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SUMMARY

A velocity model is generally an imperfect representation of the subsurface, which can-

not precisely account for the three-dimensional inhomogeneities of Earth structure. We

present a Bayesian moment tensor inversion framework for applications where reliable,

tomography-based, velocity model reconstructions are not available. In particular, syn-

thetic data generated using a three-dimensional model (SEG-EAGE Overthrust) are in-

verted using a layered medium model. We use a likelihood function derived from an
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optimal transport distance—specifically, the transport-Lagrangian distance introduced by

Thorpe et al. (2017)—and show that this formulation yields inferences that are robust

to misspecification of the velocity model. We establish several quantitative metrics to

evaluate the performance of the proposed Bayesian framework, comparing it to Bayesian

inversion with a standard Gaussian likelihood. We also show that the non-double-couple

component of the recovered mechanisms drastically diminishes when the impact of ve-

locity model misspecification is mitigated.

Key words: Waveform inversion – Statistical methods – Inverse theory – Probability

distributions – Earthquake source observations – Induced seismicity.

1 INTRODUCTION

Velocity model error or misspecification is a determining factor in the quality of many seismic inverse

problem solutions. Due to the difficulties of characterizing the subsurface medium (e.g., different rock

types, three-dimensional spatial heterogeneities), velocity models used in practice are generally ap-

proximate and inaccurate. Mischaracterization of the velocity, however, can impact one’s ability to

infer other quantities of interest, such as the hypocenter and the moment tensor (focal mechanism)

of a seismic event. In deterministic full waveform inversion (FWI), misspecification can exacerbate

the well known phenomenon of cycle-skipping, which traps optimizers in local minima (Gauthier

et al. 1986). In the Bayesian setting, model misspecification can lead to overconfidence in the pos-

terior distribution, i.e., under-reporting of uncertainty (Gu et al. 2018; Kleijn et al. 2012). The most

direct approach to mitigating the impact of model misspecification is to introduce better physical mod-

els (when feasible) or improved statistical discrepancy models (Kennedy & O’Hagan 2001). These

approaches, however, typically increase computational cost and may compromise parameter identi-

fiability. As an example, in moment tensor inversion, using a simple layered-medium model for the

propagation velocity can be orders of magnitude less computationally expensive than using a fully

three-dimensional elastic wave propagation model. Moreover, such sophisticated models are typically

not available: on the one hand, data for learning the velocity jointly with the focal mechanism in such

a three-dimensional setting may be difficult to collect; on the other hand, the duality between source

location and velocity estimation can become a confounding factor when trying to estimate the focal

mechanism itself (Gu et al. 2018).

Data-model misfit functions used in deterministic full waveform inversion are often based on Lp

norms or variations thereof: the signal value observed at time index i is compared to that of the simu-
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Robust Bayesian moment tensor inversion 3

lated signal at the same time. L2-norm based misfit functions are particularly common, as they match

the statistical notion of additive Gaussian noise. Due to misspecification of the velocity models just

described, however, it may often occur that portions of the observed signal are anticipated or delayed

with respect to the model predictions. When this occurs, the use of Lp norms can have unintended

consequences: two waveforms that look very similar in “shape” to the human observer may appear

far apart under an Lp norm due to misalignment and warping of the time coordinates. These norms,

in fact, ignore the inter-relationships between signal values at different times, and simply treat the

observed and modeled signals as vectors of amplitude values. Many corrections and modifications to

address this kind of problem have been proposed, including the pioneering work of Luo & Schuster

(1991); Gee & Jordan (1992), who achieve better waveform arrival-time matching through sequential

perturbations of the velocity model or the fitting of dedicated waveform functionals. In this paper, we

investigate the benefits of using an alternative, optimal transport (OT)-based, misfit function to mea-

sure discrepancies between observed and model-predicted data. Recent literature has demonstrated

the applicability of optimal transport distances to seismic imaging problems in a deterministic setting

(Engquist & Froese 2014; Métivier et al. 2018, 2019; Yang et al. 2018). In this context, OT has been

shown to produce drastic reductions in the non-convexity of the objective function, especially when

compared to misfits based solely on Lp distances. Rigorous mathematical treatment (Engquist & Yang

2020) has in fact shown that the 1-D quadratic Wasserstein distance between probability density func-

tions is convex with respect to dilation and translation. When applying this distance to signals, how-

ever, it is necessary to normalize and positivize the signals accordingly. These requirements introduce

data transformations that are not typically justifiable within the physics of our problem. We, there-

fore, focus instead on a particular Wasserstein distance that does not require signal positivation and

normalization, making it more suitable for seismic waves. This distance is referred to as the transport–

Lagrangian (TL) distance (Thorpe et al. 2017; Thorpe & Slepcev 2017; Kolouri et al. 2016) and can be

interpreted as the result of solving an optimal transport problem between the graphs of two functions,

thus performing a signal matching that allows translation in both amplitude and time.

While the benefits of using this kind of distance have recently been explored in a number of de-

terministic inverse problems and applications (Thorpe et al. 2017), including seismology (Métivier

et al. 2018, 2019; Pladys et al. 2021), in this paper we formulate and explore its integration within a

fully Bayesian statistical framework, focusing on moment tensor inversion. Our emphasis is on the

interaction of the TL distance (and posterior distributions derived therefrom) with model misspecifi-

cation, rather than on issues of cycle skipping and convexification, which are less relevant here. In

this setting, we will evaluate the extent to which the TL distance can operate as a natural “feature

extractor” that disregards information in the data not relevant to inference of the quantity of interest
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(i.e., the earthquake focal mechanism), thereby reducing the impact of model misspecification. We

will demonstrate this behavior empirically, under realistic scenarios of velocity model misspecifica-

tion and for a variety of earthquake focal mechanisms. To assess the quality of our Bayesian inversion

results—i.e., of a given posterior distribution over the moment tensor—we will employ quantitative

statistical criteria (e.g., proper scoring rules), additional physically-motivated statistics, and further

multivariate assessments of the posterior distribution.

2 BACKGROUND

2.1 Velocity model uncertainty

Spatial inhomogeneities, and the difficulty of directly observing the Earth’s structure, have induced

seismologists to find alternative strategies to velocity model building. How to construct reliable veloc-

ity models is a longstanding issue in seismology, to which a definitive answer has yet to be provided

(Yang & Ma 2019; Socco et al. 2010). A common approach that we will consider throughout this

paper is to generate model waveforms using a layered medium model (e.g., Dreger & Woods (2002)).

This model is often derived from well logs or from some other analysis of the subsurface, such as

one derived from arrival-time tomography (Guilhem et al. 2014) or kinematic source representation

(Sánchez-Reyes et al. 2018). This modeling process adds uncertainty to the results of any associated

inverse problem. In general, looking at the effects of layered medium approximations to 3D velocity

models is also at present an under-developed area of research.

Because the propagation velocity of seismic waves impacts the time at which the wave features

reach a station, velocity modeling errors can translate into the type of misspecification outlined in

the previous section. As an example, Figure 1 shows a pair of waveforms—specifically, displacements

ui(x, t) for some direction of displacement i and a fixed surface location x—resulting from two differ-

ent velocity models but the same seismic event. The orange waveform results from a three-dimensional

velocity model, while the blue waveform results from a two-dimensional layered medium model de-

signed to approximate the 3D model. (Details on how the layered model is constructed will be given

in Section 4.1 below.) It is evident that some kind of warping occurs between the two traces, which

are otherwise similar in “shape.”

2.2 The forward model

Our forward model for moment tensor inversion begins with Green’s functions Gi,j(x, t; V,xsrc) of

the 3D elastic wave equation (Shearer 2009), where xsrc ∈ R3 is the source position, V represents a

velocity model, and x ∈ R3 and t ∈ R are the points in space and time, respectively, where the Green’s
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Figure 1. Sample waveforms coming from two different velocity models: the 3D SEG/EAGE overthrust model,

and a 2D layered-medium velocity model based on the 3D model.

function is evaluated. Here the index i ∈ {1, 2, 3} denotes the orientation of displacement associated

with the Green’s function, and j ∈ {1, 2, . . . , 6} corresponds to one of the six independent elements

of the moment tensor m ∈ R6 describing an impulse event. The waveforms predicted at a station

location xs, for a source event at xsrc with moment tensor m = {mj}6j=1, are therefore expressed as:

ui(xs, t) =

6∑
j=1

Gi,j(xs, t; V,xsrc)mj (1)

In practice, we will discretize the waveforms ui and the associated Green’s functions Gi,j at n time

points t = {tk}nk=1; thus we will write, more compactly and for a given station location xs,

ui(m; xs,xsrc) = Gi(xs,V,xsrc) ·m>, (2)

where ui(m; xs,xsrc) ∈ Rn and Gi(xs,V,xsrc) is an n× 6 matrix, for each orientation of displace-

ment i. Below we may suppress the explicit dependence of ui and Gi on xs, xsrc, and V unless it is

specifically needed.

A typical statistical model then assumes that observed waveforms are perturbed by additive i.i.d.

Gaussian noise at each time point:

yi = ui(m) + ei, with ei ∼ N (0, σ2I). (3)
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where y ∈ Rn is again a discretized version of the underlying noisy continuous-time waveform. These

assumptions lead to a Gaussian likelihood function, which, when paired with a conjugate Gaussian

prior, yield a closed-form expression for the Gaussian posterior distribution on m. In our setting,

however, both the presence of misspecification and the choice of an alternative transport-based misfit

measure call for a different formulation of the Bayesian update. We will discuss this methodological

question in Section 3.

2.3 Methods for solving the seismic inverse problem

Moment tensor inversion with waveform data possesses many similarities to full waveform inversion.

We therefore give a brief review of the relevant literature. The full waveform inversion problem has

been traditionally and primarily addressed in a deterministic sense, and while most of the methods we

discuss do not specifically aim to tackle velocity model error, the variety and nature of the proposed

approaches convey the complexity of the task and are in a sense a symptom of model misspecification.

2.3.1 Optimization approaches

The most traditional approach to seismic inversion is non-probabilistic, and consists in recovering

model parameters by optimizing a misfit function defined over the observed y and model-predicted u

waveforms (Virieux & Operto 2009). Typically, misfit functions are chosen to be Lp norms, with the

squared L2 norm, as in a least squares problem, being the most popular choice (Odile et al. 1986). A

number of techniques (Newton, truncated Newton (Métivier et al. 2013), Gauss-Newton, or gradient

descent) are used to solve, under various assumptions, the optimization problem.

Alternative measures of misfit have also been proposed ((Luo & Schuster 1991; Gee & Jordan

1992)), such as the L1 norm, secant and mixed L1–L2 norms (Huber penalty) (Crase et al. 1990), as

well as misfit functions based on optimal transport (Métivier et al. 2016b; Chen & Peter 2018; Métivier

et al. 2016a; Michael et al. 2013). Of a similar flavor are cross-correlation approaches (Van Leeuwen

& Mulder 2010), together with deconvolution approaches (Luo & Sava 2011; Warner & Guasch 2016;

Guasch et al. 2019). The aim of these alternative measures is to minimize the impact of phase/travel

time differences, or relative phase shifts, while generally mitigating the well-known phenomenon of

cycle skipping (Warner & Guasch 2014). With the same objective, it is also worth mentioning meth-

ods based on instantaneous phase differences and envelope ratios between observed and synthetic

seismograms (Bozdağ et al. 2011; Rickers et al. 2012; Luo et al. 2018). No matter the choice of misfit

function, building a reliable initial model for optimization remains a difficult task, especially so when

this includes estimating the velocity V. On the other hand, starting with a highly misspecified model

inevitably leads to poor parameter estimates. In addition, deterministic inversion typically yields only
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Robust Bayesian moment tensor inversion 7

single-point estimates, which do not convey any information about the uncertainty that surrounds the

final solution.

2.3.2 Bayesian formulations

An extensive and growing body of work has pursued full waveform inversion in a Bayesian framework

(Bosch et al. 2010; Duijndam 1988; Gouveia & Scales 1998; Sen & Stoffa 1996; Ray et al. 2017;

Gunning & Glinsky 2007; Zhu et al. 2016; Singh et al. 2018; Izzatullah et al. 2019; Gebraad et al.

2020). A main motivation behind these efforts is that a Bayesian framework offers, in principle, a

more complete representation of one’s state of knowledge about the inverse solution. This goal is

particularly relevant in a misspecified setting, though as noted in previous literature, misspecification

can cause Bayesian methods to become poorly “calibrated”—e.g., to under-report uncertainty Miller

& Dunson (2018).

A central challenge of Bayesian seismic inversion is the computational cost of characterizing the

posterior distribution and its marginals. For this reason, a large part of the literature on the topic has

focused on strategies to reduce the computational burden. In Sen & Stoffa (1996); De Figueiredo et al.

(2017) a number of sampling approaches have been considered, from Metropolis-Hastings Markov

chain Monte Carlo (MCMC) to Gibbs sampling. An approach to mitigating the high dimensional-

ity in certain seismic Bayesian inverse problems is the trans-dimensional Markov chain Monte Carlo

sampler implemented in Ray et al. (2017). Simplifications of the forward problem to increase com-

putational speed have also been proposed. In Arild & Henning (2003) the authors define a Bayesian

framework that relies on a forward model that is linearized in the velocity V. The error and prior

distributions are chosen to be Gaussian, which allows the posterior distribution to be characterized

analytically. Other Bayesian inversion attempts with linearized models can be found in Gunning &

Glinsky (2007); Grana & Della Rossa (2010).

Gu et al. (2018) attempted a full Bayesian moment tensor inversion without any simplification

of the forward model or linearization around specific solutions. To overcome the computational chal-

lenges and increase the robustness of the solution, a number of sampling strategies were implemented

to exploit conditional linearities, and the associated conditional Gaussianities, in the problem. These

include marginal-then-conditional sampling, pre-computing a library of velocity models and source

locations, as well as coarsening as described in Miller & Dunson (2018). The results achieved through

this implementation were satisfactory when the velocity model was known and set to a specific value.

As soon as uncertainty was introduced in V, the solutions of the problem exhibited a high degree of

instability, indicating model misspecification issues.
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2.4 Optimal transport distances

A resurgence of interest in formulations and numerical methodologies for optimal transportation has

led to, in the past few years, many applications in the field of signal analysis. Optimal transport is

attractive in the present seismological inverse problem, as it enables the richer kind of comparison of

waveforms that we seek. Optimal transport (OT) is in general (cf. the Kantorovich problem) a way of

finding a coupling of two probability measures that minimizes a certain total transportation cost (Vil-

lani 2009; Peyré et al. 2019). In the very specific case of discrete/empirical probability measures with

equal numbers of equally weighted points in their support, the OT problem reduces to an assignment

problem (Peyré et al. 2019) between the points in support of each distribution. The transportation cost

is often taken to be the distance or the squared distance between these points; the associated mini-

mum total cost, over all possible assignments, is then the 1-Wasserstein distance or the 2-Wasserstein

distance, respectively.

A distinctive feature of Wasserstein distances versus dynamic time warping (Müller 2007) is that

optimal transport does not ensure causality. This may seem a limitation in its application to waveform

comparison because of the inherent sequential nature of time signals. When dealing with velocity

model misspecification, however, this freedom can actually be beneficial—in that inconsistencies in

velocity modeling can produce either anticipation or delay in the reproduction of some parts of the

observed signal.

One way of relating the OT problem to the comparison of time-dependent signals is to treat the

signals as univariate probability density functions. For the resulting OT problem to be well posed,

however, it is necessary for these input signals to be normalized (i.e., integrating to one) and positive,

as these conditions are necessarily satisfied by probability density functions. Yet waveforms are not

densities—i.e., they do not in general sum/integrate to one and are not in general non-negative. A

common workaround to this problem is to shift the signal along the ordinate axis to make it positive

and then to divide it by its L1 norm, i.e., the sum of all of its points (Yang et al. 2018; Métivier

et al. 2016b; Thorpe et al. 2017). This adjustment also allows for a fast, analytical, computation of the

Wasserstein distance via formulas that apply only in one dimension. Attempts at using the Wasserstein

distance in this fashion have been made in the field of waveform inversion (Yang et al. 2018; Métivier

et al. 2016b). Promising results were achieved in these works for velocity inversion. OT-based misfit

functions have proven to be beneficial in terms of reducing cycle-skipping effects (Brossier et al.

2015; Warner et al. 2013). While computationally convenient, the transformation of the signals that

is required is somewhat artificial and is not justified by the physics of the problem. In addition, the

transformation can distort the signal, smoothing out amplitude versus frequency differences (Thorpe

et al. 2017). In a general sense, any a priori transformation of the data introduces the possibility of
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artifacts in the results of the inversion that can be hard to predict and quantify. For this reason, when

applied to field data, these techniques may prove to be less reliable.

A different approach that avoids these pitfalls is to use the so-called transport–Lagrangian (TL)

distance (Thorpe & Slepcev 2017), which is a specific instantiation of the Wasserstein distance adapted

to signals. Consider two real-valued signals y(t), u(t) : R → R as the observed data and modeled

waveforms. For simplicity, here we focus on the case where both signals have been discretized on n

points t = (ti)
n
i=1. Let y = (y(ti))

n
i=1 and u = (u(tj))

n
i=1. Then the TL distance can be written as

the solution of the following minimization problem:

TLλp(y,u) = min
σ∈Perm(N)

||yσ − u||pp + λ||tσ − t||pp (4)

whereσ indicates any permutation of the elements of the vector y, i.e., yσ = [yσ(1), . . . , yσ(i), . . . , yσ(n)].

The first term of the above expression is simply an Lp norm of amplitude differences, but between u

and a transported version of the signal y. The term is meant to control the amount of across-time

transport induced by the optimization over σ. The parameter λ is a degree of freedom chosen to

control the relative weights of the two terms of the objective function. We focus on p = 2, i.e.,

the TLλ2 distance, which will allow for a direct comparison to the case where a classic L2 misfit

is used. The above formulation can also be interpreted as optimal transport between uniform mea-

sures on the graphs of y(t) and u(t); in discrete form, it is optimal transport between two equally-

weighted empirical measures supported on R2, i.e., at points {(t1, y(t1)), (t2, y(t2)), . . . , (tn, y(tn))}

and {(t1, u(t1)), (t2, u(t2)), . . . , (tn, u(tn))}.

The TL distance operates directly on the (discretized) signals, and thus avoids unnatural data trans-

formations while still allowing an OT formulation. Also, while computing the Wasserstein distance in

general discrete settings amounts to solving a linear programming problem (with O(max(n,m)3)

complexity, n and m being the dimensions of the discretized signals), for the special case of n = m,

one can adopt more specialized algorithms that solve an assignment problem. Our algorithm of choice

for such problems is the auction algorithm (Bertsekas 1981), which exhibits a nearly quadratic aver-

age complexity of O(n2 log n) for problems with n < 1000 (Schwartz 1994; Métivier et al. 2019).

Finally, the choice of the parameter λ is of crucial importance for a successful use of this distance.

In general, setting λ → ∞ reverts the TL2 distance to the L2 norm, while sending λ → 0 allows

for rather large amounts of horizontal transport, almost neglecting amplitude matching—which is, for

most applications, the most informative feature of the data. Empirically, we have found that a good

choice for λ is to ensure that the scale of the time vector values (A) and that of the amplitude values

(T ) are somewhat comparable, i.e., λ = A
T . This is in accordance with related literature (Métivier

et al. 2019).
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A detailed analysis of the TL distance as an objective function in deterministic seismic inversion

(including differentiability and efficient computation of its gradients) has been given by Métivier et al.

(2019). Improvements in the convexity of the misfit have emerged as the primary effect of the choice

of such a distance measure (Pladys et al. 2021).

3 A CONSISTENT BAYESIAN FRAMEWORK FOR OPTIMAL TRANSPORT

DISTANCES

In this section, we answer the following question: how can we build a coherent Bayesian framework

around the TL distance as a misfit statistic? One approach could be to seek a tractable expression

for the likelihood function based on this statistic—i.e., for the probability density p
(
TLλp(y,u)|m

)
—

under the standard assumption of additive Gaussian noise on y (3). (In this setting, one could also

set p = 2 to directly compare with the L2 norm misfit.) There are two main impediments to this

strategy. First, calculating the TL distance involves solving an optimal transport problem, which is

itself a minimization problem. There is no closed-form expression for the solution of this problem.

Evaluating the likelihood function—which reflects the distribution of the TL distance TLλ2(y,u) under

random perturbations of y— therefore becomes challenging, if not impossible. Second, as we have

described earlier, our goal is to perform inference in a misspecified setting. Even if the likelihood

expression above were tractable, it presumes that the data follow exactly from the statistical model

(3). This assumption is violated under misspecification of the velocity, and therefore direct use of a

likelihood based on the distribution of the TL statistic would introduce inconsistency.

3.1 Gibbs posteriors

We seek an alternative inference approach that allows both for more general misfit functions and for

model misspecification. To this end, we adopt the framework introduced by Bissiri et al. (2016), which

is “a coherent procedure for general Bayesian inference which is based on the updating of a prior be-

lief distribution to a posterior when the parameter of interest is connected to observations via a loss

function.” The resulting posterior belief distributions are known as Gibbs posteriors. This framework

relaxes a key requirement of parametric Bayesian inference: that a parametric family containing the

true data-generating distribution be known. In the misspecified setting, this assumption is not satis-

fied; for example, without the correct velocity model V, we cannot generate precisely the observed

waveforms, or even the observed waveform up to an additive Gaussian noise perturbation.

A full motivation and derivation of the Gibbs posterior are given in Bissiri et al. (2016), but we

recall here the essential features. Let θ ∈ Θ generically represent the parameters of interest. (For
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moment tensor inversion, we have θ ≡m.) The central idea is to construct and minimize an objective

function L over probability measures on Θ; this objective is defined by the observations y, a given loss

function `(θ,y), and a prior probability measure p0 on Θ, reflecting our prior beliefs. An appropriate

objective turns out to be the sum of two terms, one reflecting an expected loss to the data y and the

other reflecting Kullback–Leibler divergence (Cover (1999)) from the prior:

L(p; y, `, p0) =

∫
`(θ,y)p(dθ) +DKL(p‖p0). (5)

Here p should be understood as a candidate probability measure over Θ. A coherent belief update is

given by the minimizer of (5), which can be written in closed form:

p∗ = arg min
p
L(p; y, `, p0) =

exp (−`(θ,y)) p0(θ)∫
exp (−`(θ,y)) p0(dθ)

. (6)

This minimizer, by construction, balances prior information with fidelity to the observed data, where

the latter is quantified through the loss function `. It also has the form of a Bayesian update, where

the denominator is a normalizing constant and the first term in the numerator (the exponentiated neg-

ative loss) takes the place of a likelihood function. If it is known that the data are generated from a

given parametric family of distributions (e.g., p(y|θ)), then choosing the loss to be the negative log-

likelihood, `(θ,y) = − log p(y|θ), reverts (6) precisely to Bayes’ rule. The classical Bayesian update

is therefore a special case of this more general framework for updating belief distributions.

In our experiments, to use the Gibbs posterior framework with the TL misfit, we will choose ` to be

the TL distance between the observed and modeled waveforms, for each orientation of displacement

and each observation station. The total loss is then the sum of these TL distances, over all stations and

all three orientations of displacement. More specifically, let yi be the (discretized) observed waveform

and ui(m) be the (discretized) modeled waveform given a moment tensor m, for a given station and

displacement direction (jointly indexed by i). For this pair, we put `(m,yi) = TLλ2(ui(m),yi)−log s;

summing the loss over all pairs yields

exp (−`(m,y)) = sN exp

(
−s

N∑
i=1

TLλ2(ui(m),yi)

)
, (7)

which is analogous to the expression suggested in Motamed & Appelo (2019), but using TL distances.

Here, the parameter s acts as a scaling factor, and N is the number of waveform pairs (one pair for

each station and orientation of displacement). The parameter s is analogous to an unknown variance

hyperparameter in a traditional Bayesian setup, but it plays no role in the data-generating process;

rather, it is necessary to ensure that the values taken by the loss function are of a scale that can

produce meaningful posterior distributions after being exponentiated. In other words, it is a necessary

adjustment to integrate any given loss function with a prior-to-posterior update that is not derived from
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12 A. Scarinci, U. bin Waheed, C. Gu, X. Ren, B. M. Dia, S. Kaka, M. Fehler, Y. Marzouk

an explicit statistical model of the data-generating process. We treat s as a hyperparameter and infer it

from the data, along with with m, in a hierarchical Bayesian framework.

Specifically, in our numerical experiments below, we endow s with a Gamma prior distribution as

in Motamed & Appelo (2019). This allows us to use a Metropolis-within-Gibbs scheme to explore the

posterior distribution: at each step of Markov chain Monte Carlo (MCMC), the value of s is updated

via a conjugate Gibbs proposal (i.e., a sample from the full conditional distribution of s, which is

again Gamma), and the value of m is adjusted using an adaptive Gaussian proposal (Haario et al.

2001) screened by a Metropolis-Hastings accept/reject step. The choice of values for the shape a and

rate b parameters of the Gamma prior are particularly critical to obtaining a meaningful posterior. In

our experiments, we set a = 100 and b = 1, such that the average value of s under the prior is 102.

This compensates for the scale of the sum of TL distances, which is O(10−2) in our problem setting,

and leads to a combined factor of s
∑N

i=1 TLλ2(ui(m),yi)) = O(1).

To summarize: we write our Gibbs posterior as p∗(m, s|y) ∝ exp (−`(m,y)) p0(m)p0(s). Here

p0(s) is the Gamma prior density described above, and p0(m) is chosen to be a uniform distribution

on the 6-dimensional L∞ unit ball (i.e., m ∼ U([−1, 1]6)). The MCMC algorithm run for J steps

produces a sequence of realizations {(m(j), s(j))}Jj=1. Marginalization is then trivial: the sequence

{m(j)}Jj=1 is (asymptotically) distributed according to p∗(m|y) =
∫
p∗(m, s|y)ds, i.e., the posterior

distribution on the moment tensor components.

3.2 Quantitative metrics for posterior evaluation

While Bayesian inference is now widely used in applications, often it is not obvious what constitutes a

“good” posterior. This question is particularly relevant and fundamental in misspecified settings, i.e.,

where the inference machinery does not contain a model of the true data-generating process. In such

context, how much uncertainty is the right amount? Should the true value of the parameter always be

expected to lie in the highest probability regions of the posterior (e.g., at the center of a Gaussian or

unimodal posterior)? Partial answers exist in literature, but largely depend on the more fundamental

question of “what does one want to use the posterior for?”

3.2.1 Continuous rank probability scores

We seek a methodology that quantifies how well our inference method performs relative to a true

known answer (e.g., synthetic data or data-generating parameter values). To achieve this quantifi-

cation, we need a scoring rule, which is a well known concept in Bayesian inference (Gneiting &

Raftery 2007). Let H be the true data distribution and therefore a perfect forecaster. If G is instead

an inference-based forecaster, a scoring rule S(G,H) assesses the predictive accuracy of G with re-
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Robust Bayesian moment tensor inversion 13

Figure 2. Variability (top) and bias (bottom) quantification in CRPS scores; here, red lines represent the perfect

forecaster and blue lines represent a candidate inference-based forecaster.

spect to H . A scoring rule is said to be proper if S(H,H) = minG S(G,H), i.e., if the lowest

score corresponds to G = H . While this idea is often used to compare the true data distribution

to a posterior predictive distribution, the same idea can be applied to parameters of interest, rather

than data. In this case, a perfect forecaster would be a Dirac distribution centered on the true pa-

rameter value, i.e., H(θ) = δθ=θtrue(θ), while G could be any distribution with probability density

pθ(θ) (e.g., a posterior distribution). For simplicity and computational tractability, we consider uni-

variate scoring rules (i.e., rules for scalar θ). Some popular rules include the quadratic Brier score,

S(G,H) =
∫ +∞
−∞ (δθ=θtrue(θ)− pθ(θ))

2 dθ, and the continuous ranked probability score (CRPS),

S(G,H) =

∫ +∞

−∞

(∫ θ

−∞
pθ(z)dz − 1θ≤θtrue(θ)

)2

dθ. (8)

For both of these scores, a value of zero is the minimum, achieved if and only if pθ is a Dirac distri-

bution centered at θtrue. In this paper, we focus on the CRPS score (8). This score jointly captures the

bias and variance of the forecaster G relative to θtrue, as illustrated in Figure 2. This ability follows

from the fact that the CRPS compares the cumulative distribution functions of H and G, rather than

their probability densities (which are not monotone increasing functions).

Note that if we had instead used scoring rules based on the data y and its corresponding posterior

predictive distribution, the true data distribution is unknown outside of a synthetic setting, and thus

the perfect forecaster is in practice represented by the empirical distribution of some held-out obser-
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14 A. Scarinci, U. bin Waheed, C. Gu, X. Ren, B. M. Dia, S. Kaka, M. Fehler, Y. Marzouk

vational data (typically separate from the sample used to build the inference-based forecaster). In our

numerical experiments below, however, we will know the true value of the parameters θtrue and thus

can apply the CRPS score directly to the posterior distribution p(θ|y). In particular, we will compute

a separate CRPS score for each scalar element of the moment tensor, θ = mi, i = 1, . . . , 6; we do

so because multi-dimensional generalizations of the CRPS score are extremely expensive to compute.

These scalar scores will reflect both the bias and variance of each posterior marginal. In Sections 4.3

and 4.4, we will introduce additional multivariate schemes for assessing posterior quality, based on

distances and angles between samples m ∈ R6 and on the physical interpretation of the moment

tensor.

4 EXPERIMENT: THE SEG/EAGE OVERTHRUST MODEL

4.1 Velocity models and inverse problem setup

Our earthquakes are simulated with the three-dimensional velocity model derived from the SEG/EAGE

Overthrust model (House et al. 1996; Aminzadeh et al. 1994, 1995, 1996). We choose this model

because it contains structural complexity that may not be easily represented using layered-medium

models. We use a 15×15 km region located in the southwestern portion of the Overthrust model. The

model extends to a depth of 4.7 km. Since only the P-wave velocity (Vp) model is given, we derive the

S-wave velocity (Vs) using a variable Vp/Vs ratio in the range [2, 1.7], where Vp/Vs near the surface

is close to 2 and it approaches 1.7 at the bottom of the model. The density model is obtained using

Gardner’s relation (ρ = 310V
1/4
p ).

Figure 3 shows a horizontal cross-section of the velocity at the source depth (1.1 km), the horizon-

tal positions of the receivers (in blue), which are located at the surface, and the position of the source

(in yellow). Figure 4 shows East-West cross sections of the model taken at the source location, which

is at the position of the yellow star. The source position was taken to be near the fault that cuts the

anticline. We used a total of six stations located at the surface and surrounding the source. We report

in Table 1 the locations of the receivers and source. We simulated three-component waveforms for a

single earthquake (with {strike, dip, rake} = {40◦, 50◦, 280◦}, respectively) in the elastic 3D model

using SPECFEM (Komatitsch & Vilotte 1998). The source time history was taken to be a pulse that

is nearly white between frequencies of approximately 1 and 13 Hz. These waveforms are taken as our

earthquake waveforms, i.e., our observed data y.

We then derived layered-medium models to be representations of the 3D structure obtained from

well logs. We took vertical profiles of the velocity and density models. We averaged the P-wave ve-

locity over 500 m depth intervals to approximate how one might obtain a layered medium model from

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggad116/7081312 by M

IT Libraries user on 25 M
arch 2023



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Robust Bayesian moment tensor inversion 15

-2 -1 0 1 2
East Relative to Source (km)

-2

-1

0

1

2

N
or

th
 R

el
at

iv
e 

to
 S

ou
rc

e 
(k

m
)

P-Velocity Model at Source Depth

3000

4000

5000

P-
w

av
e 

Ve
lo

ci
ty

NE

NW

E

SE

SW

W

Figure 3. Horizontal cross section of the P-velocity model at the source depth (yellow dot). Locations of stations

at the surface of the model are shown in blue.
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Figure 4. East-West vertical cross sections through SEG/EAGE Overthrust model at the position of the source

(yellow star). Upper plot shows P-velocity model and lower plot shows ratio of P to S-wave velocities.
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Stations North East Depth

NW 1100 -400 10

NE 1600 900 10

SW -1300 -500 10

SE -700 300 10

W 10 -1500 10

E 10 1500 10

SOURCE 0 0 1100

Table 1. Location of the source and receivers. All distances expressed in meters and relative to the source.

a well log. To this averaged (smoothed) model, we added some noise equal to 2% at the top of the

model and 10% at the base of the model to mimic increasing uncertainty in well logs with increasing

depth. Further, we used a constant ratio of Vp/Vs = 1.73 to obtain the S-wave velocity. The density

was taken to be constant at 2000 km/m3. We used vertical profiles at each station and the source loca-

tion to yield a total of seven layered velocity models. Figure 5 shows the velocity profile derived from

the well log at the source location (on the right), as well as the layered-medium models obtained by

averaging model properties over depth (and adding some noise) at each of the other well-log locations

(on the left).

For each of the seven layered medium models, we simulate three-component waveforms at each

surface station using Axitra, a discrete-wavenumber reflectivity modeling approach (Coutant 1990).

We initially validated the ouputs of Axitra by also simulating an earthquake for a layered medium

model in SPECFEM, and verifying that the outputs of both codes were visually identical. We then used

Axitra to construct the Green’s functions, and hence the forward model, used in inversion. Specifically,

for each layered medium velocity model and for each of the six moment tensor components, we
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Robust Bayesian moment tensor inversion 17

simulated three-component waveforms at each station, using the same source time history as was used

for the 3D earthquake simulation in SPECFEM. For each velocity model, we thus obtained a set of

Green’s functions used to simulate the waveforms u(m) at each station for a candidate m according

to (2).

We summarize our inversion workflow in the box below.

Algorithm 1 Workflow for testing moment tensor inversion under model misspecification
1: Select mtrue and xtrue;

2: Generate waveform data yi,k, for each orientation of displacement i ∈ {1, 2, 3} and station k ∈

{NW, NE, SW, SE, W, E, Source}, using SPECFEM:

yi,k = uSPECFEM,i(mtrue; xs,k,xtrue,V3D) + ei,k, where ei,k ∼ N (0, σ2I)

with σ = 10−3 (approx 1.5 orders of magnitude lower than the signal amplitude).

3: Sample the posterior distribution of m (via the MCMC scheme described in Section 3.1), us-

ing the following misspecified forward model in the generalized likelihoood (7): ui,k(m) =

uAxitra,i(m; xs,k,xsrc,Vlayered) where xsrc is not necessarily equal to xtrue (details in experiments

below).

In the experiments below, we run our MCMC chains for at least J = 106 steps each; this number

is probably rather higher than needed, but ensures thorough posterior exploration. The average wall-

clock time per MCMC step was 0.18 ms when using an L2 misfit and 0.65 ms when using the TL

misfit. The hardware specifications are as follows: RAM 31.3 GiB, processor: Intel Core i7-8700K

CPU at 3.7GHz, 12 cores.

4.2 Inversion results

Our inversion setup, as detailed in Section 4.1, includes a realistic form of model misspecification by

construction: the observed data y are simulated using a complex 3D velocity model via SPECFEM,

but the moment tensor m is inferred using one of seven layered approximations to this model. We

now proceed to recover the moment tensor using each layered velocity model, applying a Bayesian

formulation that employs either the TL or L2 distance as a loss function (the L2 loss is the standard

approach, corresponding to the additive Gaussian likelihood model, and follows simply by replac-

ing TLλ2(ui(m),yi) in (7) with ‖ui(m) − yi‖22). We illustrate the one and two-parameter marginal

posteriors of m for the North-West velocity model in Figure 6. The TL approach provides signifi-

cantly better recovery: it exhibits smaller variance and closer alignment with mtrue. Similar results

(not shown here) are obtained with the other velocity models. For a more quantitative comparison of

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggad116/7081312 by M

IT Libraries user on 25 M
arch 2023



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

18 A. Scarinci, U. bin Waheed, C. Gu, X. Ren, B. M. Dia, S. Kaka, M. Fehler, Y. Marzouk

Figure 5. On the right: vertical velocity profile (“well log”) of the 3D model at the source location (green), with

smoothed (black) and noisy (red) profiles used to build the layered medium models. On the left: velocity profile

for the layered medium model built at each station location.

the posteriors, we report CRPS scores obtained with each velocity model in Table 2. The CRPS values

in the first seven lines of the table are averaged across each of the six components of m. The bottom

line then shows the mean score—and mean difference in CRPS scores obtained with the TL distance

versus the L2—across all seven velocity models.

For all of the layered velocity models, the TL misfit provides better inference and uncertainty

quantification for the moment tensor. Lower CRPS scores indicate that the TL-based posterior distri-

butions are on average less biased, and exhibit less variance, than those obtained with the standard L2

distance. This translates into more reliable moment tensor estimates even in the present misspecified

setting—i.e., when a realistic 3D velocity model is represented (incorrectly) by a layered medium

model constructed from well logs.

Looking at the variability of the CRPS scores across the models, it also appears that the posteriors

obtained with the L2 distance are more sensitive to the velocity model used for inversion than the

TL posteriors. (Consider a CRPS standard deviation of 0.05 in the L2 case, versus 0.01 for TL.)

The interpretation of this behavior in geophysical terms requires further investigation, but indicates
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Robust Bayesian moment tensor inversion 19

Figure 6. Matrix plot of one- and two-dimensional marginal posterior distributions obtained with the NW

velocity model, for each moment tensor component and misfit measure. Green lines/dots indicate the true (data-

generating) value of each moment tensor component.

Well log TL2 L2 ∆L2−TL

NW 0.0528 0.1685 0.1157

NE 0.0637 0.1785 0.1317

SW 0.0710 0.2005 0.1295

SE 0.0637 0.1785 0.1148

W 0.0635 0.1173 0.0539

E 0.0837 0.1665 0.0828

SOURCE 0.0799 0.3008 0.2209

Mean (Std) 0.0694 0.0105 0.1907 0.0562 0.1213 0.0198

Table 2. Average CRPS scores for univariate marginal posteriors, resulting from different layered velocity

models.
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m TL2 L2 ∆L2−TL

mee 0.1410 0.1294 -0.0116

men 0.0399 0.1809 0.1410

mez 0.0455 0.0625 0.0169

mnn 0.0951 0.2607 0.1656

mnz 0.0202 0.0724 0.0522

mzz 0.0744 0.4381 0.3637

Table 3. CRPS score for each moment tensor component, averaged across velocity models.

that relative TL distance between waveforms is less sensitive than L2 to variations of the velocity

model. This, in turn, suggests that OT misfit measures may exhibit some robustness to variations in

experimental design (i.e., choice of station and well log location).

It is also interesting to calculate a CRPS score for each moment tensor element, averaging across

all seven velocity models. We report these results in Table 3. These scores are lower in the TL case

for all components of m except for mee. Visual inspection of the mee posterior marginal distribution

suggestions that the L2 posteriors, while in general more dispersive (i.e., higher variance), exhibit

proportionally less bias, which in turn produces a lower score. At the moment, we do not have an

explanation in geophysical terms for this behavior. Since it does not seem to be linked to any specific

velocity model, however, possible causes may be related to the chosen network configuration.

4.3 Inner products and stereonets

As an additional way of assessing the quality of our inversion results, we calculate the posterior mean

of the normalized inner product between the true moment tensor mtrue and its inferred value. We esti-

mate this quantity using posterior samples {m(j)} as 1
J

∑J
j=1

mtrue·m(j)

‖mtrue‖2‖m(j)‖2
. Values of this posterior

statistic necessarily fall in the range [−1, 1]. A value of one means that the posterior samples are per-

fectly aligned with the true moment tensor. This statistic is of particular interest since it looks at the

six components of the moment tensor jointly, rather than individually/marginally as does the CRPS.

In fact, one might argue that a moment tensor sampled from the posterior has a geophysical meaning

only when analyzed in its entirety. We report in Table 4 the results for each velocity model, and for
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Robust Bayesian moment tensor inversion 21

Well log TL2 L2 ∆L2−TL

NW 0.9613 0.5952 0.3661

NE 0.9484 0.5811 0.3673

SW 0.9475 0.4841 0.4634

SE 0.959 0.5709 0.3881

W 0.9551 0.7718 0.1833

E 0.9452 0.6845 0.2607

SOURCE 0.9588 0.0302 0.9286

Mean (Std) 0.9528 0.0065 0.6146 0.2390 0.4225 0.2410

Table 4. Average (normalized) inner product between mtrue and samples from the posterior distribution on m,

for each velocity model and loss formulation. A value of one indicates perfect alignment.

the TL and L2 loss functions. Through this multivariate measure of posterior quality, the TL approach

manifests itself as the clear winner, with an average score of 0.953 versus 0.615 for the L2 approach.

A related quality measure is the Euclidean distance (in R6) of each posterior sample from the true

moment tensor, i.e., ‖m(j) −mtrue‖2. We plot histograms of this quantity in Figure 7. It is apparent

that samples from the L2-based posteriors tend to be much further from the correct value than the

TL-based posterior distributions. Additionally, the variance of the distance appears to be higher in the

L2 case than the TL, confirming a trend already observed in CRPS scores.

We conclude this section with a more physical interpretation of the moment tensor inversion re-

sults: stereonet plots of the normals to fault planes. In Figure 8 we report the results for station NW.

The red dots represent the correct answer. Compared to the poles obtained from theL2 analysis, the TL

poles are more centered around the correct answer and at the same time much more tightly clustered.

4.4 Impact of model misspecification on the recovery of double couple earthquakes

The moment tensor as used throughout this paper is more general than the purely double-couple (DC)

mechanism and can be in fact decomposed into DC, isotropic (ISO), and compensated linear vector

dipole (CLVD) components, with the latter two representing the non-DC part of the focal mechanism.

We refer to (Vavryčuk 2015) for the details of how to perform this decomposition. In this section,
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Figure 7. Histogram of Euclidean distances between posterior samples and the true moment tensor value, for

each velocity model (row) and contrasting the L2 and TL formulations (columns).

we assess the amount of non-DC component recovered through the two inversion methods, TL and

standard L2.

We are interested in assessing whether the characterization of isotropic or CLVD components in

moment tensor inversion is a byproduct of model misspecification, rather than information actually

coming from the data. Recall that the moment tensor used to generate the data, before noise perturba-

tions, is a pure double couple. As a simple test, we analyze whether there is any change in non-DC
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Figure 8. Stereonet contour plot of posterior samples resulting from inversion with the NW layered velocity

model, for (a) the L2-based posteriors and (b) the TL-based posteriors.

percentage for events recovered through the TL-based posterior versus the events recovered through

the L2-based posterior. We report the results in Figure 9. We decompose each posterior sample m(j)

into the three components, and aggregate the percentages over all posterior samples to produce each

bar plot. We see a clear reduction in non-DC components (CLVD and ISO) in each of the TL poste-

riors, versus the L2 posteriors. These results seem to confirm the hypothesis, at least in this case, that

the recovery of non-DC mechanisms is mostly linked to the presence of model misspecification, rather

than intrinsic to the data.

For additional perspective, Figure 10 presents bar plots where we classify an event (i.e., a posterior

sample of m) as DC if the percentage of DC component in the event is above 60%. We see that even

though the true event is pure DC, the majority of events obtained with the L2 analysis fail to satisfy

this criterion. The TL analysis, on the other hand, yields a dramatically higher percentage of events

with a primarily DC component.

4.5 Experiment extension: robustness under different focal mechanisms

So far, we have tested the performance of inversion with the TL distance under different velocity

models. We have, however, used the same data set, i.e., waveform data y generated through the 3D

Overthrust model from a single DC event. In this section, we instead use a single layered velocity

model for inversion (obtained through a well log at the NW station location), while generating data
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Figure 9. DC-ISO-CLVD decomposition of samples from the posterior distribution resulting from each velocity

model.

from the Overthrust model using different values of the moment tensor. Our objective is to verify that

the results described so far are not simply dependent on a specific event.

We generate eight alternative data sets by choosing focal mechanisms that reflect real earthquakes.

All of the events are taken from the Harvard CMT catalogue (Huang et al. 1997; Dziewonski et al.

1981; Ekström & Nettles 1997; Chen et al. 2001; Ekström et al. 2012). Characteristics of the chosen

events are given in Tables 5 and 6.

These events represent a variety of earthquakes with different percentages of DC and CLVD com-

ponents. In Table 7 we report univariate CRPS scores, averaged across moment tensor components, for

each event. According to these scores, it can be seen that for all events except 070886A, the TL misfit

yields improved inversion performance compared to L2. For event 070886A, the CRPS score for the

posterior obtained with TL loss is significantly larger than the CRPS score for other events. We cannot

provide a particularly intuitive explanation of why this specific event yields such behavior, but a mul-

tivariate perspective on the posterior adds important nuance to these results. In Figures 11, 12, and 13,

we show posterior distributions for the first three events (070886A, 12487G, and 062992L), with the

associated stereonets and contour plots given in Figure 14. Generally speaking, the TL contour plots

show less biased and less dispersed fault plane recovery. Even for the first event (070886A), although

the amount of bias obtained with the TL misfit is higher than that obtained with the L2, the variance

reduction is striking. On this note, as already stated in Section 4.3, the univariate CRPS score might

be particularly penalizing when quantifying bias, since it is not calculated for m as a six-dimensional
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Figure 10. Share of events with a higher than 60% DC component, for each velocity model and for the L2 and

TL-based posteriors.

Event Name mnn mne mnz mee mez mzz

070886A -9.933 3 5.247 4.644 -8.325 5.29

12487G -7.28 0.384 -0.945 6.744 1.105 0.536

062992L -1.438 -1.178 0.296 1.413 -0.415 0.025

092904C -4.75 -1.11 0.002 5.1 0.011 -0.35

201804051929A -0.547 -1.25 -0.125 0.523 0.061 0.025

201507271812A 0.987 -2 -0.059 -0.676 0.004 -0.311

201511190742A 2.07 -1.11 -0.486 -1.63 -0.076 -0.436

201511300949A 3.23 -0.651 -0.438 -2.22 -0.325 -1.01

Table 5. List of selected events from the Harvard CMT catalogue (Dziewonski et al. 1981; Ekström et al. 2012).

In computations, moment tensors have been normalized so their scalar moments are one.
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Event Name Strike -1 Dip - 1 Rake -1 Strike - 2 Dip -2 Rake -2 DC% CLVD%

070886A 294 37 156 44 76 55 99.4 0.5

12487G 133 78 178 224 88 12 87.2 12.7

062992L 334 77 173 66 83 13 90.9 9.1

092904C 231 90 0 141 90 180 86.6 13.4

201804051929A 168 84 178 258 88 6 97.4 2.5

201507271812A 191 89 180 281 90 1 73.2 26.8

201511190742A 209 78 179 299 89 12 60.8 39.2

201511300949A 219 75 -173 127 83 -15 43.5 56.5

Table 6. List of selected events from the Harvard CMT catalogue (Dziewonski et al. 1981; Ekström et al. 2012):

strike, dip, rake, and DC versus non-DC percentage.

vector, but rather for each component independently. The stereonets provide, instead, a more complete

and physically interpretable visualization of the differences between the posteriors obtained with the

two misfits. In this view, the inversion depicted in Figure 14(b) (obtained with the TL distance) might

be more desirable than that of Figure 14(a). The other seven cases are unambiguous, in that the TL

results are superior in both the univariate metrics and fault plane visualizations.

4.6 Experiment extension: misspecification of the source location

So far, we have only considered cases in which the source location is assumed to be known and

well specified. In many contexts, however, source location information is not available and some

estimation technique is needed to place the source within the model. In the next case study, we adopt a

technique based on ray tracing from first-time arrivals. Rather than picking arrival times on the traces

simulated in the 3D model, we used ray tracing through the 3D model to calculate the traveltimes from

the correct source location to each receiver. To mimic what might be done with field data, we used

these traveltimes in a grid search scheme to estimate the location of the event in the layered-medium

model. We calculated Green’s functions in the NW layered medium model (Figure 5) from this source

location to each station. The resulting traces showed good alignments of both P and S arrivals between

the traces calculated at the correct source location in the 3D model and those calculated using the

shifted source location in the layered medium model. We took this alignment as an indication of a

reasonable estimation of the location from the traveltimes. The newly derived Green’s function traces

were used both for the inversion with L2 and TL misfit, since in both cases we would be operating
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Event Name TL2 L2 ∆L2−TL

070886A 0.7000 0.2027 -0.4973

12487G 0.0282 0.1804 0.1522

062992L 0.0546 0.1702 0.1156

092904C 0.0268 0.1842 0.1574

201804051929A 0.0657 0.1497 0.0840

201507271812A 0.0757 0.1754 0.0997

201511190742A 0.0540 0.1990 0.1450

201511300949A 0.0608 0.1735 0.1127

Mean (Std) 0.1332 0.2148 0.1794 0.0157 0.0462 0.2068

Table 7. Average CRPS scores for univariate marginal posteriors, for different seismic events.

Figure 11. Event 070886A: matrix plot of one- and two-dimensional marginal posterior distributions obtained

with a layered velocity model and either the TL or L2 misfit.
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Figure 12. Event 12487G: matrix plot of one- and two-dimensional marginal posterior distributions obtained

with a layered velocity model and either the TL or L2 misfit.

Figure 13. Event 062992L: matrix plot of one- and two-dimensional marginal posterior distributions obtained

with a layered velocity model and either the TL or L2 misfit.
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Figure 14. (a)-(f): Stereonet plot with contour lines for Event 070886A, Event 062992L, and Event 092904C

with L2 and TL misfits. The green lines and red dots denote the true fault planes and poles.
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Figure 15. Matrix plot of one- and two-dimensional marginal posterior distributions obtained with the North-

West velocity model, ray-traced source location and either the TL or L2 misfit.

under the same instance of source location misspecification. For this test (and the ones that follow

in this section) we used a single moment tensor value ({strike, dip, rake} = {40◦, 50◦, 280◦}) and

a single velocity model (NW), as we did not expect significantly different behaviors across velocity

models and focal mechanisms. Figure 15 shows the posterior distributions obtained in this case: from

a qualitative viewpoint, the TL still outperforms the L2 bringing in a major reduction in variance. The

L2, however, exhibits less bias than it did in the corresponding case without source location (Figure

6). We explain this result with the fact that the specific technique used for locating the source acts as a

partial compensator for time delays introduced by velocity model errors. In other words, it introduces

a certain amount of time shifting in the Green’s function traces that facilitates the recovery by the L2.

The TL does not benefit as much from this adjustment since it is within its own nature to compensate

for this kind of discrepancy. We also report the now familiar quantitative measures for posterior and

posterior samples evaluation (Table 8). These results confirm what emerged from a simple inspection

of the posterior distributions.

4.7 Experiment extension: attenuation modeling

As mentioned in the introduction, TL does not simply act as a surrogate for a static time-shift aimed

at compensating velocity model errors. It can also be useful under circumstances in which the dis-
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Criterion L2 TL

Euclidean Distance 0.7801 0.4252

Inner Product 0.8000 0.9575

CRPS 0.1044 0.0780

Table 8. Quantitative measures of posterior quality for the North-West velocity model, ray-traced source loca-

tion and either the TL or L2 misfit. Recall that for Euclidean distance and CRPS, lower values are better; for the

inner product, higher values (closer to one) are better.

crepancy between the traces arises from amplitude differences. To further investigate this aspect and

the performance of the TL vs. L2 with increased realism of the SPECFEM-generated waveforms, we

present a number of tests for which the data-generating model includes the effects produced by atten-

uation. We repeated the experiment just discussed (Section 4.6), the only difference being that instead

of using the elastic model for data generation (SPECFEM), an anelastic model with a quality factor

Qp of 50 and Qs of 100 was used.

SPECFEM has the capability to model waveforms that include the effects of attenuation, which is

specified as independent values of Q for P and S waves. Included in the simulation is the value of a

reference frequency, which we choose as 20 Hz because that leads to causal waveforms at frequencies

below 20 Hz. The source location used in SPECFEM was the correct source location of the 3D model.

The inversion was conducted using the Green’s functions calculated for the layered-medium model

(NW) with the source at the location determined using ray tracing and earthquake location as described

above.

The results (Figure 16 and Table 9) show once more the benefits brought by the use of the TL

misfit. The introduction of attenuation modeling, while slightly producing an improvement in the

performance of the TL, actually introduces more bias in the L2-based posteriors compared to the

equivalent posteriors obtained in the previous test case with attenuation-free data (Figure 15). This

test case (as well as the ones that follow) indicates that the TL does not simply act as an alternative

time-shifting mechanism, but is able to better quantify the discrepancy between traces that also differ

in amplitude. The introduction of the attenuation modeling in fact further highlights the benefits of

using the TL vs. the L2.

4.8 Experiment extension: L2 misfit and cross-correlation alignment

With the newly derived waveform data that includes the effects of attenuation, it is worth testing the

performance of the TL vs. L2 when the L2 also benefits from the use of maximum cross-correlation

to time-adjust the AXITRA modeled Green’s functions. We cross-correlated waveforms calculated in
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Figure 16. Matrix plot of one- and two-dimensional marginal posterior distributions obtained with the North-

West velocity model, ray-traced source location, attenuation factor Qp = 50 and Qs = 100 and either the TL

or L2 misfit

the 3D medium for the earthquake by SPECFEM and waveforms calculated for an earthquake with

the same moment tensor in layered model NW. Using the maximum time shift determined by cross-

correlation for all three components of waveforms for each station, we shifted the Green’s functions.

This meant that the overall trace of each Green’s function trace had optimal alignment with the earth-

quake waveform.

While in this setting the source location is not ray-traced for the TL nor the L2, the L2 is expected

to benefit (at least partially) from the time alignment of the waveforms. The posteriors reported in

Figure 17 once again confirm the increased variance reduction brought by the TL as well as the re-

duction in bias for the L2, which largely benefits from the adjustment introduced by cross-correlation.

Criterion L2 TL

Euclidean Distance 0.8278 0.3764

Inner Product 0.7718 0.9587

CRPS 0.1153 0.0590

Table 9. Quantitative measures of posterior quality for the North-West velocity model, ray-traced source loca-

tion, attenuation factor Qp = 50 and Qs = 100 and either the TL or L2 misfit.
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Robust Bayesian moment tensor inversion 33

Figure 17. Matrix plot of one- and two-dimensional marginal posterior distributions obtained with the North-

West velocity model, attenuation factor Qp = 50 and Qs = 100 and either the TL or L2 with cross-correlation

alignment misfit

On this note, it is important to remember that while computationally less expensive than the TL,

cross-correlation alignment requires some decisions to make about the portion of trace to use for each

waveform and whether to perform separate cross-correlation analyses for each component of wave-

forms.

4.9 Experiment extension: increased model error

We conclude this series of experiments with a test that, although rather extreme, exemplifies in a more

direct way the fact the TL brings the most benefit when the amount of model misspecification is rather

large. In summary, we repeat the last experiment (Section 4.8 – attenuation and cross-correlation for

Criterion L2 TL

Euclidean Distance 0.5659 0.3450

Inner Product 0.8999 0.9610

CRPS 0.0704 0.0443

Table 10. Quantitative measures of posterior quality for the North-West velocity model, attenuation factorQp =

50 and Qs = 100 and either the TL or L2 with cross-correlation alignment misfit.
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Figure 18. Matrix plot of one- and two-dimensional marginal posterior distributions obtained with a new North-

West velocity model (P-wave velocity to S-wave velocity of 1.6), attenuation factor Qp = 50 and Qs = 100

and either the TL or L2 with cross-correlation alignment misfit.

the L2 ) with a newly misspecified layered model NW. Rather than defining the S-wave velocities for

the layered model using “well logs” from the 3D model, we choose a constant ratio of P-wave velocity

to S-wave velocity to illustrate the case where S-wave velocity information is not available and a poor

choice is made in choosing the velocity ratio. We choose a ratio of 1.6. The effect of varying the ratio

is to essentially compress or expand the time between P and S phases that comprise the waveforms

depending on the spatial variation in this ratio in the true model.

We report the posterior distributions in Figure 18. In this case, the amount of improvement brought

by the TL is significantly higher than that of the cross-correlated L2 both in terms of bias and vari-

ance. This is also confirmed by the quantitative performance measures (Table 11). In summary, the TL

is particularly beneficial when the amount of model misspecification is high enough for the optimal

transport to effectively re-arrange the amplitude-time point pairs. By contrast, when the discrepancy

between the signals is high, the L2 approach is particularly penalized. When the dissimilarities be-

tween the signals are instead smaller, then the TL and L2 approaches tend to behave similarly to the

point of being identical the when the TL optimal assignment is the identity.
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Criterion L2 TL

Euclidean Distance 1.4876 0.5144

Inner Product 0.1247 0.9417

CRPS 0.2901 0.0968

Table 11. Quantitative measures of posterior quality for a new North-West velocity model (P-wave velocity to S-

wave velocity of 1.6), attenuation factor Qp = 50 and Qs = 100 and either the TL or L2 with cross-correlation

alignment misfit.

5 CONCLUSIONS AND DISCUSSION

In this paper, we proposed and evaluated an optimal transport-based Bayesian inference framework

for a realistic scenario of moment tensor inversion with misspecified velocity models. Our framework

uses the transport-Lagrangian distance as a loss function to define a Gibbs posterior. Data were gen-

erated using the SEG-EAGE Overthrust 3D velocity model. Velocity models used for inversion were

layered-medium approximations of this 3D model. We demonstrated the reliability of the methodol-

ogy in recovering the correct moment tensors under various scenarios of model misspecification, and

for a variety of source mechanisms; in particular, we saw significant improvements over Bayesian

moment tensor inversion with standard quadratic misfit functions (e.g., Gaussian likelihood models).

We quantitatively assessed the validity of these results through a number of statistical and geophysical

criteria. Finally, we showed how reducing the impact of model misspecification via our optimal trans-

port approach led to a significant decrease in the non-double-couple component of the recovered focal

mechanisms.

There are of course a number of important open questions following from the present study, and

many avenues for future development and improvement. First, it is important to note that the type of

model misspecification at hand (e.g., misspecified P-wave and S-wave velocities, attenuation) could

certainly affect the performance of Bayesian inversion with the TL distance, and its performance

relative to other misfits. We have explored many of these, and in almost all cases observed the supe-

riority of TL to L2, but one cannot make strict conclusions about misspecifications that are outside of

the present scope; hence these may merit future investigation. Another important path towards more

general statements and guarantees is theoretical analysis. Empirical studies cannot guarantee that the

proposed approach will always be superior. Therefore, it would be desirable to develop a theoretical

understanding of specific forms or scenarios of model misspecification (from the sources of mis-

specification to their impact on waveforms) and their interaction with the TL misfit. As explained in

Section 1, the intuition behind TL distance is better “shape matching” of waveforms—e.g., the ability

to detect shape similarity despite time-inhomogeneous phase shifts, amplitude mismatch, and other
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forms of signal warping. Making this intuition precise could involve parameterizing specific aspects

of “shape” and contrasting the dependence of the TL and L2-derived likelihood models on these pa-

rameters; in turn, one would want to elucidate the extent to which such shape variations depend on

the moment tensor m or instead on the various physical factors that influence the Green’s function

G. Separating these dependencies seems crucial to understanding the extent to which moment tensor

inversion can be made robust to misspecification. That said, it is reasonable to expect that for model

misspecifications producing discrepancies of phase or amplitude within the regime covered here, the

use of a TL distance in Bayesian inversion should provide good results. For particularly safety critical

applications, a possibility is always to solve the inverse problem using both TL and standard methods,

and to compare the plausibility of the answers in case of significant discrepancies.

Thus far, our moment tensor inversion method has targeted local-scale seismic data, e.g., micro-

seismic data in oil/gas fields. The expansion of this method to regional-scale moment tensor inversion

where dispersed surface waves are present needs further study. Another important caveat is that the

computational cost of computing the TL distance may be non-negligible (see Section 4.1); in our im-

plementation, it is roughly a factor of 3 or 4 larger than that of computing a simple L2 distance. This

can be relevant when MCMC chains need to be run for a large number of steps to achieve sufficient

mixing.

Future work should also involve applying this methodology to field microseismic data, rather than

synthetic data, and evaluate the scientific value of TL-based Bayesian inversion in such settings. A

parallel line of theoretical work could seek more general suggestions for misfit metrics in moment

tensor inversion, to mitigate different types of velocity misspecification, and embed these metrics

within the Gibbs posterior construction presented here. Finally, we believe that the benefits of using

optimal transport distances in misspecified Bayesian inverse problems involving time series data could

extend to other problems within and outside seismology.
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APPENDIX

Throughout the paper we have maintained the assumption of having to deal with data affected by

uncorrelated Gaussian noise. To test the TL under a more realistic setting, we repeated the experiment

of Section 4.8, but we added noise to simulated SPECFEM traces using actual noise recorded by the

Groningen (Netherlands) network. We choose a magnitude 0.5 earthquake and computed the signal-

to-noise for the event as a function of frequency using a portion of the trace prior to the earthquake

as noise. We choose six stations located within a few km of the event so that the stations were at

roughly the same distance as the stations in our test data. Prior to adding noise to our test data, the

Groningen noise traces were scaled in the frequency domain so that the signal-to-noise of our test data

would be similar to that in the Groningen data. The posterior distributions resulting from this test are

reported in Figure 19. It can be seen that the addition of correlated noise did not particularly affect the

performance of the TL versus L2 (cf. Figure 17).
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Figure 19. Matrix plot of one- and two-dimensional marginal posterior distributions obtained with the North-

West velocity model, attenuation factor Qp = 50 and Qs = 100, Groningen noise and either the TL or L2 with

cross-correlation alignment misfit
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