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Abstract001

Recent advances in large language models002
(LLMs) have enabled more semantic-aware rec-003
ommendations through natural language gen-004
eration. Existing LLM for recommendation005
(LLM4Rec) methods mostly operate in a Sys-006
tem 1-like manner, relying on superficial fea-007
tures to match similar items based on click his-008
tory, rather than reasoning through deeper be-009
havioral logic. This often leads to superficial010
and erroneous recommendations. Motivated011
by this, we propose ThinkRec, a thinking-012
based framework that shifts LLM4Rec from013
System 1 to System 2 (rational system). Tech-014
nically, ThinkRec introduces a thinking activa-015
tion mechanism that augments item metadata016
with keyword summarization and injects syn-017
thetic reasoning traces, guiding the model to018
form interpretable reasoning chains that consist019
of analyzing interaction histories, identifying020
user preferences, and making decisions based021
on target items. On top of this, we propose an022
instance-wise expert fusion mechanism to re-023
duce the reasoning difficulty. By dynamically024
assigning weights to expert models based on025
users’ latent features, ThinkRec adapts its rea-026
soning path to individual users, thereby enhanc-027
ing precision and personalization. Extensive028
experiments on real-world datasets demonstrate029
that ThinkRec significantly improves the accu-030
racy and interpretability of recommendations 1.031

1 Introduction032

Recommendation systems are indispensable in033

modern digital platforms, enabling users to nav-034

igate vast content efficiently (Glenski et al., 2021;035

Ma et al., 2023; Iana et al., 2024). Traditional036

sequential recommendation methods rely on im-037

plicit modeling of user interaction histories, cannot038

model context and incorporate broader knowledge,039

which restricts their reasoning and generalization040

1Our implementations are available in anonymous Github:
https://anonymous.4open.science/r/ThinkRec_LLM

ability. Recent advances in LLMs offer strong con- 041

textual comprehension and extensive world knowl- 042

edge to improve recommendation systems. 043

Prior solution paradigms of LLM4Rec can be 044

seperated into three categories: (1) item scoring 045

(Liu et al., 2024; Zhang et al., 2025), where LLMs 046

answer binary preference questions given user and 047

item context; (2) item generation (Li et al., 2023; 048

Bao et al., 2024), which maps natural language 049

prompts to item IDs through aligned embedding 050

spaces; and (3) hybrid modeling (Geng et al., 2023; 051

Zhang et al., 2024b), where a single LLM per- 052

forms multiple tasks such as pointwise predic- 053

tion, pairwise ranking, or listwise generation. Al- 054

though these LLM4Rec methods differ in output 055

formats and representation learning strategies, they 056

fundamentally resemble System 1—the intuitive 057

system—in cognitive science (Kahneman, 2011). 058

They tend to match similar items based on click 059

history while overlooking the deeper behavioral 060

logic. This limitation becomes evident in cases 061

such as the one shown in Figure 1(b), where the 062

user’s behavior over time is: dislikes “Dune”, likes 063

“The Three-Body Problem”, and likes “Foundation” 064

(all three are science fiction). Methods that rely on 065

System 1-like intuition tend to infer that the user 066

would also like “Hyperion” (science fiction) simply 067

because it belongs to the same genre. In reality, the 068

user might dislike philosophical or metaphysical 069

themes in fiction, which are prominent in *Hype- 070

rion*, making it an unsuitable recommendation. 071

Clearly, if we can leverage the vast knowledge en- 072

coded in LLMs and fully activate their reasoning 073

capabilities for user behavior modeling, recommen- 074

dation performance can be significantly improved. 075

This motivates our effort to push LLM4Rec from 076

a System 1 paradigm toward a more rational, Sys- 077

tem 2-like reasoning framework. We raise two 078

key questions for the advancement: 1) How to ef- 079

fectively balance recommendation objectives with 080

language modeling tasks to fully exploit the reason- 081
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Figure 1: (a) shows the composition of user interaction data. (b) and (c) illustrate previous LLM-based recommen-
dations and our ThinkRec, respectively. (d) compares ThinkRec with baselines in three real-world datasets.

ing capabilities of LLMs. Existing methods often082

prioritize direct recommendation metrics such as083

hit rate or ranking accuracy, overlooking LLMs’084

strengths in semantic reasoning. However, blind085

reinforcement thinking can lead to simple next to-086

ken prediction, defeating the goal of recommen-087

dation. 2) How to think more effectively in the088

presence of diverse user behaviors and underlying089

preferences. As shown in Figure 1(c), user behav-090

iors vary widely, and uniform modeling tends to091

obscure personality preferences while introducing092

noise that distracts the model from salient signals,093

impairing its reasoning capacity. Moreover, infer-094

ring user intent solely from high-rating items and095

generic world knowledge limits the informational096

basis for accurate preference reasoning.097

To address these challenges, we propose098

Thinking-based Recommendation via LLM, ab-099

breviated as ThinkRec. One of the main problems100

faced is that the data and optimization goals of101

recommendation tasks lack the ability to activate102

thinking in LLMs (Challenge 1). To overcome this103

challenge, we designed the item augmentation and104

thinking activation framework for finetuning. The105

fine-tuned model analyzes associations in historical106

item information, determines user preferences, and107

gives explicit reasons while deriving recommen-108

dations. We extracted the metadata keywords of109

the items with the help of an existing summariza-110

tion model as the augmentation information of the111

items to support the reasoning. In addition, rea-112

soning data is synthesized using a strong reasoning 113

model, and the reasoning capability is distilled to 114

the local model by mixed sampling of reasoning 115

and recommendation data. Therefore, item aug- 116

mentation and thinking activation become a bridge 117

connecting the recommendation task and the lan- 118

guage task, making recommendations traceable. To 119

address the difficulty of thinking diversely with rich 120

information (Challenge 2), we add the user’s pref- 121

erences (yes/no) of items to the prompts and gen- 122

erate personalized recommendation experts based 123

on latent user features. In the technique, we design 124

a dynamic Low-Rank Adaptation (LoRA) fusion 125

method. Users are grouped by latent user features 126

extracted from traditional recommendation models 127

as shown in Figure 1(c). A set of base LoRAs can 128

be represented and fine-tuned using the grouped 129

data, and the engagement level of each LoRA can 130

be determined through a gating mechanism. The 131

difficulty of thinking is reduced through informa- 132

tion classification and personalization mechanisms. 133

We conduct experiments on three real-world rec- 134

ommendation datasets, validating the rationality 135

and effectiveness of ThinkRec. ThinkRec average 136

outperforms state-of-the-art baselines by 7.96% in 137

AUC and by 56.54% in METEOR. In summary, the 138

main contributions of this work are threefold: 139

• We analyze the key challenges of LLM-based 140

recommendations and almost the first empha- 141

size the importance of activating thinking to 142

make recommendations more interpretable. 143
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• We propose the ThinkRec, including item aug-144

mentation and a thinking activation frame-145

work, as well as a latent user feature-based146

gating mechanism for instance-wise recom-147

mendation expert fusion.148

• Extensive experiments on three real-world149

datasets validate the effectiveness and reason-150

ableness of ThinkRec.151

2 Related Work152

2.1 LLM-based Recommendation153

With the rapid progress of LLMs, there has been154

growing interest in adapting them to recommenda-155

tion tasks using both textual and structured data.156

Early works (Bao et al., 2023; Ho et al., 2023; Lin157

et al., 2024a; Zhang et al., 2025) rely on prompt-158

based scoring by converting recommendations into159

binary question-answering, while others (Ji et al.,160

2023a; Li et al., 2023; Lin et al., 2024b) align lan-161

guage space with item embeddings to directly gen-162

erate item IDs. More advanced approaches, such163

as P5 (Geng et al., 2022) and InstructRec (Zhang164

et al., 2024b) unify multiple sub-tasks—like rat-165

ing prediction, pairwise comparison, or ranking,166

into a single language modeling framework. These167

methods demonstrate LLMs’ flexibility in express-168

ing recommendation semantics, yet most focus on169

adapting output formats, treating LLMs as static170

scorers or selectors with limited interpretability.171

Beyond static prompting, recent efforts shift172

toward viewing LLMs as interactive agents ca-173

pable of multi-step reasoning and personalized174

decision-making. For example, RecMind (Wang175

et al., 2024a) and MACRec (Wang et al., 2024b)176

introduce modularized reasoning structures, en-177

abling planning-based recommendation. Others178

explore integrating LLMs into various stages of179

the pipeline—for instance, generating user or item180

representations (Zhang et al., 2024c) or acting as181

high-level decision controllers (Park and Zhang,182

2025). Meanwhile, instruction tuning (Zhang et al.,183

2024b), chain-of-thought prompting (Liu et al.,184

2025) have been proposed to enhance LLMs’ se-185

mantic understanding. Despite these developments,186

explicit reasoning supervision and fine-grained187

user modeling remain underexplored. ThinkRec188

addresses these gaps by integrating reasoning-189

augmented training and personalized expert fusion,190

enabling interpretable, user-specific recommenda-191

tions grounded in structured reasoning.192

2.2 Reasoning Model 193

Recent advances have transformed LLMs from 194

passive token predictors into structured reasoning 195

agents by incorporating process-level supervision. 196

Techniques such as Chain-of-Thought prompting 197

(Wei et al., 2022), ReAct (Yao et al., 2022), and 198

Tree-of-Thoughts (Yao et al., 2023) enable mod- 199

els to generate intermediate reasoning steps, im- 200

proving interpretability and multistep inference 201

quality. To further reinforce reasoning capabili- 202

ties, recent works have introduced process reward 203

models (Zhang et al., 2024a) and self-improvement 204

pipelines using techniques like Monte Carlo Tree 205

Search (Luo et al., 2024) and reasoning distillation 206

(Xu et al., 2023). These trends define the emerging 207

paradigm of Large Reasoning Models, which pri- 208

oritize explicit, verifiable thinking processes over 209

direct output. ThinkRec draws inspiration from 210

this direction by introducing reasoning-augmented 211

training for recommendation, aligning to embed 212

structured reasoning into decision making. 213

3 Method 214

3.1 Preliminary 215

Problem Definition. In the view of sequen- 216

tial recommendation, datasets can be formulated 217

as S = {(xu,t, yu,t)}u=1,2,...,N,t=1,2,...,Tu , where 218

xu,t = {yu,1:(t−1)} denotes a user’s historical be- 219

haviors prior to the tth behavior yu,t and arranged 220

in a chronological order, and Tu denotes the num- 221

ber of behaviors for the user u. We will drop the 222

sub-scripts occasionally and write (x, y) in place of 223

(xu,t, yu,t) for simplicity. Each behavior y is repre- 224

sented as (u, t, iid, l), where iid is an item ID and 225

l ∈ {1, 0} indicating the interaction label. Further- 226

more, additional textual information about items 227

is provided, mainly the item title and description. 228

Given xu,t, get the textual information, and label 229

to construct a historical text prompt to determine 230

whether or not you would enjoy an item composed 231

of the title and description of yu,t and give a rea- 232

son ru,t. We aim to enable the LLM to provide 233

the underlying thinking beyond merely making rec- 234

ommendations as in previous work, thus achieving 235

more effective and interpretable recommendations. 236

Integrating Collaborative Embeddings into 237

LLMs. The sequential recommenders, such as 238

MF (Koren et al., 2009) and LightGCN (He et al., 239

2020), are used for encoding collaborative infor- 240

mation, which can be integrated into LLM embed- 241
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Figure 2: Overview of the proposed ThinkRec. Keywords are extracted from the description of items with the
pretrained PolyLM-Qwen-7B. Reasoning data is synthesized with a reasoning model from a sample of training data.
Global LoRA is trained with total data, and base LoRAs are tuned on it with data grouping by user feature. The
used LoRA, fusioned or single, is determined by the similarity between the user feature and LoRA representations.

dings. Formally, for each sample (u, t, iid, l):242

eus = fψ(u;S); eis = fψ(iid;S), (1)243

where eus ∈ R1×d1 denotes the user’s representa-244

tion with dimension d1, fψ(u;S) denotes the pro-245

cess used to obtain this representation, similarly for246

iid. Formally, for an item i with the text metadata247

itxt, we obtain its textual tokens Etxt as follows:248

Etxt = WE(TKZ(itxt)), (2)249

where TKZ(·),WE(·) present the LLM tokenizer250

and word embedding layer, respectively. Etxt =251

{emb1:L
txt }, where L is the number of tokens and252

emb1
txt ∈ R1×d2 denotes embeddings in the lan-253

guage space with dimension d2. To align eis, e
u
s to254

LLMs’ language space, projϕ(·) is used:255

embis = projϕ(e
i
s), embus = projϕ(e

u
s ). (3)256

3.2 Thinking Enhanced Recommendation257

To align recommendation with language modeling258

tasks, we highlight the importance of thinking ac-259

tivation for LLMs and propose a framework that260

consists of data construction and jointly training.261

3.2.1 Reasoning data construction262

To support LLMs for more effective reasoning, we263

need more textual information in addition to item ti-264

tles. Given that the raw metadata often contains ex-265

cessive or noisy content, directly using long-form266

text may hinder the understanding and inference of 267

LLMs. To address this, we leverage a pre-trained 268

summarization model (Wei et al., 2023) to extract 269

key concepts from the item metadata, and retain up 270

to 10 representative keywords to enhance the se- 271

mantic representation of each item. To model more 272

comprehensive preference information, not just lik- 273

ing information, we add low-scoring interactions 274

to the history sequence as well. Then we augment 275

each item with title it, label il ∈ {yes, no}, feature, 276

and keywords ik as follows: 277

itxt = it with feature embis (evaluation: il)
with description: ik.

278

Since existing recommendation datasets lack ex- 279

plicit reasoning traces, we synthesize a subset of 280

samples with explainable rationale by leveraging 281

a powerful reasoning model QwQ2. Specifically, 282

we sample a few thousand instances from the train- 283

ing data and construct textual prompts according 284

to Appendix C.2. We then repeatedly query the 285

reasoning model until a correct prediction is pro- 286

duced and record the latest explanation content as 287

the reason for interaction as in Figure 2(b). 288

3.2.2 Thinking activation 289

To equip the recommendation model with explicit 290

reasoning capability, we introduce a thinking acti- 291

2https://qwenlm.github.io/blog/qwq-32b/
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vation mechanism that jointly trains the model on292

both user–item interactions and synthesized reason-293

ing examples. During training, we perform mixed294

sampling from conventional recommendation data295

with binary labels, and reasoning data generated by296

prompting a reasoning model to produce natural297

language explanations for user preferences. For298

each sample, we concatenate the input prompt and299

its corresponding answer (ii or ru,t) to form a lan-300

guage modeling instance as input for training:301

Eqa = Concat(Eq,Ea),
pos = −Length(Ea),

(4)302

where Eq,Ea means embedding of question and303

answer constructing from S, respectively. While304

pos marked the position of the first answer token.305

This mixed sampling setup encourages the model306

to learn both prediction accuracy and semantically307

aligned reasoning behavior, within a shared repre-308

sentation space as shown in Figure 2(c).309

The overall objective of training optimization310

consists of two loss components. For thinking in-311

stances, the standard token-level cross-entropy loss312

over the input sequence is used:313

Lthink, logits = LLMθ(E
qa). (5)314

For recommendation instances, we use the standard315

binary cross-entropy (BCE) loss between the pre-316

dicted relevance score l̂ and the observed ground-317

truth label l of y:318

posid = TKZ(′Yes′),

l̂ = logits[pos][posid],

Lrec = BCE(l̂, l).

(6)319

To jointly optimize both objectives on a unified320

batch, we always use two losses, adjusting the321

weights of each loss according to instances:322

L =

{
αLrec + βLthink, thinking
ηLrec + γLthink, recommend

. (7)323

α, β, η, γ are weights for each loss. The model324

learns not only to rank relevant items but also to325

generate grounded reasons for its predictions, ef-326

fectively activating the model’s thinking ability.327

3.3 Recommendation Experts Fusion328

3.3.1 Base Expert fine-tuning329

To enable each expert to better capture user-specific330

preferences and behavioral patterns, we partition331

users into distinct groups based on latent features.332

Specifically, we utilize user embeddings derived 333

from various pretrained small collaborative models, 334

each of which implicitly encodes the interaction se- 335

mantics of users. These embeddings serve as the ba- 336

sis for grouping. We aggregate the representations 337

across all users and perform unsupervised cluster- 338

ing to obtain N groups S ′ = {S1:N}. The resulting 339

clusters are then used to partition the training and 340

validating data, allowing each expert to specialize 341

in a subset of users with similar representations to 342

simplify the preference modeling. 343

We first fine-tune a global expert using the 344

full data under the framework described in Sec- 345

tion 3.2.2, applying LoRA-based adaptation to en- 346

able generalizable recommendations with thinking. 347

Building on this global expert LoRAglobal, we fur- 348

ther adapt selected LoRA layers (the last 8 layers) 349

using grouped data, enabling the model to preserve 350

general thinking ability while adapting to more nu- 351

anced user preferences. As a result, we obtain a 352

set of base experts {LoRA1:N}, which serve as 353

candidates for dynamic expert fusion. 354

3.3.2 Instance Wise Expert Fusion 355

To determine which expert is most suitable for 356

a given user, we assign the mean of user fea- 357

tures extracted within each group by the corre- 358

sponding small model as representations of experts 359

E = {ec1:N}. We then compute the match between 360

user features and expert representations to estimate 361

each base expert’s involvement in modeling the 362

user’s preferences. The cosine similarity and soft- 363

max functions were used to obtain participation 364

scores wu = {wu1:N} of user u based on experts: 365

ecn = Mean(eus ), u ∈ Sn,
wu = Softmax(Cosim(eus , E)/τ),

(8) 366

where τ is the temperature coefficient. We intro- 367

duce a gating mechanism to filter users with highly 368

averaged H(wu) > 0.95 logN or concentrated 369

max(wu) > 0.5 + 0.6/N preference profiles, as- 370

signing them directly to a global or base expert; the 371

remaining users are served by instance-wise fusion 372

over multiple experts as shown in Figure 2(d). The 373

threshold is calculated as follows: 374

H(wu) = −
N∑
n=1

wun logw
u
n, (9) 375

376

LoRAu =


LoRAglobal, averaged
LoRAargmax(wu), concentrated∑N

n=1w
u
nLoRAn, otherwise

.

(10) 377
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4 Experiments378

We conduct experiments on real-world datasets to379

answer three main research questions: RQ1: How380

does ThinkRec perform in comparison to existing381

recommendation methods? RQ2: Why is the think-382

ing activation method in ThinkRec essential? RQ3:383

How does the fusion of experts influence recom-384

mendation performance?385

4.1 Experimental Setup386

Datasets. We conduct experiments on three387

datasets: ML1M refers to MovieLens-1M3. Yelp388

refers to the Yelp Open dataset4. Book refers to389

the “book” subset of the Amazon Product Review390

dataset5. The data processing details are in the Ap-391

pendix A.1, and the statistical information on the392

processed datasets is in Table 1. σ, µ refer to the393

standard deviation and mean of user interactions.394

Evaluation Metrics. We employ four widely used395

recommendation metrics: AUC, UAUC, Normal-396

ized Discounted Cumulative Gain (NDCG), and397

Mean Average Precision (MAP). And we employ398

METEOR (Banerjee and Lavie, 2005) and BLEURT399

(Sellam et al., 2020) to measure the generated rea-400

sons. METEOR incorporates synonym matching401

and word order. BLEURT is fine-tuned on human402

judgments to directly predict text quality.403

Baselines. To fully evaluate the proposed method404

ThinkRec, we compare it with traditional col-405

laborative methods MF (Koren et al., 2009),406

LightGCN (He et al., 2020), SASRec (Kang407

and McAuley, 2018), and LLM-based methods408

Prompt4NR (Zhang and Wang, 2023), TALLRec409

(Bao et al., 2023), CoLLM (Zhang et al., 2025).410

We extend the above LLM-based method to LLM411

Llama3-8B6 for a fair comparison and tune the412

LLM with LoRA to manage computational costs.413

The complete introduction is in Appendix A.3.414

Implementation Details We implement all the415

compared methods using PyTorch 2.5. We adopt416

BCE when not otherwise specified. LLM-based417

methods are optimized using AdamW, while other418

models use Adam. For hyperparameters such as419

learning rate, embedding size, and weight decay of420

traditional methods, we conduct grid search over421

commonly used ranges, and follow the original pa-422

pers for other baseline-specific settings. For LLM-423

3https://grouplens.org/datasets/movielens/1m/
4https://business.yelp.com/data/resources/open-dataset/
5https://nijianmo.github.io/amazon/index.html
6huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Datasets #Train #Valid #Test #User #Item σ/µ

ML1M 33,891 10,401 7,331 5,945 3,687 1.48
Yelp 1,637,168 144,929 144,929 40,617 60,014 1.24
Book 650,865 56,262 56,262 22,686 47,059 1.07

Table 1: Statistics of Datasets.

based methods, we adopt CoLLM’s configuration 424

for optimizer, sequence truncation and LoRA set- 425

tings. We set the sampling ratio of reasoning data 426

to 0.2, and full hyperparameter settings and search 427

ranges are provided in the Appendix A.2. 428

4.2 Overall Performance (RQ1) 429

We compare our ThinkRec method with baseline 430

methods on the accuracy of recommendations and 431

the quality of generated reasons. 432

4.2.1 Accuracy of Recommendation 433

The results of ThinkRec and SOTA recommenda- 434

tions are in Table 2. We observe some improve- 435

ment in our method on all three datasets. Notably, 436

ThinkRec improves the previous SOTA CoLLM 437

by +.0582 (9.13%) on AUC in Yelp and +.0623 438

(8.72%) on AUC in ML1M, demonstrating sub- 439

stantial gains in global ranking accuracy. CoLLM, 440

which integrates collaborative signals into LLMs 441

using external traditional models, achieves the 442

second-best AUC on ML1M (0.7141) and Book 443

(0.7830), confirming its effectiveness in leverag- 444

ing user–item interaction patterns. However, its 445

performance in user-level ranking metrics is rela- 446

tively less competitive, especially on ML1M and 447

Yelp, where ThinkRec offers more personalized 448

modeling through instance-wise expert fusion. 449

Other LLM-based methods, such as Prompt4NR 450

and TALLRec, also demonstrate competitive per- 451

formance, particularly on datasets with rich tex- 452

tual item metadata such as Book. For instance, 453

TALLRec achieves the highest NDCG@5 (0.7683) 454

on ML1M, and both TALLRec and Prompt4NR 455

slightly outperform ThinkRec in MAP@5 on Book. 456

These results suggest that instruction tuning and 457

prompt engineering are beneficial when item de- 458

scriptions provide substantial semantic context. 459

Turning to traditional recommendation models, 460

SASRec clearly outperforms MF and LightGCN, 461

especially on ML1M and Yelp. Its self-attention- 462

based sequential modeling effectively captures tem- 463

poral patterns in user behavior, yielding the best 464

UAUC (0.6687) and MAP@5 (0.4747) among non- 465

LLM baselines on ML1M. However, its perfor- 466

mance drops significantly on Book, where user 467
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Datasets ML1M Yelp Book

Methods AUC UAUC NDCG@5 MAP@5 AUC UAUC NDCG@5 MAP@5 AUC UAUC NDCG@5 MAP@5
MF 0.6401 0.6079 0.7286 0.4520 0.5838 0.5389 0.8120 0.2552 0.6592 0.5527 0.6805 0.2887

LightGCN 0.6140 0.6230 0.7333 0.4600 0.5360 0.5179 0.8076 0.2520 0.5622 0.4985 0.6406 0.2598
SASRec 0.6956 0.6687 0.7663 0.4747 0.6184 0.6096 0.8564 0.2785 0.5411 0.5197 0.6550 0.2701

Prompt4NR 0.6936 0.6433 0.7665 0.4652 0.6272 0.6034 0.8348 0.2705 0.6764 0.5699 0.7023 0.3048
TALLRec 0.6872 0.6553 0.7683 0.4706 0.5334 0.5206 0.7988 0.2538 0.6632 0.5568 0.7023 0.3049
CoLLM 0.7141 0.6672 0.7585 0.4647 0.6373 0.5961 0.8420 0.2734 0.7830 0.5672 0.6917 0.2968

Ours 0.7764 0.6775 0.7747 0.4774 0.6955 0.6065 0.8585 0.2826 0.8302 0.5705 0.6858 0.2977

Table 2: Comparison of prediction performance between ThinkRec and the baselines across the three evaluation
datasets. The best results are highlighted in bold and sub-optimal results are underlined.

interactions are more sparse and less sequential,468

revealing the limitations of sequence-only models.469

Overall, ThinkRec delivers the most balanced470

and robust performance across all datasets and eval-471

uation metrics. It achieves the best performance472

of almost all metrics on ML1M and Yelp, and also473

obtains the top AUC and UAUC on Book. Its con-474

sistent top-tier results confirm the effectiveness of475

combining thinking activation and expert fusion.476

These components jointly enhance both global and477

user-specific ranking quality, making ThinkRec a478

scalable and interpretable recommendation.

Datasets ML1M Yelp Book
Methods M B M B M B

Prompt4NR 0.0010 0.2013 0.0205 0.1675 0.0003 0.1957
TALLRec 0.0275 0.2607 0.0379 0.2420 0.0301 0.1931
CoLLM 0.0003 0.1626 0.0001 0.1785 0.0097 0.1636

Ours 0.0333 0.3104 0.0616 0.2683 0.0546 0.2828

Table 3: Quality evaluation of generated reasons. "M"
refers to "METEOR" and "B" refers to "BLEURT".479

4.2.2 Quality of Generated Reasons480

Table 3 summarizes the quality of the reasons gen-481

erated by the LLM-based recommenders. Com-482

pared with the generated reasons from QwQ us-483

ing the METEOR and BLEURT metrics, the rea-484

sons generated by our method significantly outper-485

form those of the three LLM-based baselines. Our486

method achieves an average relative improvement487

of 56.54% on METEOR and 23.35% on BLEURT488

across all datasets, suggesting better fluency, co-489

herence, and semantic relevance. These results490

validate the effectiveness of our thinking activation491

mechanism, which explicitly aligns recommenda-492

tions with user-centric reasoning via joint training493

on reasoning-augmented samples. The improve-494

ment in both syntactic and learned semantic metrics495

confirms that ThinkRec not only provides accurate496

recommendations but also produces more coher-497

ent, grounded, and human-aligned explanations,498

a crucial step toward reasonable and trustworthy499

LLM-based recommendations.500

Datasets ML1M Yelp Book

Methods UAUC N@5 M@5 UAUC N@5 M@5 UAUC N@5 M@5

w/o both 0.6658 0.7643 0.4674 0.5904 0.8429 0.2736 0.5017 0.6381 0.2613
w/o think 0.6599 0.7570 0.4623 0.5865 0.8402 0.2702 0.4692 0.6284 0.2548

w/o experts 0.6765 0.7740 0.4742 0.5999 0.8562 0.2791 0.5631 0.6801 0.2939

Ours 0.6775 0.7747 0.4774 0.6065 0.8585 0.2826 0.5705 0.6858 0.2977

Table 4: Ablation studies of key components in
ThinkRec. "N" refers to "NDCG", "M" refers to "MAP".

4.3 In-depth Analysis 501

4.3.1 Ablation Studies (RQ2) 502

To evaluate the importance of explicit reasoning in 503

recommendation, we ablate the "thinking" compo- 504

nent of ThinkRec (w/o think), which disables rea- 505

soning supervision. As shown in Table 4, this leads 506

to significant performance degradation across all 507

datasets. For example, UAUC on the Book dataset 508

drops from 0.5705 to 0.4692. Interestingly, this is 509

even lower than the variant where both thinking 510

and expert mechanisms are removed (w/o both). 511

Without thinking, the recommendation task is ef- 512

fectively reduced to binary classification, where en- 513

abling multi-expert modeling may overfit shallow 514

interactions, thus compromising generalization. 515

We then assess the contribution of the expert 516

personalization module, which removes the latent- 517

feature-based user grouping and experts fusion 518

mechanism (w/o experts). As shown in Table 4, this 519

also leads to consistent performance drops—for 520

instance, MAP@5 on Yelp falls from 0.2826 to 521

0.2791. Notably, only when thinking is enabled 522

does multi-expert modeling begin to show substan- 523

tial benefits. With reasoning supervision, group- 524

specific LoRA modules can effectively specialize 525

in distinct user groups, capturing fine-grained pref- 526

erence signals that would otherwise be blurred in 527

the global model. These findings highlight the con- 528

sistency and complementarity between thinking 529

and multi-expert modeling, providing a semanti- 530

cally rich space that allows user grouping to gen- 531

eralize rather than overfit, enabling expert models 532

to move beyond surface interaction patterns and 533
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Figure 3: The influence of performance with the number
of experts on Book (left panel) and Yelp (right panel).

capture deeper preference semantics.534

4.3.2 Study on the Fusion of Experts (RQ3)535

Analysis of the number of experts. As shown in536

Figure 3, the number of expert groups increases537

from 1 to 4, the model exhibits a characteristic538

’rise-then-fall’ performance trend, revealing the539

trade-off between personalization capacity and gen-540

eralization. In the early stages, fine-tuning LoRA541

modules within user groups significantly enhances542

the model’s ability to capture diverse preferences,543

resulting in notable gains in user-level and Top-N544

ranking metrics such as UAUC, NDCG@5, and545

MAP. However, with further partitioning, each sub-546

group receives fewer training samples, making the547

model prone to overfitting, thereby degrading rank-548

ing performance. Notably, the AUC metric con-549

sistently decreases with more experts, reflecting550

the deterioration of the consistency of global rep-551

resentation with expert specialization, validating552

the inherent tension between "global consistency"553

and "local specificity" in recommender systems.554

These results indicate that more experts do not nec-555

essarily equate to better performance; instead, the556

optimal group number should be dynamically ad-557

justed according to user behavior diversity, and the558

frequency of interactions.559

Analysis of the grouping features. Under a fixed560

two-group setting, we further investigate how the561

choice of user grouping features affects model562

performance. Specifically, we employ user em-563

beddings generated by MF, LightGCN, and SAS-564

Rec to construct different grouping strategies. As565

shown in Figure 4, with the increase of group dif-566

ference (Cohen’s d), the performance of ThinkRec567

consistently improves. This trend highlights the568

Figure 4: The influence of performance on the accuracy
of grouping (Cohen’s d of grouped datasets).

importance of semantic decoupling among expert 569

groups. When user preferences across groups ex- 570

hibit stronger heterogeneity, the LoRA modules 571

assigned to each group can learn more complemen- 572

tary preference representations, thereby enhancing 573

the system’s modeling capacity and global discrim- 574

inative power. In contrast, if the groups are seman- 575

tically overlapping, expert models tend to learn 576

redundant representations, and the fused output be- 577

comes increasingly similar to that of the global 578

model, limiting performance gains. Therefore, 579

leveraging high-quality user behavior modeling 580

methods as the basis for grouping can amplify di- 581

vergence across user groups, enabling multi-expert 582

systems to achieve better personalized expressive- 583

ness while preserving a global perspective. 584

5 Conclusion 585

In this work, we explore how to activate the explicit 586

reasoning capabilities of LLMs for recommenda- 587

tion tasks, aiming to improve both interpretability 588

and accuracy. We highlight crucial challenges in 589

existing LLM-based recommendation approaches, 590

including the absence of reasoning supervision and 591

insufficient modeling of fine-grained user prefer- 592

ences. To this end, we propose the ThinkRec, 593

which incorporates a thinking activation framework 594

containing item augmentation and mixed sampling 595

training, an instance-wise expert fusion mecha- 596

nism based on latent user features. The results in 597

three real-world datasets confirm that ThinkRec 598

performs better in both the accuracy of recom- 599

mendations and the quality of explanations. We 600

believe this work lays the foundation for a new 601

paradigm that bridges reasoning and recommen- 602

dation in LLMs. In the future, we plan to extend 603

this line of research toward thinking-based item 604

generation and review-informed user modeling. 605

8



Limitations606

ThinkRec has several limitations. First, the reason-607

ing supervision relies on synthetic explanation data608

generated by a separate LLM, which may introduce609

noise or reinforce undesired patterns. Second, our610

expert modeling approach is currently based on of-611

fline clustering and may not capture evolving user612

preferences over time. In addition, our evaluation613

does not include real-world user engagement feed-614

back. We leave these for future work to address.615

Ethical Considerations616

We use only publicly available benchmark datasets617

(e.g., ML1M, Yelp, Book) that are widely adopted618

in the recommendation community and contain619

no personally identifiable information (PII) in our620

work. We take initial steps to mitigate oversimpli-621

fied reasons and hallucinated content in the textual622

outputs via reasoning-aligned training.623
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SIGIR ’23, page 227–237, New York, NY, USA. As-826
sociation for Computing Machinery.827

A More Settings of Experiments828

A.1 Datasets Details829

ML1M contains user ratings on movies, collected830

between 2000 and 2003, with ratings on a scale of831

1 to 5. We convert these ratings into binary labels832

using a threshold of 3. Yelp includes user reviews,833

ratings for businesses such as restaurants and retail834

shops, as well as textual information about the busi-835

nesses. We convert these ratings into binary labels836

using a threshold of 3. Book compiles user reviews837

of books from Amazon, collected between 1996838

and 2018, with review scores ranging from 1 to 5.839

We transform these review scores into binary labels840

using a threshold of 4. Ratings greater than the841

threshold are labeled as “positive” (y = 1), while842

the rest are labeled as “negative” (y = 0).843

To better simulate real-world recommendation844

scenarios and prevent data leakage (Ji et al., 2023b),845

we split the dataset into training, validation, and846

testing sets based on the interaction timestamp.847

Specifically, for Amazon-Book, given its large848

scale, we just preserve interactions from the year849

2017, allocating the first 10 months for training,850

and the remaining 2 months for validation and test-851

ing. As for Yelp, we preserve interactions from852

2010 to 2022, allocating the first 10 years for train-853

ing, and the remaining 2 years for validation and854

testing. Given the sparse nature of Book and Yelp,855

we filtered out users and items with fewer than 20856

interactions. As for ML1M, we preserve the inter-857

actions from the most recent twenty months, using858

the first 10 months for training, the remaining 10859

months for validation and testing.860

A.2 Implementation Details861

Regarding traditional models, we explore the learn-862

ing rate within the range of [1e-2, 1e-3, 1e-4],863

the embedding size within the range of [64, 128,864

256], and weight decay within the range of [1e-865

2, 1e-3, . . . , 1e-7]. As for LLM-based meth-866

ods, we set the learning rate to 1e-4, and weight867

decay to 1e-3 to align with CoLLM. For SAS-868

Rec, we establish the maximum length of histori-869

cal interaction sequences to 25. We adopt TALL-870

Rec’s practice of setting the maximum sequence871

length to 10 for all other methods. Regarding872

other specific parameters of the baseline models,873

we adhere to the configurations outlined in their874

original papers. For the LoRA module, we fol- 875

low the same configuration as CoLLM, setting 876

r, alpha, dropout, target modules to 8, 16, 0.05, 877

and “[q proj, v proj]”, respectively. We set the sam- 878

ple rate of reasoning data and recommendation data 879

to 0.2 and 0.8, and the weight of each loss function 880

as follows: α = 0.1, β = 0.9, η = 0.9, γ = 0.1. 881

We set the temperature coefficient τ to 0.1. 882

A.3 Baselines Details 883

To fully evaluate the proposed method ThinkRec, 884

we compare it with: 885

• MF (Koren et al., 2009) This refers to Matrix 886

Factorization, a representative latent factor- 887

based collaborative filtering method. 888

• LightGCN (He et al., 2020) A representative 889

graph-based collaborative filtering method, 890

which uses a simplified graph convolutional 891

neural network to enhance the modeling of 892

user interest. 893

• SASRec (Kang and McAuley, 2018) A repre- 894

sentative sequential recommendation method, 895

which uses self-attention to encode sequential 896

patterns to model user interest. 897

• Prompt4NR (Zhang and Wang, 2023) It uses 898

both fixed and soft prompts to utilize tradi- 899

tional Language Models for recommendation. 900

• TALLRec (Bao et al., 2023) This is a state-of- 901

the-art LLMRec method that aligns LLM with 902

recommendations through aligns LLM with 903

recommendations through instruction tuning. 904

• CoLLM (Zhang et al., 2025) It effectively in- 905

tegrates collaborative information into LLMs 906

by harnessing the capability of external tradi- 907

tional models to capture the information. 908

B Pseudocode of ThinkRec 909

We briefly introduce ThinkRec in Algorithm 1 and 910

2. First, as shown in Algorithm 1, items are aug- 911

mented and reasons are generated. Then global 912

and base experts are trained on according datasets. 913

Second, as shown in Algorithm 2, the participa- 914

tion of each expert is calculated according to their 915

representations and the user’s latent feature. Then, 916

user-specific experts are specified according to par- 917

ticipation and thresholds. 918
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Algorithm 1: Thinking Activation

Module 1: � Keywords Extraction

Target: Metadata of each item id 7→ Descrip-
tion of each item ik
Input: Metadata of each item id
Output: Description of each item ik

Module 2: � Reasoning Data Generation

Target: Interaction dateset S 7→ Reasoning
dateset Sr
Input: Interaction dateset S
Output: Reasoning dateset Sr

Module 3: � Expert Training

Target: Backbone model LLM(·), collabora-
tive encoder fψ(·;S), dataset S,Sr 7→ Global
expert LoRAglobal, base experts {LoRA1:N}
Input: Backbone model LLM(·), collabora-
tive encoder fψ(·;S), dataset S,Sr
Output: Global expert LoRAglobal, base ex-
perts {LoRA1:N}

Algorithm 2: Instance-wise Experts Fusion

Module 1: � Participation Calculation

Target: User embedding eus , representations
of experts {E1:N} 7→ Particication of experts
wu

Input: User embedding eus , representations
of experts {E1:N}
Output: Particication of experts wu

Module 2: � Expert Fusion

Target: Particication of experts wu, Global
expert LoRAglobal, base experts {LoRA1:N}
7→ Instance-wise Expert LoRAu

Input: Particication of experts wu, Global
expert LoRAglobal, base experts {LoRA1:N}
Output: Instance-wise Expert LoRAu

C Prompt Templates919

C.1 Prompt for Summarizing Metadata920

Summarization
Your task is to extract up to ten keywords
from the given profile of the book above.
Answers should contain only keywords,
which should be separated by commas.
Keywords:

921

C.2 Prompt for Reasoning Data Synthesis 922

First Turn
A user has given high ratings to the follow-
ing books: <HisItemList>. Using all avail-
able information, make a prediction about
whether the user would enjoy the book titled
<TargetItemTitle>?

923

Reflect Turn
� The correct response is <answer>. Re-
flect on multiple aspects based on histori-
cal information and explain the reason for
the oversight based on the previous analy-
sis. Reanalyze to make a prediction about
whether the user would enjoy the book ti-
tled <TargetItemTitle>?
� The accurate answer is <answer>. Delve
into various aspects considering historical
data, elucidate the cause of the oversight
according to the preceding analysis. Con-
duct a reanalysis to forecast whether the
user will take pleasure in the book named
<TargetItemTitle>?
� The right response is <answer>. Re-
flect on a variety of aspects with reference
to historical information, and account for
the oversight based on the earlier analy-
sis. Reanalyze to determine whether the
user would appreciate the book titled <Tar-
getItemTitle>?

924

C.3 Prompt for Recommendation 925

Recommendation
#Question: A user has given ratings to
the following books: <HisItemList>. Ad-
ditionally, we have information about the
user’s preferences encoded in the feature
<UserID>. Based on the descriptions and
the user’s enjoyment of each book in the
historical sequence, construct a persona
of the user’s preferences and reevaluate
whether the user would enjoy the book titled
<TargetItemTitle> with the feature <Tar-
getItemID>. Please begin your analysis
with "Yes" or "No".
#Answer:

926
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D Case Study927

Among existing LLM-based recommendations,928

CoLLM and Prompt4NR yield disorganized sym-929

bols. TALLRec frequently generates sentences930

with unrelated elements, such as code or halluci-931

nated facts, failing to reflect coherent reasoning. In932

contrast, ThinkRec demonstrates structured, step-933

by-step reasoning aligned with user history and934

target item semantics, enabling it to produce accu-935

rate and interpretable recommendations.936

Prompt4NR
")) ’"’); 3.}"’, ’); }’) , } "); }; """ “‘ I
think I understand the problem, but it’s a bit
unclear to me. ") }; } """ ");

937

TALLRec
");" # 3. The user’s response: "1"; (the
number of the book to be analyzed) # - If
a book has been rated, then it is included
in this list. # * For each book that matches
with any other book on the same list: # +
Check if both books are novels and have
similar genres # - In case they match these
criteria, add them together as one single en-
try """ def predict_book_rating(book_id):
for i in range(len(user_ratings)): if int(i)
== book_id: return True result = [] for j
in user_ratings: if len(result) > 0: flag =
False for k in result[-1]: if j[book_name]
== k[0][book_title]: if ’novel’ in j[’genres’]
or ’fiction’ or ”: if (’romance’, ”) not
in k: result.pop() break else: flag=True
continue elif j.get(’genres’) != None and
set(j[’genre’]) & set(k[2]): flag=False #
#!/usr/bin/env python from flask import
Flask, request, jsonify import json app
= Flask(__name__) @app.route(’/predict-
book-rating’) def predict(): data = {’user’:
[’The Duchess Deal: Girl Meets Duke’;
’The V Card’;...]} print(data) if __name__
== ’__main__’: app.run(debug=True) “‘
Here you can use Python script. Please note
that I am using ‘flask‘ framework which
allows us to create simple web applica-
tions. Here we will make an API endpoint
‘/predict-books-ratings‘. You should send
JSON object where key ‘’books’‘ contains
array of book titles.

938

CoLLM
"); #</#">’; ’ ’, ’; ’# ’; “‘" I have been trying
to solve this problem for a long time, and I
am still unable. Can you help me?

939

ThinkRec
Yes. Okay, let’s see here. The user has rated
several books positively and I need to figure
out if they’d like the new book "If I Run
(If i Run Series)". First, looking at their
liked books: They enjoy thrillers with ele-
ments of suspense, crime, mystery, family
dynamics, abuse themes, and some histori-
cal or biographical aspects too. For exam-
ple, in "A Child Called It" there’s child-
hood trauma, healing, which is a strong
theme. Then series like Heist and Millen-
nium have action, romance maybe? But
mostly thriller/suspense. Even though it
mentions romance in those, the main focus
seems on the heists and cybercrime. The
next one, "Saving Parker", includes Ameri-
can history and children’s angles again. So
historical fiction blended with personal
stories might be appealing. Also, Jack
Reacher novels are part of this list, so that
suggests they like gritty detective work or
military/authoritative figures. Michael Ben-
nett and Alex Cross also indicate police pro-
cedural or investigative mysteries. Now the
target book is an If I’m Found sequel, fo-
cusing on family, suspense/mystery, mur-
der, love, marriage/divorce... If you run
has plot twist, dialogue, compulsive read-
ing, etc., which aligns with what users like
from other books. Themes include family
and suspense. Their existing likes include
both family-focused (e.g., Saving Parker)
along with intense plots (Heist, Stieg Lars-
son). The presence of murder and investiga-
tion matches Haunted by Michael Bennet.
Marriage/divorced themes aren’t explicitly
mentioned elsewhere, but relationships are
present in others (Before We... has love
story?). So overall, given the overlap in key
genre tags (family, thriller, suspension),
plus positive reviews on related topics, I
think the answer should be Yes.

940

E Notation 941
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Symbol Description

Sets and Indices

S Sequential recommendation dataset
S ′ = {S1:N} Grouped Sequential recommendation dataset
u, t User and time indices
N Total number of users
Tu Number of behaviors of user u
E = {ec1:N} Representations of experts

Variables and Hyperparameters

xu,t, yu,t History and current behaviors of user u at time t
x, y Simplified notations for (xu,t, yu,t)
iid, itxt, it, id, ik, il Item ID, textual information, title, description, keywords, yes/no label
ru,t Explanation or reason for recommendation at (u, t)
l̂, l Predicted and ground-truth labels (binary)
eus , e

i
s User/item embeddings from collaborative encoder

Etxt Token-level embedding of text
emb1

txt First token embedding
embus , embis User/item embeddings projected into language space
Eq,Ea,Eqa Embeddings of question, answer, and their concatenation
wu = {wu1:N} Expert participation weights of user u
d1, d2 Dimensions of collaborative and language embeddings
L Number of textual tokens
pos, posid Position of answer token; token ID of “Yes”
τ Softmax temperature
α, β, η, γ Loss weighting coefficients

Functions

fψ(·;S) Collaborative encoder function
TKZ(·) Tokenizer of LLM
WE(·) Word embedding lookup
projϕ(·) Projection into language space
Concat(·) Concatenation operation
Length(·) Sequence length
LLMθ(·) LLM with parameters θ
BCE(·, ·) Binary cross-entropy loss
Softmax(·) Softmax function
Cosim(·, ·) Cosine similarity
Mean(·) Mean over a set of values

Loss Functions

Lthink Loss for the reasoning task
Lrec Loss for the recommendation task
L Final combined training loss

Table 5: Summary of Notations
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