

=

−2
√
2σ2

(
α2

s ϕ(β2

s )Φ( γ′

σ
√
2
t+ α2β2

s )− ϕ( γ′

σ
√
2
)Φ(β2 + α2

γ′

σ
√
2
)− α2

s ϕ(β2

s )

)

Adding all of these four expressions, notice that P.5,2(t, γ
′) and P.5,2(t,−γ′) sum up to 0. And

P.5,1(t, γ
′) and P.5,1(t,−γ′) sum up to:

2
√
2σ2

(
α1

t ϕ(β1

t ) + ϕ( γ′
√
2σ

)
)
= 2

√
2σ2ϕ( γ′

√
2σ

)− 2σ2ϕ(γ
′

σ )

Theorem (Restatement of part two of Theorem 1). The expected SHIKI loss is:
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EX(LSHIKI) ≈
(
2Φ(

γ′
σ − τ

σ√
2

)+2Φ(
− γ′

σ − τ
σ√

2
)−2Φ( τσ )+2( 12−Φ(− τ

σ ))(Φ(
γ′

σ + τ
σ )+Φ(−γ′

σ + τ
σ ))

)
·

exp

(
−p−q

p+q
2γ′2

σ (2
Φ( γ′

σ
√

2
− τ

σ
√

2
)2+Φ(− γ′

σ
√

2
− τ

σ
√

2
)2

2Φ(
γ′
σ

− τ
σ√

2
)+2Φ(

− γ′
σ

− τ
σ√

2
)−2Φ( τ

σ )+2( 1
2−Φ(− τ

σ ))(Φ( γ′
σ + τ

σ )+Φ(− γ′
σ + τ

σ ))

− 1)2
)
+(

2σ2ϕ(γ
′

σ )(2(1− Φ( τσ ))− 1) + 2
√
2σ2

(
ϕ( γ′

√
2σ

)− ϕ(−γ′+τ√
2σ

)Φ(−γ′−τ√
2σ

)− ϕ(γ
′+τ√
2σ

)Φ(γ
′−τ√
2σ

)
))

Proof.
EX(LSHIKI) = EX(LSHIKI |x ∼ |µ|) = P (confident|x ∼ |µ|) · EX(LGNN |confident, x ∼

|µ|) + P (not confident|x ∼ |µ|) · EX(LMLP |not confident, x ∼ |µ|) =
EX(LGNN ||x|> τ, x ∼ |µ|)P (|x|> τ |x ∼ |µ|) + EX(LMLP ||x|< τ, x ∼ |µ|)P (|x|< τ |x ∼

|µ|) <
EX(LGNN )P (|x|> τ, x ∼ |µ|) + EX(LMLP ||x|< τ, x ∼ |µ|)P (|x|< τ, x ∼ |µ|)

We will separate the calculation of our loss for the GNN part and for the MLP part.
First the MLP part.
Say we want to calculate EX(LMLP ||x|< τ, x ∼ |µ|):

EX(LMLP ||x|< τ, x ∼ |µ|) =
∫ τ

−τ
P (x||x|< τ, x ∼ |µ|)L(x|x ∼ |µ|)dx =∫ τ

−τ
P (x|,x∼|µ|)

P (|x|<τ,x∼|µ|)L(x)dx = 1
P (|x|<τ |x∼|µ|) ·

∫ τ

−τ
P (x|x ∼ |µ|)L(x|x ∼ |µ|)dx

↓
EX(LMLP ||x|< τ, x ∼ |µ|)P (|x|< τ |x ∼ |µ|) =

∫ τ

−τ
P (x|x ∼ |µ|)L(x|x ∼ |µ|)dx

Similarly to the case with the regular MLP loss, we we’ll ignore the case when we are right. The
integral boundaries will become 0 and −τ .

Applying the integral boundaries for the MLP part

We’ll calculate P0.5,1(t, γ
′) and P0.5,1(t,−γ′) with the boundaries −τ and −∞ in the same way as

before.

−2
√
2σ2

(
α1

s ϕ(β1

s )Φ(u1
xs+

α1β1

s )− ϕ(u1
x)Φ(β1 + α1u

1
x

) ∣∣∣∣−τ

−∞
=

−2
√
2σ2

(
α1

s ϕ(β1

s )Φ(−γ′+τ

σ
√
2
s+ α1β1

s )− ϕ(−γ′+τ

σ
√
2
)Φ(β1 + α1

−γ′+τ

σ
√
2
)−(

Φ(∞s+ α1β1

s )− ϕ(∞)Φ(β1 + α1∞)
))

=

−2
√
2σ2

(
α1

s ϕ(β1

s )Φ(−γ′+τ

σ
√
2
s+ α1β1

s )− ϕ(−γ′+τ

σ
√
2
)Φ(β1 + α1

−γ′+τ

σ
√
2
)− α1

s ϕ(β1

s )

)

−2
√
2σ2

(
α2

s ϕ(β2

s )Φ(u2
xs+

α2β2

s )− ϕ(u2
x)Φ(β2 + α2u

2
x

) ∣∣∣∣−τ

−∞
=

−2
√
2σ2

(
α2

s ϕ(β2

s )Φ(γ
′+τ

σ
√
2
s+ α2β2

s )− ϕ(γ
′+τ

σ
√
2
)Φ(β2 + α2

γ′+τ

σ
√
2
)−(

Φ(∞s+ α2β2

s )− ϕ(∞)Φ(β2 + α2∞)
))

=

−2
√
2σ2

(
α2

s ϕ(β2

s )Φ(γ
′+τ

σ
√
2
s+ α2β2

s )− ϕ(γ
′+τ

σ
√
2
)Φ(β2 + α2

γ′+τ

σ
√
2
)− α2

s ϕ(β2

s )

)

and summing these two expressions we get:
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−2
√
2σ2

[
α1

s ϕ(β1

s )
(
Φ(−γ′+τ√

2σ
s+ α1β1

s ) + Φ(γ
′+τ√
2σ

s+ α2β2

s )
)
− ϕ(−γ′+τ√

2σ
)Φ(β1 + α1

−γ′+τ√
2σ

)−

ϕ(γ
′+τ√
2σ

)Φ(β2 + α2
γ′+τ√

2σ
)− 2α1

s ϕ(β1

s )

]
=

2
√
2σ2

[
α1

s ϕ(β1

s )
(
2−

(
Φ(−γ′+τ√

2σ
s+ α1β1

s ) + Φ(γ
′+τ√
2σ

s+ α2β2

s )
))

+ ϕ(−γ′+τ√
2σ

)Φ(β1 +

α1
−γ′+τ√

2σ
) + ϕ(γ

′+τ√
2σ

)Φ(β2 + α2
γ′+τ√

2σ
)

]
=

2
√
2σ2

[
−1√
2
ϕ(γ

′

σ )
(
2−

(
Φ(−γ′+τ

σ + γ′

σ ) + Φ(γ
′+τ
σ − γ′

σ )
))

+ ϕ(−γ′+τ√
2σ

)Φ(−2γ′

σ
√
2
− −γ′+τ√

2σ
) +

ϕ(γ
′+τ√
2σ

)Φ( 2γ′

σ
√
2
− γ′+τ√

2σ
)

]
=

2
√
2σ2

[
−
√
2ϕ(γ

′

σ )
(
1− Φ( τσ )

)
+ ϕ(−γ′+τ√

2σ
)Φ(−γ′−τ√

2σ
) + ϕ(γ

′+τ√
2σ

)Φ(γ
′−τ√
2σ

)

]
And calculating these as a part of the MLP loss:

−2
√
2σ2

(
α1

s ϕ(β1

s )Φ(u1
xs+

α1β1

s )− ϕ(u1
x)Φ(β1 + α1u

1
x

) ∣∣∣∣0
−τ

=

−2
√
2σ2

(
α1

s ϕ(β1

s )Φ(u1
xs+

α1β1

s )− ϕ(u1
x)Φ(β1 + α1u

1
x

) ∣∣∣∣0
−∞

−

−2
√
2σ2

(
α1

s ϕ(β1

s )Φ(u1
xs+

α1β1

s )− ϕ(u1
x)Φ(β1 + α1u

1
x

) ∣∣∣∣−τ

−∞
= 2

√
2σ2ϕ( γ′

√
2σ

)− 2σ2ϕ(γ
′

σ )−(
2
√
2σ2

[
−
√
2ϕ(γ

′

σ )
(
1− Φ( τσ )

)
+ ϕ(−γ′+τ√

2σ
)Φ(−γ′−τ√

2σ
) + ϕ(γ

′+τ√
2σ

)Φ(γ
′−τ√
2σ

)

])
=

2σ2ϕ(γ
′

σ )(2(1− Φ( τσ ))− 1) + 2
√
2σ2

(
ϕ( γ′

√
2σ

)− ϕ(−γ′+τ√
2σ

)Φ(−γ′−τ√
2σ

)− ϕ(γ
′+τ√
2σ

)Φ(γ
′−τ√
2σ

)
)

Now we’ll calculate P0.5,2(t, γ
′) and P0.5,2(t,−γ′) with the boundaries −τ and −∞ in the same

way as before:

γ′ ∫ −τ

−∞ p.5,2(γ
′, x)dx+−γ′ ∫ −τ

−∞ p.5,2(−γ′, x)dx =

−2σγ′Φ(−
√
2 τ
σ +

−γ′
σ + τ

σ√
2

)

(
Φ(

−γ′
σ + τ

σ√
2

)− 1

)
+ 2σγ′Φ(−

√
2 τ
σ +

γ′
σ + τ

σ√
2

)

(
Φ(

γ′
σ + τ

σ√
2

)− 1

)
=

2σγ′Φ( −γ′
√
2σ

+ −τ√
2
)

(
1− Φ(

−γ′
σ + τ

σ√
2

)

)
− 2σγ′Φ( γ′

√
2σ

+ −τ√
2
)

(
1− Φ(

γ′
σ + τ

σ√
2

)

)
=

2σγ′
(
Φ( −γ′

√
2σ

+ −τ√
2
)Φ( γ′

√
2σ

+ −τ√
2
)− Φ( γ′

√
2σ

+ −τ√
2
)Φ( −γ′

√
2σ

+ −τ√
2
)

)
= 0

We saw earlier that with the integral boundaries of 0 and −∞, we also get 0. So when calculating
with the boundaries of 0 and −τ as it would be in the loss, we will still get 0. And so this final loss
is:

2σ2ϕ(γ
′

σ )(2(1− Φ( τσ ))− 1) + 2
√
2σ2

(
ϕ( γ′

√
2σ

)− ϕ(−γ′+τ√
2σ

)Φ(−γ′−τ√
2σ

)− ϕ(γ
′+τ√
2σ

)Φ(γ
′−τ√
2σ

)
)

Calculating the GNN part
Now let’s calculate the GNN part. Using lemma 5, the GNN loss is:

e−
2γ′2
σ

rp−rq
rp+rq = e−

p−q
p+q

2γ′2
σ (2ατ−1)2

This should be multiplied by βτ . So we finally we get:

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E(LSHIKI) = βτ · exp
(
−p−q

p+q
2γ′2

σ (2ατ − 1)2
)
+

(
2σ2ϕ(γ

′

σ )(2(1− Φ( τσ ))− 1) +

2
√
2σ2

(
ϕ( γ′

√
2σ

)− ϕ(−γ′+τ√
2σ

)Φ(−γ′−τ√
2σ

)− ϕ(γ
′+τ√
2σ

)Φ(γ
′−τ√
2σ

)
))

And the full expression as a function of τ, γ′, σ, p, q:

LGNN =

(
2Φ(

γ′
σ − τ

σ√
2

) + 2Φ(
− γ′

σ − τ
σ√

2
)− 2Φ( τσ ) + 2( 12 − Φ(− τ

σ ))(Φ(
γ′

σ + τ
σ ) + Φ(−γ′

σ + τ
σ ))

)
·

exp

(
−p−q

p+q
2γ′2

σ (2
Φ( γ′

σ
√

2
− τ

σ
√

2
)2+Φ(− γ′

σ
√

2
− τ

σ
√

2
)2

2Φ(
γ′
σ

− τ
σ√

2
)+2Φ(

− γ′
σ

− τ
σ√

2
)−2Φ( τ

σ )+2( 1
2−Φ(− τ

σ ))(Φ( γ′
σ + τ

σ )+Φ(− γ′
σ + τ

σ ))

− 1)2
)
+(

2σ2ϕ(γ
′

σ )(2(1− Φ( τσ ))− 1) + 2
√
2σ2

(
ϕ( γ′

√
2σ

)− ϕ(−γ′+τ√
2σ

)Φ(−γ′−τ√
2σ

)− ϕ(γ
′+τ√
2σ

)Φ(γ
′−τ√
2σ

)
))

To better understand the behavior of these expression we refer the reader to Section 4.5 of the main
part.

B EFFECTIVENESS PROPERTIES OF XOR-GMM VARIATIONS

In this Section we show the effectiveness of GNN against MLP where the data is generated from dif-
ferent XOR-GMM variations, which are meant to model the real world data described in Section 2.
Let Φ(·) denote the cumulative distribution function of a standard Gaussian, and Φc(·) = 1− Φ(·).
In what follows, the full proofs are provided in Appendices C and D.

B.1 SHIFTED CENTERS CASE

We denote the variation described in Section 2 for the Amazon reviews dataset as XOR-GMM -SC.
Similarly to the XOR-CSBM model in Section 2, we can define edges over the XOR-GMM -SC
models, and denote it (A,X) ∼ XOR-CSBM -SC(n, d, µ, ν, σ2, p, q).

B.1.1 BASELINE

The following theorem provides a complete characterization of the decision boundary for the XOR-
GMM-SC data model. This characterization relies on two key factors: the separation between the
means in the mixture model and the dataset size, represented by n. The theorem is divided into
two components. The first component examines the constraints of a perfect classifier regarding its
accuracy. And the third component identifies the area in which the optimal MLP achieves perfect
classification of the data.

Theorem 2. Let X ∈ Rn×d ∼ XOR−GMM − SC(n, d, µ, ν, σ2). Then we have the following:

1. Assume that ∥µ − ν∥2 = Kσ and let h(x) : Rd → {0, 1} be any binary classifier. Then
for any K > 0 and any ϵ ∈ (0, 1), at least a fraction Φc(

K
2 )−O(n−ϵ/2) of all data points

are misclassified by h with probability at least 1− exp(−2n1−ϵ).

2. For any ϵ > 0, if the distance between the means is ||µ− ν||2= Ω(σ(log n)
1
2+ϵ), then for

any c > 0, with probability at least 1 − O(n−c), there exists a two-layer that perfectly
classify the data, and obtain a cross-entropy loss given by

ℓθ(X) = C exp(− R√
2
∥µ− ν∥2(1±

√
c/(log n)ϵ)),

where C ∈ [ 12 , 1] is an absolute constant.
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B.1.2 GRAPH CONVOLUTION IMPROVEMENT

We now present the results that illustrate the impact of graph convolutions in multi-layer networks
with the specified architecture. We quantify the improvement in the classification threshold based
on the separation between the means of the node features.
Theorem 3. Let (A,X) ∼ XOR − CSBM − SC(n, d, µ, ν, σ2, p, q). Then there exists a two-
layer network and a three-layer network with the following properties: If the intra-class and inter-
class edge probabilities are p, q = Ω( log

2 n
n ), and the distance between the means is ||µ − ν||2=

Ω( σ logn√
n(p+q)

), then for any c > 0, with probability at least 1 − O(n−c), the networks equipped

with a graph convolution in the second or the third layer perfectly classify the data, and obtain the
following loss:

ℓθ(A,X) = C ′ exp

(
−R∥|µ− ν∥|2

∣∣∣∣p− q

p+ q

∣∣∣∣ (1±√ c

log n

))
,

where C > 0 and C ′ ∈ [ 12 , 1] are constants.

B.2 IMBALANCED CASE

In this section, we prove some basic results similar to Baranwal et al. (2022) on the effectiveness of
a GNN against an MLP on an imbalanced synthetic model. We take the original model and add only
class imbalance with no shifted centers. This is done to emphasize that while adding imbalance to
the model, it retains the nice results from (Baranwal et al., 2022). We achieve the said imbalance by
setting ϵi = Ber(w1) instead of ϵi = Ber( 12 ) where w1 = Ω(1). This is done in order to give class
1 a smaller chance to get picked (w1 < 1

2 ). We follow the same steps as in Baranwal et al. (2022)
to achieve similar guarantees. We call this variation XOR-GMM -I , and similarly to the XOR-
CSBM model in Section 2, we can define edges over the XOR-GMM -I models, and denote it
(A,X) ∼ XOR-CSBM -I(n, d, µ, ν, σ2, p, q).

To better understand how this model behaves, we show it in Figure 11

Figure 11: Visual illustration of the XOR-GMM -I , with distance of 4, and σ = 1.3.

B.3 BASELINE

The following theorem provides a complete description of the classification boundary for the XOR-
GMM-I data model. This description is based on the distance between the means and the number
of data points, n. The theorem consists of three parts. The first part explores the limitations of
a perfect classifier in terms of its accuracy. The second part explores its limitations in terms of
precision/recall/f-score. And finally, the third and last part establishes the region where the best
MLP perfectly classifies the data.
Theorem 4. Let X ∈ Rn×d ∼ XOR-GMM -I(n, d, µ, ν, σ2). Assume that ∥µ − ν∥2= Kσ, then
we have the following:
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1. Let h(x) : Rd → {0, 1} be any binary classifier. Then, for K > 0,K|µ|,i = K√
2
+

σ2 ln(w0

w1
),K|ν|,i = K√

2
+ σ2 ln(w1

w0
) = K√

2
− σ2 ln(w0

w1
) and any ϵ ∈ (0, 1), at least a

fraction of

w0 ·

{
1− 2Φc(

K|µ|,i√
2

)2 if K|µ|,i ≥ 0

4Φ(
K|µ|,i√

2
)− 2Φ(

K|µ|,i√
2

)2 + 4Φ(K|µ|,i)
2 − 4Φ(K|µ|,i) if K|µ|,i < 0

+

w1 ·

{
1− 2Φc(

K|ν|,i√
2

)2 if K|ν|,i ≥ 0

4Φ(
K|ν|,i√

2
)− 2Φ(

K|ν|,i√
2

)2 + 4Φ(K|ν|,i)
2 − 4Φ(K|ν|,i) if K|ν|,i < 0

−O(n−ϵ/2)

of all data points are misclassified by h with probability of at least 1− exp(−2n1−ϵ).

2. Assume for simplicity’s sake that Ki > 0. Then, we have:

accuracy = P (right classification) = w0 ·

1− 2Φc

(
K

2
+

σ2 ln(w0

w1
)

√
2

)2
+

w1 ·

1− 2Φc

(
K

2
−

σ2 ln(w0

w1
)

√
2

)2
±O(n−ϵ/2)

precision =
w0·
(
1−2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√

2

)2)
±O(n−ϵ/2)

w0·
(
1−2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√

2

)2)
+w1·

(
2Φc

(
K
2 −

σ2 ln(
w0
w1

)
√

2

)2)
±O(n−ϵ/2)

recall = 1− 2Φc

(
K

2
+

σ2 ln(w0

w1
)

√
2

)2

±O(n−ϵ/2)

f -score =

2w0·
(
1−2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√

2

)2)2

±O(n−ϵ/2)

2w0·
(
1−2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√

2

)2)2

+w1

(
1−2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√

2

)2)(
2Φc

(
K
2 −

σ2 ln(
w0
w1

)
√

2

)2)
±O(n−ϵ/2)

3. For any ϵ > 0, if the distance between the means is

||µ− ν||2= Ω(max(σ(log n)
1
2+ϵ, σ2|logit(w0)|)

then for any c > 0, with probability of at least 1−O(n−c), there exists a two-layer network
that perfectly classifies the data, obtaining a cross-entropy loss given by

ℓθ(X) = C exp(− R√
2
∥µ− ν∥2(1±

√
c/(log n)ϵ)),

where C ∈ [ 12 , 1] is an absolute constant and R is the optimality constraint from.

Aside from the basic theorems we prove, we also explicitly show the accuracy/precision/recall/f-
score. For any other synthetic model, one can simply show the misclassification rate. However, in
our case, we have an imbalance between the classes. In this case, the more informative metrics are
the ones that take into account this imbalance, i.e precision/recall/f-score.
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Figure 12: balanced vs imbalanced accuracy, red is the accuracy in the balanced, gray is the accuracy
in the balanced. We choose two point, and emphasize that by simply looking at the accuracy, we
can achieve far better accuracy than the balanced case when the distance between the means is quite
small.

Next, we visually demonstrate the short-coming of looking merely at the accuracy. Let’s plot the
accuracy (z-axis) for this imbalanced case, and the original balanced case as a function of γ (x-axis)
and w0 (y-axis). We set σ = 1.

As we can see, the more the data is unbalanced, the easier the task is, because we are more likely
to fall in the bigger class, and just classify it as the bigger class is right most of the times. Instead
of looking merely at the accuracy, it’s more informative to look at the precision/recall/f-score. Let’s
plot the other metrics as a function of γ (x-axis) and w1(y-axis), and σ as a parameter:

(a) plot of the recall as a function
of γ (x-axis), w1 (y-axis), σ is a
parameter equals to 1. x-axis is
between 0-4, y-axis is between 0-
1, z-axis is between 0-1

(b) plot of the precision as a func-
tion of γ (x-axis), w1 (y-axis), σ
is a parameter equals to 1. x-axis
is between 0-4, y-axis is between
0-1, z-axis is between 0-1

(c) plot of the f-score as a func-
tion of γ (x-axis), w1 (y-axis), σ
is a parameter equals to 1. x-axis
is between 0-4, y-axis is between
0-1, z-axis is between 0-1

Figure 13: plots of the informative metrics. We choose two point, and emphasize that by looking
at this informative metrics, we get the desired result. Where the data is unbalanced in our favor,
we perform quite well even better than unbalanced case. And when the imbalance is against us, we
perform very poorly.

Unlike the accuracy which grows bigger as the imbalance grows larger, for the f-score, as the size
of class 1 decrease, the f-score decreases as well.

B.4 GRAPH CONVOLUTION IMPROVEMENT

We now show the effects of graph convolutions in multi-layer networks with the architecture de-
scribed in Section 3. We characterize the improvement in the classification threshold in terms of the
distance between the means of the node features.
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Theorem 5. Let (A,X) ∼ XOR-CSBM -I(n, d, µ, ν, σ2, p, q). If the intra-class and inter-
class edge probabilities are p, q = Ω( log

2 n
n ), the distance between the means is ||µ − ν||2=

max(Ω( σ logn√
n(p+q)

), σ2|logit(w0)|), and sgn(w0p − w1q) = sgn(w1p − w0q), then for any c > 0,

with probability at least 1−O(n−c), the networks equipped with a graph convolution in the second
layer perfectly classify the data, and obtain the following loss:

ℓθ(A,X) ≤ C ′ exp

(
−R∥|µ− ν∥|2

max(|w0p− w1q|, |w1p− w0q|)
w0p+ w1q

(
1±

√
c

log n

))
,

where C > 0 and C ′ ∈ [ 12 , 1] are constants.

C CALCULATIONS FOR SHIFTED CENTERS

Here, we prove some basic results similar to Baranwal et al. (2022), for the shifted centers model
case described in Section 2 for the Amazon reviews dataset.

Lemma 6. For some fixed µ, ν ∈ Rd and σ2 > 0, the Bayes optimal classifier, h∗(x) : Rd → {0, 1}
for the shifted center data model is given by

h∗(x) = 1(−⟨x, µ⟩ < ⟨x, ν⟩)

Proof. Note that P (y = 1) = P (y = 0) = 1
2 . Let f(x) denote the density function of a continuous

random vector x. Therefore, for any b ∈ {0, 1},

P (y = 1|x) = fx|y(x|y=1)P (y=1)∑
c∈{0,1} P [y=c]fx|y(x|y=c) =

1

1+
P (y=0)fx|y(x|y=0)

P (y=1)fx|y(x|y=1)

= 1

1+
fx|y(x|y=0)

fx|y(x|y=1)

fx|y(x|y=0)

fx|y(x|y=1) =
e
⟨x,µ⟩
σ2 +e

⟨x,ν⟩
σ2

e
−⟨x,ν⟩

σ2 +e
−⟨x,µ⟩

σ2

For label 0, we require the probability to be less than 1
2 , thus, we need that expression to be less than

1,

e
⟨x,µ⟩
σ2 +e

⟨x,ν⟩
σ2

e
−⟨x,ν⟩

σ2 +e
−⟨x,µ⟩

σ2

< 1

e
⟨x,µ⟩
σ2 + e

⟨x,ν⟩
σ2 < e

−⟨x,ν⟩
σ2 + e

−⟨x,µ⟩
σ2

e
⟨x,µ⟩
σ2 − e−

⟨x,µ⟩
σ2 < e−

⟨x,ν⟩
σ2 − e

⟨x,ν⟩
σ2

sinh( ⟨x,µ⟩σ2 ) < sinh(− ⟨x,ν⟩
σ2 )

⟨x,µ⟩
σ2 < − ⟨x,ν⟩

σ2

⟨x, µ⟩ < −⟨x, ν⟩
⟨x, ν⟩ < −⟨x, µ⟩

And for label 1 we have:

⟨x, µ⟩ > −⟨x, ν⟩
⟨x, ν⟩ > −⟨x, µ⟩

Fact 1. For any x, y ∈ R:

x+ y = max (−x− y, 0) + max (y + x, 0)
x < −y ↔ max (−x− y, 0) < max (y + x, 0)

Proposition 1. Consider two-layer networks without biases (i.e., b(l) = 0 for all layers l), for
parameters W (l) and some R ∈ R+ as follows.
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W (1) = R (µ̂+ ν̂ −µ̂− ν̂ 0 0)

W (2) = (1 −1 0 0)
T

Then for any σ > 0, the defined networks realize the Bayes optimal classifier for the shifted centers
data model.

ŷi = φ(R(⟨Xi, ν̂⟩+ ⟨Xi, µ̂⟩))

Proof. Note that the output of the two-layer network is φ([XW (1)]+W
(2)), which is interpreted as

the probability with which the network believes that the input is in the class with label 1. The final
prediction for the class label is thus assigned to be 1 if the output is ≥ 0.5, and 0 otherwise. For
each i ∈ [n], we have that the output of the network on data point i is

ŷi = φ(R([⟨Xi, µ̂+ ν̂⟩]+ − [⟨Xi,−µ̂− ν̂⟩]+)) =
φ(R([⟨Xi, µ̂⟩+ ⟨Xi, ν̂⟩]+ − [−⟨Xi, µ̂⟩ − ⟨Xi, ν̂⟩]+)) = φ(R(⟨Xi, µ̂⟩+ ⟨Xi, ν̂⟩))

where the last equality is due to Fact 1.

C.1 PROOF OF THEOREM 2 PART ONE

Lemma 7. For some fixed µ, ν ∈ Rd and σ2 > 0, the Bayes optimal classifier and let h∗(x) : Rd →
{0, 1} be any binary classifier. For any ϵ ∈ (0, 1), If the probability for a point Xi to misclassified
is τ , then w.p 1− exp(−n(1− ϵ) the fraction of misclassified nodes is

τ − n− ϵ
2

Proof. Define M(n) to be the fraction of misclassified nodes. Define xi to be the indicator random
variable 1(Xi is misclassified). Then xi are Bernoulli random variables with mean at least τ , and
E(M(n)) = 2

n

∑
i∈[n] E(xi) ≥ τ . Using Hoeffding’s inequality, we have that for any t > 0,

P (M(n) ≥ τ − t) ≥ PrM(n) ≥ E(M(n))− t ≥ 1− exp(−nt2).

Choosing t = n−ϵ/2 for any ϵ ∈ (0, 1) yields

P (M(n) ≥ τ − n−ϵ/2) ≥ 1− exp(−n1−ϵ).

Theorem (Restatement of Theorem 2 part one). Let X ∈ Rn×d ∼ XOR-GMM -
SC(n, d, µ, ν, σ2). Assume that ∥µ − ν∥2 = Kσ and let h(x) : Rd → {0, 1} be any binary
classifier. Then for any K > 0 and any ϵ ∈ (0, 1), at least a fraction Φc(

K
2 )−O(n−ϵ/2) of all data

points are misclassified by h with probability at least 1− exp(−2n1−ϵ).

Proof. We will upper bound the probability of the right classification similar to (Baranwal et al.,
2022). We consider only class 1, since the analysis for class 0 is similar. For class 1, i ∈ {µ, ν}, we
take a point from the center ν, since the other case is symmetric. We can write Xi = ν+σgi, where
gi ∼ N(0, I), then the probability of right classification:

P (right classification) = P (−⟨Xi, µ⟩ < ⟨Xi, ν⟩) = P (−σ⟨gi, µ̂⟩ < γ′ + σ⟨gi, ν̂⟩) =
P (⟨gi, ν̂⟩+ ⟨gi, µ̂⟩ > −γ′

σ ) = P (⟨gi, ν̂⟩+ ⟨gi, µ̂⟩ > − K√
2
) = 1− P (⟨gi, ν̂⟩+ ⟨gi, µ̂⟩ < − K√

2
)

Denote Z1 = ⟨gi, ν̂⟩, Z2 = ⟨gi, µ̂⟩

P (Z1 + Z2 < −K ′) =
∫∞
−∞ ϕ(z)Φ(−K ′ − z)dz =

∫∞
−∞ ϕ(z)Φ(−K ′ + z)dz = Φ(−K

2 ) =

1− Φ(K2 )

So we have:
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P (Xi is misclassified) = Φ(K2 )

Now, applying Lemma 13 from the previous appendix on the total misclassification rate we get the
desired result.

C.2 PROOF OF THEOREM 2 PART TWO

Theorem (Restatement of Theorem 2 part two). Let X ∈ Rn×d ∼ XOR-GMM -
SC(n, d, µ, ν, σ2). For any ϵ > 0, if the distance between the means is |µ− ν|2= Ω(σ(log n)

1
2+ϵ),

then for any c > 0, with probability at least 1 − O(n−c), there exists a two-layer that perfectly
classify the data, and obtain a cross-entropy loss given by

ℓθ(X) = C exp(− R√
2
∥µ− ν∥2(1±

√
c/(log n)ϵ)),

where C ∈ [ 12 , 1] is an absolute constant and R is the optimality constraint from.

Proof. We have ŷi = φ(R(⟨Xi, µ̂i⟩+⟨Xi, ν̂i⟩)) and li(X, θ) = −yi log(ŷi)−(1−yi) log(1− ŷi) =

log
(
1 + exp ((1 − 2yi)R(⟨Xi, µ̂i⟩ + ⟨Xi, ν̂i⟩))). We can apply the same Gaussian concentration

arguments as in (Baranwal et al., 2022). We have with probability at least 1− n−c√
π(c+1) logn

that

⟨Xi, m̂c⟩ = ⟨E(Xi), m̂c⟩ ±O(σ
√

c log n).∀i ∈ [n] for mc ∈ {µ,−µ, ν,−ν}

Let’s look at the expression inside the prediction ŷi, namely ⟨Xi, µ̂i⟩+ ⟨Xi, ν̂i⟩.

For Xi ∈ {µ, ν} i.e in class 1, then, this expression becomes:

γ′(1±O(
√

c
logn ))

For Xi ∈ {−µ,−ν} i.e in class 0, then, this expression becomes:

−γ′(1±O(
√

c
logn ))

We obtain for all i ∈ [n],

ℓi(X, θ) = log(1 + exp(−Rγ′(1± on(1)))),

where the error term on(1) =
√

c
logn . The total loss is then given by

ℓθ(X) =
1

n

∑
ℓi(X, θ) = log(1 + exp(−Rγ′(1 + on(1)))).

Next, Fact 2 implies that for t < 0, et

2 ≤ log(1 + et) ≤ et, hence, we have that there exists a
constant C ∈ [ 12 , 1] such that

ℓθ(X) = C exp(−Rγ′(1 + on(1)))).

Note that by scaling the optimality constraint R, the loss can go arbitrarily close to 0.

Lemma 8. Let h(x) = ⟨x, ν̂⟩+ ⟨x, µ̂⟩. Then, GCN with weights as defined above satisfies:

ŷi = φ(f
(L)
i (X)) = φ(Rsgn(p−q)

deg(i)

∑
j∈[n] aijh(Xj))
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Proof. We will prove for the 2-layer networks. Notice that for this case, we apply the convolution
at the end, the output of the last layer for data (A,X) is f (2)

i (X) = D−1A[XW (1)]+W
(2). Then

we have

f
(2)
i (X) = R

deg(i)

∑
j∈[n] aij(⟨Xj , ν̂⟩+ ⟨Xj , µ̂⟩) = R

deg(i)

∑
j∈[n] aijh(Xj)

Lemma 9. Let h(x) = ⟨x, ν̂⟩+ ⟨x, µ̂⟩. Then:

E(h(Xi)) = E(⟨x, ν̂⟩+ ⟨x, µ̂⟩) = E(⟨x, ν̂⟩) +E(⟨x, µ̂⟩) = ⟨E(x), ν̂⟩+ ⟨E(x), µ̂⟩ ={
γ′ i ∈ {µ, ν} = {C1}
−γ′ i ∈ {−µ,−ν} = {C0}

similarly to (Baranwal et al., 2022).

C.3 PROOF OF THEOREM 3

Lemma 10. Let h(x) = ⟨x, ν̂⟩ + ⟨x, µ̂⟩ for any x ∈ Rd. Consider the two-layer networks in
Proposition 1 where the weight parameter of the first layer, W (1), is scaled by a factor of ε =
sgn(p− q). If a graph convolution is added to these networks in either the second or the third layer
then for a sample (A,X) ∼ XOR− CSBM − SC(n, d, µ, ν, σ2, p, q), the output of the networks
for a point i ∈ [n] is

ŷi = φ(f
(2)
i (X)) = φ

Rε
1

deg(i)

∑
j∈[n]

aijh(Xj)

 .

Proof. The networks with scaled parameters are given as follows. For the two-layer network, when
a graph convolution is applied at the second layer of this two-layer MLP, the output of the last layer
for data (A,X) is f (2)

i (X) = D−1A[XW (1)]+W
(2). Then we have

f
(2)
i (X) = Rε

deg(i)

∑
j∈[n] aij (⟨x, ν̂⟩+ ⟨x, µ̂⟩) = Rε

(
1

deg(i)

∑
j∈[n] aijh(Xj)

)

Theorem (Restatement of Theorem 3). Let (A,X) ∼ XOR-CSBM -SC(n, d, µ, ν, σ2, p, q). Then
there exists a two-layer network and a three-layer network with the following properties: If the intra-
class and inter-class edge probabilities are p, q = Ω( log

2 n
n ), and the distance between the means is

||µ − ν||2= Ω( σ logn√
n(p+q)

), then for any c > 0, with probability at least 1 − O(n−c), the networks

equipped with a graph convolution in the second or the third layer perfectly classify the data, and
obtain the following loss:

ℓθ(A,X) = C ′ exp

(
−R∥|µ− ν∥|2

∣∣∣∣p− q

p+ q

∣∣∣∣ (1±√ c

log n

))
,

where C > 0 and C ′ ∈ [ 12 , 1] are constants.

Proof. Let’s look at the Bayes optimal classifiers for this model and for original model.

h∗
orig(x) = |⟨x, ν⟩|−|⟨x, µ⟩|
h∗
curr(x) = ⟨x, ν⟩+ ⟨x, µ⟩

We have

h∗
orig is ρ− Lipschitz ↔ h∗

curr is ρ− Lipschitz
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Thus, we can reuse from Baranwal et al. (2022) arguments used to characterize f
(2)
i (X). Specifi-

cally: Gaussian concentration -

P ( 1
R |f (2)

i (X)− E[f (L)
i (X)]|> δ | A) ≤ 2 exp(− δ2deg(i)

4σ2 )

Let ε = sgn(p− q), ε(p−q)
p+q = |p−q|

p+q = Γ(p, q). Note that the process of creating the edges remains
the same between this model and the original model, because it depends solely on the nodes’ labels.
Thus, we have from Proposition A.1 in (Baranwal et al., 2022):∑

j∈C1
aij −

∑
j∈C0

aij = (2ϵi − 1)p−q
p+q (1 + on(1))

f
(2)
i (X) = E(f (2)

i (X))±O(Rσ
√

c logn
n(p+q) )

= Rε
deg(i)

∑
j∈[n] aijE(h(Xj))± on(Rσ) =

Rεγ′

deg(i) (
∑

j∈C1
aij −

∑
j∈C0

aij)± on(Rσ) = (using Lemma 9)
(2ϵi − 1)RΓ(p, q)γ′(1± on(1))± on(Rσ).

We need γ′ = Ω(on(Rσ)) = Omega

(
σ logn√

n(p+q)

)
.

So we have for some constant C > 0:

f
(2)
i (X) = (2ϵi − 1)CRγ′Γ(p, q)(1± on(1))

Recall that the loss for node i is given by

ℓ
(i)
θ (A,X) = log(1 + e(1−2ϵi)f

(L)
i (X)) = log(1 + exp(−CRγ′Γ(p, q)(1± on(1)))).

Next, Fact 2 implies that for any t < 0, et

2 ≤ log(1+ et) ≤ et, hence, we have for some C ′ ∈ [ 12 , 1]
that

ℓ
(i)
θ (A,X) = C ′ exp(−CRγ′Γ(p, q)(1± on(1))).

The total loss is given by 1
n

∑
i∈[n] ℓ

(i)
θ (A,X). Thus

ℓθ(A,X) = C ′ exp(−CRγ′Γ(p, q)(1± on(1))).

We can observe the loss decreases as γ (distance between the means) increases, and increases if σ2

(variance of the data) increases.

D CALCULATIONS FOR THE IMBALANCED CASE

We denote i ∈ |µ|↔ i ∈ {µ,−µ}
Proposition 2. For any constant c > 0, with probability at least 1 − 2n−c, we have for all i ∈ [n]
that

deg(i) = n(w0p+ w1q)(1± on(1)) for i ∈ |µ|
deg(i) = n(w1p+ w0q)(1± on(1)) for i ∈ |ν|

1
deg(i) =

1
n(w0p+w1q)

(1± on(1)) for i ∈ |µ|
1

deg(i) =
1

n(w1p+w0q)
(1± on(1)) for i ∈ |ν|

1
deg(i)

(∑
j∈C1

aij −
∑

j∈C0
aij

)
= w1q−w0p

w0p+w1q
(1± on(1)) for i ∈ |µ|

1
deg(i)

(∑
j∈C1

aij −
∑

j∈C0
aij

)
= w1p−w0q

w1p+w0q
(1± on(1)) for i ∈ |ν|

Proof. deg(i) is a sum of n Bernoulli random variables. For i ∈ |µ|, the probability of an edge is:
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p(egde) = p(edge|same class) · p(same class) + p(edge|same class) · p(same class) =
p · w0 + q · w1

similarly for i ∈ |ν|:

p(egde) = p(edge|same class) · p(same class) + p(edge|same class) · p(same class) =
p · w1 + q · w0

By the Chernoff bound we get, w.h.p:

P [deg(i) ∈ [n2 (p ·w0+ q ·w1)(1− δ), n
2 (p ·w0+ q ·w1)(1+ δ)] ≤ 2 exp(−Cn(p ·w0+ q ·w1)δ

2
|µ|)

for i ∈ |µ|
P [deg(i) ∈ [n2 (p ·w1+ q ·w0)(1− δ), n

2 (p ·w1+ q ·w0)(1+ δ)] ≤ 2 exp(−Cn(p ·w1+ q ·w0)δ
2
|ν|)

for i ∈ |ν|

for some C > 0. Now choose δ|µ| =
√

(c+1) logn
Cn(p·w0+q·w1)

and δ|µ| =
√

(c+1) logn
Cn(p·w0+q·w1)

for a large

constant c > 0. Note that since p, q = Ω( log
2 n
n ) and w1 = Ω(1), we have that δ = O(

√
c

logn ) =

on(1). Then following a union bound over i ∈ [n], we obtain that with probability at least 1−2n−c,

deg(i) = n(w0p+ w1q)(1± on(1)) for i ∈ |µ|
deg(i) = n(w1p+ w0q)(1± on(1)) for i ∈ |ν|

1
deg(i) =

1
n(w0p+w1q)

(1± on(1)) for i ∈ |µ|
1

deg(i) =
1

n(w1p+w0q)
(1± on(1)) for i ∈ |ν|

Note that |Cb|= wbn. Also note that
∑

j∈Cb
aij for any b ∈ {0, 1} is a sum of independent Bernoulli

random variables. Hence, we have by similar arguments∑
j∈Cb

aij = wbnp(1± on(1)) for i ∈ Cb

We can calculate this to each i ∈ Cb, j ∈ Cb′ . Combining it all we have that with probability at least
1− 2n−c,

1
deg(i)

(∑
j∈C1

aij −
∑

j∈C0
aij

)
= w1p−w0q

w1p+w0q
(1 + on(1)) for i ∈ |ν|

1
deg(i)

(∑
j∈C1

aij −
∑

j∈C0
aij

)
= w1q−w0p

w0p+w1q
(1 + on(1)) for i ∈ |µ|

Lemma 11. Assume x, y ∈ R, c > 0, We can linearly approximate the solution to

cosh(x) < c · cosh(y)

by

|x|< |y|+ ln(c)

Proof. Let’s start with the inequality:

cosh(x) ≤ c · cosh(y)
−cosh−1(c · cosh(y)) ≤ x ≤ cosh−1(c · cosh(y))

Notice that:

cosh−1(z) = ln(z +
√
z2 − 1)

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Thus:

cosh−1(c · cosh(y)) = ln(c · cosh(y) +
√
(c · cosh(y))2 − 1)

But:

(c · cosh(y))2 − 1 = c2 · (cosh(y)2 − 1) + (c2 − 1) = c2 · sinh(y)2 + (c2 − 1)

Substituting it into the expression:

ln(c · cosh(y) +
√
(c · cosh(y))2 − 1) = ln(c · cosh(y) +

√
c2 · sinh(y)2 + (c2 − 1))

We want to transform this expression into a linear expression. In order to achieve that, we change
the expression to:

ln(c · cosh(y) +
√
c2 · sinh(y)2 + (c2 − 1)) ≈ ln(c · cosh(y) +

√
c2 · sinh(y)2)

And calculating this:

ln(c · cosh(y) +
√

c2 · sinh(y)2) = ln(c · cosh(y) + c|sinh(y)|)

When y > 0, we have sinh(y) > 0 and cosh(y) + |sinh(y)|= ey = e|y|. When y < 0, we have
sinh(y) < 0 and cosh(y) + |sinh(y)|= e−y = e|y|.
So, all in all we get:

ln(c · cosh(y) + c|sinh(y)|) = ln(c · e|y|) = ln(c) + |y|

And going back to the original inequality:

−cosh−1(c · cosh(y)) ≤ x ≤ cosh−1(c · cosh(y))
−(ln(c) + |y|) ≤ x ≤ ln(c) + |y|

|x|≤ ln(c) + |y|

Lemma 12. For some fixed µ, ν ∈ Rd and σ2 > 0, the Bayes optimal classifier, h∗(x) : Rd →
{0, 1} for the imbalanced data model is approximately:

h∗(x) = 1(|⟨x, ν⟩|< |⟨x, µ⟩|+σ2logit(w0))

Proof. Note that P (y = b) = wb for b ∈ {0, 1}. Let f(x) denote the density function of a continu-
ous random vector x. Therefore, for any b ∈ {0, 1},

P (y = b|x) = P (y=b)fx|y(x|y=b)∑
c∈{0,1} P (y=c)fx|y(x|y=c) =

1

1+
w1−b
wb

f(x|y=1−b)
f(x|y=b)

Computing it for label 0, we need:

w1

w0

f(x|y=1−b)
f(x|y=b) < 1

w1

w0

cosh(
⟨x,ν⟩
σ2 )

cosh(
⟨x,µ⟩
σ2 )

exp( ||µ||
2−||ν||2
2σ2 ) < 1

w1

w0

cosh(
⟨x,ν⟩
σ2 )

cosh(
⟨x,µ⟩
σ2 )

< 1

cosh( ⟨x,ν⟩σ2 ) < w0

w1
cosh( ⟨x,µ⟩σ2 )

|⟨x, ν⟩|< |⟨x, µ⟩|+σ2 ln(w0

w1
) = |⟨x, µ⟩|+σ2logit(w0) (By Lemma 11)
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where in the second to last inequality, we used ||µ||= ||ν||.

To give some intuition, let’s look at the decision boundaries of the real expression and our
approximation.

Figure 14: Decision boundaries of the real inequality compared to the approximated inequality
where c = 2. The red area represents the are where the first inequality holds, and vice versa for the
green area. As we can see, the difference is very small, and mainly appears where |x|≈ 1, y ≈ 0.

Proposition 3. Consider two-layer network of the same form described in Baranwal et al. (2022),
for bias in the last layer b(L) = −Rσ2 ln(w0

w1
), and W (l) and some R ∈ R+ as follows.

W (1) = R (µ −µ ν −ν) ,W (2) = (−1 −1 1 1)
T
.

Then for any σ > 0, the defined networks realize the approximate Bayes optimal classifier for the
imbalanced data model.

Proof. Notice that the only difference between our parameters and the parameters in Baranwal et al.
(2022) is our bias in the last layer. In their case we have:

ŷi = φ((R(|⟨Xi, ν̂⟩| − |⟨Xi, µ̂⟩|))

thus, adding the bias in the last layer we get:

ŷi = φ((R(|⟨Xi, ν̂⟩|−|⟨Xi, µ̂⟩|−σ2 ln(w0

w1
)))

D.1 PROOF OF THEOREM 4 PART ONE

Lemma 13. For some fixed µ, ν ∈ Rd and σ2 > 0, the Bayes optimal classifier and let h∗(x) :
Rd → {0, 1} be any binary classifier. For any ϵ ∈ (0, 1), If the probability for a point Xi to
misclassified is τ , then w.p 1− exp(−n(1−ϵ) the fraction of misclassified nodes is

τ − n− ϵ
2

Proof. See Lemma 7

Theorem (Restatement of part one of Theorem 4). Let X ∈ Rn×d ∼ XOR − GMM −
I(n, d, µ, ν, σ2). Assume that ∥µ − ν∥2= Kσ and let h(x) : Rd → {0, 1} be any binary clas-
sifier. Then for K > 0,K|µ|,i =

K√
2
+ σ2 ln(w0

w1
),K|ν|,i =

K√
2
+ σ2 ln(w1

w0
) = K√

2
− σ2 ln(w0

w1
) and
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any ϵ ∈ (0, 1), at least a fraction of

w0 ·

{
1− 2Φc(

K|µ|,i√
2

)2 if K|µ|,i ≥ 0

4Φ(
K|µ|,i√

2
)− 2Φ(

K|µ|,i√
2

)2 + 4Φ(K|µ|,i)
2 − 4Φ(K|µ|,i) if K|µ|,i < 0

+

w1 ·

{
1− 2Φc(

K|ν|,i√
2

)2 if K|ν|,i ≥ 0

4Φ(
K|ν|,i√

2
)− 2Φ(

K|ν|,i√
2

)2 + 4Φ(K|ν|,i)
2 − 4Φ(K|ν|,i) if K|ν|,i < 0

−O(n−ϵ/2)

of all data points are misclassified by h with probability at least 1− exp(−2n1−ϵ).

Proof. We will upper bound the probability of the right classification similar to (Baranwal et al.,
2022). We consider only class 0, since the analysis for class 1 is similar. Define c = σ2 ln(w0

w1
), γ ≤

σK,K|µ|,i = K√
2
+ c. For i ∈ |µ|, we can write Xi = µ + σgi, where gi ∼ N(0, I), then the

probability of right classification:

P (|⟨x, ν⟩|< |⟨x, µ⟩|+σ2 ln(w0

w1
)) = P (|⟨x, ν⟩|< |⟨x, µ⟩|+c) ≤ P (|⟨gi, ν̂⟩|−|⟨gi, µ̂⟩|≤ K√

2
+ c) =

P (|⟨gi, ν̂⟩|−|⟨gi, µ̂⟩|≤ K|µ|,i)

Notice that this expression is the same as in Baranwal et al. (2022) in their part one of Theorem 1.
Thus applying the same calculations we get:

P (|⟨gi, ν̂⟩|−|⟨gi, µ̂⟩|≤ K|µ|,i) = 1− 2Φc(
K|µ|,i√

2
)2

However, for some combination of γ and w0, we get K|µ|,i < 0. Thus, we can’t calculate the
integral in the same way for this case. The integral boundaries become max(0,−K|µ|,i) and ∞. But
calculating with −K|µ|,i doesn’t have a closed from according to Owen (1980) Table 1:10,010,4, so
we will need to estimate it.
estimating
Assuming K|µ|,i < 0:

P (|Z1|−|Z2|≤ K|µ|,i) = 4P (Z1 − Z2 ≤ K|µ|,i, Z1, Z2 ≥ 0) =

4
∫∞
−K|µ|,i

ϕ(w)(Φ(w+K|µ|,i)− 1
2 )dw = 4

∫∞
−K|µ|,i

ϕ(w)Φ(w+K|µ|,i)dw−2
∫∞
−K|µ|,i

ϕ(w)dw =

4
∫∞
−K|µ|,i

ϕ(w)Φ(w +K|µ|,i)dw − 2(1− Φ(−K|µ|,i)) =

4
∫∞
−K|µ|,i

ϕ(w)Φ(w +K|µ|,i)dw − 2Φ(K|µ|,i)

4
∫ −K|µ|,i
0

ϕ(w)Φ(w +K|µ|,i)dw ≈ 4
∫ −K|µ|,i
0

ϕ(w)Φ(K|µ|,i)dw =

4Φ(K|µ|,i)
∫ −K|µ|,i
0

ϕ(w)dw = 4Φ(K|µ|,i)
(
Φ(−K|µ|,i)− 1

2

)
=

4Φ(K|µ|,i)Φ(−K|µ|,i)− 2Φ(K|µ|,i) = 2Φ(K|µ|,i)− 4Φ(K|µ|,i)
2

4
∫∞
−K|µ|,i

ϕ(w)Φ(w +K|µ|,i)dw = 4
∫∞
0

ϕ(w)Φ(w +K|µ|,i)dw − 4
∫ −K|µ|,i
0

ϕ(w)Φ(w +

K|µ|,i)dw = 2Φ(
K|µ|,i√

2
) + 2Φ(

K|µ|,i√
2

)Φc(
K|µ|,i√

2
)− 4

∫ −K|µ|,i
0

ϕ(w)Φ(w +K|µ|,i)dw ≈
2Φ(

K|µ|,i√
2

) + 2Φ(
K|µ|,i√

2
)Φc(

K|µ|,i√
2

) + 4Φ(K|µ|,i)
2 − 2Φ(K|µ|,i)

P (|Z1|−|Z2|≤ K|µ|,i) ≈ 2Φ(
K|µ|,i√

2
) + 2Φ(

K|µ|,i√
2

)Φc(
K|µ|,i√

2
) + 4Φ(K|µ|,i)

2 − 4Φ(K|µ|,i) =

4Φ(
K|µ|,i√

2
)− 2Φ(

K|µ|,i√
2

)2 + 4Φ(K|µ|,i)
2 − 4Φ(K|µ|,i)
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For class 1, define K|ν|,i =
K√
2
+ σ2 log(w1

w0
), doing similar calculations, we get:

P (right classification|class 1) ={
1− 2Φc(

K|ν|,i√
2

)2 if K|ν|,i ≥ 0

4Φ(
K|ν|,i√

2
)− 2Φ(

K|ν|,i√
2

)2 + 4Φ(K|ν|,i)
2 − 4Φ(K|ν|,i) if K|ν|,i < 0

Notice that:

P (right classification) =
P (right classification|class 0)P (class 0) + P (right classification|class 1)P (class 1)

So overall, we get:

P (right classification) = w0·{
1− 2Φc(

K|µ|,i√
2

)2 if K|µ|,i ≥ 0

4Φ(
K|µ|,i√

2
)− 2Φ(

K|µ|,i√
2

)2 + 4Φ(K|µ|,i)
2 − 4Φ(K|µ|,i) if K|µ|,i < 0

+

w1·{
1− 2Φc(

K|ν|,i√
2

)2 if K|ν|,i ≥ 0

4Φ(
K|ν|,i√

2
)− 2Φ(

K|ν|,i√
2

)2 + 4Φ(K|ν|,i)
2 − 4Φ(K|ν|,i) if K|ν|,i < 0

Now, applying Lemma 13 on the total misclassification rate we get the desired result.

D.2 PROOF OF THEOREM 4 PART TWO

Theorem (Restatement of part two of Theorem 4). Let X ∈ Rn×d ∼ XOR-GMM -
SC(n, d, µ, ν, σ2). Then we have the following: For any ϵ > 0, if the distance between the means is
|µ− ν|2= Ω(max(σ(log n)

1
2+ϵ, σ2|logit(w0)|), assume for simplicity’s sake Ki > 0, we have:

accuracy = P (right classification) = w0 ·

1− 2Φc

(
K

2
+

σ2 ln(w0

w1
)

√
2

)2
+

w1 ·

1− 2Φc

(
K

2
−

σ2 ln(w0

w1
)

√
2

)2
±O(n−ϵ/2)

precision =

w0 ·

(
1− 2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√
2

)2
)

±O(n−ϵ/2)

w0 ·

(
1− 2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√
2

)2
)

+ w1 ·

(
2Φc

(
K
2 −

σ2 ln(
w0
w1

)
√
2

)2
)

±O(n−ϵ/2)

recall = 1− 2Φc

(
K

2
+

σ2 ln(w0

w1
)

√
2

)2

±O(n−ϵ/2)

f -score =

2w0·
(
1−2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√

2

)2)2

±O(n−ϵ/2)

2w0·
(
1−2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√

2

)2)2

+w1

(
1−2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√

2

)2)(
2Φc

(
K
2 −

σ2 ln(
w0
w1

)
√

2

)2)
±O(n−ϵ/2)
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Proof. Let’s calculate the precision, the recall and the f-score. First, we will calculate true positive,
false positive, false negative:

true positive = tp = P (positive)P (true|positive) = w0 · (1− 2Φc(
K
2 +

σ2 ln(
w0
w1

)
√
2

)2)

fp = P (negative)P (false|negative) = w1 · (2Φc(
K
2 −

σ2 ln(
w0
w1

)
√
2

)2)

fn = P (positive)P (false|positive) = w0 · (2Φc(
K
2 +

σ2 ln(
w0
w1

)
√
2

)2)

Using Similar arguments to Lemma 13, we can see that w.h.p these are the metrics across all of the
data with a factor of ±O(n−ϵ/2).

precision =
tp

tp+ fp
=

w0 ·

(
1− 2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√
2

)2
)

±O(n−ϵ/2)

w0 ·

(
1− 2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√
2

)2
)

+ w1 ·

(
2Φc

(
K
2 −

σ2 ln(
w0
w1

)
√
2

)2
)

±O(n−ϵ/2)

recall =
tp

tp+ fn
= 1− 2Φc

(
K

2
+

σ2 ln(w0

w1
)

√
2

)2

±O(n−ϵ/2)

f -score = 2
precision · recall
precision+ recall

=

2w0·
(
1−2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√

2

)2)2

±O(n−ϵ/2)

2w0·
(
1−2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√

2

)2)2

+w1

(
1−2Φc

(
K
2 +

σ2 ln(
w0
w1

)
√

2

)2)(
2Φc

(
K
2 −

σ2 ln(
w0
w1

)
√

2

)2)
±O(n−ϵ/2)

D.3 PROOF OF THEOREM 4 PART THREE

Fact 2. For any x ∈ [0, 1], x
2 ≤ log(1 + x) ≤ x.

Theorem (Restatement of part three of Theorem 4). Let X ∈ Rn×d ∼ XOR-GMM -
SC(n, d, µ, ν, σ2). For any ϵ > 0, if the distance between the means is
|µ− ν|2= Ω(max(σ(log n)

1
2+ϵ, σ2|logit(w0)|), then for any c > 0, with probability at least

1 − O(n−c), there exists a two-layer that perfectly classify the data, and obtain a cross-entropy
loss given by

ℓθ(X) = C exp(− R√
2
∥µ− ν∥2(1±

√
c/(log n)ϵ)),

where C ∈ [ 12 , 1] is an absolute constant and R is the optimality constraint from.

Proof. Consider the two-layer MLPs described in 3, for which we have
ŷi = φ(R(|⟨Xi, ν̂⟩|−|⟨Xi, µ̂⟩|−σ2 ln(w0

w1
))). We now look at the loss for a single data point Xi,

ℓi(X, θ) = −yi log(ŷi)− (1− yi) log(1− ŷi)

= log
(
1 + exp ((1− 2yi)R(|⟨Xi, ν̂⟩|−|⟨Xi, µ̂⟩|−σ2 ln(w0

w1
)))
)

.

From Theorem 1 part 2 in Baranwal et al. (2022), we know that for ||µ − ν||= Ω(σ(log n)
1
2+ϵ),

w.h.p we have:
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(1− 2yi)R(|⟨Xi, ν̂⟩|−|⟨Xi, µ̂⟩|) = −Rγ′(1± on(1))

But in our case we have a bias of σ2logit(w0), thus, the loss is:

ℓi(X, θ) = log(1 + exp(−Rγ′(1 + on(1))) + (2yi − 1)σ2logit(w0))

this implies that we also need to require γ = Ω(σ2|logit(w0)|).

So all in all, γ = Ω

(
max

(
σ(log n)

1
2+ϵ, σ2

∣∣∣∣logit(w0)

∣∣∣∣)), and the loss becomes:

ℓi(X, θ) = log(1 + exp(−Rγ′(1 + on(1))) + (2yi − 1)σ2logit(w0)) =
log(1 + exp(−Ω(1)Rγ′(1 + on(1))))

Now, the total loss is then given by

ℓθ(X) =
1

n

∑
ℓi(X, θ) = log(1 + exp(−Ω(1)Rγ′(1 + on(1)))).

Next, 2 implies that for t < 0, et

2 ≤ log(1 + et) ≤ et, hence, we have that there exists a constant
C ∈ [ 12 , 1] such that

ℓθ(X) = C exp(−Ω(1)Rγ′(1 + on(1))).

Note that by scaling the optimality constraint R, the loss can go arbitrarily close to 0.

D.4 PROOF OF THEOREM 5

Lemma 14. Let h(x) = |⟨x, ν̂⟩|−|⟨x, µ̂⟩| for any x ∈ Rd. Consider the two-layer networks in
Proposition 3 where the weight parameter of the first layer, W (1), is scaled by a factor of ε =
sgn(w0p − w1q). If a graph convolution is added to these networks in either the second or the
third layer then for a sample (A,X) ∼ XOR − CSBM − I(n, d, µ, ν, σ2, p, q), the output of the
networks for a point i ∈ [n] is

ŷi = φ(g
(2)
i (X)) = φ

Rε

 1

deg(i)

∑
j∈[n]

aijh(Xj)− σ2log(
w0

w1
)

 .

Proof. The networks with scaled parameters are given as follows. For the two-layer network, when
a graph convolution is applied at the second layer of this two-layer MLP, the output of the last layer
for data (A,X) is g(2)i (X) = D−1A[XW (1)]+W

(2). Then we have

g
(2)
i (X) = Rε

deg(i)

∑
j∈[n] aij

(
|⟨Xj , ν̂⟩|−|⟨Xj , µ̂⟩|−σ2log(w0

w1
)
)
=

Rε
(

1
deg(i)

∑
j∈[n] aijh(Xj)− σ2log(w0

w1
)
)
=

f
(2)
i (X)−Rεσ2log(w0

w1
)

where f
(2)
i is defined as in Baranwal et al. (2022) as f (2)

i (X) = Rε
deg(i)

∑
j∈[n] aijh(Xj)

Theorem (Restatement of Theorem 5). Let (A,X) ∼ XOR-CSBM -I(n, d, µ, ν, σ2, p, q). If the
intra-class and inter-class edge probabilities are p, q = Ω( log

2 n
n ), the distance between the means

is ||µ − ν||2= max(Ω( σ logn√
n(p+q)

), σ2|logit(w0)|), and sgn(w0p − w1q) = sgn(w1p − w0q), then
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for any c > 0, with probability at least 1−O(n−c), the networks equipped with a graph convolution
in the second layer perfectly classify the data, and obtain the following loss:

ℓθ(A,X) ≤ C ′ exp

(
−R∥|µ− ν∥|2

max(|w0p− w1q|, |w1p− w0q|)
w0p+ w1q

(
1±

√
c

log n

))
,

where C > 0 and C ′ ∈ [ 12 , 1] are constants.

Proof. Notice that by Lemma 14, we have g
(2)
i (X) = f

(2)
i (X) + bias. Thus, we can reuse from

Baranwal et al. (2022) arguments used to characterize f
(2)
i (X). Specifically:

1. 1
Rf

(2)
i (X) is Lipschitz with constant

√
2

deg(i) ↔ 1
Rg

(2)
i (X) is Lipschitz with constant√

2
deg(i) .

2. Gaussian concentration -

P ( 1
R |f (2)

i (X)− E[f (L)
i (X)]|> δ | A) ≤ 2 exp(− δ2deg(i)

4σ2 ) ↔
P ( 1

R |g(2)i (X)− E[g(L)
i (X)]|> δ | A) ≤ 2 exp(− δ2deg(i)

4σ2 )

Let ε = sgn(p− w0(p+ q)) = sgn(w0(p+ q)− p).

f
(2)
i (X) = E(f (2)

i (X))±O(Rσ
√

c logn
n(p+q) )

= Rε
deg(i)

∑
j∈[n] aijE(h(Xj))± on(Rσ)

= Rεζ(γ′,σ)
deg(i) (

∑
j∈C1

aij −
∑

j∈C0
aij)± on(Rσ) (using Lemma A.4 in (Baranwal et al., 2022))

.

Now let’s look at ε
deg(i) · (

∑
j∈C1

aij −
∑

j∈C0
aij). We know from 2 that:

ε · (
∑
j∈C1

aij −
∑
j∈C0

aij) = ε ·

{
w1q−w0p
w0p+w1q

(1± on(1)) if i ∈ |µ|
w1p−w0q
w1p+w0q

(1± on(1)) if i ∈ |ν|

if we set ε = sgn(w1p−w0q) = −sgn(w1q −w0p) (possible because of our assumption), we get:

sgn

ε · (
∑
j∈C1

aij −
∑
j∈C0

aij)

 =

{
−1 if i ∈ |µ|
1 if i ∈ |ν|

Thus, we have that f (2)
i (X) is positive when i ∈ |ν| and negative otherwise, as desired. And the full

is expression:

f
(2)
i (X) =

{
−Rζ(γ′, σ) |w0p−w1q|

w1p+w0q
(1± on(1))± on(Rσ) if i ∈ |µ|

Rζ(γ′, σ) |w1p−w0q|
w1p+w0q

(1± on(1))± on(Rσ) if i ∈ |ν|

And subsequently

g
(2)
i (X) = f

(2)
i (X)−Rεσ2 log(

w0

w1
) ={

−Rζ(γ′, σ) |w0p−w1q|
w1p+w0q

(1± on(1))± on(Rσ) if i ∈ |µ|
Rζ(γ′, σ) |w1p−w0q|

w1p+w0q
(1± on(1))± on(Rσ) if i ∈ |ν|

−Rεσ2 log(
w0

w1
)

We need ζ(γ′, σ) = Ω(on(Rσ)) and ζ(γ′, σ) = Ω(σ2 log(w0

w1
)). Aside from the bias term in

g
(2)
i (X), we know that γ = Ω(σ

√
logn

4
√
n(p+ q)

) satisfies the first condition.

If σ2 log(w0

w1
) = on(1), then this value of γ also satisfies the second condition.

Otherwise, note that ζ(γ′, σ) = O(γ′), thus, we need γ′ = Ω(σ2 log(w0

w1
)). Denote:
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Γ0(p, q) =
|w0p−w1q|
w1p+w0q

Γ1(p, q) =
|w1p−w0q|
w1p+w0q

So we have for some constant C > 0:

g
(2)
i (X) = (2ϵi − 1)CRζ(γ′, σ)Γϵi(p, q)(1± on(1))

Recall that the loss for node i is given by

ℓ
(i)
θ (A,X) = log(1 + e(1−2ϵi)g

(L)
i (X)) = log(1 + exp(−CRγ2

σ
Γ(p, q)(1± on(1)))).

Next, Fact 2 implies that for any t < 0, et

2 ≤ log(1+ et) ≤ et, hence, we have for some C ′ ∈ [ 12 , 1]
that

ℓ
(i)
θ (A,X) = C ′ exp(−CRζ(γ′, σ)Γϵi(p, q)(1± on(1))).

The total loss is given by 1
n

∑
i∈[n] ℓ

(i)
θ (A,X). Thus

ℓθ(A,X) ≤

max

(
C ′ exp(−CRζ(γ′, σ)Γ0(p, q)(1± on(1))), C

′ exp(−CRζ(γ′, σ)Γ1(p, q)(1± on(1)))

)
=

C ′ exp(−CRζ(γ′, σ)(1± on(1)) ·max(Γ0(p, q),Γ1(p, q)))

We can observe the loss decreases as γ (distance between the means) increases, and increases if σ2

(variance of the data) increases.

E ADDITIONAL EXPERIMENTS AND ANALYSIS

For the Amazon-reviews data, we first fine tuned a BERT model (Devlin et al., 2019). Then extracted
the last-layer embeddings, and treated these as the data in the process of training the MLP and the
GNN.

We also evaluated the synthetic data model for the Walmart-Amazon dataset discussed in Section 2.

E.1 PLOTS

Before presenting the plots, we note that it may seem as if for certain cases, the improvements
crosses below 0 or above 1 which is obviously not possible. Let’s explain how it may occur.
Since we deal with decimals, we get that the standard deviation is greater the the variance, when
most times it’s the other way around. When we look at the mean+ sd or at the mean− sd, we get
weird results.
Let’s look at concrete examples:

Example 2.

x =

{
0.1 w.p 0.5

0.9 w.p 0.5

Then we have:

E(x) = 0.5
V ar(x) = 0.4

sd(x) =
√

V ar(x) ≈ 0.63
E(x) + sd(x) ≈ 1.13
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Figure 15: Improvement in the Amazon dataset, across all ablations and baselines.

Example 3.

x =

{
0.1 w.p 0.5

0.2 w.p 0.5

Then we have:

E(x) = 0.15
V ar(x) = 0.05

sd(x) =
√

V ar(x) ≈ 0.22
E(x)− sd(x) ≈ −0.07

We’ve already shown the plots for the Walmart-Amazon dataset in the main part, we show here the
full results for these datasets in addition to the full tables of the other datasets. We present the results
in Tables 16, 15, 17 and 18. We can observe the full SHIKI model consistently achieves the highest
and most consistent improvement.

E.2 TABLES

We’ve already shown the tables for the Walmart-Amazon dataset in the main part, we show here the
full results for these datasets in addition to the full tables of the other datasets. We present the results
in Tables 4, 5, 6, 7, 8 and 9. In each row (representing a GNN architecture), we highlight the best
edge creation method in bold based on the mean and standard deviation of the improvement. We can
observe that in most cases, the SHIKI model either matches or outperforms the other leading edge
creation methods.

E.3 PARAMETERS’ EFFECT

Figures 19, 20, 21, 22 display the accuracy (or f -score) of the SHIKI model as a function of its
parameters: p, q, τ , and percent.

In most cases, increasing q and τ boosts performance, whereas increasing percent generally de-
creases it (interestingly enough aside for the XOR-GMM model). Changing p, shows no consistent
effect on improvement.

This suggests that to effectively utilize SHIKI, it is important to ensure confidence in the edges.
Additionally, the parameter q indicates that we don’t need to rely solely on MLP predictions, and
allow for prediction correction by linking nodes that appear to belong to different classes.
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Figure 16: Improvement in the Walmart-Amazon dataset, across all ablations and baselines.

SHIKI knn No confident
nodes

No labels No confident
nodes and la-
bels

GCN 1235226.0,
0.551 +
0.116 ± 0.072

31355.0,
0.583 +
-0.07 ± 0.044

1677220.25,
0.597 +
0.077 ± 0.039

939273.0,
0.546 +
0.102 ± 0.097

1934846.0,
0.54 +
0.13 ± 0

GraphSAGE 543543.083,
0.573 +
0.09 ± 0.078

31355.0,
0.573 +
-0.06 ± 0.04

1299022.0,
0.593 +
0.07 ± 0.026

794145.2,
0.544 +
0.102 ± 0.083

916166.0,
0.57 +
0.09 ± 0

GAT 830688.6,
0.544 +
0.053 ± 0.086

31355.0,
0.527 +
0.133 ± 0.047

2237028.75,
0.547 +
0.122 ± 0.075

872902.4,
0.548 +
0.064 ± 0.068

1973241.0,
0.53 +
0.15 ± 0

GCN2 1179941.125,
0.541 +
0.032 ± 0.058

31355.0,
0.557 +
-0.05 ± 0.057

1813669.875,
0.537 +
-0.005 ±
0.044

921473.4,
0.528 +
0.05 ± 0.058

1491614.5,
0.53 +
-0.015 ±
0.021

GraphSAGE2 898606.35,
0.554 +
0.122 ± 0.051

31355.0,
0.59 +
-0.018 ±
0.033

1479780.25,
0.608 +
0.071 ± 0.062

704871.5,
0.571 +
0.104 ± 0.077

918501.0,
0.58 +
0.09 ± 0.042

GAT2 1288287.275,
0.538 +
0.057 ± 0.071

31355.0,
0.545 +
0.035 ± 0.059

2711898.75,
0.519 +
0.106 ± 0.016

926080.4,
0.53 +
0.078 ± 0.068

1455389.5,
0.535 +
0.08 ± 0.071

Table 4: Mean improvement of our method with different strategies on multiple GNN types on the
Walmart-Amazon dataset.
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(a) Improvement in the XOR-GMM dataset in the easy regime.

(b) Improvement in the XOR-GMM dataset in the hard regime.

Figure 17: Improvement in the XOR-GMM dataset, across all ablations and baselines.
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(a) Improvement in the imbalanced XOR-GMM dataset in the hard regime.

(b) Improvement in the imbalanced XOR-GMM dataset in the easy regime.

Figure 18: Improvement in the imbalanced XOR-GMM dataset, across all ablations and baselines.
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SHIKI knn No confident
nodes

No labels No confident
nodes and la-
bels

GCN 75876.3,
0.824 +
0.026 ± 0.059

12203.667,
0.833 +
-0.263 ±
0.029

179333.75,
0.835 +
0.007 ± 0.005

48919.4,
0.824 +
0.03 ± 0.032

191680.0,
0.85 +
0.02 ± 0

GraphSAGE 72891.4,
0.828 +
0.028 ± 0.059

12203.667,
0.85 +
-0.083 ±
0.171

184433.5,
0.84 +
0.012 ± 0.005

41641.0,
0.82 +
0.044 ± 0.034

191664.0,
0.85 +
0.01 ± 0

GAT 51860.55,
0.82 +
0.038 ± 0.031

12203.667,
0.85 +
0.0 ± 0.01

251228.5,
0.817 +
0.027 ± 0.015

38868.6,
0.844 +
0.012 ± 0.004

191364.0,
0.85 +
0 ± 0

GCN2 71398.4,
0.815 +
0.028 ± 0.096

12203.667,
0.813 +
-0.243 ±
0.055

288346.25,
0.825 +
0 ± 0.0

58066.8,
0.822 +
-0.054 ±
0.124

95775.0,
0.82 +
0 ± 0

GraphSAGE2 89003.05,
0.827 +
0.024 ± 0.057

12203.667,
0.85 +
-0.003 ±
0.006

252282.25,
0.84 +
0.017 ± 0.005

67937.4,
0.816 +
0.04 ± 0.014

191700.0,
0.84 +
0.01 ± 0

GAT2 65301.15,
0.822 +
0.034 ± 0.035

12203.667,
0.85 +
0.007 ± 0.015

211304.75,
0.817 +
0.04 ± 0.014

24583.0,
0.826 +
0.034 ± 0.033

191342.0,
0.84 +
0 ± 0

Table 5: Mean improvement of our method with different strategies on multiple GNN types on the
Amazon dataset

SHIKI knn No confident
nodes

No labels No confident
nodes and la-
bels

GCN 41384.722,
0.245 +
0.083 ± 0.062

9137.0,
0.248 +
-0.0 ± 0.018

115761.094,
0.341 +
0.021 ± 0.056

35485.275,
0.321 +
0.062 ± 0.059

88497.5,
0.342 +
0.032 ± 0.056

GraphSAGE 6055.0,
0.216 +
0.034 ± 0.021

9137.0,
0.248 +
-0.001 ±
0.027

140844.156,
0.341 +
0.006 ± 0.053

30933.75,
0.321 +
0.058 ± 0.062

113537.125,
0.341 +
0.008 ± 0.058

GAT 25474.308,
0.17 +
0.111 ± 0.089

9137.0,
0.2 +
-0.047 ±
0.056

82940.867,
0.227 +
-0.014 ±
0.032

29827.2,
0.317 +
0.048 ± 0.067

82486.25,
0.202 +
0.116 ± 0.128

GCN2 46354.421,
0.215 +
0.026 ± 0.063

9137.0,
0.298 +
0.026 ± 0.061

180490.875,
0.288 +
-0.126 ±
0.116

23777.675,
0.297 +
-0.013 ± 0.09

106424.875,
0.3 +
-0.153 ±
0.121

GraphSAGE2 40277.2,
0.253 +
0.084 ± 0.062

9137.0,
0.248 +
0.005 ± 0.024

123188.406,
0.341 +
-0.006 ±
0.066

29393.15,
0.321 +
0.064 ± 0.061

88346.0,
0.341 +
-0.01 ± 0.068

GAT2 5058.5,
0.087 +
0.18 ± 0.083

9137.0,
0.2 +
-0.028 ± 0.03

119323.219,
0.202 +
0.117 ± 0.132

33376.25,
0.314 +
0.059 ± 0.073

71477.75,
0.203 +
0.119 ± 0.135

Table 6: Mean improvement of our method with different strategies on multiple GNN types on the
hard imbalanced dataset.
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SHIKI knn No confident
nodes

No labels No confident
nodes and la-
bels

GCN 94389.383,
0.748 +
0.064 ± 0.071

9137.0,
0.869 +
-0.063 ±
0.024

167987.271,
0.808 +
0.014 ± 0.024

68531.3,
0.744 +
0.068 ± 0.07

101141.167,
0.808 +
0.023 ± 0.026

GraphSAGE 82936.25,
0.752 +
0.063 ± 0.072

9137.0,
0.869 +
-0.053 ±
0.017

145206.021,
0.808 +
0.022 ± 0.044

59555.767,
0.741 +
0.068 ± 0.071

100986.917,
0.808 +
0.023 ± 0.051

GAT 84824.742,
0.769 +
0.046 ± 0.065

9137.0,
0.921 +
-0.008 ±
0.032

143709.688,
0.761 +
0.066 ± 0.082

59939.4,
0.766 +
0.039 ± 0.06

107861.833,
0.761 +
0.059 ± 0.087

GCN2 103420.883,
0.693 +
-0.226 ±
0.113

9137.0,
0.945 +
-0.114 ±
0.033

193252.646,
0.688 +
-0.565 ±
0.172

65390.317,
0.688 +
-0.234 ±
0.114

82802.417,
0.679 +
-0.66 ± 0.09

GraphSAGE2 84008.742,
0.749 +
0.062 ± 0.07

9137.0,
0.869 +
-0.048 ±
0.016

156263.542,
0.808 +
0.022 ± 0.049

46877.733,
0.744 +
0.062 ± 0.069

82050.25,
0.809 +
0.018 ± 0.051

GAT2 95431.062,
0.769 +
0.05 ± 0.067

9137.0,
0.921 +
-0.01 ± 0.022

141618.062,
0.761 +
0.087 ± 0.075

66775.6,
0.772 +
0.05 ± 0.069

102172.583,
0.761 +
0.091 ± 0.078

Table 7: Mean improvement of our method with different strategies on multiple GNN types on the
easy imbalanced dataset.

SHIKI knn No confident
nodes

No labels No confident
nodes and la-
bels

GCN 39181.518,
0.632 +
0.198 ± 0.107

9137.0,
0.417 +
0.012 ± 0.051

125314.515,
0.733 +
0.005 ± 0.049

26094.227,
0.613 +
0.254 ± 0.114

93707.25,
0.655 +
0.088 ± 0.136

GraphSAGE 18400.368,
0.623 +
0.169 ± 0.062

9137.0,
0.417 +
0.001 ± 0.057

121442.031,
0.741 +
-0.044 ±
0.033

13425.333,
0.631 +
0.156 ± 0.092

102421.417,
0.655 +
0.053 ± 0.15

GAT 38680.627,
0.541 +
0.269 ± 0.132

9137.0,
0.59 +
0.117 ± 0.152

125610.0,
0.513 +
0.225 ± 0.013

25222.017,
0.559 +
0.221 ± 0.116

102932.583,
0.558 +
0.245 ± 0.181

GCN2 9776.23,
0.575 +
0.051 ± 0.078

9137.0,
0.611 +
0.141 ± 0.067

205763.455,
0.628 +
-0.019 ±
0.013

8155.967,
0.605 +
0.073 ± 0.074

133461.417,
0.612 +
-0.025 ±
0.015

GraphSAGE2 18267.591,
0.632 +
0.154 ± 0.097

9137.0,
0.417 +
0.011 ± 0.058

103895.444,
0.713 +
-0.029 ±
0.101

13109.153,
0.636 +
0.151 ± 0.091

71875.5,
0.655 +
0.041 ± 0.154

GAT2 35683.015,
0.583 +
0.2 ± 0.124

9137.0,
0.59 +
0.191 ± 0.228

134354.829,
0.502 +
0.22 ± 0.024

22888.683,
0.559 +
0.213 ± 0.113

88188.167,
0.559 +
0.151 ± 0.133

Table 8: Mean improvement of our method with different strategies on multiple GNN types on the
easy synthetic dataset.
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SHIKI knn No confident
nodes

No labels No confident
nodes and la-
bels

GCN 74693.3,
0.395 +
0.18 ± 0.256

9137.0,
0.515 +
-0.075 ±
0.186

185907.0,
0.532 +
0.02 ± 0.022

35461.65,
0.406 +
0.158 ± 0.235

111521.5,
0.319 +
0.24 ± 0.264

GraphSAGE 54943.636,
0.412 +
0.168 ± 0.21

9137.0,
0.515 +
-0.096 ±
0.199

170437.156,
0.532 +
0.017 ± 0.018

30158.96,
0.43 +
0.181 ± 0.155

116324.5,
0.319 +
0.208 ± 0.279

GAT 43363.5,
0.377 +
0.219 ± 0.205

9137.0,
0.385 +
-0.006 ±
0.261

189625.312,
0.537 +
0.057 ± 0.065

28228.7,
0.386 +
0.199 ± 0.208

137788.0,
0.409 +
0.176 ± 0.333

GCN2 37179.719,
0.319 +
0.213 ± 0.087

9137.0,
0.323 +
0.23 ± 0.071

143112.812,
0.302 +
0.137 ± 0.071

17521.375,
0.342 +
0.189 ± 0.077

104540.125,
0.363 +
0.109 ± 0.025

GraphSAGE2 54268.725,
0.395 +
0.181 ± 0.218

9137.0,
0.516 +
-0.086 ±
0.193

116882.531,
0.32 +
0.243 ± 0.277

44714.9,
0.387 +
0.182 ± 0.216

73274.5,
0.323 +
0.243 ± 0.299

GAT2 43145.069,
0.363 +
0.225 ± 0.211

9137.0,
0.385 +
-0.129 ±
0.287

192782.938,
0.41 +
0.204 ± 0.3

35336.525,
0.387 +
0.204 ± 0.204

142004.0,
0.409 +
0.211 ± 0.322

Table 9: Mean improvement of our method with different strategies on multiple GNN types on the
hard synthetic dataset.

Figure 19: Parameters’ effect in the SHIKI model for the Amazon dataset.
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Figure 20: Parameters’ effect in the SHIKI model for the Walmart-Amazon dataset.

E.4 NUMBER OF EDGES

Here, we discuss the number of edges in each edge creation method. As we can see from the tables,
the number of edges in the SHIKI model is much bigger than in the KNN baseline.

In easier datasets such as the Walmart-Amazon dataset, the number of edges in SHIKI is about 40
times larger than in KNN.

In tougher datasets, naturally, the percentage of confident nodes is smaller than in easier datasets,
thus we can potentially have fewer nodes. Even in this case, the number of edges in SHIKI is about
4 times larger than in KNN.

This may indicate that in order to effectively utilize artificial edges, we need to create many edges.

E.5 GNN ARCHITECTURES

Examining the figures, we observe SHIKI’s improvement across various GNN architectures. In
many cases, the differences between them are minimal, and each architecture has instances where
it excels. This demonstrates that the SHIKI model performs well and consistently across all GNN
architectures.
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(a) Parameters’ effect in the SHIKI model for the easy XOR-GMM synthetic dataset.

(b) Parameters’ effect in the SHIKI model for the hard XOR-GMM synthetic dataset.

Figure 21: Parameters’ effect in the SHIKI model for the XOR-GMM synthetic dataset.
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Figure 22: Parameters’ effect in the SHIKI model for the synthetic imbalanced dataset.
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