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ABSTRACT

Graph Neural Networks (GNNs) are widely recognized as leading architectures
for addressing classification problems involving graphical data. In this paper, we
formally define the challenge of effectively constructing edges within a dataset and
training a GNN over this graph and introduce SHIKI - a novel method to tackle
this task. We provide a comprehensive theoretical analysis demonstrating how
graph convolutions can improve expected performance by leveraging edges. Our
study focuses on the node classification problem within a non-linearly separable
Gaussian mixture model, combined with a stochastic block model, and we visu-
ally demonstrate its applicability to real-world datasets. Specifically, we show that
a single graph convolution in the second layer can reduce the expected loss when
applying a heuristic for edge creation. We validate our findings through extensive
experiments on both synthetic and real-world datasets, including those related to
the entity matching problem and textual review classification. For the synthetic
data, we conduct experiments based on the dataset’s difficulty and various hyper-
parameters in our method, drawing connections between the two. Additionally, we
perform an ablation study by systematically removing components of our method
and testing the resulting degraded approach, which highlights the necessity of our
full method. We employ several GNN architectures in the experiments, including
GCN, GraphSAGE, and GAT.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a powerful tool for learning from graph-structured
data, with applications spanning social networks [Ding et al. (2019), molecular biology |Gaudelet
et al.| (2021), recommender systems |Wu et al.| (2018), and more. Aside from tasks where graph-
structure lends itself well to the domain, GNNs were also shown to be useful in tasks where the data
is not inherently structured, e.g., entity matching (Genossar et al., | 2023b).

Graph convolutional models |Kipf & Welling| (2017) are among the most popular approaches for
learning on relational data, leveraging the idea of aggregating the features of a node’s neighbors
rather than just its own. While numerous empirical studies on GCN variants (Chen et al.| (2020)
have demonstrated that graph convolutions can outperform traditional classification methods like
multi-layer perceptrons (MLPs), there has been little theoretical progress in explaining how graph
convolutions enhance node classification in multi-layer networks, especially on non-graphical data.

Baranwal ef al. recently showed, both theoretically and empirically, that even for applications with-
out inherent graph structure, synthetically created edges can boost performance |Baranwal et al.
(2022). Specifically, they demonstrate an improvement in performance where the data poses a train-
ing challenge for a simple multi-layer perceptron (MLP). In their work, edges are created according
to prior knowledge of the sample label, and no method for incorporating edge creation into the learn-
ing pipeline was proposed. We aim to bridge this gap, proposing a heuristic to create useful edges
on top of an MLP that models non-structural data in a self-supervised manner, followed by training
a GNN model over it using the generated edges. Our contribution is threefold:

* We propose and formulate a novel method for adding edges to a non-graphical data.

* We show the effectiveness of our method in terms of expected loss.
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* We empirically verify the formal results of our method using basic and known GNN ar-
chitecture such as GCN |Kipf & Welling| (2017), GraphSAGE Hamilton et al.| (2018)), GAT
Velickovic et al.|(2018), showing improvement over MLP training.

An open source anonymous access to SHIKI implementation is available here.

The rest of the paper is organized as follows. In Section [2] we provide a description of the data
model. In Section [3] we state our objective and provide a problem definition. In Section [4] we
describe our proposed solution. We also provide our notion of improvement and show results on
the expected improvement. In Section 5] we detail our experiments on synthetic and real-world data,
including an ablation analysis, to demonstrate the proposed method performance quality. We present
relevant related work in Section[6land conclude with some directions for future work in Section[7}

2 PRELIMINARIES

In this work, we use the XOR-GMM model Baranwal et al.[(2022)) to generate synthetic data. The
model serves as a basis to our formal and empirical analysis.

Let n and d be positive integers, where n represents the number of data points (sample size) and d
denotes the dimension of features. Let ey, ..., €, ~ Ber (%) andnq,...,n, ~ Ber (%) be Bernoulli
random variables. Also, let C, = {i € [n] | ¢, = b} for b € {0,1} be two classes. Let y and v be

fixed vectors in R%, such that ||u||2= ||v||2 and {u,v) = 0. Let X € R™*9 be the data matrix where
each row-vector X; € R? is an independent Gaussian random vector with distribution

Xi ~ N (20 = D((1 = &)p + €v), 0% 1) (1)
We use the notation X ~ XOR-GM M (n,d, j1, v, 0?) to denote data sampled from this model.

~
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(a) Example of a difficult dataset can be created by (b) Example of an easy dataset can be created by
the model, with distance between centers of || — the model, with distance between centers of || —
v||= 2.5, and standard deviation o = 0.7. v||= 4.5, and standard deviation o = 0.7.

Figure 1: Different data characteristic possible with the synthetic model

Example 1. Through the use of specific parameters of the model, including the distance between
centers ||y — v||, the variance o2, and number of points n, we can control the difficulty of classifi-
cation models to achieve their goal, when trained with the data. We illustrate this difference using
Figure[l) Figure[Id)illustrates a more challenging classification setting than Figure [Ib] due to the
shorter distance between the cluster centers. The mix between the blue and the red instances makes
it harder to train a classification model.

We use the XOR-GMM model to support our formal analysis. Despite its synthetic nature, we
observe that multiple real-world datasets exhibit behavior that can be captured by this model. For
illustration, we present next two well-known tasks, namely review classification on Amazon datasetﬂ
and entity matching on the Walmart-Amazon dataset

"nttps://www.kaggle.com/datasets/drshoaib/amazon-videogames-reviews
https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md


https://anonymous.4open.science/r/SHIKI-B54F/README.md
https://www.kaggle.com/datasets/drshoaib/amazon-videogames-reviews
https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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The Amazon videogames reviews dataset contains users’ reviews for video games on Amazon. For
each review, details are given about the reviewer, the product, the review text, and the overall rating
ranging in [1, 5]. The learning task involves predicting the overall rating given the other details.

—20 -10 0 10 20

(a) Amazon dataset embeddings after fine-tuning (b) Synthetically generated data according to the
bert and dimension reduction using TSNE. model’s version modelling the Amazon dataset.

Figure 2: Visual comparison between real-world data and synthetically generated data for the Ama-
zon review dataset

Figure [2] illustrates the vector space of data points from the Amazon videogames review dataset
(left) and a simulation of the data using a variation of the XOR-GMM model, keeping ¢;,7;, Cp
unchanged. We note that, unlike the theoretical model where centers of the same class are on
opposites sides, in this dataset, the centers of each class are on the same side, creating the elongated
shapes. Therefore, the GMM distributions becomes X; ~ N ((2¢; — 1)((1 — ;) + niv), 0°1q).
We swap the roles of n; and ¢;, meaning, points from class 1 will have the centers p, v, and points
from class 0 will have the centers —, —v. The result is given in Figure 2]

The Walmart-Amazon dataset is taken from the Magellan data repository (Konda et al., 2016). It is
a well-known dataset for evaluation of entity matching solutions. This dataset contains product data
from Walmart and Amazon. The original dataset contained two tables, and a golden standard match.

To better understand the matching task, we briefly present the entity matching problem. Let D =
{r1,r2, ..., } be a set of data records (dataset) and E = {ey, ea, ..., €, } a set of real-world entities
(m < n). Each record is associated with an entity in F using an entity mapping (mapping for short)
0 : D — E. Whenever 6 is unknown, for example, due to the absence of unique keys to identify
entities, entity resolution solutions aim to pair records in D such that if {r;,r;} C D are paired
together then 6(r;) = 6(r;). D is usually characterized by a set of attributes A = {a1,as, ..., ar},
such that a record r; = (r;.ay,r;.a9,...,7;.a) is assigned with values to all attributes (some of
which may be null values).

For the Walmart-Amazon entity matching dataset, Figure [3a provides a two dimensional illustration
of representative vectors (with dimension of 768) of a fully trained models. We observe that positive
pairs tend to gather together, surrounded by a background of negative pairs. Unlike the theoretical
model where each class has two centers, this dataset has class imbalance, and the classes are repre-
sented by a single positive center and three negative centers instead of balanced two centers for each
class. To capture imbalance, one center has less points than each center from the other class. Thus,
we need to model further imbalance for the center. We model this by giving a lower probability for
a point to be in this center.

To achieve this setting with the XOR-GMM model, we define wy to be the probability of a node
being in class 0, and w; in class 1. Obviously 0 < wg = 1 — w; < 1, in order to achieve the

phenomena of a small center, we use 0 < w; < % The definitions for €;, X; stay unchanged,

while we set 7; = Ber(%—i—ei (wl— ;)),andseth tobe Co ={i € [n] | ¢ =0Vn =0}

Cy ={i €[n]| €& =1An; =1}. Data points from class 1 have a single center v, and points from
class 0 have three centers 11, —f1, —v. The result is given in Figure[3b
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(a) Visualization of pairs distribution by t-SNE, (b) Synthetically generated data according to the
partitioned into match and non-match pairs. model’s version modelling the Walmart-Amazon
Taken from (Genossar et al.,[2023a). Entity Matching dataset

Figure 3: Visual comparison between real world data and Synthetically generated data for the
Walmart-Amazon entity matching dataset

These models deviate from the original one by either class imbalance, or shifted centers. Due to
the high similarities of these models, in Appendix |B|we demonstrate that given the original model,
each such deviation retains the nice theoretical properties of the original XOR-GMM model, and in
Appendices[C|and [D]we formally prove these nice theoretical properties.

We conclude the section with a description of the process of creating the graph over a XOR-GMM
generated dataset, following (Baranwal et al.,[2022). Although we do not use this process, its de-
scription assists in defining our proposed method. The graph is represented as an adjacency matrix,
A = (a;5),4,j € [n] , which corresponds to an undirected graph including self-loops, and is sam-
pled as follows. a;; ~ Ber(p) if ¢, = €; and a;; ~ Ber(q) if ¢; # €;. Therefore, for any two
nodes, if they share a class, we create an edge with probability p, otherwise we create an edge with
probability q. We call it XOR-CSBM, and denote (A, X) ~ XOR-CSBM (n,d, u,v,02%,p,q).

3 PROBLEM STATEMENT

In Section 2] we have demonstrated, using two real-world datasets, an interesting spatial effect. Using
MLP, we can construct an embedded vector space in which data items from the same class tend to
cluster together. Such a phenomenon provides us with a good starting point when constructing a
graph structure that serves in training a GNN to improve the outcome of a classification problem.
Our goal in this paper, is therefore, to enhance MLP usage of node features by connecting similar
nodes of the same class and use GNN’s message-propagation to improve the generated embedded
space. We focus our attention on a careful selection of edges to connect nodes of the same class.
In this work we offer a comparative analysis of artificially created graph convolutions with those of
a traditional MLP that does not incorporate graphical information. In particular, we are interested
in answers to the following two questions. First, is it possible to create edges from a non-graphical
data in a way that takes advantage of the performance improvement GNN provides in a graphical
data? Then, we are interested in identifying provable improvements.

Let X ~ XOR-GMM (n,d,pu,v,0?) be as defined above. Our goal is to design fonn =
G(X, E), a function that takes as a parameter the data X, and outputs a graph from X in a way
that supports our overall goal of improved training. The nodes of G are the data points, V = X and
E CV x V. We define improvement in terms of expectation over the normal distribution of Eq. [T}
We treat n, d, i1, v as constants. Therefore,

Ex(f(X)) =Ex(f(X)|n,d, p, v) 2

The MLP and the GNN share most of the characteristics, as can be seen in Table[I} They differ only
in the node computation f()(X). k; denotes the number of graph convolutions placed in layer I.
The learnable parameters are G(W(l), b(l)) 1e(r)- For the loss we use a standard cross-entropy loss
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Table 1: MLP and GCN Characteristics

Characteristic | MLP GCN Comments
HO — X X

fOX) = HEOWO 150 T (D TARHEDWO 150 | fori € [L]
HO = ReLU(fO(X)) | ReLU(fD(X)) for | € [L]
= p(f (X)) p(fM (X))

defines as L(X/G) = —+ Zie[n] yilog(9:) + (1 —y;) log(1 — ;). Problemsummarizes our goal,
as follows.

Problem 1. Let X ~ XOR-GM M (n,d, ji,v,0?). Design fann(X) s.t.
fGNN(X) = G(X, E) S.1. ]EX(LGNN(G)) < Ex(LAjLP(X)) 3)

Problem E] is defined in a way that closely follows the results of [Baranwal et al.| (2022), in that it
seeks a graph that offers a provable improvement over the MLP performance, by expectation. We
observe that this problem can be extended to a more general optimization problem of finding an
optimal graph, as follows.

Problem 2. Let X ~ XOR-GMM (n,d, ju,v,0?). Find G(X, E) s.t.
G = argming/egIEX (LGNN(G)) (4)

Following Baranwal et al.[ (2022), we focus on solving Problem (1} leaving Problem [2| for future
work.

4 SHIKI: A HURISTIC APPROACH

Choose
. Extract confident
(SE:L?DTI;P‘I) confidence of nodes Csrea:le edfjs Train GNN
: weak labels (Sections 4.2 (Section 4.4)
and 4.3)

Figure 4: An Ilustration of the SHIKI pipeline

Solving Problem I} we present SHIKI: a Self-supervised Heuristic approach for Improving MLPs’
Knowledge by Integrating GNNs. We use a heuristic similar to the graph creation described in Sec-
ﬁ (see Section ,
and for a GNN to be effective, we want p and ¢ to be as different as possible. Had we known 1in
advance the ground truth labels, we could directly control p and q. However, we do not have a direct
knowledge on the ground truth during test time. Therefore, we need to resort to approximating them.

tion[2| We observe that the GNN loss in Baranwal et al.|(2022)) depends upon

Figure [ illustrates a pipeline, in which a training dataset D is effectively train by combining some
MLP and through an effective selection of edges for a graph over the data items, trains a GNN.
The pipeline contains five processing steps, to be detailed next. We conclude this section with some
results on the improvement that can be gained by using SHIKI.

4.1 MLP TRAINING

The first step in the pipeline involves training and MLP on the data. The training yields three
outcomes that are useful for us. First, it yields a label for each trained dataset. Second, it provides a
confidence in the classification task. Finally, it generates a latent vector space.

The latent vector space offers a notion of a distance. In general, such a distance measure does
not have to rely entirely on the outcome of the MLP. For tabular data, we can use the columns as



Under review as a conference paper at ICLR 2025

dimensions in a vector space. For textual data, we can create embeddings using an LLM, capturing
the latent vector space of the last layer. Finally, for vector data, we can use the vectors themselves,
or alternatively use an MLP’s hidden-layer embeddings.

4.2 CONFIDENCE OF WEAK LABELS

In this step we get the confidence score from the trained MLP, thus using weak labels. Weak labels
are noisy and uncertain labels that may differ from the true labels. Using weak labels runs the risk
of predicting the wrong labels to nodes in the graph. Wrong labels hurt the training in general and
in particular will harm the process of edge creation. In particular, weak labels, when used in edge
creation are likely to increase ¢, the probability of connecting mismatched nodes, which leads to
deteriorated performance.

For each instance x, the MLP first calculates a score | M LP(z)|€ (—o0, 00), on which we apply the
sigmoid function to generate a distribution in [0, 1]. Nodes with high absolute values are assumed to
be nodes the model are confident in their prediction, and we call them confident nodes. We assume
(and later prove) that more confident nodes tend to produce more accurate predictions.

4.3 CONFIDENT NODES SELECTION

In this step we determine the set of confident nodes to be labeled and participate in edge creation
with respect to these weak labels, using the method in (Baranwal et al., 2022). We consider two
possible ways to select confident nodes, as follows.

Top percentile: We order the nodes according to the scores the MLP assigns with them, and define
any node z that is within the top percent of the scores, where percent is some hyper-
parameter to be a confident node.

Confidence threshold: Given a threshold 7 > 0, a node x is defined to be a confident node if
|[MLP(z)|> 7.

We note that highly parameterized models, including transformer-based pre-trained language mod-
els, often generate uncalibrated confidence scores (Guo et al.| [2017; Jiang et al., 2021}, |Genossar
et al., [2023a). These scores tend to be mostly dichotomous, clustering near 0 or 1, making them
unreliable. Thus, one needs to be careful directly using a LLM (instead of a simple MLP) as part of
our model.

4.4 EDGE CREATION
Edge creation is done in the same manner as described in Section [2] taking into account only confi-
dent nodes. This method, which we refer to as main strategy, is based solely on node labels.

We observe that in real-world graphs, edges tend to connect nodes that are in close proximity. Thus,
we propose a strategy that takes into account also node distances. We propose two strategies, as
follows.

Proximity Strategy: Following the observation above, closer nodes will be more likely to be con-
nected.

Diversity Strategy: Nodes that are further away are assigned with higher probability to be con-
nected. This strategy aims at diversity to increase the information gain.

4.5 MEASURING IMPROVEMENT

We conclude with the definition of an evaluation measure, with which we measure the performance
of the variations of the SHIKI approach. We measure performance in terms of improvement over a
basic MLP. For that we calculate expectation of each loss (eqs. [5]and [6)) and compare (Eq.[7).

Ex~x0Rr-GMMn,dpuv,02)(Larp) (5)

Ex~ xOR-GMM(n,dpw,0?) (LSHIKT) (6)
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imp = Exxor-GMMn,d o) (Lyvrp-LsaIKT) o

= Ex~x0or-6MMmn,dpw,e?) (Lvrr) — ExoxoRrR-GMM(n.dpuv,e?)

Intuitively speaking, when dealing with an easy data, the task is easy enough for MLP to succeed on
its own, and adding GNN does not affect the performance. Also, when the data is too difficult, creat-
ing the edges using self-supervision is not effective, and the GNN may even worsen the performance
as compared to simply applying MLP. Thus, we seek to identify the region of improvement, where
the data is difficult enough for a plain MLP to perform quite poorly, yet sufficiently easy for a GNN
to perform well and boost performance. This is controlled by three parameters, namely n, v, o2

We also expect the improvement to depend on SHIKTI’s hyper-parameters, namely 7 or percent. In
what follows we shall discuss only the impact of 7. When 7 is too small, we wind up considering
all nodes, which we expect to lead to poor performance. On the other hand, when 7 too large, we
barely choose any node, limiting the impact of the GNN.

When analyzing the losses, we use two measure. o is the probability of getting the right prediction
given a confident node and f3; represents the probability of a node being confident.

Theorem 1. Let X ~ XOR-GMM (n,d,u,v,0?), with the edge creation created as above we
have:

I Ex(Larp) = 2v20%6(Z5-) — 20%¢(%)

2. Ex(Lsurxr) = P(confident) - Ex(Lann) + Ex(Larrnp|not confident)

’2
Ex(Lsuikr) = Br- €$p<—2+327;(2047 - 1)2) +

(%%(1’)(2(1 —a(z) -1+

92/302 (¢(}T/U) _ ¢(‘\'}%‘ZT)<I>(_\’;/§;T) - éf’(w\lf;;)q)(y\/%;)) >

Where ¢(x) and ®(x) denote the pdf and cdf of a standard Gaussian.

Proof sketch To calculate the expected MLP loss, we use the plain definition of probability times
value, calculating the probability followed by the expectation. To calculate our method’s loss, we
first separate the loss to the MLP part and the GNN part. For the MLP, we calculate the expectation
similarly to the first part. For the GNN part, we know from [Baranwal et al.| (2022) its value. Then
all is left is combining theses in the right way. [

Figure 5: MLP vs SHIKI loss, blue - MLP, green - SHIKI

We next visualize in Figure 5] the losses’ behavior by plotting the loss of each model, as a function

of x-axis = %, y-axis = 7, with & = 5. As observed, SHIKI’s expected loss is generally lower than
that of the MLP, with the exception of instances where the y-axis values become significantly large.
Even in these cases, it suggests a stronger integration of the GNN is necessary. Additionally, this
may be due to the fact that the losses are only approximated.



Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

In this section, we present empirical evidence to support our claims that the SHIKI model outper-
forms the standard MLP.

Datasets: We verify our method’s result for both the real-world datasets, tailored for node clas-
sification tasks and the synthetic data model. Both intuitively and formally, we wish to choose a
large p value and a small ¢ value, to connect more nodes of the same class. Thus, in our experi-
ments, we focus on this case, and choose p € {0.7,0.8}, ¢ € {0.1,0.2}. Furthermore, we use with
7€ {0.7,0.8,0.9}, percent € {0.1,0.2}.

In terms of real-world datasets, we tested the SHIKI model on the Amazon reviews and the Walmart-
Amazon datasets (see Section [2). The structure of the data cannot be controlled to conform in full
to our proposed model and the controlled parameters are p, ¢, 7 and percent.

For the Walmart-Amazon data, we use DITTO |L1 et al.| (2020), a state-of-the-art tool for entity
matching, using RoBERTa|L1u et al.|(2019). The extracted pair embeddings serve us in the training
of the MLP and the GNN.

By controlling the distance between the means, as demonstrated in Section |2| we separate the ex-
periments with the synthetic data into two regimes, namely hard and easy. In the hard case, the
distance spans from .3 to 1.5, with jumps of .15. In the easy case, the distance spans from 1.5 to 5,
with jumps of .3. For the hard case, we use f-score, to prevent the learner from simply classifying
all the data points as the same class. For the easy case, it is suffice to check for accuracy.

For set splits, we used train/test splits with the bigger subset used for training.

Baseline: As a baseline, we compare SHIKI to a popular graph creation heuristic, namely KNN
(k-nearest-neighbors), where we connect each node to its k closest nodes.

Evaluation measures: For evaluation, we use three evaluation measures. The mean number of
edges constructed by the method, the mean improvement over the MLP and standard deviation of
the improvement. For the improvement, we applied all of SHIKI’s strategies described in 4.4} and
chose the best one.

System Details: All experiments use PyTorch Geometric (Fey & Lenssen, |2019) and were per-
formed on a server with 2 NVIDIA GeForce GTX 1080 Ti and a Rocky Linux release 9.4 (Blue
Onyx) operating system. Networks were implemented using PyTorch |Paszke et al.| (2019) and Py-
Torch Geometric (Fey & Lenssen, 2019).

5.1 RESULTS

We present next partial results of our. Due to space limitations, we present the results for the
Walmart-Amazon dataset and results for the hard XOR-GM M model case only. The Amazon
reviews dataset results the analysis of the easy case are given in Appendix

SHIKI knn No confident | No labels No confident
nodes nodes and la-
bels
GCN2 1179941.125, | 31355.0, 1813669.875, | 921473.4, 1491614.5,
0.541 + 0.557 + 0.537 + 0.528 + 0.53 +
0.032 +0.058 | -0.05 + 0.057 || -0.005 + | 0.05 +0.058 | -0.015 +
0.044 0.021
GraphSAGE2 | 898606.35, 31355.0, 1479780.25, 704871.5, 918501.0,
0.554 + 0.59 + 0.608 + 0.571 + 0.58 +
0.122 +0.051 | -0.018 + || 0.071 £0.062 | 0.104 +0.077 | 0.09 £ 0.042
0.033
GAT2 1288287.275, | 31355.0, 2711898.75, 926080.4, 1455389.5,
0.538 + 0.545 + 0.519 + 0.53 + 0.535 +
0.057 +0.071 | 0.035£0.059 || 0.106 £ 0.016 | 0.078 +0.068 | 0.08 = 0.071

Table 2: Improvement of the SHIKI method with different strategies on multiple GNN types on the
Walmart-Amazon dataset.
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SHIKI knn No confident | No labels No confident
nodes nodes and la-
bels
GCN2 37179.719, 9137.0, 143112.812, 17521.375, 104540.125,
0.319 + 0.323 + 0.302 + 0.342 + 0.363 +
0.213 +0.087 | 0.23 £ 0.071 0.137 +£0.071 | 0.189 £0.077 | 0.109 4+ 0.025
GraphSAGE2 | 54268.725, 9137.0, 116882.531, 44714.9, 73274.5,
0.395 + 0.516 + 0.32 + 0.387 + 0.323 +
0.181 +0.218 | -0.086 + || 0.243 +0.277 | 0.182 +0.216 | 0.243 + 0.299
0.193
GAT2 43145.069, 9137.0, 192782.938, 35336.525, 142004.0,
0.363 + 0.385 + 0.41 + 0.387 + 0.409 +
0.225 +0.211 | -0.129 + [ 0.204 £0.3 0.204 +0.204 | 0.211 +£0.322
0.287

Table 3: Improvement of the SHIKI method with different strategies on multiple GNN types on the
hard X O R-GM M synthetic model.

Tables 2] and 3| present the results for the Walmart-Amazon and X O R-GM M synthetic model data
sets, respectively. Each row represents a different GNN architecture (GCN, GraphSAGE, GAT),
where the GNN layer is only available at the second layer. Consider for now the first two columns
in the table, representing our full SHIKI model and the KNN baseline. Each cell corresponds to
a certain GNN architecture and a specific edge creation method. In each cell we present the mean
number of edges constructed with the method, the mean MLP accuracy, and the mean and stan-
dard deviation of the improvement in the following format: #edges, mean M LP accuracy +
mean improvement + improvement standard deviation.

Best performing algorithm, in terms of accuracy improvement is marked in bold. It is evident that
SHIKI consistently outperforms both MLP and KNN.

Additionally, SHIKT demonstrates consistent performance across all GNN architectures, with only
slight variations in their results. A more detailed discussion is provided in the Appendix

The_Structured-Walmart-Amazon_Dataset_main_plot

el o Ik il L

0.2 GAT 0.2 GAT

The_synt_Dataset_hard_main_plot

GCN GCN
GraphSAGE 0.0 GraphSAGE

2L 2L 2L 2L 2L 2L 2L 2L 2L 2L
with no with the knn with with with no with the knn with with
ablation baseline ablation c ablation | ablation baseline ablation ¢ ablation |
GNN architectures GNN architectures

with with
ablation cl ablation cl

(a) Plot of the SHIKI model improvement across
all ablations and baselines on a real-world dataset.

(b) Plot of the SHIKI model improvement across
all ablations and baselines on a synthetic dataset.

Figure 6: Plots of real-world and synthetic data comparing SHIKI to multiple ablations and base-
lines.

The results are also presented visually (Figure[6) for ease of understandings. Similarly to the tables,
the first bar group is our full SHIKI model and the second is the KNN baseline. Each bar group
consists of the three GNN architectures. The colored bar represents the mean MLP accuracy with
its corresponding GNN architecture. The gray bar above represents the mean improvement (no such
bar means no improvement) with the standard deviation as the black line. The visual representation
provides a clear illustration of SHIKI’s superior performance over the baseline.

We also provide an ablation study, using three different variation, as follows.

No confident nodes: Instead of taking only the most confident nodes, we take all of the nodes, and
apply edge creation considering all of the nodes.
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No labels: Instead of considering the weak labels of the most confident nodes, for each pair of
nodes, we create an edge between them with probability of 0.5. This is done by setting
p=q=0.5.

No labels, No confident nodes: We take all nodes and for each pair of node, we create an edge
between them with probability of 0.5, rendering the weak-labels useless. Note that we
randomly create edges between nodes.

The three right-most columns of tables[2]and [3]and three right-most sets of bars of each of the graphs
in Figure [6] provide the ablation study analysis. Clearly, SHIKI outperforms its subsets, justifying
the use of confident nodes and applying spatial consideration when generating edges.

6 RELATED WORK

There is a significant body of theoretical work on unsupervised learning for random graph models
where node features are absent, and only relational information is available (Decelle et al., 2011}
Massouli€, [2014; Mossel et al., [2018; 2015 |Abbe & Sandonl 2015} [Abbe et al.l 2015; |Bordenave
et al., 2015; |Deshpande et al., 2015; |Montanari & Senl [2016} [Banks et al.,|2016; |Abbe & Sandon)
2018 L1 et al., 2019; [Kloumann et al., [2017; \Gaudio et al.,[2022). In contrast, for data models that
include both node features and relational information, numerous studies have addressed the semi-
supervised node classification problem, such as (Scarselli et al., [2009; |Cheng et al., 2011} |Gilbert
et al., [2012; |Dang & Viennet, 2012} |Giinnemann et al., [2013} [Yang et al., 2013} Jin et al. 2019;
Mehta et all 2019; (Chien et all [2022; [Yan et all [2021). These works offer valuable empirical
insights into the benefits of incorporating graph structure. Our study addresses a slightly different
settings, where node features are available, yet relational information is missing.

In Deshpande et al.| (2018)); Lu & Sen| (2020), the authors investigate the fundamental thresholds
for classifying a significant portion of nodes with linear sample complexity and large, but finite, de-
grees. In|Fountoulakis et al.[(2022), the authors present a theoretical analysis of the graph attention
mechanism (GAT), identifying the conditions under which the attention mechanism is effective (or
not) for node classification tasks. Our research, however, focuses on graph convolutions rather than
attention-based methods. While several studies examine the expressive power, extrapolation, and
the oversmoothing phenomenon in GNNss (see, e.g., Balcilar et al.| (2021)); Xu et al.[(2021));|Oono &
Suzuki| (2020); L1 et al.[(2018)), we aim to compare the strengths and limitations of graph convolu-
tions with those of traditional MLPs when both do not leverage built-in relational information.

In [Li et al.|(2024)); |[Chen et al.| (2023), the authors also utilize artificial edges using standard k-
nearest-neighbors procedure in their node-classification process. However, their setting still requires
an existing built-in graph, while we focus on constructing the graph.

7 CONCLUSION AND OPEN QUESTIONS

In this work, we defined the challenge of effectively constructing edges within a dataset for improved
training using GNNs and introduced a novel method to tackle this task. We formally shown and em-
pirically demonstrated how graph convolutions could improve expected performance by leveraging
these created edges. The results were empirically confirmed through extensive experiments on both
synthetic and real-world datasets, including those involving the entity matching problem and text
prediction.

Our analysis is limited to the SHIKI heuristic. Other heuristics will require a new analysis. Fur-
thermore, we did not solve or claimed to solve the optimality problem (Problem 2. Thus, in future
work we intend to investigate effective solutions to this problem by either finding the optimal graph,
or showing a way to optimize the task directly.

Finally, our analysis is limited to graph convolution. A possible future direction is to test whether
our theoretical insights also apply to graph attention networks (GAT).

10
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A CALCULATIONS FOR THE MAIN RESULTS

A.1 ASSUMPTIONS AND NOTATION

Assumption 1. We use similar assumptions and notation as in (Baranwal et al.| |2022)). For all the
variations of the XOR-GM M data model variations, the means of the Gaussian mixture are such
that (1, v) = 0 and | u]}2= [[v]]2.

We denote [z]; = RELU(x) and ¢(z) = sigmoid(z) = 1-%% applied element-wise on the
inputs. For any vector v, 0 = m denotes the normalized v. We use v = ||u — v||2 to denote the

distance between the means of the inter-class components of the mixture model, and 7’ to denote
the norm of the means, ' = % = ||pll2= ||Vl

We present the calculations for the algorithm’s version with the threshold 7, noting the case with the
top percentile is more complicated, and serves no additional purpose.

A.2 DATA DIFFICULTY
A.2.1 PERFECT CLASSIFIER

Assuming 7' = Q(o(log n)%+5), then, according to [Baranwal et al.| (2022), both MLP and GNN
perfectly classifies the data w.h.p. Thus, rendering this scenario not interesting since our model
won’t be able to improve the loss and performance of an MLP.

A.2.2 PARTIALLY RIGHT

In order for our method to succeed in improving the performance, we need the MLP to be wrong a
meaningful percentage of the times. Thus, we would look at the case where 4" = Q(K o). In this

case, the MLP is bound to make mistakes. And for the GNN we have {2 (4‘7 V(l"g:)> < QoK)
np-4q

when p, q = 9(@) Thus, the GNN is expected to classify the data well. Meaning, we are most
likely to improve in this area.

A.3 MLPLOSS

First, let’s exactly calculate the expected MLP loss.
Define z; = |(x;, t)|—|{z:, V)|, the expected MLP loss will be:

E(LI\/ILP) = ffooo p(Z = t)L(t)dt
We also have:
E(Lyrple ~|ul) = [Z5 p(z = tla ~ |p) Ltz ~ |ul)dt

Notice that when (z|z ~ |u|) > 0, we are right in our prediction, subsequently, the loss approaches
0, thus we will ignore this case. Also, note that for (z|x ~ |u|) < 0, since we use the cross-entropy
loss, we have L(z|z ~ |u|) = In(1 4+ e7%) &~ —=z.

Finally, due to symmetry we have:

E(Lyrp) = E(Larp|r ~ |u) = [ p(z = tle ~ |p]) - (—t)dt

We will need some more auxiliary calculations to help us in the way.

A.4 LEMMAS

Here we prove some basic lemmas to help us calculate the loss.
Let’sdefine A = =, B = 5702 A-B=="2_t ('=—-A-B= T

g o o

,0' = max(—B,0).

ale
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Lemma 1.

Pz = 2 ~ ul) = V3( ‘}; - Ufﬂ@((;} Off>+

PR o

Proof. First notice X; = 11 + 0g;. In order to exactly calculate the probability, we will separate it
to the cases (X, 1) > 0 and when (X, p) < 0.

P(z; = tlz; ~ |u]) = P((Xs, W)= (X4, v)|= t) P + o{gi, )| —ol{gi, Di)|=t) =
P(Y' 4 0(gi, fts) — ol{gi, Vi) |= t) P((gi, i) > = ,) + P(—' = a(gi, f1:) — ol(gi, Vi) |=
O P((gi, f1i) < =F) =

’

P2 = {gi, D) —(gi ) P(—{gis i) < L)+ P(ZL= = |{gi, D) +(gs, 1)) P({gi, fus) <

q

’

=)

This expression contains 2 sub-expressions within it. We will calculate the first half, and the second
half will be very similar.
We now define random variables 7, = (g;, ?) and Zy = {g;, f1) and note that Z;, Z5 ~ N(0,1) and
E[Z1Z5] = 0. We have:

=

P2t = (g, D) (g, WM{gis i) > “L) = P(|Z1|~Z2 = A~ B|Zy > —~A) = 2P(Z1 — Zo =
A—-B Zl>O|ZQ> A —2];,)0 U.))P(*ZQZAfow‘7Z2§A)dU):
2), ¢ %dw Pz Jy SW)P(Zy=C —w) =

VEINS) L6

Where b’ = max(—B,0).

Second to last equality is change of parameters, last equality, to evaluate the integral above, we used
Owen| (1980), Table 1:110.

Similarly for the second expression:

P(=L= = [(gi, 0| +{gi, ) {gs: 1) < =) = P(|Z1|+Z2 = —A — Blzz <-4)=
A N o V2 (CT) / c’ f(b( / c’
P(|Zi|~(=2Z2) = A' = B|~Zy > —A') = 55377 @(—V2V + &) = Lo (— vV + %)

Summing those two expression, we get:

plzi =tz ~ |ul) = P(XE = |{gs, 0)|—(gs. P < jirfii) < %5) + P =
S ey + G- <A>+Q‘Af))<b< VA + € a(4) =

V20(55)®(~ fb’ L)+ V20 ) (- Vab + &) =
VIS )LV + 5>+f¢< f) ALVI+E5E) =
V20(5% — Z5) (2% + oLs) + V20(25

To give some intuition to how this expression behaves, we will plot it as a function of ¢, where
v =0c=1:
Lemma 2. Fort > 0:



Under review as a conference paper at ICLR 2025
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Figure 7: Lemma s expression, we can observe that when ¢ < 0 or when ¢ is pretty big, this ex-
pression approaches 0, suggesting the most likely case is for the expression to be somewhat positive

P(z; > tlz; ~ |p]) = + (=

B(ABY2 4 (=A-B)?

Fort < 0:

Pz >tz ~ |u]) =
20(~B) — 1 -2} — B(B))(®(A — B) + B(~A — B)) + B(A75)? 1 o(=A-D)2

Proof. We will start the proof for both cases similarly to[A-4] using the same notations:

P(z >tz ~ |ul) = P(ly +U<gi,ﬂg>|2 al{gi, i) |+t) = P(y + o(gs, 1) >
ol{gs, 25} + tll{gi, i) > =) P (i, i) > =) + P(=y" = 0gi, i) = ol(gi, D) [+t (g, f1s) <
=) PUgi fi) < Z5)) = POy — t 2 al{gi, Di)|—o <gi7ﬂi>|<gi7ﬂi> )P (g ) >
=) + P(—y =t > al{gs, 03) |+ {gi, i) (g0 i) < =LVP({giy fui) < =L))

We will now separate the calculations depending on the sign of t.
For t > 0, again separating the expression, we get:

P(|Z1|~% < A~ B|Zy > —A) = 2P(Z1 Zy < A—B|Zy > —A) = 2f0°° w)P(~Z5 <
S P Z3<A—B—w
A-B-w|Zy 2 —A)dw = 2fo () 2w = atay Joo W)= B —w)dw =

A)f p(w)®(A — B +w)dw = 5 (A)' o= <I>(A)

Where we evaluate the integral using Owen| (1980) Table 1:10,010.7. For the second sub-expression
a very similar calculation can be done. Combining both expressions we get:

qJ(A\;EB)2 @(71\4/%3) A_B 9
Pz > 7z ~ Jul) = 2(A4) - “GA v+ a(-a)- T = e(458)2 1 9(=421)

For ¢ < 0, separating the expression, we get:

P(|Zy|~Zs < A~ B|Zy > ~A) = 2P(Zy — Zs < A~ B|Zy > —A) =2 [* ¢(w)P(~Zs <
A=B—w|Zy>~A)dw =2 [, P p(w)P(~Zy < A~ B —w|Zs > — A)dw +

2 % p(w)P(~Zs < A~ B —w|Zy > —A)dw =2 [, 7 ¢p(w)ldw + 2 [°, p(w) P(~Z2 <
A= B—uwlZ > —4) =2 ((®(=B) - §) + 5 [7, 6(w)®(A - B+ w)dw)

where we changed the probability to 1 because:
P(—ZQSA—B_U}‘ZQE_A) ( ZQ<A+

(-
O<w<-B—-B<-w<0—=0<-B-w< B—>A<

w|—Z2 < A)

B) -
<AL(B)-w<A-Bo
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Unfortunately, we can’t directly evaluate this integral, since as seen in |Owen| (1980) Table
1:10,010.4, this expression doesn’t have a closed form, so we will result to approximate it.

2((@(=B) = 3) + gty I 6(w) (A—B—i—w)dw):

2((@(—3)—%”@7)0_ $(2)B(A — B+ w)dw — [° é(w) (A — B—&—w)dw))z
2((@(=B) = ) + sty (J o 6(w)@(A = B+ w)dw — [} 6(w)®(A - B)dw)) =
2((@(-B) - 1) + 5ty (J0(42)2 - 24— B)(@ <o>—<1><B>>))=

(
Lo(A2E)2 — a(4 - B)(} - o(B))))

P(z > rlz ~ ) = 2 ((2(=B) = §) + 5ty (30(472)2 - 0(4 - B)(} - 2(B))) )
o(4) +2 ((@(=B) = ) + 5y (30(=452)* — 0(-A - B)(} - 0(B))) ) - ©(-4) =
2 (@(A)(@(~B) — ) + (30(4E)* - o(A- B)(} —o(B))) ) +
2 (@(-A)(@(~B) - ) + (10(=458)? = o(-A - B)(} - 0(B)) ) ) =
20(—B) —1—-2(3 — ®(B))(®(A — B) + ®(~A — B)) + &(2F)* + o(=5L)?

To give some intuition to how this expressions behaves, we will plot them as a function of ¢, where
!
v =0=1

Figure 8: Lemma s expression as a combination of the two expressions in the respected cases. We
can observe that generally speaking, this function is monotonically decreasing.

Lemma 3.
dent) ~ 20 A= B “A-B)
B = P(confident) ~ 29( 7 ) +2®( NG} ) —29(B)+
2(% —®(—-B))(®(A+ B)+ ®(—A+ B))

Proof. We will first do some intermediate calculations.
In Lemmal[2] we calculated P(z > 7|z ~ |u]), now note:

P(z >z~ u]) = Pz < —rlz ~ |ul) = 1 = P(2 > 72 ~ |u])
Now we will also calculate, P(z > 7):
P(z>7)=P(z> 7|z ~|u))P(z ~ |u|) + P(z > 7|z ~ [V|)P(z ~ [V]) = 5 (P(z > Tlz~

i) + Pz > 7]z ~ |u>) - ;(P<z Sz~ W) 41— Pz > 1]z ~ Iul))

17
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And now we can calculate 3, using above expressions.

Br=P(z|]>7)=P(z>7)+Plz<—-1)=Plz>71)+(1—-P(z>-71)) =

1

2
=
1+ Pz>71lz~|p|) — Pz > —7|z ~ |u]) =
A—-B —-A—-B

1+(c1>( 7 )2+ ®( 7% N
(2@(3) 1ot mem) @At By oAt B+ oA By g q>(‘A+B)2>) -

[P(z > 7]z ~ Jul) + 1 = P(2 > —rlz ~ )]+

(PG> ~rls ~ ) + 1= Pl > 7l ~ )]

N |

2 V2 V2
1+ ((IJ(A\ﬁB)Q+‘I’(/i@B)22©(B)+1+
. A+ B, —A+ B\
25 — 2=B)(®(A+B) + &(-A+ B)) — &(— =) — &(— 7 ))_

2+ <<1>(A\;§B)2 — @(A\J/%B)Z + @(_A\/; B)Q—

~A+ B, 1 B
— 5 )"~ 20(B) 25— P-B)(®(A+ B)+ B(-A+ B))) =

A- B)1+2<I>(_A_B)12<I>(B)+2(;@(B))(@(A+B)+<I>(A+B))) -

V2
A-B —-A—-B 1
)+ 2@(7) —2®(B) + 2(5

—®(—B))(®P(A+ B) +®(—A+ B))

O

To give some intuition to how this expression behaves, we will plot it as a function of ¢, where
/
v =0=1.

Figure 9: Lemmas expression where 7 > (. We can observe that generally speaking, this function
is monotonically decreasing, and its maximum value is 1 when 7 = 0.

Lemma 4. o, = P(right classification|con fident) ~

R o e b et
AT _ T / /
5T ) 20 (— 25 5) =20 (5)+2(5 (= FN(R(H+5)+2(- T+ 7))

28(

2

Proof. Notice that

18
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a, = P(right classification|con fident) = P(right classification||z|> 7) =
P(|z|>T|right classification)P(right classification) __
Pz[>7) =
P(|z|>7|right classification,z~|u|)P(right classification|z~|p|) _ P(z>7|2>0,2~|u|) P(2>0]|z~|pu|)

. B~ =
P(z>71,2>0|z~|pn|)
Pas0lantal L0~ lul) _ Pz>le~|u])

T T

Where we switch to z ~ |u| due to symmetry, and right classification knowing this implies z > 0.
But from Lemma 3 we have:

’

B ~ 20 (>

‘4

)+ 20(TEEE) - 20(2) + 2} - B(-D)(@(L + 2) + B(-T + 7))
P(z > 7]z ~ |ul) =

o T )2 _a 1 y2
U\/§ 0'2) +<I)( ovV?2 a'\/i)

’

And dividing these two expression completes the proof. O

Lemma S. Given we choose p, q as in|Baranwal et al.|(2022), we do the edge creation process with
the predicted labels instead of the real labels. Thus, we want to calculate the real rp,rq that are
actually being used.

rp = P(edge between two inputs of the same class) = P(edgelinputs of the same class) =
Pledgely; = y;) = P(9: = Dilyi = y;) * Pledgelg; = §;) + P(§: # ;|ys = y;) » Pedgelg; #
i) = pla-® + (1 = ar)?) + q(2a-(1 - ar))

Proof. Now we calculate P(3; = ¥;|y; = y;) and P(9; # Ui|y; = y;). First:
2

P(3; = @i‘?i =yj) ="+ (1 -a;)
P(9; # 9ilyi = yj) = 2a-(1 — ax)

Similarly,

rq = P(edge between two inputs of dif ferent class) =
P(edgelinputs of dif ferent class) = P(edgely; # y;) = P(9; = 9:|yi # y;) * P(edge|y; =
9;) + PG # 5lys # v;) = Pledgeldi # 4:) = q(az? + (1 = a7)?) + p(20,(1 - a7))

Now let’s see how they are integrated with the GNN loss.

rp=pla:? + (1 — o)) + q(20: (1 — 7)), 7q = g(a:? + (1 — o7)?) + p(20- (1 — 7))
mp—rq=(p—q) (a:” + (1= ar)* = 20;(1 - ar)) = (p — q) (dar” — da; +1) =
(p - q) 207 — 1)
rp+rq=p+q

Tp—rq _ p—q _1)2
rp+rq T ptq (207 —1)

A.5 LOSSES

Having calculated all the lemmas, we are finally ready to calculate the losses.

Theorem (Restatement of part one of Theorem([I)). The expected MLP loss is:

Ex(Layrp) = 2\@0%(#) - 202¢(%)

Proof. Recall that we have:
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Q0= ol 000 1
Q)= (1) g (12 ( WZ/
T o= Mzl 0 <s <) R \5/\
Q . ‘§+3‘ {0<x<1}

Figure 10: The expression in Lemma as a function of .-, for p = 0.8, ¢ = 0.2. The Black line
is the expression with the original p, ¢, The Blue line is the expression with the real p,q. As we
can see, as we get farther from a, = 0.5 (meaning we are more confident), the real expression gets
closer to the original expression.

E(Lyrp) =~ — f t p(z =tlz ~ |pl)dt
Pz =tz ~ ) = V30(=3 — =) 0(S + =)+ VEb( 2y — LVDR(Ly + =)

Let’s define:

’

Ps(t,7) = Va9( 22 — =) 0(Z + L)

In order to evaluate the integral we will calculate:
-/ N tPs(t,—)dt = [0 —tPs(t,y) + [ ~tPs(t,—)

Let’s calculate:

’

o A t A —T_i A t _
P57 = Vs ~ SR + ) =20 (FE ) o33~ SR +
L)+ VY (S — ) B(Z + L) = 20Ps 1 (4,7) + V2V P a(t )

We’ll calculate each expression separately. In order to calculate the first part, we’ll make the follow-
ing change of parameters:

1 =t o, ot
up = U\/ﬁgaut: - 20
042:&1—71
_ _p =2
fr=—P2=—

Then we can integrate it with (Owen| (1980) Table 1:10,011.1.

t ’Y/

[ Paatr it = J (5% ) 6(Z75)0(/3L + Zoztyie = —ovE [ uloul) 25 +
avu)du = —ov2 (L o(5)P(uts + 42 — o(uf)B(31 + oruf) s = VIF a7 =2

For the same reasons as before, we can’t exactly calculate the second part, so let’s approximate it:

S Pan )t = [ 6(ZE)0(VEE + F
Sl o(Z 55 R(VEE + ’3li> = <\f§+%ﬁv e
‘I’(ﬁi+:¢%‘i>'&§<¢<‘z¢%f’> )‘I’(\/ifl,Jr{/;‘l’)'o\/i(@({f;é)l)

— 00
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Combining these two expressions, and the expressions from P51 (¢, —7') and P52 (¢, —'), we get:

1 1 1
Joo Lt (Z =ty = [ —tp(t) = 1 —t(ps(st) + ps(— 1) =
I 200507 1) + V2V D52 (7 1) + 20050 (=7 1) + —V2YDsa(—A 1) =
l
20[ psi(Y,t) + V2 f ps2(Y.t)+20 [ __psi(—7.t)+—vV2Y

Applying the integral boundaries

Having calculated the general form for every upper limit /, let’s calculate the MLP loss
For the MLP loss, the boundaries are 0, —oo . The second expressions

V3 1 Poalr'st) = —2070(=27) (@[ %)—1)
V2 [° Psa(— 1) = —207/ ®(2) (D2

Calculating the first expression, for P51 (7, t) we have:

0

2 [ Paa(yt) = =2v20% (20(2)@(ufs + 2L2) — 6(u}) 88 + cnu}

V14 aod

o 0(uts + 248)  o(u)a(or +annd) | =230 (oS8Tt +
2 — ()0

B+ on 25) (2020005 + 22) = 6()8(fn +100)) ) =
~2vEo? (26205t + 2 - HH)B(En +r ) — () )

— 00

0

—24/202 (s

— 00

and similarly for P51 (—+/,t):

20 1 Psi(—

) = =2v20% (220(2)D(ufs + 2222) - o(u?)@(B; + az})
Vit

~2v30% (20(2)(ufs + 22) — 9(u)@ (B + agu}) | = -2v20" (%(i) (75t +
o2f2) _

25) = o005+ ng) - (6(2)8(00 + 22) — 6(0c)b(5n + aac0)) )

Mﬁ(‘?cﬁ(%) (gt +222) - as(c,”;g)q»(ﬁzwzgyi)w(%))

0

— 00

Adding all of these four expressions, notice that P 2(¢,7’) and P 2(¢t, —') sum up to 0. And
P51(t,7") and P 1(t, —') sum up to:

2v20% (56(3) + 6(J;)) = V202 0( ;) — 20°0(%)

Theorem (Restatement of part two of Theorem([I). The expected SHIKI loss is
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Ex(Lsnrir) ~ (20057 +20(=575)-20(2) 2050 D@L+ D) +0(-L+7) )

exp<p—qw(2 L e 1)2)+
=) +20(—5=) —2@(2)+2(5 —P(— I R( L+ )+ 2(—= 5 +T))

(20%(1)(2(1 —@(2)) — 1) +2v20% (6(J5) — (D)D) — ¢<¢;;><1><§g;>))

Proof.

Ex(Lsuikxr) =Ex(Lsurxr|z ~ |u|) = P(confident|x ~ |u|) - Ex (Lann|confident,x ~
||) + P(not con fident|x ~ |p|) - Ex(Larpp|not confident,x ~ |u|) =
Ex(Lann|lz|> 7@ ~ |[p) P(je|> 7|z ~ |p)) + Ex (Lurpl|le|< 7@ ~ |p) P(jz]< 7]z ~

pl) <
Ex(Lann)P(jz[> 7,2 ~ |p)) + Ex(Lareplle|< 7,2 ~ |ul) P(jz]< 72 ~ |p)
We will separate the calculation of our loss for the GNN part and for the MLP part.

First the MLP part.
Say we want to calculate Ex (Lyrp|lz|< 7,2 ~ |ul):

Ex(Lyppllel< ma ~|ul) = [T Plelle|< 7,2 ~ |ul) L(z|e ~ |p))de =

T P(x|,z~ _ T
J7, st (@) de = et - ST, Pl ~ |p) Lizle ~ |u))de

Ex(Larrpllal< 7o ~ [p) P(le|< 7o ~ |pl) = [T, Pzl ~ |ul) L(z]e ~ |p))de

Similarly to the case with the regular MLP loss, we we’ll ignore the case when we are right. The
integral boundaries will become 0 and —7.

Applying the integral boundaries for the MLP part

We’ll calculate Py 5.1(¢,7') and Py 5.1 (¢, —') with the boundaries —7 and —oo in the same way as
before.

-7

~2v20? (2 6(2)@(ubs + 2L) — §(u})B(51 + aru})

—00

_ma?(“1¢<i> (S + 42) = 6(Z2ED®(B + an ) -
(@(oos + 28) — G(00)® (S + aloo)) > -

~2vo? (262 R(hTs + ) - (IR0 + o ) - (D)

-7

~2v30? (920(%)@(uls + “42) — G(u2)B(B, + azu?)

2307 ((20(5)8(EE s + 22) — (LR + nF) -
(Blo0s-+ 222) - 6()2(0 + aac0) ) =

’

~2vo? (S 0(2)B(LE s + 222) — (L0 + an ) - 202

o2

and summing these two expressions we get:
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—Ma?[m D) (P52 + 242) + BT 5 +24%)) = 9(=157)2(61 +on 5E) -

/

S(LAT)B(By + an L2T) — 2% 9( L) | =

2v/20° {9 o() (Qf(é(%s+“%fl)+@(%s+a%f2)))+¢( =)D (B +

01 L) 4 G(LET)B(B + 0 LET) | =

2v/20? { (%)(2—(‘I)(#-l-%)—i—@(%_i)))_,_gb( ’y+‘r) (i\}'_ﬂ)+

SN2, v%;)} -

2VB0%| — VEA(E) (1 - B(2)) + (5N + oD

/

And calculating these as a part of the MLP loss:

—~2v/20% (220(2)@(uls + 1) — §(ul) (51 + arul)

—T

0
207 (S6(2)0(ubs + 212) — o(ud)D(fn +anid) | -

~2v20% (29 <%>@<uis+%ﬁl>—¢<u;>¢><ﬂ1+a1u;) = 2v20%0( ) — 20%0(%) —

— 00

2v20% | = V20(%) (1 - B(2)) + (=25E0)D(257) + d(LE1)8(L57) | ) =
(|- l)-

20%6(2)(2(1 - () — 1) +2v20% (6(J5;) — ¢<*;;><1><*$;>—¢<b§§>¢%§>)

Now we’ll calculate Py 5 2(¢,7') and Py 52(t, —') with the boundaries —7 and —oo in the same
way as before:

Vs (Y w)de + = [T psa(—v, x)de =
—207'D(—V2Z + ‘353)(@( ;5> )+2mq>( oz 4 5)(@(%%4):

4 =1 =t B(ELEY ) =
207’@(\[7;0 + %) <1 — & 7 )) —2079'® ( 7 )) =

20 (97 + A + F) - o+ i zawz)o

We saw earlier that with the integral boundaries of 0 and —oo, we also get 0. So when calculating
with the boundaries of 0 and —7 as it would be in the loss, we will still get 0. And so this final loss
is:

2026(2)(2(1 — ©(2)) — 1) +2v20% (6(J5;) — S5 @(=257) — B(L31)8(L57) )

Calculating the GNN part
Now let’s calculate the GNN part. Using lemma 5, the GNN loss is:

_ 292 rp—rgq _p—g QW'Q(QQ —1)2
e o rptrq — e ptq o 4

This should be multiplied by 3. So we finally we get:
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B(Lsmer) = Br - eop( 55822 (2ar — 1?) + (2020201 - 2(2) - 1)+

2202 ( (%) - ¢(T};T)<b(—}2(—;)_¢(v\/f;)®(¢;)>)

And the full expression as a function of 7,7/, o, p, ¢:

~'
P _xr_z
a

Lo = (20(5755) + 20(=555) - 20(2) 4 204 — (- 2)(O(F + £+ #(-L 4 7))

, cI;'Yi_ T_\2 @—L’— T_\2
cop( - B3 ¢y —rEama) Caama )+
20 (7 )4 2B(— ) —28(2) 425~ (— F) (BT F)+(~ T+ 3))

(20%0,)( (1= (2)) - 1) +2v20% (9( ) — 6(ED)@(2=7) - ¢<y;;><1><¢g;>))
O]

To better understand the behavior of these expression we refer the reader to Section [4.5]of the main
part.

B EFFECTIVENESS PROPERTIES OF XOR-GM M VARIATIONS

In this Section we show the effectiveness of GNN against MLP where the data is generated from dif-
ferent X O R-G M M variations, which are meant to model the real world data described in Section[2]
Let ®(-) denote the cumulative distribution function of a standard Gaussian, and ®.(-) = 1 — ®(-).
In what follows, the full proofs are provided in Appendices[C|and D]

B.1 SHIFTED CENTERS CASE

We denote the variation described in Section[2]for the Amazon reviews dataset as XOR-GM M-SC.
Similarly to the X OR-C'S BM model in Section[2} we can define edges over the XOR-GM M-SC
models, and denote it (4, X) ~ XOR-CSBM-SC(n,d, u,v,02,p,q).

B.1.1 BASELINE

The following theorem provides a complete characterization of the decision boundary for the XOR-
GMM-SC data model. This characterization relies on two key factors: the separation between the
means in the mixture model and the dataset size, represented by n. The theorem is divided into
two components. The first component examines the constraints of a perfect classifier regarding its
accuracy. And the third component identifies the area in which the optimal MLP achieves perfect
classification of the data.

Theorem 2. Let X € R"*4 ~ XOR — GMM — SC(n,d, u,v,c?). Then we have the following:

1. Assume that || — v||2 = Ko and let h(z) : RY — {0, 1} be any binary classifier. Then
forany K > 0 and any € € (0,1), at least a fraction ®.(%) — O(n=/?) of all data points
are misclassified by h with probability at least 1 — exp(—2n'~¢).

2. Forany € > 0, if the distance between the means is || — v||o= Q(o(logn)2+€), then for
any ¢ > 0, with probability at least 1 — O(n™°), there exists a two-layer that perfectly
classify the data, and obtain a cross-entropy loss given by

lg(X) = Cexp(— —v|2(1 £ Ve/(logn))),

\fHu

where C' € [5,1] is an absolute constant.
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B.1.2 GRAPH CONVOLUTION IMPROVEMENT

We now present the results that illustrate the impact of graph convolutions in multi-layer networks
with the specified architecture. We quantify the improvement in the classification threshold based
on the separation between the means of the node features.

Theorem 3. Let (A, X) ~ XOR — CSBM — SC(n,d, ju,v,0%, p,q). Then there exists a two-

layer network and a three-layer network with the following properties: If the intra-class and inter-
2

class edge probabilities are p,q = Q(logT") and the distance between the means is ||y — v||2=

(—H2En ) then for any ¢ > 0, with probability at least 1 — O(n=°), the networks equipped

\/ n(p+q)

with a graph convolution in the second or the third layer perfectly classify the data, and obtain the

fbllowlng ZOSS.'
’ < . )) ’
p q 1Cg n

(o(A, X) = C" exp (—Rm ol

where C > 0 and C' € [%,1] are constants.

B.2 IMBALANCED CASE

In this section, we prove some basic results similar to[Baranwal et al.| (2022} on the effectiveness of
a GNN against an MLP on an imbalanced synthetic model. We take the original model and add only
class imbalance with no shifted centers. This is done to emphasize that while adding imbalance to
the model, it retains the nice results from (Baranwal et al.,2022). We achieve the said imbalance by
setting €; = Ber(w ) instead of ¢; = Ber(5) where wi = (1). This is done in order to give class
1 a smaller chance to get picked (w1 < %). We follow the same steps as in [Baranwal et al.| (2022)
to achieve similar guarantees. We call this variation XOR-GM M-I, and similarly to the XOR-
C'SBM model in Section |Z|, we can define edges over the XOR-GM M-I models, and denote it
(A, X) ~ XOR-CSBM-I(n,d, p,v,0%,p,q).

To better understand how this model behaves, we show it in Figure ﬂ;fl

-4 4

' ' ' ' '
4 7 o ? 4 ]

Figure 11: Visual illustration of the X O R-GM M -1, with distance of 4, and 0 = 1.3.

B.3 BASELINE

The following theorem provides a complete description of the classification boundary for the XOR-
GMM-I data model. This description is based on the distance between the means and the number
of data points, n. The theorem consists of three parts. The first part explores the limitations of
a perfect classifier in terms of its accuracy. The second part explores its limitations in terms of
precision/recall/f-score. And finally, the third and last part establishes the region where the best
MLP perfectly classifies the data.

Theorem 4. Let X € R"*% ~ XOR-GM M-I(n,d, j1,v,02). Assume that || — v|2= Ko, then
we have the following:
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1. Let h(z) : RY — {0,1} be any binary classifier. Then, for K > 0,K|,; = % +
o? In(32), K0 = % + o2 In(t) = % —0? In(32) and any € € (0,1), at least a
fraction of

1= 20 (£l )2 if Kjppi 20
Wo - K, Kl .
4@(%) —2@( \‘/2—‘ )2+4(I)(K|m,i)2_4(1)(K\u\,i) Zf K\m,i <0
+
{1 — 20 (Tt )2 if Kpyji >0
wl ’ K v],i K v|,i .
AD(=7) = 20(=02 )% + 4Q(Ky ) — 4D(K)y),i)  if Kpypi <0

_ O(nfe/ 2)
of all data points are misclassified by h with probability of at least 1 — exp(—2n'~¢).

2. Assume for simplicity’s sake that K; > 0. Then, we have:

K o?ln(2e)\’
—_ 4+ — +
2 V2

accuracy = P(right classification) = wg - | 1 — 2P, (

K o?ln(22))’
wy - [1-20, [ = ———22 ) | £+0(n?)
2 V2

2
w0-<1—2¢c(§+ ﬁ1> +0(n~¢/?)

precision = — . T .
wo~(172<1>c<7+ 7 1 ) )+w1-<2<1>c<77 75 1 ) ):tO(n*f/Q)
K o?In(%) 2
recall =1 =20, [ — + —=212 | +0O(n~?)
2 V2
f-score =

o2 m( 20y 2\ ?
2wo- | 1-2d, %«k L io(n76/2)

7z
K o2m(Ee)\? ? o otm() 2 o oPm(E0)\?
2uwo-(1-20. [ K4+ +wr (120, (K47 20, (K- 00 )xo(n—</2)

3. For any € > 0, if the distance between the means is

I = vlla= Q(maz(o(logn) >+, a*|logit(wp)|)

then for any ¢ > 0, with probability of at least 1 — O(n~¢), there exists a two-layer network
that perfectly classifies the data, obtaining a cross-entropy loss given by

—%HM —v[2(1 £ Ve/(logn)®)),

where C' € [%, 1] is an absolute constant and R is the optimality constraint from.

lo(X) = Cexp(

Aside from the basic theorems we prove, we also explicitly show the accuracy/precision/recall/f-
score. For any other synthetic model, one can simply show the misclassification rate. However, in
our case, we have an imbalance between the classes. In this case, the more informative metrics are
the ones that take into account this imbalance, i.e precision/recall/f-score.
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Figure 12: balanced vs imbalanced accuracy, red is the accuracy in the balanced, gray is the accuracy
in the balanced. We choose two point, and emphasize that by simply looking at the accuracy, we
can achieve far better accuracy than the balanced case when the distance between the means is quite
small.

Next, we visually demonstrate the short-coming of looking merely at the accuracy. Let’s plot the
accuracy (z-axis) for this imbalanced case, and the original balanced case as a function of ~y (x-axis)
and wy (y-axis). We set o = 1.

As we can see, the more the data is unbalanced, the easier the task is, because we are more likely
to fall in the bigger class, and just classify it as the bigger class is right most of the times. Instead
of looking merely at the accuracy, it’s more informative to look at the precision/recall/f-score. Let’s
plot the other metrics as a function of v (x-axis) and w; (y-axis), and o as a parameter:

(a) plot of the recall as a function (b) plot of the precision as a func- (c) plot of the f-score as a func-
of v (x-axis), wy (y-axis), o is a tion of ~y (x-axis), wy (y-axis), o tion of vy (x-axis), wy (y-axis), o
parameter equals to 1. x-axis is is a parameter equals to 1. x-axis is a parameter equals to 1. x-axis
between 0-4, y-axis is between 0- is between 0-4, y-axis is between is between 0-4, y-axis is between
1, z-axis is between 0-1 0-1, z-axis is between 0-1 0-1, z-axis is between 0-1

Figure 13: plots of the informative metrics. We choose two point, and emphasize that by looking
at this informative metrics, we get the desired result. Where the data is unbalanced in our favor,
we perform quite well even better than unbalanced case. And when the imbalance is against us, we
perform very poorly.

Unlike the accuracy which grows bigger as the imbalance grows larger, for the f-score, as the size
of class 1 decrease, the f-score decreases as well.

B.4 GRAPH CONVOLUTION IMPROVEMENT
We now show the effects of graph convolutions in multi-layer networks with the architecture de-

scribed in Section[3] We characterize the improvement in the classification threshold in terms of the
distance between the means of the node features.
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Theorem 5. Let (A, X) ~ XOR-CSBM-I(n,d,u,v,0%,p,q). If the intra-class and inter-
class edge probabilities are p,q = Q(%), the distance between the means is || — v||2=
Q(—FE), 02 |logit(wo)

maz(Q( oS
with probability at least 1 — O(n~°), the networks equipped with a graph convolution in the second
layer perfectly classify the data, and obtain the following loss:

(a(4,X) < O exp (Rl — )l 2 or it 0w Zwonl) (4 [ )
wop + w1q logn

where C > 0 and C' € [, 1] are constants.

), and sgn(wop — w1q) = sgn(wip — woq), then for any ¢ > 0,

C CALCULATIONS FOR SHIFTED CENTERS

Here, we prove some basic results similar to Baranwal et al.| (2022), for the shifted centers model
case described in Section[2] for the Amazon reviews dataset.

Lemma 6. For some fixed j1,v € R? and 0 > 0, the Bayes optimal classifier; h*(x) : R4 — {0,1}
for the shifted center data model is given by

h*(x) = 1(—(z, p) < {z,v))

Proof. Note that P(y = 1) = P(y = 0) = 3. Let f(z) denote the density function of a continuous
random vector x. Therefore, for any b € {0, 1},

faly (zly=1)P(y=1) 1 1
(Z/ |$) ZCE(O.I} Ply=c|fe)y(z|ly=c) 1 Py=0)g)y (xly=0) 1+ Sa]y (#1y=0)
' P(y=1)fy)y (zly=1) Fo|y(@ly=1)
(1) (z,v)
fz\y(zly:()) _ _e o2 +e o2
TouGly=D) — =G =G

For label 0, we require the probability to be less than 1, thus, we need that expression to be less than
L,

(CHD R CRY)
e o2 —+e o2
—(z,v) —(z, ) <1
e o2 +4e o2
[EID) (w,v) —(x,v) — (@)
e 2 t+e 2 <e o2 Fe o?
(z.p) _ (=) _ (=) (w,v)
ey T @y
T, . _{zyv
sinh(*Z5%) < sinh(—-22%)

< _low)

And for label 1 we have:

Fact 1. Forany z,y € R:

x4y =max (—z —y,0) + max (y + =, 0)
x < —y <> max (—z — y,0) < max (y + z, 0)

Proposition 1. Consider two-layer networks without biases (i.e., b = 0 for all layers 1), for
parameters W) and some R € RT as follows.
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WO =R(p+0 —p—o 0 0)
w® =1 -1 0 0"

Then for any o > 0, the defined networks realize the Bayes optimal classifier for the shifted centers
data model.

Ui = p(R((X;, 0) + (Xi, 1))

Proof. Note that the output of the two-layer network is ¢ ([XTW 1], W), which is interpreted as
the probability with which the network believes that the input is in the class with label 1. The final
prediction for the class label is thus assigned to be 1 if the output is > 0.5, and 0 otherwise. For
each i € [n], we have that the output of the network on data point i is

Yi = o(R([(Xs, i+ D)4 — (X4, = — D)]4)
(R([(Xi, i) + (X, D)) — [(Xi, ) = (X3, 2)]4)) = o(R((Xs, ) + (X4, D))
where the last equality is due to Fact[I} O

~—
~—

C.1 PROOF OF THEOREM [2] PART ONE

Lemma 7. For some fixed pi,v € R and 0 > 0, the Bayes optimal classifier and let hx(z) : R? —
{0, 1} be any binary classifier. For any € € (0,1), If the probability for a point X; to misclassified
isT, thenwp 1l — exp(—n(l — €) the fraction of misclassified nodes is

Proof. Define M (n) to be the fraction of misclassified nodes. Define x; to be the indicator random

variable 1(X; is misclassified). Then x; are Bernoulli random variables with mean at least 7, and

E(M(n)) = % Zie[n] E(z;) > 7. Using Hoeffding’s inequality, we have that for any ¢ > 0,
P(M(n) > 7 —1t)>PrM(n) > E(M(n)) —t > 1 — exp(—nt?).

—€/2

Choosing t = n for any € € (0, 1) yields

P(M(n) >71—n"%) >1—exp(—n'~).
O

Theorem (Restatement of Theorem part one). Let X € R ~ XOR-GMM-
SC(n,d, ju,v,0?). Assume that |jn — v||s = Ko and let h(z) : RY — {0,1} be any binary
classifier. Then for any K > 0 and any € € (0,1), at least a fraction ®.(5) — O(n=/?) of all data
points are misclassified by h with probability at least 1 — exp(—2n'~¢).

Proof. We will upper bound the probability of the right classification similar to (Baranwal et al.,
2022). We consider only class 1, since the analysis for class 0 is similar. For class 1,7 € {u, v}, we
take a point from the center v, since the other case is symmetric. We can write X; = v 4 0g;, where
gi ~ N (0, I), then the probability of right classification:
P(right classi fication) = P(—(X;, p) < (Xi,v)) = P(=0(gi, 1) <~ +0(gi, 7)) =
P(<gl7ﬁ> + <g17ﬂ> > _%) = P(<g“ﬁ> + <gl7/:[’> > _%) =1- P(<g17f/> + <gula> < _%)

Denote 7, = {(g;, ), Z2 = {gi, ji)

P(Zi+ 2> < —K') = [7 () @(—K' = 2)dz = [T _¢(2)D(~K' + 2)dz = (—5) =

1-9(5)

So we have:
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P(X; is misclassified) = ®(%)

Now, applying Lemma 3] from the previous appendix on the total misclassification rate we get the
desired result.

O

C.2 PROOF OF THEOREM 2] PART TWO

Theorem (Restatement of Theorem part two). Let X € R"¢ ~ XOR-GMM-
SC(n,d, pu,v,02). Forany € > 0, if the distance between the means is | — v]a= Q(o(log n)2 ),
then for any ¢ > 0, with probability at least 1 — O(n™°), there exists a two-layer that perfectly
classify the data, and obtain a cross-entropy loss given by

(5(X) = Cexp(~—x | — v]2(1 + Ve/ (logn))),

\fllu

where C € [% 1] is an absolute constant and R is the optimality constraint from.

Proof. We have §; = @(R((X;, i) +(X;, 73))) and [;(X, 0) = —y; log(ys) — (1 —y;) log(1—y;) =
log (1 + exp ((1 — 2y;) R({(X, ti;) + (X4, 74)))). We can apply the same Gaussian concentration
v/ 7(c+1)logn t
(Xi,me) = (E(X;), me) = O(o+/clogn).Vi € [n] for m. € {u,—p,v,—v}

arguments as in (Baranwal et al.,|2022). We have with probability at least 1 — hat

Let’s look at the expression inside the prediction ¢;, namely (X, ;) + (X;, 7;).

For X; € {u, v} i.ein class 1, then, this expression becomes:

7 (1£0( /7))

For X; € {—pu, —v} i.einclass 0, then, this expression becomes:

~/ (1% 0(/ew))

We obtain for all i € [n],
ti(X,0) =log(1 + exp(—Ry'(1 £ 0n(1)))),

where the error term o, (1) = . The total loss is then given by

log n°

- % D 4i(X,60) =log(1 + exp(—Ry' (1 + 0,(1)))).

Next, Fact implies that for ¢t < 0, %t < log(1 + et) < e, hence, we have that there exists a
constant C' € [1, 1] such that

ly(X) = Cexp(—Ry'(1+ 0n(1)))).

Note that by scaling the optimality constraint R, the loss can go arbitrarily close to 0.

Lemma 8. Let h(x) = (x,0) + (x, i). Then, GCN with weights as defined above satisfies:
~ L Rsgn
= p(f{P (X)) = p(Regnle=d) 57 aiih(X;))
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Proof. We will prove for the 2-layer networks. Notice that for this case, we apply the convolution

at the end, the output of the last layer for data (4, X) is fi(Q)(X) = D TAIXWW], W®), Then
we have

FOX) = 28 ¥ et @i (X 9) + (X5, 1)) = gy ¥ e @i (X))

Lemma 9. Let h(x) = (x, V) + (x, i). Then:

E(h(X,)) = E((z,7) + (z, 1)) = E((z, 7)) + E((z, 4)) = (E(z), ) + (E(z), i) =
{7’ i€{pvy={C1}
=" ief{p,—v} ={C}

similarly to (Baranwal et al., [2022).

C.3 PROOF OF THEOREM[3]

Lemma 10. Let h(z) = (z,0) + (z,fi) for any x € R Consider the two-layer networks in

Proposition |I| where the weight parameter of the first layer, W), is scaled by a factor of ¢ =
sgn(p — q). If a graph convolution is added to these networks in either the second or the third layer
then for a sample (A, X) ~ XOR — CSBM — SC(n,d, u,v,02,p,q), the output of the networks
forapoint i € [n] is

o (FD (X)) — 1 e
i=p(f; (X)) =¢ Rgdeg(i)jez[n]a”h(xj)

Proof. The networks with scaled parameters are given as follows. For the two-layer network, when
a graph convolution is applied at the second layer of this two-layer MLP, the output of the last layer

for data (A, X) is fi(Q) (X) =D 'AXWM] W®). Then we have

FX) = s 3 e i (G, 9) + () = Re (kg e aish(X;))

O

Theorem (Restatement of Theorem. Let (A, X) ~ XOR-CSBM-SC(n,d, u,v,0%,p,q). Then
there exists a two-layer network and a three-layer network with the following properties: If the intra-

class and inter-class edge probabilities are p, q = Q(@) and the distance between the means is
|| — v)|a= QLB then for any ¢ > 0, with probability at least 1 — O(n~°), the networks

v/ n(p+q)

equipped with a graph convolution in the second or the third layer perfectly classify the data, and

obtain the following loss:
. ’ <1 . ) > ’
p+q logn

Proof. Let’s look at the Bayes optimal classifiers for this model and for original model.

(o(A, X) = C" exp (Rm ol

where C > 0 and C' € [, 1] are constants.

horig() = (2, v)|=[{, )|
Dewrr () = (2, V) + (2, )

We have

*
curr

h.ig is p — Lipschitz <> h is p — Lipschitz
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Thus, we can reuse from [Baranwal et al.| (2022)) arguments used to characterize fi(z)(X ). Specifi-
cally: Gaussian concentration -

P(L172 () ~ Bl (X))|> 6 | A) < 2exp(—%eg0)

402

Let e = sgn(p — q), E(Zf:qq) = |§I_q‘ =T'(p, q). Note that the process of creating the edges remains

the same between this model and the original model, because it depends solely on the nodes’ labels.
Thus, we have from Proposition A.1 in (Baranwal et al.| 2022):

Zjecl A5 — ZjECo Qi = (2Ei - 1)%(1 + On(l))

FEX) = E(f (X)) £ O(Ro [ 5185

B S 0 ER(X)) £ on(Ro) =
+ 0,(Ro) = (using Lemma [9)

+on(1)) £ 0 (Ro).

Rey’

deg(i) (ZJECI ij Z]ECO G’U)
(2¢; — 1)RI(p, q)7'(1

We need ' = Q(0,(Ro)) = O —posn
e need ~y (on(Ro)) mega( Tnrr

So we have for some constant C' > 0:

F2(X) = (26, — )ORY'T(p, q)(1 £ 0, (1))

K2

Recall that the loss for node ¢ is given by
(9(A, X) = log(1 + e<1*26i>ff“<X>) = log(1 + exp(—~CRY'T(p, q)(1 £ 0n(1)))).

Next, Fact 1mphes that forany ¢ < 0, & < log(1+€') < €, hence, we have for some C’ € [3,1]
that )
(A, X) =" exp(—CR'yT(p, q)(1 % 0,(1))).

The total loss is given by 3=, 1. féi) (A, X). Thus

to(A, X) = C"exp(=CRY'T(p,q)(1 £ 0n(1)))-

We can observe the loss decreases as v (distance between the means) increases, and increases if o2
(variance of the data) increases. O

D CALCULATIONS FOR THE IMBALANCED CASE

We denote i € |p|<> i € {u, —u}

Proposition 2. For any constant ¢ > 0, with probability at least 1 — 2n~¢, we have for all i € [n]
that

deg (i) = n(wop + w1g)(L £ 0n(1
deg(li) = n(w1p1—|— woq)(1 + 0, (1)) fori € |v|
de%(i) = e (1 £ 0,(1)) fori € ||

o = n(w1p1+woq) (1+0,(1)) fori€ |v|

ot (Syeo, a1 — Sy ) = 222 (1 4 0,(1) fori € |

i (Siecn @i = Tyec, 0i3) = B (1% 0,(1)) fori € |

)) fori € |ul
)

Proof. deg(i) is a sum of n Bernoulli random variables. For i € |u/, the probability of an edge is:
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p(egde) = p(edge|same class) - p(same class) + p(edge|same class) - p(same class) =
p-wo+q-wr

similarly for i € |v|:

p(egde) = p(edge|same class) - p(same class) + p(edge|same class) - p(same class) =
p-wi+q-wo

By the Chernoff bound we get, w.h.p:

Pldeg(i) € [5(p-wo+q-w1)(1=0), 5(p-wo+q-w1)(1+9)] < 2exp(—Cn(p-w0+q-w1)5|2#|)

fori € ||
Pldeg(i) € [5(p-w1+q-wo)(1—0), 5(p-w1+q-wo)(1+40)] < 2exp(—Cn(p-wi+q- wo)é‘yl)
fori € |v
(c+1)logn (c+1)logn

for some C' > 0. Now choose 9|, = and 0y, = for a large

Cn(p-wo+q-wi) Cn(p-wo+q-wi)

constant ¢ > 0. Note that since p,q = Q(log—”) and wy = (1), we have that § = O(, /&) =

0,,(1). Then following a union bound over i € [n], we obtain that with probability at least 1 —2n ¢,

deg (i) = n(wop +w1q)(1 £ o0,(1 ); fori € |yl

deg(lz) (wlp + woq)(1 £ 0,(1) fori e V]
T = n(wop+w1q) (1+0,(1)) fori € ||
T20 = wiwrpraeg (L 0a(1)) fori € [v|

Note that |Cy|= wpn. Alsonote that ), aij forany b € {0, 1} is a sum of independent Bernoulli
random variables. Hence, we have by similar arguments

Zjer a;; = wpnp(l £ 0,(1)) fori € Cy

We can calculate this to each i € C%, j € Ch. Combining it all we have that with probability at least
1—2n"¢,

e ( Siecn 5~ ey o) = BER(1 + 0, (1) for i € o

de;(i) <Zjecl aij =D jecy aij) = Twoptwrg (L T 0n(1)) fori & |ul

Lemma 11. Assume x,y € R, ¢ > 0, We can linearly approximate the solution to
cosh(z) < c- cosh(y)
by
|z|< [y|+In(c)

Proof. Let’s start with the inequality:

cosh(z) < ¢ cosh(y)
—cosh™(c- cosh(y)) < x < cosh™*(c- cosh(y))

Notice that:

cosh™(2) = In(z + V22 — 1)
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Thus:

cosh™(c - cosh(y)) = In(c- cosh(y) ++/(c - cosh(y))? — 1)
But:
(c-cosh(y))? —1=c?-(cosh(y)? — 1) + (¢ — 1) = ¢? - sinh(y)? + (¢ — 1)

Substituting it into the expression:

In(c- cosh(y) + /(c - cosh(y))2 — 1) = In(c - cosh(y) + \/c2 - sinh(y)2 + (c2 — 1))

We want to transform this expression into a linear expression. In order to achieve that, we change
the expression to:

In(c- cosh(y) + /c2 - sinh(y)? + (2 — 1)) = In(c - cosh(y) + /% - sinh(y)?)
And calculating this:
In(c- cosh(y) + \/c? - sinh(y)?) = In(c - cosh(y) + c|sinh(y)|)
When y > 0, we have sinh(y) > 0 and cosh(y) + |sinh(y)|= ¢¥ = el¥|. When y < 0, we have

sinh(y) < 0 and cosh(y) + |sinh(y)|= e™¥ = el¥l.
So, all in all we get:

In(c - cosh(y) + c|sinh(y)|) = In(c- el¥) = In(c) + |y|

And going back to the original inequality:
<z <

—(In(c) + yl) < = < In(c) + [yl
_|_

O

Lemma 12. For some fixed j,v € R* and 0® > 0, the Bayes optimal classifier, h*(z) : R —

{0, 1} for the imbalanced data model is approximately:
h (@) = 1(|{z, v)|< |(z, u)|+0o>logit(wo))

Proof. Note that P(y = b) = wy, for b € {0, 1}. Let f(x) denote the density function of a continu-
ous random vector . Therefore, for any b € {0, 1},

— _ P(y:b)fwly(w‘y:b) _ 1
Ply=blr) = s 0 POmaT, Gli=a — 17 Pr =Ty

Computing it for label 0, we need:

wy f(zly=1-b)
wo Flaly=b) < 1
ﬂcosh( 1;) ||u«||2*||l"|2
wo cosh(%)exp( 20% ) <!
wo cosh(%ﬁﬁ)
cosh({Z2)) < %cosh(@#)

o2

(@ )] < |G )0 In(22) = [ (o )] +0>logit(wo) (By LemmalTT)

<1
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where in the second to last inequality, we used ||u||= ||v]|. d

To give some intuition, let’s look at the decision boundaries of the real expression and our
approximation.

Figure 14: Decision boundaries of the real inequality compared to the approximated inequality
where ¢ = 2. The red area represents the are where the first inequality holds, and vice versa for the
green area. As we can see, the difference is very small, and mainly appears where |z|~ 1,y = 0.

Proposition 3. Consider two-layer network of the same form described in|Baranwal et al (2022]),
for bias in the last layer b'") = —Ro? ln(%ll), and W and some R € R as follows.

WO =R —p v )W =(-1 -1 1 "

Then for any o > 0, the defined networks realize the approximate Bayes optimal classifier for the
imbalanced data model.

Proof. Notice that the only difference between our parameters and the parameters in
(2022)) is our bias in the last layer. In their case we have:

Ui = e((R(( X3, 2)| — (X4, )]))

thus, adding the bias in the last layer we get:

gi = e((R((Xs, )= [{ X, 1) | =0 In(52)))

D.1 PROOF OF THEOREM [4] PART ONE

Lemma 13. For some fixed y,v € RY and 0 > 0, the Bayes optimal classifier and let h*(z) :

R — {0,1} be any binary classifier. For any ¢ € (0,1), If the probability for a point X; to
misclassified is T, then w.p 1 — ea:p(—n(l_e) the fraction of misclassified nodes is

Proof. See Lemmal[7] O

Theorem (Restatement of part one of Theorem EI) Let X € R ~ XOR - GMM —
I(n,d, ju,v,0%). Assume that ||pp — v||a= Ko and let h(z) : R? — {0,1} be any binary clas-

sifier. Then for K > 0, K, ; = % +o?In(2), Ky = \% +o?In(t) = % —o?In(32) and
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any € € (0, 1), at least a fraction of

K. .
120, (=% )? if Kjui=>0
0 K, K. .
AR(=t) = 20(= )7 + 4D(K py 3)* — AQ(K i) if Kjupi <0
_|_
1= 20,( 52 if K >0
' AD(FEL) = 20(FLLE)2 4 AB(K, 1) — 40 (K]y ) if Kjyj i <0

— O(n_E/Q)

of all data points are misclassified by h with probability at least 1 — exp(—2n!~¢).

Proof. We will upper bound the probability of the right classification similar to (Baranwal et al.|
2022). We con31der only class 0, since the analysis for class 1 is similar. Define ¢ = o2 In( e ) v <

oK, Ky =
probability of right classification:

, we can write X; = u + og;, where g; ~ N(0,1), then the

P([(z, v)|< [{&, m]+0? In(352)) = P(|(z,v)|< [z, m)|+e) < P(|{gi, )|~ gi, )< J5 +¢) =
P([{g:, 0)|=1(gi, )| < K|u),i)

Notice that this expression is the same as in|[Baranwal et al.|(2022) in their part one of Theorem 1.
Thus applying the same calculations we get:

R N Ky,
P(l{gi, 2| l{gi, i) | < Kjpp.i) = 1 — 200(F1)2

However, for some combination of v and wg, we get K i < 0. Thus, we can’t calculate the
integral in the same way for this case. The integral boundaries become mazx (0, — K|, ;) and co. But
calculating with — K| il doesn’t have a closed from according to/Owen| (1980) Table 1:10,010,4, so
we will need to estimate it.

estimating

Assuming K, ; < 0:

P(|Z1|—|Z2|< K i) = 4P(Z1 — Zo < K14, 21,22 2 0) =
4fjoKlul,i q’)(w)(@(w—i—Kw ) — l)dw = 4focK‘ » ( )@(w—I—Kw,i)dw _QIEOKWM (b(w)dw =
f—K‘“ B CD(U)+K|H| Z)dw—?(l—@(—K‘um)) =
f K ‘I)(UJ—FK‘M )d’LU—Q(I)(K‘Mﬂ)
4 [0 G w) B (w + Ky i) dw 2 A [y p(w) @Ky i) dw =

AB(K 1) Jo 1 dlw)dw = 48 (K 1) (DK ) — 3) =
4¢>(K|M|7 JB(—EK ) — 2<I>(K|M|7i) = 20(K| 1) — 4D(K] 1)

K

—Ku
4% Kil w)(w + K,y )dw =4 [° ¢(w)D(w + K|y )dw — 4 [ (w)®(w +
K K K 1,0 KI»L
K\m.,z)dw—N( i) 2Rl (Kt — 4 [0 g(00) 000 + Koy )
K, K., K.,
2(1)( \Wfl )+2(I)( \‘/gl )(I)c( \‘f‘ )+4(I)(K\u\ z) _Q(I)(KWLZ')
K i K“ i K“
PUZ1 |-\ %21 Kipy) ~ 20(Kskt) 4 20(Kii ), (Kbt 1 40(K )2 — 40(K 1) =
K K
4(1)( \‘}% )—2@( \‘}5‘ )2 +4(I)(K|#|,L) _4(1)(K|p,|,i)
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For class 1, define K\, ; f + 0% log(%: 1), doing similar calculations, we get:

P(right classification|class 1) =

{1—2®(Kf' )2 if Kjji>0

4¢(K\‘f‘ )—2<I>( ) +4Q(K,))? — 4@(Ky i) if Ky <0

Notice that:

P(right classification) =
P(right classification|class 0)P(class 0) + P(right classi fication|class 1)P(class 1)

So overall, we get:

P(right classification) = wo-

Kl ;
172(:[)( \‘;EI )2K ZfK‘umZO
49( y ) = 20(ZA)? 4 4D (K ) 0)? — 4D(K |y 0)  if K <0
wi-
Ky, .
1*?{‘1’(\%) if Ky =20
Now, applying Lemma|[I3|on the total misclassification rate we get the desired result. O

D.2 PROOF OF THEOREM [4] PART TWO

Theorem (Restatement of part two of Theorem ] ' Let X ¢ R ~ XOR-GMM-
SC(n,d,u,v,0?). Then we have the following: For any € > 0, if the distance between the means is

|l — v]o= Q(maz(o(logn)zte, 02|logit(wy)|), assume for simplicity’s sake K; > 0, we have:

K o?In(ge)
accuracy = P(right classification) = wo - | 1 — 2P, 5 + Twl +

21 wo 2
wy - [ 1— 2@, (K _ (”1(%”1)) + O(n‘5/2)

2 V2
o2 In(20
w - (1 — 29, (12{ + f() ) n=/?)
precision =
5
2

K o2 ln(w0 o2 In(32) ?
wo- [ 1 -2, (2+ 75 +w; - 7 ) +O(n=¢/2)

2 w
K N o ln(w—‘;)
2 V2

2
recall =1 — 2, < ) +O(n=/?)

f-score =

o ln(wo) 2
2w0~<1—2<1>c<%+ ﬂwl ) ) +0(n~¢/?)
02120 2\ ? o2 In(20) o2 1n(20)\ 2
2wo- | 1-2@c | H+—5" Fwr | 1-2® | F+——pt 20, | - —p™ +0(n=</2)
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Proof. Let’s calculate the precision, the recall and the f-score. First, we will calculate true positive,
false positive, false negative:

o2 In( X0
true positive = tp = P(positive) P(true|positive) = wy - (1 — 2®.(% %) )
. . o’ In(32)
fp = P(negative) P(false|negative) = wy - (2@.(5 — Tl)z)

. iy o®In(2)
fn = P(positive) P(false|positive) = wy - (2®.(5 + 71)2)

Using Similar arguments to Lemma|[I3] we can see that w.h.p these are the metrics across all of the
data with a factor of £0(n=/2).

tp _
tp+ fp

a2 In( wo
w - (1 — 23, <f2< 7 ) n=c/2)
K o2 In( Z;? ) 2 K o2 ln( ) 2 —e/2

tp K o? hl(m) ’ /
I = =1-20, =+ —~2| £0(n /2
reca b . ( 5 + 7 ) (n=%)

precision =

precision - recall
f-score =2 — =
precision + recall

o2 (20 2\ ?
2w0'<1*2¢c<%+ e ) ) +0(n™/?)
o2 1n(20) 2 o2 1n( 20\ 2 o2 1n( 20\ 2
2wo- | 120 | F+——57 Fwr{ 1-2® ( 5 +——5 20, | §———5" +0(n=</2)

D.3 PROOF OF THEOREM [4] PART THREE

Fact 2. Forany x € [0,1], § <log(1+4 ) <

Theorem (Restatement of part three of Theorem ' Let X € R ~ XOR-GMM-
SC(n,d,u,v,0?). Forany e > 0, if the distance between the means is

i — vlo= Q(maz(o(logn)2t<, o2|logit(wy)|), then for any ¢ > 0, with probability at least
1 — O(n=°), there exists a two-layer that perfectly classify the data, and obtain a cross-entropy
loss given by

+e€
3

1o(X) = Cexp(—%llu — v]la(1 £ Ve/(ogn)),

where C' € [% 1] is an absolute constant and R is the optimality constraint from.

Proof Consider the two- layer MLPs described in [3] for which we have
Ui = o(R({( X4, D) |[—|{ X5, i) —o? In(32))). We now look at the loss for a single data point X,

(X, 6) = ~yslog(i) — (1 - ) log(1 — )
= log (1+exp (1 = 203 R (Xi, D)= (X, i) —0* In(22))) ).

From Theorem 1 part 2 in Baranwal et al., (2022), we know that for || — v||= Q(c(logn)2T*),
w.h.p we have:
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(1= 2ys) R(KXs, ) |- [(Xi, 1)]) = =Ry (1 £ 0a(1))
But in our case we have a bias of 2logit(wy), thus, the loss is:
(X, 0) = log(1 + exp(—Ry' (1 + 0n(1))) + (2y; — 1)0logit(wo))

this implies that we also need to require v = Q(o2|logit(wp)|).

Soallinall, y = Q (ma:c (J(log n)zte, o2 ‘logit(wo) D ) and the loss becomes:

(X, 0) = log(1 + exp(—Ry' (1 + 0,(1))) + (2y;i — 1)a°logit(wo)) =
log(1 + exp(=Q(1)RY'(1 + 04(1))))

Now, the total loss is then given by
1
lo(X) =~ D (X, 0) =log(1 + exp(—Q(1) Ry (1 + 0n(1))))-

Next, implies that for ¢ < 0, % < log(l+ et) < e, hence, we have that there exists a constant
C € [3,1] such that
1(X) = Cexp(—Q(1)RY (1 + 0,(1))).

Note that by scaling the optimality constraint R, the loss can go arbitrarily close to 0.

D.4 PROOF OF THEOREM[3

Lemma 14. Let h(x) = |(z,D)|—|{x, )| for any x € RY. Consider the two-layer networks in
Proposition |3| where the weight parameter of the first layer, W), is scaled by a factor of ¢ =
sgn(wop — w1q). If a graph convolution is added to these networks in either the second or the
third layer then for a sample (A, X) ~ XOR — CSBM — I(n,d, p,v,02,p,q), the output of the
networks for a point i € [n] is

1

~ (2)
i = o9, X = | Re
y'L ( (3 ( )) l

w
B Z Clijh(Xj) — 0_2109(70)
© o

Proof. The networks with scaled parameters are given as follows. For the two-layer network, when
a graph convolution is applied at the second layer of this two-layer MLP, the output of the last layer

for data (A, X) is ¢'*(X) = D~TA[XW®], W®. Then we have

)

0 P(X) = g8y S e ais (15, 2= 1K, )| o 2log(12)) =
Re (—de;(i) > e aigh(X;) — 02log($—‘1’)) _
(2) w
(X)) - R602log(w—?)

where fi@) is defined as in|Baranwal et al.| (2022) as fi(2)(X) = de}Z?i) > jefn) %iih(X;)

O

Theorem (Restatement of Theorem . Let (A, X) ~ XOR-CSBM-I(n,d, u,v,0%,p,q). If the
log2 n

=1t), the distance between the means

intra-class and inter-class edge probabilities are p,q = Q(

ologn

9 o logit(wo) ), and sgn(uwop — wi) = sgn(wip — woa). then

is |11 = vla= max(Q(
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Sor any ¢ > 0, with probability at least 1 — O(n~°), the networks equipped with a graph convolution
in the second layer perfectly classify the data, and obtain the following loss:

max(|wop — wi1q|, |lW1p — Woq c
lo(A, X) < ' exp | =Rt — v]o e Uwor = widl, [wip = wodl) () | |
Wop + wiq logn

where C > 0 and C' € [%,1] are constants.

Proof. Notice that by Lemma I we have g( )(X ) = fl(z)(X ) + bias. Thus, we can reuse from
Baranwal et al.[(2022) arguments used to characterize fi ( ). Specifically:

2 (2)

(A fi(z)(X ) is Lipschitz with constant T R Lg.”(X) is Lipschitz with constant

2
deg(i)*

2. Gaussian concentration -
PP 00 — BP0 6| 4) < 200(-450) o
P(%19® (X) — B[l (0)]> 5 | A) < 2exp(—>952)

402

Let e = sgn(p — wo(p + q)) = sgn(wo(p + q) — ).

f<2><X> :E<f(2’< X)) £ O(Ro ) 2loem )

n(p+q)
deg( ) ZJE ( (X])) + On(RU)
— %(Zg‘eq Qij — Zjeco a;;) £ On( o) (using Lemma A .4 in (Baranwal et al.|,[2022))

Now let’s look at z-=25 - (3¢, @ij — 2 jec, ij)- We know from that:

W1g—wop g
e (D aiz— ) ay)=¢ w(’pfwlqu +on(1)) ’fl € |pl
J J WPl (] + o, (1)) if i € |y

JjeCy 7J€Co w1p+woq
if we set £ = sgn(wip — woq) = —sgn(wi1q — wop) (possible because of our assumption), we get:
-1 ifi€ |yl
son (< (S as = Yo | = {7 FiE])
JjEC j€Co

Thus, we have that fi(z) (X) is positive when ¢ € |v| and negative otherwise, as desired. And the full
is expression:

52 (x) = ~R((y, o) il (1 4, (1)) + 0, (Ro) if i € |ul
RG(, o)bwodl (1 4 o, (1)) + 0,(Ro) if i € [v]

w1p+woq

And subsequently

0(X) = F2(X) ~ Reolog(22) =

—RC(+, o) or—wndl (1 + 6, (1)) £ 0,(Ro) if i
g O n (D) B oul R T 21050
RC(’Y,U)W(liOn(l))iOn(RO—) ’LfZE ‘V| w1

We need ((v',0) = Q(on(Ro)) and ((v',0) = Qo 2log(“"’)). Aside from the bias term in

952) (X), we know that v = Q(0 — 22— vioen ) satisfies the first condition.
n(p+q)

If o2 log(332) = 0n (1), then this value of v also satisfies the second condition.
Otherwise, note that (7', 0) = O(y'), thus, we need 7/ = Q(o? log(2)). Denote:
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_ |wop—wig|
FO(p7 q) — wiptwoq

_ Jwip—woq]
Fl(p7 q) — “wiptwoq

So we have for some constant C' > 0:

97 (X) = (26, = )CRC(,0)Te, (p, @) (1 £ 0, (1))

Recall that the loss for node ¢ is given by

B D, )1 % 0n (1)),

£57(4, X) = log(1 + e1-2605”00) — 10g(1 4 exp(~<

Next, Fact implies that for any ¢ < 0, % < log(1+e) < e, hence, we have for some C’ € [%, 1]
that
(5 (A, X) = C" exp(—CRC(, 0)Te, (p, ¢)(1 £ 0, (1))).

The total loss is given by + > ien) Kéi) (A, X). Thus

EG(A’X) S
maz (C’ exp(=CRC(Y',0)lo(p, q)(1 £ 0,(1))), C" exp(=CRC(Y', o)1 (p, q)(1 £ On(l)))> =
C"exp(—=CRC(Y,0)(1 £ 0,(1)) - maz(To(p, ), I'1(p, 9)))

We can observe the loss decreases as v (distance between the means) increases, and increases if o2
(variance of the data) increases.

O

E ADDITIONAL EXPERIMENTS AND ANALYSIS

For the Amazon-reviews data, we first fine tuned a BERT model (Devlin et al.,[2019). Then extracted
the last-layer embeddings, and treated these as the data in the process of training the MLP and the
GNN.

We also evaluated the synthetic data model for the Walmart-Amazon dataset discussed in Section[2]

E.1 PLOTS

Before presenting the plots, we note that it may seem as if for certain cases, the improvements
crosses below 0 or above 1 which is obviously not possible. Let’s explain how it may occur.

Since we deal with decimals, we get that the standard deviation is greater the the variance, when
most times it’s the other way around. When we look at the mean + sd or at the mean — sd, we get
weird results.

Let’s look at concrete examples:

Example 2.

. 0.1 w.p0.5
109 wp0.5

Then we have:
E(z) =0.5
Var(z) =04

sd(z) = y/Var(z) ~ 0.63
E(x) 4 sd(x) ~ 1.13
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Figure 15: Improvement in the Amazon dataset, across all ablations and baselines.

Example 3.

. 0.1 wp0.5
102 wp0.5

Then we have:

E(z) = 0.15
Var(z) =0.05

=/ Var(z) ~ 0.22

E(z) — sd(x) ~ —0.07

We’ve already shown the plots for the Walmart-Amazon dataset in the main part, we show here the
full results for these datasets in addition to the full tables of the other datasets. We present the results
in Tables[T6] [T3] [I7]and [I8] We can observe the full SHIKI model consistently achieves the highest
and most consistent improvement.

E.2 TABLES

We’ve already shown the tables for the Walmart-Amazon dataset in the main part, we show here the
full results for these datasets in addition to the full tables of the other datasets. We present the results
in Tables 4] Bl [6] [71[B]and [} In each row (representing a GNN architecture), we highlight the best
edge creation method in bold based on the mean and standard deviation of the improvement. We can
observe that in most cases, the SHIKI model either matches or outperforms the other leading edge
creation methods.

E.3 PARAMETERS’ EFFECT

Figures [20] [21] 22] display the accuracy (or f-score) of the SHIKI model as a function of its
parameters: p, q, T, and percent.

In most cases, increasing ¢ and 7 boosts performance, whereas increasing percent generally de-
creases it (interestingly enough aside for the X O R-G M M model). Changing p, shows no consistent
effect on improvement.

This suggests that to effectively utilize SHIKI, it is important to ensure confidence in the edges.
Additionally, the parameter ¢ indicates that we don’t need to rely solely on MLP predictions, and
allow for prediction correction by linking nodes that appear to belong to different classes.
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The_Structured-Walmart-Amazon_Dataset_appendix_plot
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Figure 16: Improvement in the Walmart-Amazon dataset, across all ablations and baselines.

SHIKI knn No confident | No labels No confident
nodes nodes and la-
bels
GCN 1235226.0, 31355.0, 1677220.25, 939273.0, 1934846.0,
0.551 + 0.583 + 0.597 + 0.546 + 0.54 +
0.116 + 0.072 | -0.07 £ 0.044 || 0.077 +0.039 | 0.102+0.097 | 0.13 £ 0
GraphSAGE | 543543.083, 31355.0, 1299022.0, 794145.2, 916166.0,
0.573 + 0.573 + 0.593 + 0.544 + 0.57 +
0.09 + 0.078 | -0.06 + 0.04 0.07 +£0.026 | 0.102 +0.083 | 0.09 +0
GAT 830688.6, 31355.0, 2237028.75, 872902 4, 1973241.0,
0.544 + 0.527 + 0.547 + 0.548 + 0.53 +
0.053 +0.086 | 0.133 +0.047 || 0.122 4+ 0.075 | 0.064 +0.068 | 0.15+ 0
GCN2 1179941.125, | 31355.0, 1813669.875, | 921473.4, 1491614.5,
0.541 + 0.557 + 0.537 + 0.528 + 0.53 +
0.032 + 0.058 | -0.05 + 0.057 || -0.005 + | 0.05 +0.058 | -0.015 +
0.044 0.021
GraphSAGE2 | 898606.35, 31355.0, 1479780.25, 704871.5, 918501.0,
0.554 + 0.59 + 0.608 + 0.571 + 0.58 +
0.122 +0.051 | -0.018 + || 0.071 £0.062 | 0.104 +0.077 | 0.09 &+ 0.042
0.033
GAT2 1288287.275, | 31355.0, 2711898.75, 926080.4, 1455389.5,
0.538 + 0.545 + 0.519 + 0.53 + 0.535 +
0.057 +0.071 | 0.035+0.059 || 0.106 +0.016 | 0.078 +0.068 | 0.08 & 0.071

Table 4: Mean improvement of our method with different strategies on multiple GNN types on the
Walmart-Amazon dataset.
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Figure 18: Improvement in the imbalanced X O R-G M M dataset, across all ablations and baselines.
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SHIKI knn No confident | No labels No confident
nodes nodes and la-
bels
GCN 75876.3, 12203.667, 179333.75, 489194, 191680.0,
0.824 + 0.833 + 0.835 + 0.824 + 0.85 +
0.026 +0.059 | -0.263 + || 0.007 +£0.005 | 0.03 +£0.032 | 0.02+0
0.029
GraphSAGE | 72891.4, 12203.667, 184433.5, 41641.0, 191664.0,
0.828 + 0.85 + 0.84 + 0.82 + 0.85 +
0.028 + 0.059 | -0.083 + [ 0.0124+0.005 | 0.044 £0.034 | 0.01 £0
0.171
GAT 51860.55, 12203.667, 251228.5, 38868.6, 191364.0,
0.82 + 0.85 + 0.817 + 0.844 + 0.85 +
0.038 +0.031 | 0.0 +0.01 0.027 £0.015 | 0.012+£0.004 | 0+ 0
GCN2 713984, 12203.667, 288346.25, 58066.8, 95775.0,
0.815 + 0.813 + 0.825 + 0.822 + 0.82 +
0.028 +0.096 | -0.243 + || 0+£0.0 -0.054 + [ 0+0
0.055 0.124
GraphSAGE2 | 89003.05, 12203.667, 252282.25, 67937.4, 191700.0,
0.827 + 0.85 + 0.84 + 0.816 + 0.84 +
0.024 + 0.057 | -0.003 + || 0.017+0.005 | 0.04 +0.014 | 0.01 +£0
0.006
GAT2 65301.15, 12203.667, 211304.75, 24583.0, 191342.0,
0.822 + 0.85 + 0.817 + 0.826 + 0.84 +
0.034 +0.035 | 0.007 +£0.015 || 0.04 +0.014 | 0.034 +-0.033 | 0+ 0

Table 5: Mean improvement of our method with different strategies on multiple GNN types on the
Amazon dataset

SHIKI knn No confident | No labels No confident
nodes nodes and la-
bels
GCN 41384.722, 9137.0, 115761.094, 35485.275, 88497.5,
0.245 + 0.248 + 0.341 + 0.321 + 0.342 +
0.083 +0.062 | -0.0 +0.018 0.021 +0.056 | 0.062 +0.059 | 0.032 + 0.056
GraphSAGE | 6055.0, 9137.0, 140844.156, 30933.75, 113537.125,
0.216 + 0.248 + 0.341 + 0.321 + 0.341 +
0.034 +0.021 | -0.001 + || 0.006+0.053 | 0.058 £ 0.062 | 0.008 + 0.058
0.027
GAT 25474.308, 9137.0, 82940.867, 29827.2, 82486.25,
0.17 + 0.2 + 0.227 + 0.317 + 0.202 +
0.111 + 0.089 | -0.047 + || -0.014 + | 0.048 +£0.067 | 0.116 + 0.128
0.056 0.032
GCN2 46354421, 9137.0, 180490.875, 23777.675, 106424.875,
0.215 + 0.298 + 0.288 + 0.297 + 0.3+
0.026 + 0.063 | 0.026 £ 0.061 || -0.126 + | -0.013 £0.09 | -0.153 +
0.116 0.121
GraphSAGE2 | 40277.2, 9137.0, 123188.406, 29393.15, 88346.0,
0.253 + 0.248 + 0.341 + 0.321 + 0.341 +
0.084 + 0.062 | 0.005 £0.024 || -0.006 + | 0.064 £0.061 | -0.01 £ 0.068
0.066
GAT2 5058.5, 9137.0, 119323.219, 33376.25, 71471.75,
0.087 + 0.2+ 0.202 + 0.314 + 0.203 +
0.18 + 0.083 | -0.028 £ 0.03 || 0.117 £0.132 | 0.059 +£0.073 | 0.119£0.135

Table 6: Mean improvement of our method with different strategies on multiple GNN types on the
hard imbalanced dataset.
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SHIKI knn No confident | No labels No confident
nodes nodes and la-
bels
GCN 94389.383, 9137.0, 167987.271, 68531.3, 101141.167,
0.748 + 0.869 + 0.808 + 0.744 + 0.808 +
0.064 + 0.071 | -0.063 + {| 0.014 +£0.024 | 0.068 + 0.07 | 0.023 +0.026
0.024
GraphSAGE | 82936.25, 9137.0, 145206.021, 59555.767, 100986.917,
0.752 + 0.869 + 0.808 + 0.741 + 0.808 +
0.063 + 0.072 | -0.053 + [| 0.022+0.044 | 0.068 £ 0.071 | 0.023 +0.051
0.017
GAT 84824.742, 9137.0, 143709.688, 599394, 107861.833,
0.769 + 0.921 + 0.761 + 0.766 + 0.761 +
0.046 + 0.065 | -0.008 + {| 0.066 +0.082 | 0.039 +0.06 | 0.059 &+ 0.087
0.032
GCN2 103420.883, 9137.0, 193252.646, 65390.317, 82802.417,
0.693 + 0.945 + 0.688 + 0.688 + 0.679 +
-0.226 + | -0.114 + || -0.565 + | -0.234 + | -0.66 £ 0.09
0.113 0.033 0.172 0.114
GraphSAGE2 | 84008.742, 9137.0, 156263.542, 46877.733, 82050.25,
0.749 + 0.869 + 0.808 + 0.744 + 0.809 +
0.062 + 0.07 | -0.048 + || 0.022 +£0.049 | 0.062 4+ 0.069 | 0.018 +0.051
0.016
GAT2 95431.062, 9137.0, 141618.062, 66775.6, 102172.583,
0.769 + 0.921 + 0.761 + 0.772 + 0.761 +
0.05 £ 0.067 | -0.01 +0.022 || 0.087 £0.075 | 0.05+ 0.069 | 0.091 + 0.078

Table 7: Mean improvement of our method with different strategies on multiple GNN types on the
easy imbalanced dataset.

SHIKI knn No confident | No labels No confident
nodes nodes and la-
bels
GCN 39181.518, 9137.0, 125314.515, 26094.227, 93707.25,
0.632 + 0417 + 0.733 + 0.613 + 0.655 +
0.198 +0.107 | 0.012£0.051 || 0.005£0.049 | 0.254 +0.114 | 0.088 £0.136
GraphSAGE | 18400.368, 9137.0, 121442.031, 13425.333, 102421.417,
0.623 + 0417 + 0.741 + 0.631 + 0.655 +
0.169 + 0.062 | 0.001 £+ 0.057 || -0.044 + | 0.156 £0.092 | 0.053 +0.15
0.033
GAT 38680.627, 9137.0, 125610.0, 25222.017, 102932.583,
0.541 + 0.59 + 0.513 + 0.559 + 0.558 +
0.269 +0.132 | 0.117 £0.152 || 0.225+0.013 | 0.221 +£0.116 | 0.245+0.181
GCN2 9776.23, 9137.0, 205763.455, 8155.967, 133461.417,
0.575 + 0.611 + 0.628 + 0.605 + 0.612 +
0.051 +0.078 | 0.141 £ 0.067 || -0.019 + | 0.073 £0.074 | -0.025 +
0.013 0.015
GraphSAGE2 | 18267.591, 9137.0, 103895.444, 13109.153, 71875.5,
0.632 + 0417 + 0.713 + 0.636 + 0.655 +
0.154 +0.097 | 0.011 £0.058 || -0.029 + | 0.151 £0.091 | 0.041 +0.154
0.101
GAT2 35683.015, 9137.0, 134354.829, 22888.683, 88188.167,
0.583 + 0.59 + 0.502 + 0.559 + 0.559 +
0.2 +£0.124 0.191 +0.228 || 0.22 +0.024 | 0.213 +0.113 | 0.151 £0.133

Table 8: Mean improvement of our method with different strategies on multiple GNN types on the
easy synthetic dataset.

47



Under review as a conference paper at ICLR 2025

SHIKI knn No confident | No labels No confident
nodes nodes and la-
bels
GCN 74693.3, 9137.0, 185907.0, 35461.65, 111521.5,
0.395 + 0.515 + 0.532 + 0.406 + 0.319 +
0.18 + 0.256 | -0.075 + || 0.02+0.022 | 0.158 +£0.235 | 0.24 + 0.264
0.186
GraphSAGE | 54943.636, 9137.0, 170437.156, 30158.96, 116324.5,
0.412 + 0515+ 0.532 + 0.43 + 0.319 +
0.168 +£0.21 | -0.096 + || 0.0174+0.018 | 0.181 £0.155 | 0.208 + 0.279
0.199
GAT 43363.5, 9137.0, 189625.312, 28228.7, 137788.0,
0.377 + 0.385 + 0.537 + 0.386 + 0.409 +
0.219 +0.205 | -0.006 + || 0.057 +£0.065 | 0.199 +0.208 | 0.176 +0.333
0.261
GCN2 37179.719, 9137.0, 143112.812, 17521.375, 104540.125,
0.319 + 0.323 + 0.302 + 0.342 + 0.363 +
0.213 +0.087 | 0.23 + 0.071 0.137 +£0.071 | 0.189 +£0.077 | 0.109 4 0.025
GraphSAGE2 | 54268.725, 9137.0, 116882.531, 44714.9, 73274.5,
0.395 + 0.516 + 0.32 + 0.387 + 0.323 +
0.181+0.218 | -0.086 + || 0.243+0.277 | 0.182+0.216 | 0.243 £ 0.299
0.193
GAT2 43145.069, 9137.0, 192782.938, 35336.525, 142004.0,
0.363 + 0.385 + 041+ 0.387 + 0.409 +
0.225 +0.211 | -0.129 + || 0.204 £0.3 0.204 +£0.204 | 0.211 +0.322
0.287

Table 9: Mean improvement of our method with different strategies on multiple GNN types on the
hard synthetic dataset.
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Figure 19: Parameters’ effect in the SHIKI model for the Amazon dataset.
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Figure 20: Parameters’ effect in the SHIKI model for the Walmart-Amazon dataset.

E.4 NUMBER OF EDGES

Here, we discuss the number of edges in each edge creation method. As we can see from the tables,
the number of edges in the SHIKI model is much bigger than in the KNN baseline.

In easier datasets such as the Walmart-Amazon dataset, the number of edges in SHIKI is about 40
times larger than in KNN.

In tougher datasets, naturally, the percentage of confident nodes is smaller than in easier datasets,
thus we can potentially have fewer nodes. Even in this case, the number of edges in SHIKI is about
4 times larger than in KNN.

This may indicate that in order to effectively utilize artificial edges, we need to create many edges.

E.5 GNN ARCHITECTURES

Examining the figures, we observe SHIKI’s improvement across various GNN architectures. In
many cases, the differences between them are minimal, and each architecture has instances where
it excels. This demonstrates that the SHIKI model performs well and consistently across all GNN
architectures.
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(a) Parameters’ effect in the SHIKI model for the easy X O R-G M M synthetic dataset.
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Figure 21: Parameters’ effect in the SHIKI model for the X O R-G M M synthetic dataset.
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Figure 22: Parameters’ effect in the SHIKI model for the synthetic imbalanced dataset.
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