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Abstract

Class-Incremental Semantic Segmentation (CISS) is an emerging challenge of1

Continual Learning (CL) in Computer Vision. In addition to the well-known issue2

of catastrophic forgetting, CISS suffers from the semantic drift of the background3

class, further increasing forgetting. Existing attempts aim to solve this using pseudo-4

labelling, knowledge distillation or model freezing. We argue and demonstrate5

that frozen or rigid models suffer from poor expressibility due to overcompression.6

We improve on these methods by focusing on the offline training process and7

the expressiveness of the learnt representations. Beyond the characterisation and8

demonstration of this issue in terms of the Information Bottleneck principle, we9

show the benefit of two practical measures: (1) using shared but wider convolution10

modules before final classifiers to improve scaling for new, continual tasks; (2)11

introducing dropout into the encoder-decoder architecture to improve regularisation12

and decrease the overcompression of information in the representation space. We13

improve the IoU on the 15-1 and 10-1 scenarios by over 2% and 3% respectively14

while maintaining a smaller memory and MAdds footprint. Last, we propose a15

new benchmark setting that lies closer to the nature of lifelong learning to drive the16

development of more realistic and valuable architectures in the future.17

1 Introduction18

Continual Learning (CL) aims to address the shortcoming of standard supervised learning that19

requires large quantities of labelled data. It pursues a more natural, human-like ability to quickly and20

continuously learn from small exposures to training data. The learner experiences a stream of tasks21

whose relatedness is not known beforehand [4] and has the potential to quickly learn a new task by22

re-using past experiences. Clearly, we have to prevent the model from naively storing all experiences.23

This constraint enforces the need to efficiently compress the knowledge to a modest size and limit the24

computation used to recreate representation for a task at hand. Recent work on Continual Learning25

focuses on the numerous ways to combat forgetting using replay methods, continually changing the26

models’ architecture to adapt to new knowledge or distillation methods.27

Class-Incremental Semantic Segmentation (CISS) is a recently recognised problem that, on top of28

forgetting, deals with the unique issue of background shift [2] of the unknown pixels (see Section29

2.3.1). Existing work focuses on the efficient transfer of existing knowledge between the continual30

steps while acquiring enough information to work with the tasks at hand. The prevalent approach31

is using rigid encoders that aim to maintain initial features throughout training while focusing on32

attempts to learn new classes. As a result, the most successful approaches tend to fair well with initial33

classes while struggling with the ones learned in the online fashion.34

Most problems, however, tend to also have an offline phase where the model is initialised and learns35

the initial data and tasks. Mirzadeh et al. [27] show that wide convolutional models outperform36
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standard ResNet-based encoders [17] in Continual Learning, proving that the choice of the initial37

architecture is fundamental to combating catastrophic forgetting. Further inspired by the Information38

Bottleneck principle [35] we claim that we should put just as much effort into the training of the39

offline phase as we put into the online phase for best results.40

1.1 Deep neural networks and overcompression41

When developing models for CL, it is important to develop from pre-trained models that have many42

diverse features. Adding additional filters to an existing model is resource intensive, and provides43

training challenges. Therefore, it is important to start with an extensive feature set that we can adapt to44

the different scenarios as they appear. However, in initial offline training on the limited data, the many45

unimportant features are pulled closer to existing relevant filters, and such excessive compression46

means that we might remove features that are crucial for learning a prediction of one of the future47

classes.48
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Figure 1: IoU and Joint upper-bounds com-
parison of the proposed DCSS model and
SSUL [3] in the 15-1 scenario. DCSS achieves
better online scores despite being worse in of-
fline training, suggesting that we can improve
CL performance by increasing the expressive-
ness of the learnt representations.

The Information Bottleneck principle (IB) [35] can49

partially explain and support the above difficulty of50

training Continual Learning models with gradient-51

based optimisation. The IB interpretation of learn-52

ing suggests that hidden layers in neural networks53

learn to maximally compress the characteristics in54

the input data that are irrelevant to the task at hand,55

and where the higher level layers learn to compress56

first and the the lower level layers as training pro-57

gresses. On the other hand, the uncertainty about58

the future requirements posed by CL requires us59

to maintain as many high-quality features as pos-60

sible. Thus, it is in our best interest to maintain61

diverse features while limiting overcompression in62

Continual Learning.63

Although the importance of the Information Bottle-64

neck theory has been questioned by some papers65

[31], it serves as an interesting point of view on66

the learning phases of neural networks and can be67

noticed empirically. We know that wider models better manage catastrophic forgetting [27], proving68

that passing information through the bottleneck, which inherently imposes compression, can have69

adverse effects on future tasks. Therefore, we use two simple approaches to verify if the reduction of70

overcompression can give us attainable gains in CL, in particular in CISS:71

1. Increase the width of the last layer to reduce the bottleneck effect and increase the amount72

of information for each subsequent continual task;73

2. Introduce dropout layer between the pre-trained encoder and decoder to introduce uncertainty74

into the model, encouraging a more robust representation that is later reused by the future75

steps.76

By developing Dropout Continual Semantic Segmentation (DCSS), which incorporates only these two77

simple additions while improving on previous works by a sizeable margin (Figure 1), we demonstrate78

that improving the representation provided by the initial network has a significant impact on overall79

results.80

2 Related work81

2.1 Catastrophic forgetting82

Catastrophic forgetting [30, 24] is a phenomenon observed primarily in Continual Learning where83

the earlier learned concepts are forgotten while incorporating the more recent samples. Forgetting84

appears when previously-learned representations are degraded by more recent exposures, a typical85

case in all SGD-based algorithms. Solutions proposed to address this issue can be grouped into the86

following categories:87
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Rehearsal learning In rehearsal learning, we utilise the fact that, although we have lost access to88

the original training data from the past, we are usually allowed to maintain the data in a different89

form. [3] store exemplar images in a small memory buffer that can be replayed to simulate previous90

data distribution. Compressed features in the form of embeddings [15, 20] can be used as an efficient91

form of memory that can also have advantages in terms of privacy. Finally, we can use generative92

strategies [32] that can efficiently store and reconstruct past experiences to enable the replay of raw93

images. [21] uses a brain-inspired dual-memory system where the new memories are consolidated94

from recent memory to a long-term memory using a generative model, similar to mechanisms that95

occur during sleep.96

Adaptive architecture Other approaches focus on the adaptability of the model architectures. To97

integrate new classes and tasks, we can extend the architecture using feature extractors with domain-98

specific trainable layers [24, 39]. Model freezing can help with performance degradation during99

fine-tuning of the new models for new tasks. It is also possible to adapt the networks without explicitly100

adding new modules. [12, 11] dynamically re-arranges existing sub-networks, each specialised in101

one specific task, to account for new knowledge. Moreover, continually changing data distributions102

can be accounted for by explicitly correcting the classifier drift [1, 38].103

Knowledge distillation Knowledge distillation methods consider the use of a teacher-student104

approach. A knowledgeable teacher model trained on past inaccessible experiences can inform the105

current model of the past. Therefore, distillation aims at constraining the model to prevent forgetting106

as it changes to adopt new data. There are several ways to constrain the model, with the most salient107

methods being applied to the weights [22], gradients [4, 25] or output probabilities [24, 29].108

2.2 Information Bottleneck principle109

Tishby et al. in the Information Bottleneck principle [35] claim that modern Deep Neural Networks110

undergo two phases of learning. During the generalisation phase, the model learns an internal feature111

representation to extract high-level information, used for final prediction. In the compression phase,112

unused and noisy features that prevent robust adaptation to the data are stripped away and removed113

from the feature space, ultimately improving useful features’ signal quality. Tishby et al. measured114

the mutual information I(X;T ) and I(T ;Y ), which quantify the hidden layer’s information about115

the input and the output, where X is the input, Y is the output and T is the internal representation.116

They showed that the amount of information about the output I(T ;Y ) steadily increases until a117

high number of epochs is experienced, and the model starts overfitting. The information about the118

input I(X;T ) raises initially but quickly starts decreasing. This decrease can be considered as the119

compression phase because we remove information from the input that does not contribute much to120

the output. Compression accelerates rapidly when the number of training epochs is high.121

2.3 Class-incremental semantic segmentation122

2.3.1 Problem definition and notation123

We follow the definition of van de Ven et al. [36] who use three distinct scenarios for Continual124

Learning: Task-Incremental, Domain-Incremental and Class-Incremental learning. This work focuses125

on the Class-Incremental setting initially formulated by Cermelli et al. [2] where we split the set126

of semantic segmentation classes into t = 1, . . . , T incremental tasks, with t = 1 being the offline127

step. The model learns each disjoint set of classes incrementally while trying not to forget the128

previous steps. At each step a new task t arrives with a training dataset Dt that consists of pairs (x t129

, y t), where x t ∈ XN denotes an input image of N pixels, and y t ∈ (Ct ∪ {ctb})N denotes the130

corresponding ground-truth pixel labels, where Ct is the set of classes that are seen in task t and ctb is131

the background class for that task.132

At test time, the semantic segmentation model f t
θ is required to predict whether a pixel belongs to133

a class learned so far, c ∈ C1:t−1 ∪ C t , or the true background class cb. However, the labels of an134

image from a task t only contains classes from C t, not classes seen in past or future tasks. Thus,135

during training, the background label ctb is also assigned to the pixels of potential objects that belong136

to past classes C1:t−1 and the future classes C t+1:T (Equation 1).137
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c t
b = cb ∪ C 1:t−1︸ ︷︷ ︸

past

∪C t+1:T︸ ︷︷ ︸
future

(1)

This counter-intuitive behaviour of the background class’ labels causes the problem of background138

shift [2], on top of the catastrophic forgetting found in CL. Each pixel with background label can be a139

class from the past, future or the actual background. This introduces unwanted noise into the model140

because the same object can be labelled differently, depending on the step t. Once the learning of task141

t by the model f t
θ is done, the prediction for pixel i of an input image x at test time is obtained by142

ỹ t
i = argmin

c∈Y 1:t

f t
θ,c(x

t
i ) (2)

for all the classes learned so far in C1:t. The performance is measured by the Intersection-over-Union143

(IoU) metric for the three splits of C1:t. Cermelli et al. [2] introduce two different settings for144

Class-Incremental Semantic Segmentation: Disjoint and Overlapped. Both cases consider training145

examples where only the background class ctb and classes in C t are used as labels. In Disjoint, only146

the old and present classes can appear, while in Overlapped pixels can belong to any old, current and147

future classes. Thus, following the previous works, we also focus only on the Overlapped setting as it148

is more challenging and closer to real conditions.149

2.3.2 Existing work150

Class-Incremental Semantic Segmentation is a relatively new problem, with few works attempting to151

address it. Cermelli et al. in MiB [2] first defined the issue of background shift, a problem unique to152

Continual Semantic Segmentation. To alleviate the issue, they proposed to adapt the loss function153

such that it takes into consideration potential previous classes C1:t−1 that could be included in ctb.154

They sum the output probabilities of C 1:t and cb to match the available label ctb that contains them155

when computing the cross-entropy loss. Conversely, they sum the probabilities of C t and c t−1
b for156

knowledge distillation to match the output of f t−1
θ . The summation of class probabilities to modify157

the cross-entropy and distillation losses is a novel approach in semantic segmentation, but it makes it158

hard to learn the underlying probability distribution for the classes at each pixel.159

PLOP [9] extended the knowledge distillation on output probabilities from [2] with Localised Pooled160

Distillation [9], a form of heavy attention transfer that prevents from forgetting at the cost of decreased161

flexibility. Additionally for a task t, the target labels yt
i are augmented with generated pseudo-labels162

[23] with a model f t−1
θ from a previous step. This yields the target semantic maps ỹ t containing163

background class c t
b , pseudo labels ŷ t−1 and current labels y t.164

SSUL [3] finds success with further increase of model’s rigidity using model freezing. Instead of165

fine-tuning the whole model at task t, all parameters from f t−1
θ are being frozen in f t

θ , preventing166

any changes to the prediction of classes C1: t. Moreover, SSUL uses saliency maps generated by a167

separate, off-the-shelf salient object detector [19] to predict a region of interest from the background168

which helps to differentiate the difference between true background and background that may contain169

a past or future class, which they label using the unknown class. Similarly to pseudo-labels, the170

saliency map is added to the labels y t and predicted by the model during training. The unknown class171

cu and the background class cb predictions are combined at test time, representing the unclassified172

pixels. Taking advantage of the foreground prediction, SSUL performs weight transfer from the173

unknown class to the new classifier ϕ t−1
cu → ϕ t

c at the beginning of each continual step.174

3 DCSS model design175

3.1 Wider classifiers with shared representation176

Overcompression can hurt the learning of future tasks. Our goal is to maintain as many features as177

possible for future use. One simple way to achieve this is to use wider networks that are no longer178

a bottleneck to the information signal. To verify our hypothesis we decide to increase the number179

of channels in the last layer of the frozen, offline representation. In this way, we should have more180

information available for the continual steps.181
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Figure 2: High-level architecture of SSUL [3]. Each step has its own 3× 3 convolution block that
is trained in the online phase.
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Figure 3: High-level architecture of our DCSS model. One HEAD module is trained in the offline
step and frozen. Dropout layer is placed right after the pre-trained encoder to increase uncertainty in
the learnt decoder.

In the DeepLabV3 architecture [5] used for this project the final 1× 1 classifier is preceded by the182

ASPP module and one 3× 3 convolution. The last 3× 3 convolution is important to aggregate and183

mix multi-scale features produced by the ASPP module. We will refer to this 3× 3 convolution layer184

as HEAD for readability reasons. We increase the size of HEAD output channels from 256, as in the185

original DeepLabV3, to 2048 channels. Hence, a more detailed feature space is available for the186

classifiers to exploit. Recent papers tackling CISS, including MiB, PLOP and SSUL, replicate the187

HEAD module for each step. Therefore, each set of classes C t has its own HEAD and final classifier,188

as seen in Figure 2. However, the HEAD layer is a costly operation that has over 0.5M parameters189

with 256 channels and over 4.5M parameters when using 2048 channels. Therefore, to prevent190

the large parameter accumulation we use only a single HEAD layer, frozen after offline training191

and add only 1 × 1 convolutions at online steps t > 1. Additionally, we use depthwise-separable192

convolution in the shared HEAD to produce the same activation map using a cheaper operation [8]193

with fewer parameters and MAdds. In our work, we have used an intermediate width multiplier of 4194

and 4 convolution groups. Standard shared HEAD has almost twice the parameters of the depthwise-195

separable implementation (4.71M vs 2.68M). The high-level architecture comparison can be found in196

Figures 2 and 3.197

The reason why at step t = 1 the DCSS is larger than standard DeepLabV3, despite both being trained198

in an offline fashion, is the requirement of having a separate classifier for the background class cb and199

the unknown class cu, which means that we already have three HEAD modules at t = 1, including the200

one for classes in C t=1. In contrast, increasing the size of the HEAD to produce 2048 channels with201

separable convolution as in DCSS, compared to 256 channels in SSUL, yields a significantly smaller202

model in the long run (Figure 4) while achieving better results than SSUL.203

3.1.1 Dropout as a source of uncertainty204

Dropout [34] randomly sets activations of a layer to 0 with probability p, effectively disabling205

their contribution to the calculation of the output and introducing uncertainty that should hinder206

overcompression. Since the placement of the Dropout is essential, we follow Spilsbury et al. [33] and207

place the Dropout layer in between the encoder and decoder modules. The idea behind this decision208
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Figure 4: Resource comparison in the 15-1 scenario. SSUL adds significantly more trainable
parameters at each step, surpassing DCSS size and complexity in just 2 steps.

is that we want to prevent interference in the pre-trained encoders while maximising the effect on the209

decoder.210

We test two popular Dropout approaches in CNNs: standard Dropout and channel Dropout, where the211

whole convolutional channel can be dropped with probability p. Moreover, we use ScheduledDropout212

[33] that linearly increases the dropout probability from 0 to p during training. During the exploration213

phase (generalisation), smaller values of p help with feature accumulation. Heavier regularisation is214

more useful during the exploitation phase (compression), thus requiring higher values of p. In the end,215

we obtain similar benefits while improving learning convergence. Last, we suggest the removal of the216

Dropout after offline training. Limiting the access to features in online training will only restrain the217

model from using them while offering few benefits in generalisation since we freeze the encoder and218

are unlikely to learn new features.219

4 Experiments220

Implementation details The code for this project has been based on the implementations of PLOP221

[9] papers and SSUL [3] that use the DeepLabV3 architecture [5]. To compare the results of DCSS to222

previous work [2, 9, 3], we also use ResNet101 while keeping in mind that a smaller encoder would223

have a better performance-to-cost ratio. A standard learning rate of 0.01 has been used, with the224

value decreased to 0.001 for the backbone when using pre-trained weights [5]. We use poly1 learning225

rate scheduler, as proposed by the DeepLabV3 authors. The same data augmentation has been used226

as in SSUL. We use a batch size of 24 for all experiments compared to the size of 32 used by SSUL,227

as we found more success with smaller values, especially for the continual steps. We use binary228

cross-entropy loss with sigmoid activation function, as in SSUL. Pseudo-labels are added to labels in229

the continual steps, with an entropy-based threshold of τ = 0.9. In CISS problem we train each step230

for 50 epochs. The experiments were run on 4 RTX 2080Ti GPUs using the torch.distributed231

library [7] to work around the limited GPU memory. Each experiment, including the offline step,232

takes approximately 2-4 hours, depending on the scenario. In the case where the offline step can be233

reused, the training usually is decreased to 1-2 hours.234

PASCAL VOC 2012 The experiments are evaluated on the PASCAL VOC 2012 [10] semantic235

segmentation dataset with 20 foreground object classes and one common background class. The236

dataset is augmented with the extra contour annotations [14] of the PASCAL VOC 2011 dataset.237

Following [9], we split the training set and used 80% for training and 20% for validation, with238

the testing set left untouched for model evaluation. To help distinguish the background containing239

potential future classes from the true background, SSUL [3] proposed the use of an off-the-shelf240

salient object detector [19] to predict a region of interest. Thus, we follow their implementation and241

extend the labels of the PASCAL VOC training set to include the additional foreground class.242

1The scheduler has been called “poly” by the authors of DeepLabV3, even though the learning rate is not a
polynomial [37].

6



Table 1: Main results for the CISS problem. DCSS previous works in new classes (middle columns)
in all scenarios and achieve improvements in combined scores in the more difficult scenarios with
multiple tasks.

VOC 10-1 (11 tasks) VOC 15-1 (6 tasks) VOC 5-3 (6 tasks) VOC 19-1 (2 tasks) VOC 15-5 (2 tasks)
Method 0-10 11-20 all 0-15 16-20 all 0-5 6-20 all 0-19 20 all 0-15 15-20 all

ILT [26] 7.15 3.67 5.50 8.75 7.99 8.56 22.51 31.66 29.04 67.75 10.88 65.05 67.08 39.23 60.45

MiB [2] 12.25 13.09 12.65 34.22 13.50 29.29 57.10 42.56 46.71 71.43 23.59 69.15 76.37 49.97 70.08

PLOP [9] 44.03 15.51 30.45 65.12 21.11 54.64 17.48 19.16 18.68 75.35 37.35 73.54 75.73 51.71 70.09

SSUL [3] 71.31 45.98 59.25 77.31 36.59 67.61 71.17 45.38 52.75 77.73 29.68 75.44 77.82 50.10 71.22

DCSS (ours) 73.34 50.20 62.32 77.66 42.69 69.33 68.10 48.83 54.34 77.22 36.85 75.30 77.49 51.49 71.30

Joint (V3) 78.41 76.35 77.43 79.77 72.35 77.43 76.91 77.63 77.43 77.51 77.04 77.43 79.77 72.35 77.43

Joint (DCSS) 77.80 76.58 77.22 78.77 72.25 77.22 76.29 77.61 77.22 77.30 75.60 77.22 78.77 72.25 77.22

Evaluation metrics The difficulty of the Class-Incremental challenge also depends on the number243

of steps and the number of new classes. Thus, our model is evaluated on five different scenarios244

generated from the PASCAL VOC, each with a varying level of difficulty: 10-1 (11 tasks), 15-1245

(6 tasks), 5-3 (6 tasks), 19-1 (2 tasks) and 15-5 (2 tasks). The numbers in each scenario define the246

number of classes introduced at each step. For example, 5-3 (6 tasks) means learning 5 base classes247

at the offline step t = 1, followed by 5 incremental steps t ∈ {2, . . . , 6} introducing 3 new classes at248

each step, yielding 6 training steps covering all 20 classes for PASCAL VOC. We report the results as249

mean intersection-over-union (IoU) for three categories of classes: old (offline), new (online) and all250

classes combined (offline + online). This split helps to distinguish the difference between forgetting251

and issue with obtaining the knowledge for the new tasks.252

4.1 Experimental results253

In Table 1 we observe that DCSS consistently outperforms other models while having a simpler and254

more extendable architecture that is also easier to train (Figure 3). In the most popular 15-1 scenario,255

DCSS achieves a 1.72% improvement over SSUL. The biggest overall gain of over 3% can be found256

in 10-1 scenario that has a larger number of continual steps. Most importantly, in all scenarios we257

have improved the mean score of the new, continual classes, up to 6% in the case of 15-1. This gain258

can be a surprising result, considering that we are only training a single 2048-dimensional vector at259

each step. We conclude that the current counter-forgetting measures used in CISS effectively prevent260

models from adding new features to the representation and, thus, it is enough to simply learn a linear261

mapping of existing features during the continual phase.262
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Figure 5: IoU comparison of Dropout in 15-1
scenario. We notice that a small amount of un-
certainty produced by the Dropout can increase
the IoU of the model.

To compare our results to the ones produced by263

previous works, we have to constrain ourselves to264

a model of a similar learning capacity. Figure 1265

proves that we increase Continual Learning perfor-266

mance despite the decreased overall performance267

of DCSS in offline learning, further signifying the268

importance of our contributions to online learning.269

What is most important, all of this is achieved with270

a smaller and easier to train model. In 15-1 DCSS271

has over 2M parameters less than SSUL (Figure272

4), while in the extreme case of 10-1 the model is273

actually smaller by over 5M parameters and the274

difference grows linearly with each additional step.275

Figure 5 shows improvement over the range of the276

Dropout probabilities p compared to no Dropout277

(p = 0). Simply by adding the Dropout layer during the offline training we have increased the278

performance during the online steps, yielding a more accurate model on average. We have found279

more success with the standard dropout (Dropout1d) rather than the channel dropout (Dropout2d),280

despite literature stating the reverse for CNNs [33, 18]. The results follow our intuition, which281

suggests that dropping the whole channels removes a feature across the whole image, whereas282
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Table 2: Experimental results on the proposed RCISS protocol. Both SSUL and DCSS decrease
their performance in new tasks, although the scores lie surprisingly close to the original scores. This
suggests that more training cannot extract missing features from the frozen model.

VOC 10-1 (11 tasks) VOC 15-1 (6 tasks) VOC 5-3 (6 tasks) VOC 15-5 (2 tasks)
Method Epochs 0-10 11-20 all 0-15 16-20 all 0-5 6-20 all 0-15 15-20 all

SSUL [3] 50 71.31 45.98 59.25 77.31 36.59 67.61 71.17 45.38 52.75 77.82 50.10 71.22

DCSS 50 73.34 50.20 62.32 77.66 42.69 69.33 68.10 48.83 54.34 77.49 51.49 71.30

SSUL [3] 1 73.23 38.10 56.50 77.34 32.44 66.65 69.90 27.52 39.63 76.68 47.64 69.76

DCSS 1 73.78 43.26 59.24 77.16 37.46 67.71 68.44 38.84 47.30 77.46 45.60 69.88

standard dropout can work inter-channel, which is vital in pixel-level tasks. Removing whole283

channels can prevent the propagation of features, while removing specific neurons can decrease the284

reliance on more salient parts of the image and promote more holistic attention.285

4.1.1 New protocols and evaluation286

We have seen the performance of DCSS on the tasks proposed initially by [2]. DCSS offers a better287

IoU score while being a generally cheaper model to train in the long run. We argue, however, that the288

evaluation protocol has an unrealistic assumption about the ability to store the continual training data289

and use it multiple times over the step t. This is an unnatural setting that promotes irrelevant models.290

Continual Learning models should aim to efficiently use the available data and aim for an approach291

similar to few-shot learning, where only a few examples for each class are available. Therefore, we292

also evaluate our DCSS model on the proposed Restricted Class-Incremental Semantic Segmentation293

protocol (RCISS), where we train each continual step for only one epoch instead of the 50 as in294

SSUL. This scenario lies closer to the lifelong learning setting by Chaudhry et al. [4].295

In the experiments on RCISS we remove learning rate scheduling and use a fix learning rate of 0.01.296

Moreover, we reduce the batch size in the continual phase from 24 to 4, effectively increasing the297

number of backpropagation steps in the hope that, while being noisy, it will better utilise the limited298

exposure to data. Table 2 shows the result of our experiments on four scenarios in RCISS, similar to299

previous scenarios in standard CISS. We notice that both models struggle more with learning multiple300

classes at once (5-3), although DCSS manages to outperform SSUL in the continual classes by a301

considerable margin. However, we notice that the results for 1 epoch are still similar to the ones with302

full 50 epochs of training. We find this result interesting as it signifies the difficulty of extracting303

performance in continual learning even with extensive training.304

5 Discussion and conclusions305

We showed that the current approaches to CISS problem put too much importance on the continual306

phase of learning. The small difference between RCISS and CISS shows that there is a limit to the307

amount of information that can be obtained by simply learning new tasks with a continual manner308

while having significant constraints on the model flexibility to prevent catastrophic forgetting. The309

balance between rigidity and flexibility is hard to achieve, and most recent works found success with310

the focus on the former. With heavily constrained or frozen representations we are unable to adapt311

to new tasks or classes. Thus, assuming that the potential cost of adding features is much higher312

than removing them, we take a step back to consider what can be done to maintain potentially useful313

features for the future that would be pruned otherwise. We show that with a few simple changes to314

the offline training protocol we can propagate more information to future learning steps, lessening315

the need for complex online methods.316

We adapted the idea of wide continual networks [27] for model freezing. Wider architecture of the317

decoder can help to maintain more features for CL; surprisingly, even though we are essentially318

learning a linear mapping of the embedding from the frozen model we improve the IoU in CISS. This319

further suggests that having a rich representation outweighs most attempts at learning new features320

using additional trainable layers while having the benefit of being easily scalable and far simpler to321

train. The simple addition of a single Dropout layer further improved the IoU, surpassing all current322

approaches based on the DeepLabV3 model.323
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Despite that, our work aims to show not the benefits of the proposed methods but rather the general324

lack of consideration of overcompression in Continual Learning. Information Bottleneck principle325

suggests that deep learning models have a generalisation and compression phase. Although useful326

in offline learning, compression is counterproductive in Continual Learning where we don’t know327

the future requirements. We believe that most short-term gains in CL could be achieved by focusing328

on training with future’s uncertainty in mind. Further gains could be achieved with a different329

approach to learning that will increase the generalisation. Recent trends tend to remove the reliance330

on supervised training for a more contextualised signal using self-supervised learning in the form of331

contrastive models [16, 6] or multi-modal representation learning [13], where a more holistic type of332

learning must appear to capture the whole context. Altogether, these approaches should allow for333

encoders that are less task-specific, providing the required flexibility in Continual Learning.334

5.1 Future work335

For subsequent work on the topic of CISS, we think a good idea would be to look at expanding our336

findings to different architectures. For example, SATS [28], used a Transformer-based encoder and337

self-attention transfer to achieve state-of-the-art results on CISS. So, while we expect our encoder-338

agnostic findings to maintain their validity for other architectures, it would be interesting to explore339

the topic of overcompression of Transformer models in the context of CL. Additionally, the research340

community is in dire need of dedicated Continual Semantic Segmentation datasets, which need to341

emphasize the issue of the background shift problem and introduce temporal and spatial locality of342

the data, which should spur new interest in this topic.343

Societal impacts344

This paper touches upon the topic of Continual Learning which greatly increases the move towards345

more private and efficient training. Our contribution emphasizes the need for optimal offline training346

procedures that have immense impact on the future utility during continual phase, improving the ease347

of training and, in turn, decreasing the required compute and data. We do not see any foreseeable348

negative impacts of this work while noticing the positive impacts of more efficient CL models that349

should reduce the computational burden in the short term and allow for more intelligent agents in the350

long term.351

References352

[1] Eden Belouadah and Adrian Popescu. ScaIL: Classifier Weights Scaling for Class Incremental353

Learning, 2020. arXiv:2001.05755.354

[2] Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulò, Elisa Ricci, and Barbara Ca-355

puto. Modeling the Background for Incremental Learning in Semantic Segmentation, 2020.356

arXiv:2002.00718.357

[3] Sungmin Cha, Beomyoung Kim, Youngjoon Yoo, and Taesup Moon. SSUL: Semantic358

Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning, 2021.359

arXiv:2106.11562.360

[4] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient361

Lifelong Learning with A-GEM. In ICLR, 2019.362

[5] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking Atrous363

Convolution for Semantic Image Segmentation, 2017. arXiv:1706.05587.364

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework365

for Contrastive Learning of Visual Representations, 2020. arXiv:2002.05709.366

[7] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A Matlab-like Environment for Machine367

Learning. In BigLearn, NIPS Workshop, 2011.368

[8] Elliot J. Crowley, Gavin Gray, and Amos Storkey. Moonshine: Distilling with Cheap Convolu-369

tions, 2017. arXiv:1711.02613.370

9



[9] Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu Cord. PLOP: Learning without371

Forgetting for Continual Semantic Segmentation, 2021. arXiv:2011.11390.372

[10] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.373

The pascal visual object classes challenge: A retrospective. International Journal of Computer374

Vision, 111(1):98–136, January 2015.375

[11] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A. Rusu,376

Alexander Pritzel, and Daan Wierstra. PathNet: Evolution Channels Gradient Descent in Super377

Neural Networks. 2017. arXiv:1701.08734.378

[12] Siavash Golkar, Michael Kagan, and Kyunghyun Cho. Continual Learning via Neural Pruning.379

03 2019. arXiv:1903.04476.380

[13] Wenzhong Guo, Jianwen Wang, and Shiping Wang. Deep Multimodal Representation Learning:381

A Survey. IEEE Access, 7:63373–63394, 2019.382

[14] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse383

detectors. In 2011 International Conference on Computer Vision, 2011.384

[15] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan. RE-385

MIND Your Neural Network to Prevent Catastrophic Forgetting. In Proceedings of the European386

Conference on Computer Vision (ECCV), 2020.387

[16] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum Contrast for388

Unsupervised Visual Representation Learning, 2019. arXiv:1911.05722.389

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image390

Recognition, 2015. arXiv:1512.03385.391

[18] Mingjie He, Jie Zhang, Shiguang Shan, Xiao Liu, Zhongqin Wu, and Xilin Chen. Locality-392

Aware Channel-Wise Dropout for Occluded Face Recognition. IEEE Transactions on Image393

Processing, 31:788–798, 2022.394

[19] Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji, Zhuowen Tu, and Philip H. S. Torr.395

Deeply Supervised Salient Object Detection with Short Connections. IEEE Transactions on396

Pattern Analysis and Machine Intelligence, 41(4):815–828, apr 2019.397

[20] Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and Cordelia Schmid. Memory-Efficient398

Incremental Learning Through Feature Adaptation. 2020. arXiv:2004.00713.399

[21] Ronald Kemker and Christopher Kanan. FearNet: Brain-Inspired Model for Incremental400

Learning. In International Conference on Learning Representations, 2018.401

[22] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-402

drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis403

Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic404

forgetting in neural networks, 2016. arXiv:1612.00796.405

[23] Dong-Hyun Lee. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method406

for Deep Neural Networks. ICML 2013 Workshop : Challenges in Representation Learning407

(WREPL), 07 2013.408

[24] Zhizhong Li and Derek Hoiem. Learning without Forgetting. IEEE Transactions on Pattern409

Analysis and Machine Intelligence, 40(12):2935–2947, 2018.410

[25] David Lopez-Paz and Marc’aurelio Ranzato. Gradient Episodic Memory for continual learning.411

June 2017. arXiv:1706.08840.412

[26] Umberto Michieli and Pietro Zanuttigh. Incremental Learning Techniques for Semantic Seg-413

mentation. In International Conference on Computer Vision (ICCV), Workshop on Transferring414

and Adapting Source Knowledge in Computer Vision (TASK-CV), 2019.415

10



[27] Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Timothy Nguyen, Razvan Pascanu,416

Dilan Gorur, and Mehrdad Farajtabar. Architecture Matters in Continual Learning, 2022.417

arXiv:2202.00275.418

[28] Yiqiao Qiu, Yixing Shen, Zhuohao Sun, Yanchong Zheng, Xiaobin Chang, Weishi Zheng, and419

Ruixuan Wang. SATS: Self-Attention Transfer for Continual Semantic Segmentation, 2022.420

arXiv:2203.07667.421

[29] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert.422

iCaRL: Incremental Classifier and Representation Learning, 2016. arXiv:1611.07725.423

[30] Anthony V. Robins. Catastrophic Forgetting, Rehearsal and Pseudorehearsal. Connect. Sci.,424

7:123–146, 1995.425

[31] Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky,426

Brendan Daniel Tracey, and David Daniel Cox. On the Information Bottleneck Theory of Deep427

Learning. In International Conference on Learning Representations, 2018.428

[32] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual Learning with Deep429

Generative Replay. In Proceedings of the 31st International Conference on Neural Information430

Processing Systems, 2017.431

[33] Thomas Spilsbury and Paavo Camps. Don’t ignore Dropout in Fully Convolutional Networks,432

2019. arXiv:1908.09162.433

[34] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.434

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine435

Learning Research, 15(56):1929–1958, 2014.436

[35] Naftali Tishby and Noga Zaslavsky. Deep Learning and the Information Bottleneck Principle,437

2015. arXiv:1503.02406.438

[36] Gido M. van de Ven and Andreas S. Tolias. Three scenarios for continual learning, 2019.439

arXiv:1904.07734.440

[37] Yanzhao Wu, Ling Liu, Juhyun Bae, Ka-Ho Chow, Arun Iyengar, Calton Pu, Wenqi Wei, Lei441

Yu, and Qi Zhang. Demystifying Learning Rate Policies for High Accuracy Training of Deep442

Neural Networks, 2019. arXiv:1908.06477.443

[38] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.444

Large Scale Incremental Learning. In Proceedings of the IEEE Conference on Computer Vision445

and Pattern Recognition, pages 374–382, 2019.446

[39] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong Learning with447

Dynamically Expandable Networks. In International Conference on Learning Representations,448

2018.449

Checklist450

1. For all authors...451

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s452

contributions and scope? [Yes]453

(b) Did you describe the limitations of your work? [Yes]454

(c) Did you discuss any potential negative societal impacts of your work? [Yes]455

(d) Have you read the ethics review guidelines and ensured that your paper conforms to456

them? [Yes]457

2. If you are including theoretical results...458

(a) Did you state the full set of assumptions of all theoretical results? [N/A]459

(b) Did you include complete proofs of all theoretical results? [N/A]460

3. If you ran experiments...461

11



(a) Did you include the code, data, and instructions needed to reproduce the main experi-462

mental results (either in the supplemental material or as a URL)? [Yes]463

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they464

were chosen)? [Yes]465

(c) Did you report error bars (e.g., with respect to the random seed after running exper-466

iments multiple times)? [No] Error bars are not reported because we did not have467

enough compute resources. The results report an average of 3 random seeds for each468

experiment.469

(d) Did you include the total amount of compute and the type of resources used (e.g., type470

of GPUs, internal cluster, or cloud provider)? [Yes]471

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...472

(a) If your work uses existing assets, did you cite the creators? [Yes]473

(b) Did you mention the license of the assets? [Yes] MIT License474

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]475

(d) Did you discuss whether and how consent was obtained from people whose data you’re476

using/curating? [No]477

(e) Did you discuss whether the data you are using/curating contains personally identifiable478

information or offensive content? [No]479

5. If you used crowdsourcing or conducted research with human subjects...480

(a) Did you include the full text of instructions given to participants and screenshots, if481

applicable? [N/A]482

(b) Did you describe any potential participant risks, with links to Institutional Review483

Board (IRB) approvals, if applicable? [N/A]484

(c) Did you include the estimated hourly wage paid to participants and the total amount485

spent on participant compensation? [N/A]486

12


	Introduction
	Deep neural networks and overcompression

	Related work
	Catastrophic forgetting
	Information Bottleneck principle
	Class-incremental semantic segmentation
	Problem definition and notation
	Existing work


	DCSS model design
	Wider classifiers with shared representation
	Dropout as a source of uncertainty


	Experiments
	Experimental results
	New protocols and evaluation


	Discussion and conclusions
	Future work


