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ABSTRACT
Time series forecasting has been an essential field in many different

application areas, including economic analysis, meteorology, and

so forth. The majority of time series forecasting models are trained

using the mean squared error (MSE). However, this training based

on MSE causes a limitation known as prediction delay. The predic-
tion delay, which implies the ground-truth precedes the prediction,

can cause serious problems in a variety of fields, e.g., finance and

weather forecasting — as a matter of fact, predictions succeeding

ground-truth observations are not practically meaningful although

theirMSEs can be low. This paper proposes a new perspective on tra-

ditional time series forecasting tasks and introduces a new solution

to mitigate the prediction delay. We introduce a continuous-time

gated recurrent unit (GRU) based on the neural ordinary differential

equation (NODE) which can supervise explicit time-derivatives. We

generalize the GRU architecture in a continuous-time manner and

minimize the prediction delay through our time-derivative regular-

ization. Our method outperforms in metrics such as MSE, Dynamic

Time Warping (DTW) and Time Distortion Index (TDI). In addition,

we demonstrate the low prediction delay of our method in a variety

of datasets.
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1 INTRODUCTION
Time series forecasting is important in diverse domains, such as

weather prediction, stock prediction, and so forth, and has several
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Buy 100 stocks  

$128,000

Hold 100 stocks  

$129,000

Hold 100 stocks 

$131,000

Hold 100 stocks 

$135,000

Sell stocks 

$130,000 

Earned $2,000

Prediction gap

(a) Prediction results from PatchTST, DLinear
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Earned $8,000

Buy 100 stocks  

$128,000

Hold 100 stocks  

$129,000

Prediction gap

(b) Prediction results from CONTIME

Figure 1: Visualization of Table 1 (experimental results for
GOOG stock prediction from August 21 to August 28, 2023)

challenges [4, 15, 22, 29]. The necessity to tackle these practical chal-

lenges has spurred numerous proposed studies investigating the

intricacies of short- and long-term time series forecasting. Within

this realm, a spectrum of models has been suggested, ranging from

simple linear networks to advanced transformer-based architec-

tures [19, 23, 34]. Traditionally, the predominant evaluation metrics

in most studies have been Mean Squared Error (MSE) or Mean

Absolute Error (MAE), with ongoing research endeavors striving

to showcase state-of-the-art outcomes through learning based on

these metrics. However, the remarkable success achieved in time

series forecasting using MSE highlights a limitation related to the

prediction delay, as illustrated in Figure 1.(a). In this context, we

define prediction delay as a phenomenon where the actual obser-

vations precede the prediction in the time series forecasting task —

in other words, a model is trained to output an observation similar
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to the most recent observation, which can lead to reasonable MSE

or MAE values but is, in practice, rather meaningless [6, 10, 12, 21].

Table 1: Experimental results on GOOG on 𝑃 = 36

Models TDI ↓ DTW ↓ MSE ↓
DLinear 4.835 2.229 0.199

PatchTST 4.882 2.766 0.191

CONTIME 4.712 2.189 0.189

Figure 1 visually presents the experimental results detailed in

Table 1. Notably, a prediction delay is discernible in state-of-the-art

(SOTA) models, exemplified by PatchTST and DLinear [27, 33], de-

spite their relatively small Mean Squared Error (MSE). Conversely,

CONTIME, characterized by a comparatively similar MSE, does

not exhibit a prediction delay. This study seeks to provide a com-

prehensive interpretation of time series forecasting by introducing

additional metrics, namely Temporal Distortion Index (TDI) and

Dynamic Time Warping (DTW), aimed at elucidating the observed

phenomenon. Furthermore, Figure 1 underscores the significance

of prediction delay in a straightforward scenario. Investors relying

on SOTA model forecasts for GOOG stocks anticipate the upper

price limit on August 25th, 2023. However, due to a one-day delay

in the forecast results, this leads to stock sales (See Figure 1.(a)).

In contrast, investors relying on CONTIME, free from prediction

delay, predict a stock price decline on August 25th, 2023, prompting

them to initiate stock sales on August 24th, 2023 (See Figure 1.(b)).

Assuming an investor trades 100 shares of stock, those relying on

CONTIME stand to make a profit of approximately $6,000. This

achieves more accurate and timely forecasts in real-world appli-

cations and provides beneficial forecast results to investors. The

example in Figure 1 highlights the importance of mitigating the

prediction delay in time series forecasting.

Beyond the financial domain, the aforementioned prediction

delay assumes a significant role in areas intricately interwoven

with daily life, such as weather forecasting. Despite discussions on

these limitations dating back to 1998 [1, 6, 9, 10, 12, 21], recent state-

of-the-art studies have predominantly concentrated on evaluating

the performance of metrics like MSE, MAE, etc., in the context

of time series forecasting. As evident from [21], it is imperative

that a model’s prediction accurately captures both the shape and
temporal trends within the time series. Dynamic Time Warping

(DTW) emerges as a method capable of discerning differences in

shape between time series. Additionally, Temporal Distortion Index

(TDI) serves as an extra metric to explore the temporal lag between

two sequences. The incorporation of these two metrics enables a

comprehensive assessment of comparability between the respective

time series. Consequently, our intention is to subject the model to

evaluation using these novel metrics.

This paper introduces an innovative approach to mitigate the

prediction delay in time series forecasting. In this paper, we rede-

fine GRU as differential equation that reflect past observations to

the current hidden state for processing continuously generalizing

GRU. We propose a continuous-time bi-directional gated recurrent

unit (GRU) network based on neural ordinary differential equation

(NODE) and train it with explicit time-derivative regularizations,

thus addressing the inherent prediction delay observed in various

time series forecasting models. We extend the bi-directional GRU to

efficiently capture the temporal dependencies within time-series se-

quences with minimal delays. Our contributions can be summarized

as follows:

(1) We propose CONtinuous GRU to address the prediction

delay in TIME series forecasting, i.e., CONTIME. By con-

tinuously extending the bi-directional GRU, we present a

novel architecture that facilitates the supervision of the time-

derivative of observations in the continuous time domain.

(2) In Section 3.2, we compute the time-derivatives of the hidden

state h(𝑡), the reset gate r(𝑡), the update gate z(𝑡), and the

update vector g(𝑡) of GRU. We strategically employ the bi-

directional GRU structure to generate more effective hidden

representations for downstream task.

(3) We conduct time series forecasting with minimal prediction

delays through our proposed time-derivative regularization.

(4) CONTIME demonstrates outstanding performance in ad-

dressing the prediction delay across all 6 benchmark datasets.

In addition to minimizing the prediction delay, it excels in

all three metrics (TDI, DTW, and MSE).

(5) Our code is available at this link
1
, and we refer readers to

Appendix I for the information on reproducibility.

2 BACKGROUNDS
2.1 Time series forecasting models
In this section, we introduce various time series forecasting models

from ODE-based models to recent models.

ODE-based Models: Neural ODE enable the processing of time-

series data in a continuous manner, allowing them to read and

write values at any arbitrary time-point 𝑡 through the differential

equation presented in Equation (1).

h(𝑇 ) = h(0) +
∫ 𝑇

0

𝑓 (h(𝑡), 𝑡 ;𝜃 𝑓 )𝑑𝑡, (1)

where h(𝑡) ∈ R𝐷
, 𝑡 ∈ [0,𝑇 ], represents a 𝐷-dimensional vec-

tor (with boldface denoting vectors and matrices). The derivative

¤h(𝑡) def= 𝑑h(𝑡 )
𝑑𝑡

is approximated by the neural network 𝑓 (h(𝑡), 𝑡 ;𝜃 𝑓 ),
and solving the initial value problem yields the final value h(𝑇 ) from
the initial value h(0). The ODE-based neural network learns by

estimating the differential values of the data function 𝑓 (h(𝑡), 𝑡 ;𝜃 𝑓 )
using ODE solvers such as the explicit Euler method, the 4th order

Runge-Kutta (RK4) method, the Dormand-Prince (DOPRI) tech-

nique, and similar approaches [5].

There also exist prominent time-series processing models based

on NODE, such as Neural Controlled Differential Equation (NCDE).

NCDE, an advanced network of NODE, utilizes the Riemann–Stieltjes

integral, as shown in Equation (2). Unlike NODE, which employs

the Riemann integral, NCDE can continuously read 𝑋 (𝑡) values
over time. Thus, NCDE can overcome the limitations of NODE that

1
https://github.com/sheoyon-jhin/CONTIME
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Figure 2: Visualization for comparing characteristics of each metric (MSE, DTW, TDI). Forecasting results on AAPL from August
28th, 2023 to October 24th, 2023.

depend on initial values [17].

h(𝑇 ) = h(0) +
∫ 𝑇

0

𝑓 (h(𝑡);𝜃 𝑓 )𝑑𝑋 (𝑡)

= h(0) +
∫ 𝑇

0

𝑓 (h(𝑡);𝜃 𝑓 )
𝑑𝑋 (𝑡)
𝑑𝑡

𝑑𝑡,

(2)

Moreover, NCDE creates a continuous path 𝑋 (𝑡) by employing

interpolation techniques like the natural cubic spline or Hermite

cubic spline. Since the natural cubic spline uses all time observations

to form a continuous path 𝑋 (𝑡), so in the context of time-series

forecasting, the natural cubic spline method may not be suitable for

forecasting tasks. Therefore, in this paper, we opt for the Hermite

cubic spline method to generate the continuous path 𝑋 (𝑡) [26].

Transformer-based models: Subsequent advancements have in-

troduced transformer architectures, originally devised for natural

language processing[31], to the domain of time series forecasting,

thereby incorporating self-attention mechanisms. These models,

utilizing self-attention, have demonstrated remarkable efficacy in

capturing overarching dependencies within sequential data, leading

to the development of significant transformer-based studies such

as Autoformer and FEDformer [32, 35]. While Autoformer employs

auto-correlation attention for periodic patterns, it falls short in

series decomposition, overly depending on a basic moving average

for detrending, which may constrain its ability to capture intricate

trend patterns. On the other hand, FEDformer [35] integrates the

Transformer with seasonal trend decomposition, utilizing decom-

position for global profiles and Transformers for detailed structures.

Despite these notable accomplishments, it is crucial to acknowledge

that transformer-based architectures exhibit inefficiencies in captur-

ing local dependencies and temporal information. This constraint

has spurred continuous research endeavors aimed at addressing

and improving the effectiveness of transformer-based models in

comprehensively capturing both global and local intricacies within

time series data.

Recent state-of-the-art models: The innovative introduction of

PatchTST [27] represents a groundbreaking approach that employs

patch-based representations to enhance the capture of both local

and global patterns within time series data. Building upon this,

PatchTST further enhances its methodology by segmenting time

series before utilizing a Transformer, demonstrating superior per-

formance compared to existing models. Despite being rooted in

the foundational Transformer architecture, innovations are focused

on transitioning from self-attention to sparse self-attention, often

overlooking a comprehensive global view of time series data. DLin-

ear [33] has significantly contributed to the field by exploring linear

models for time series forecasting. In defiance of the prevalent as-

sumption that only highly complex nonlinear models excel in this

context, DLinear has exhibited competitive performance with a

linear layer, emphasizing efficiency and interoperability.

In summary, the progression from Neural ODE to PatchTST and

DLinear signifies an ongoing quest for more effective and efficient

deep learning models in the domain of time series forecasting. Each

model brings unique features, methodologies, and challenges that

challenge prevailing assumptions, with a notable emphasis on a

novel approach for model evaluation based on the MSE.

2.2 Evaluation and training metrics
In the realm of evaluating and training deep models for time series

forecasting, prevalent approaches heavily depend on metrics such

as MAE, MSE, and their variants, including SMAPE. While these

metrics effectively gauge overall model performance, evaluating

shape and temporal location is crucial for a more comprehensive as-

sessment. Techniques like Dynamic Time Warping (DTW) [28] are

employed to capture shape-related metrics, and Temporal Distor-

tion Index (TDI) [11, 30] is utilized for prediction delay estimation.

However, due to their non-differentiability, these evaluation metrics

are unsuitable as loss functions for training deep neural networks.

Addressing the challenge of optimizing non-differentiable eval-

uation metrics directly, the development of surrogate losses has

been explored across various domains, including computer vision.

Recently, alternatives to MSE have been investigated, with a fo-

cus on seamless approximations of DTW [8] to train deep neural

networks. Despite its effectiveness in assessing shape errors, the

inherent design of DTW, i.e., the invariance to elastic distortions,

overlooks crucial considerations about the temporal localization of

changes. Le Guen and Thome [21] attempted to train models with

a loss that combines DTW and TDI to account for both the shape

and temporal distortion.

Figure 2 and Table 2 provide examples where each metric (MSE,

DTW, TDI) excels in analyzing experimental results (refer to Table

3). By examining the relationship between metric values and visual-

ization results, we gain insight into the role of each metric. In Figure

2, the results of DLinear in Figure 2.(a) demonstrate a relatively
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Table 2: Effect of Metrics on Figure 2. Time and Shape respec-
tively denote the resemblance in timing and shape between
the ground-truth and the prediction. (O/X means whether
each result displays good output when scrutinized with visu-
alization)

Models

Time Shape Score

TDI Vis DTW Vis MSE Vis

DLinear 3.810 X 1.409 X 0.084 O

PatchTST 3.166 X 1.253 O 0.091 O

CONTIME 2.378 O 1.114 O 0.074 O

small MSE of 0.084, yet exhibit a lack of superiority in terms of pre-

diction shape and timing. This observation is further supported by

the TDI and DTW metrics. It illustrates that a good MSE score does

not necessarily guarantee accurate time series prediction. Figure

2.(b) presents predictions with a more accurate shape than Figure

2.(a), but entails a prediction delay in determining the direction of

movement. Consequently, TDI and MSE values are large compared

to smaller DTW values. This indicates that time series forecasts can-

not be evaluated solely using DTW andMSE. Figure 2.(c) showcases

the prediction results of CONTIME, demonstrating excellent perfor-

mance in terms of time series shape and timing, naturally leading

to small MSE values. These analyses emphasize the necessity to

evaluate time series forecasts from diverse perspectives.

This paper advances this approach by directly computing the

gradient of sequences. To enable the instantaneous prediction of

rises and declines, we incorporate a regularization component that

utilizes time-derivatives. This strategy addresses the gap by intro-

ducing time-derivative regularization to the traditional MSE loss.

By decoupling the training for prediction delay and the MSE cri-

terion, this paper aims to provide a robust framework for training

deep neural networks on real-time series data.

2.3 The prediction delay in time series
forecasting

Time series forecasting is a crucial task spanning diverse domains,

including finance and environmental science. A significant chal-

lenge in this domain is prediction delay, where models may struggle

to provide accurate and timely predictions. This subsection explores

existing research addressing prediction delay in time series forecast-

ing, emphasizing neural network approaches and other relevant

methodologies. In [6], challenges in time series forecasting using

neural networks are investigated, and strategies to mitigate fore-

cast delays are proposed. The study assesses the impact of delay on

prediction accuracy and explores techniques to enhance prediction

timeliness using neural network architectures. In addition, three

studies in [10, 12, 24] focus on applying artificial neural networks

to rainfall-runoff modeling, economic models, traffic forecasting,

and so on and investigating constraints related to forecast delays.

One of the studies evaluates the trade-off between hydrological

state representation and model evaluation, emphasizing the chal-

lenges posed by delays in hydrological forecasting. Beyond the

applications like rainfall runoff or wave height predictions, the

delay phenomenon is also observed in the economic field.

Figure 3: Overall Architecture

Causes of the prediction delay: We categorize two common causes

of prediction delay in time series prediction models:

(1) Time series data often exhibit temporal dependence, where

current values are influenced by past observations. The pre-

diction delay can occur if the model fails to accurately cap-

ture these dependencies or experiences a delay in incorpo-

rating relevant historical information.

(2) The prediction delay may arise from MSE-based forecasting

models’ limited ability to adjust to sudden changes in the

time series because their primary objective is to minimize

the mean square difference between predicted and actual

values [21].

In this paper, we propose CONTIME, a model architecture for

supervising time-derivatives to eliminate prediction delays. We add

a time-derivative regularization to the main task-dependent loss

function to effectively handle prediction delays.

3 PROPOSED METHOD
In this section, we describe our proposed method to address the

prediction delay that is common in time series forecasting. In other

words, the model we propose is a NODE-based bi-directional con-

tinuous GRU that can be explicitly supervised for time-derivatives

to address the prediction delay.

3.1 Overall workflow
Figure 3 shows the detailed design of our method, CONTIME. The

overall workflow is as follows:

(1) The path 𝑋 in Figure 3 is created from a discrete time-series

sample by Hermite-cubic-spline algorithm.

(2) CONTIME has a bi-directional structure. As shown in Fig-

ure 3, we perform bi-directional integral operations (high-

lighted in the gray box in Figure 3) are conducted both for-

ward (𝑠 → 𝑇 ) and backward (𝑇 → 𝑠).

(3) After the forward and backward operations are performed,

the hidden vector h2 (𝑠) from the backward operation is re-

arranged in the forward direction (h2 (𝑇 − 𝑠)) through the

reverse layer (highlighted in the blue box in Figure 3).
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(4) We can get final hidden vector h(𝑇 ) by adding h1 (𝑇 ) and
h2 (𝑇 − 𝑠).

(5) From the hidden vector h(𝑇 ), the linear network produces

the future predictions.

(6) We explicitly calculate
𝑑𝑌
𝑑𝑡

from the forecasting prediction 𝑌

to supervise the time-derivative (𝐿Δ𝑡 ).

(7) There is a loss to maintain the accuracy of the existing time

series predictions (𝐿𝑇𝑎𝑠𝑘 ) and the time-derivative regulation

term (𝐿Δ𝑡 ) to prevent prediction delay.

We describe each part in detail, followed by a theoretical result that

shows training the proposed model is well-posed problem.

3.2 Bi-directional CONTIME
We first introduce our formulation to define the proposed CON-

TIME. The entire module can be written, when we adopt the pro-

posed bi-directional continuous GRU strategy to supervise time-

derivative, as follows:

h1 (𝑇 ) = h1 (𝑠) +
∫ 𝑇

𝑠

𝑓1 (h1 (𝑡), 𝑡 ;𝜃 𝑓1 )𝑑𝑡,

h2 (𝑠) = h2 (𝑇 ) +
∫ 𝑠

𝑇

𝑓2 (h2 (𝑡), 𝑡 ;𝜃 𝑓2 )𝑑𝑡,
(3)

where 𝑠 denotes initial point in time-series sample𝑋 = (𝑋𝑠 , ..., 𝑋𝑇 ) ∈
R(𝑇−𝑠 )×𝐹 , where 𝐹 means the number of features. h1 (𝑠) = Φh1 (𝑋𝑠 ) ,
h2 (𝑇 ) = Φh2 (𝑋𝑇 ) and Φh1 ,Φh2 is a fully-connected layer-based

feature extractor. In Equation (3), we use bi-directional integral op-

erations in the forward (𝑠 → 𝑇 ) and backward (𝑇 → 𝑠) directions

to generate a more useful hidden representation in long sequences.

After reverse h2 (𝑠) to h2 (𝑇 − 𝑠), we can write our final hidden

representation h(𝑇 ) as follows:

h(𝑇 ) = h1 (𝑇 ) + h2 (𝑇 − 𝑠) . (4)

In the integration of Equation (3), we use ODE function 𝑓1 and

𝑓2 which can be interpreted as
𝑑h1 (𝑡 )
𝑑𝑡

and
𝑑h2 (𝑡 )
𝑑𝑡

, thereby explicitly

calculating the hidden vector h(𝑡) of GRUs.

Time-derivative of h(𝑡): GRUs can be written as follows:

h(𝑡) := z(𝑡) ⊙ h(𝑡 − 𝜏) + (1 − z(𝑡)) ⊙ g(𝑡),
z(𝑡) := 𝜎

(
W𝑧𝑋 (𝑡) + U𝑧h(𝑡 − 𝜏) + b𝑧

)
,

r(𝑡) := 𝜎
(
W𝑟𝑋 (𝑡) + U𝑟h(𝑡 − 𝜏) + b𝑟

)
,

(5)

where W ∈ Rdim(h)×dim(x)
and U ∈ Rdim(h)×dim(h)

are weight

matrices, and b ∈ Rdim(h)
is a bias vector. 𝜎 is a sigmoid function

and 𝜙 is a hyperbolic tangent function. 𝜏 > 0 is a delay factor —

note that 𝜏 = 1 in the original design of GRUs whereas we interpret

it in a continuous manner. Since the hidden state h(𝑡) is a composite

function of r(𝑡), z(𝑡), and g(𝑡), the derivative of h(𝑡) can be written

as follows:

𝑑h(𝑡)
𝑑𝑡

=
𝑑z(𝑡)
𝑑𝑡
⊙ h(𝑡 − 𝜏) + z(𝑡) ⊙ 𝑑h(𝑡 − 𝜏)

𝑑𝑡

− 𝑑z(𝑡)
𝑑𝑡
⊙ g(𝑡) + (1 − z(𝑡)) ⊙ 𝑑g(𝑡)

𝑑𝑡
,

=
𝑑z(𝑡)
𝑑𝑡
⊙
(
h(𝑡 − 𝜏) − g(𝑡)

)
+ z(𝑡) ⊙

(𝑑h(𝑡 − 𝜏)
𝑑𝑡

− 𝑑g(𝑡)
𝑑𝑡

)
+ 𝑑g(𝑡)

𝑑𝑡
,

=
𝑑z(𝑡)
𝑑𝑡
⊙ 𝜁 (𝑡, 𝑡 − 𝜏)

+ z(𝑡) ⊙ 𝑑𝜁 (𝑡, 𝑡 − 𝜏)
𝑑𝑡

+ 𝑑g(𝑡)
𝑑𝑡

,

(6)

where 𝜁 (𝑡, 𝑡 −𝜏) = h(𝑡 −𝜏) −g(𝑡). So, we can write
𝑑h(𝑡 )
𝑑𝑡

as follows:

𝑑h(𝑡)
𝑑𝑡

=
𝑑 (z(𝑡) ⊙ 𝜁 (𝑡, 𝑡 − 𝜏))

𝑑𝑡
+ 𝑑g(𝑡)

𝑑𝑡
. (7)

Finally, Equation (3) can be rewritten as follows:

h1 (𝑇 ) = h1 (𝑠) +
∫ 𝑇

𝑠

𝑑 (z1 (𝑡) ⊙ 𝜁1 (𝑡, 𝑡 − 𝜏))
𝑑𝑡

+ 𝑑g1 (𝑡)
𝑑𝑡

𝑑𝑡,

h2 (𝑠) = h2 (𝑇 ) +
∫ 𝑠

𝑇

𝑑 (z2 (𝑡) ⊙ 𝜁2 (𝑡, 𝑡 − 𝜏))
𝑑𝑡

+ 𝑑g2 (𝑡)
𝑑𝑡

𝑑𝑡 .

(8)

Other derivatives for z(𝑡), g(𝑡), and r(𝑡) are in Appendix A. Finally,

the time-derivatives of h(𝑡), z(𝑡), g(𝑡), and r(𝑡) is written as follows:

𝑑

𝑑𝑡


h(𝑡)
z(𝑡)
g(𝑡)
r(𝑡)

 :=


𝑑 (z(𝑡 )⊙𝜁 (𝑡,𝑡−𝜏 ) )
𝑑𝑡

+ 𝑑g(𝑡 )
𝑑𝑡

𝜎
(
A(𝑡, 𝑡 − 𝜏)) (1 − 𝜎 (A(𝑡, 𝑡 − 𝜏))

) 𝑑A(𝑡,𝑡−𝜏 )
𝑑𝑡(

1 − 𝜙2 (B(𝑡, 𝑡 − 𝜏)
) 𝑑B(𝑡,𝑡−𝜏 )

𝑑𝑡

𝜎
(
C(𝑡, 𝑡 − 𝜏)) (1 − 𝜎 (C(𝑡, 𝑡 − 𝜏))

) 𝑑C(𝑡,𝑡−𝜏 )
𝑑𝑡


. (9)

𝑑𝑋 (𝑡 )
𝑑𝑡

contained by the derivatives of A,B, and C can also be

calculated since we use an interpolation method to construct con-

tinuous path 𝑋 (𝑡) (see Appendix C).
We derive the final prediction result𝑌 by passing h(𝑇 ) to a single

fully-connected layer FC𝜃𝑝 :

𝑌 = FC𝜃𝑝 (h(𝑇 )), (10)

where 𝑌 := (𝑌1, ..., 𝑌𝑃 ) ∈ R𝑃×𝐹
with the prediction length 𝑃 .

3.3 Why Continuous GRU?
In this section, we outline the rationale behind selecting GRU as

the primary network architecture for CONTIME.

GRU-based network: The hidden representation h(𝑡) in the GRU

(Equation 5) comprises hidden vectors at time 𝑡 and 𝑡−𝜏 . We propose

a GRU-based network, called CONTIME, embracing the benefits of

modeling past hidden representations in reducing prediction delay.

h(𝑡) to 𝑑h(𝑡 )
𝑑𝑡

: Due to the GRU Equation (5) including both time

𝑡 and time 𝑡 −𝜏 , ℎ(𝑡) is redefined as the derivative of ℎ(𝑡) w.r.t. time

in multiple papers proposing GRU-based networks [3, 24]. Similarly,

we redefine GRU Equation (5) as ℎ(𝑡) for time, albeit with 𝜏 < 1

compared to the conventional GRU where 𝜏 = 1.
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Algorithm 1: How to train CONTIME

Input: Training data 𝐷𝑡𝑟𝑎𝑖𝑛 , Validating data 𝐷𝑣𝑎𝑙 ,

Maximum iteration number𝑚𝑎𝑥_𝑖𝑡𝑒𝑟

1 Initialize 𝜃 𝑓1 , 𝜃 𝑓2 , and other parameters 𝜃𝑜𝑡ℎ𝑒𝑟𝑠 if any, e.g.,

the parameters of the feature extractor;

2 Create a continuous path 𝑋 (𝑡);
3 𝑘 ← 0;

4 while 𝑘 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
5 Train 𝜃 𝑓1 and 𝜃 𝑓2 and using 𝐿𝐶𝑂𝑁𝑇𝐼𝑀𝐸 ;

6 Validate and update the best parameters, 𝜃∗
𝑓1
, 𝜃∗

𝑓2
, and

𝜃∗
𝑜𝑡ℎ𝑒𝑟𝑠

, with 𝐷𝑣𝑎𝑙 ;

7 𝑘 ← 𝑘 + 1;
8 return 𝜃∗

𝑓1
, 𝜃∗

𝑓2
, and 𝜃∗

𝑜𝑡ℎ𝑒𝑟𝑠
;

Discrete to continuous: Essentially, we introduce a continuous
ODE-based GRU as opposed to the discrete GRU. This continuous

approach facilitates detailed and continuous modeling between

discrete time points, allowing a more comprehensive representation

of the value ofℎ(𝑡+𝜏) betweenℎ(𝑡) andℎ(𝑡+1). This sublime design

well aligns with our objective of supervising time-derivatives and

eliminating prediction delays.

3.4 How to train
Our proposed model, CONTIME, uses a loss based on MSE and a

time-derivative regularization to accurately predict time series and

prevent prediction delays. The final loss 𝐿𝐶𝑂𝑁𝑇𝑖𝑚𝑒 is the sum of

𝐿𝑇𝑎𝑠𝑘 and our time-derivative loss 𝐿Δ𝑡 .

𝐿𝑇𝑎𝑠𝑘 = MSE(𝑌,𝑌 ),
𝐿Δ𝑡 = MSE(𝑌Δ𝑡 , 𝑌Δ𝑡 ),

(11)

where 𝑌 is a ground-truth time series and 𝑌 is an inferred time

series. Δ𝑡 denotes their time-derivatives.

Δ𝑡 Loss: The purpose of the Δ𝑡 loss function is to oversee time

differentiation. Essentially, it ensures that accurate time series pre-

dictions are achieved without any delay by adjusting the increment

or decrement pattern. To solve this problem, we explicitly calculate

𝑑𝑌
𝑑𝑡

as follows:

𝑌Δ𝑡 =
𝑑 (FC𝜃𝑝 (h(𝑇 ) ) )

𝑑𝑡
=
𝑑 (W𝜃𝑃

(h(𝑇 ) ) + b𝜃𝑝 )
𝑑𝑡

= W𝜃𝑝

𝑑h(𝑇 )
𝑑𝑡

, (12)

since FC𝜃𝑝 is a fully connected layer, FC𝜃𝑝 (h(𝑇 )) can be written as

W𝜃𝑃 (h(𝑇 )) + b𝜃𝑝 ) and
𝑑h(𝑇 )
𝑑𝑡

is defined by the ODE function 𝑓1. So,

Equation (12) can be easily calculated by the automatic differen-

tiation method. Therefore, we use the MSE loss between 𝑌Δ𝑡 and

𝑌Δ𝑡 to supervise the time-derivative, where 𝑌Δ𝑡 := 𝑌𝑡𝑖 − 𝑌𝑡𝑖−1 — in

other words, we use the difference 𝑌Δ𝑡 to supervise the derivative

𝑌Δ𝑡 , which is reasonable since we do not know the explicit time-

derivative of 𝑌 . Our loss function can be summarized as follows:

𝐿𝐶𝑂𝑁𝑇𝐼𝑀𝐸 = 𝛼𝐿𝑇𝑎𝑠𝑘 + 𝛽𝐿Δ𝑡 , (13)

where 𝛼 and 𝛽 are the coefficients of the two terms. Finally, we can

summarize our training algorithm in Algorithm 1.

Well-posedness: Thewell-posedness2 of NODEwas already proved
in [25, Theorem 1.3] under the mild condition of the Lipschitz con-

tinuity. We show that our CONTIME is also well-posed. Almost

all activations, such as ReLU, Leaky ReLU, Tanh, Sigmoid, ArcTan,

and Softsign, have a Lipschitz constant of 1. Other common neural

network layers, such as dropout, batch normalization, and other

pooling methods, have explicit Lipschitz constant values. Therefore,

the Lipschitz continuity of
𝑑h(𝑡 )
𝑑𝑡

,
𝑑r(𝑡 )
𝑑𝑡

,
𝑑z(𝑡 )
𝑑𝑡

, and
𝑑g(𝑡 )
𝑑𝑡

can be

fulfilled in our case. Accordingly, it is a well-posed problem. Thus,

its training process is stable in practice.

4 EXPERIMENTS
In this section, we describe our experimental environments and

results. We conduct experiments on multivariate time series fore-

casting. All experiments were conducted in the same software and

hardware environments. Ubuntu 18.04 LTS, Python 3.8.0, Numpy

1.22.3, Scipy 1.10.1,Matplotlib 3.6.2, PyTorch 2.0.1, CUDA 11.4,

NVIDIA Driver 470.182.03 i9 CPU, and NVIDIA RTX A5000. We

repeat training and testing procedures with three different random

seeds and report their mean scores. We report standard deviations

of all 6 datasets in the arXiv version.

4.1 Experimental settings
We list all the descriptions of datasets and detailed experimental

settings in Appendix, D, and I.

Baselines: We test the following state-of-the-art baselines to com-

pare our proposed CONTIME with 6 baseline models. (1) DLin-

ear [33] is a simple linear network with time series decomposi-

tion method and shows state-of-the-art performance. (2) Neural

ODE (NODE [5]) is a continuous-time model that defines the hid-

den state h(𝑡) with an initial value problem (IVP). (3) Neural CDE

(NCDE [17]) is a conceptually enhanced model of NODE based on

the theory of controlled differential equations. (4) Autoformer [32]

is a transformer-based method which uses an auto-correlation at-

tention for periodic patterns. (5) FEDformer [35] is a transformer-

based method which integrates transformer with seasonal trend

decomposition, leveraging decomposition for global profiles and

transformers for detailed structures. (6) PatchTST [27] is a time

series forecasting technique that makes use of patch-based pro-

cessing to improve the model’s capacity to grasp complex patterns

and relationships by segmenting temporal sequences into smaller

patches.

Datasets: We evaluate the performance of the proposed CON-

TIME on six benchmarked datasets, including weather, exchange,

and four Stock datasets (AAPL, AMZN, GOOG, MSFT). Among

the benchmarked datasets used, weather and exchange are widely

utilized and are publicly available at [32]. The Stock dataset has

been actively used in [16]. The following is a description of the six

experimental data sets. (1) The Stocks dataset [2, 7, 13, 14] contains
stock prices of four companies (APPLE, AMAZON, Google, and

Microsoft). All four datasets measure 6 stock indicators (Open price,

High price, Low price, Close price, Adj Close price, and Volume)

of each company from January 17th, 2019 to January 4th, 2024.

2
A well-posed problem means i) its solution uniquely exists, and ii) its solution contin-

uously changes as input data changes.
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(2) Exchange contains exchange data among 8 countries [20]. (3)

Weather is data that measures 21 weather indicators, including

temperature and humidity, every 10 minutes throughout 2020.

Evaluation metrics: As time-series forecasting is a complicated

task, evaluating the prediction result only with MSE or MAE is

insufficient. Thus, we include DTW and TDI as additional metrics,

which can be interpreted as follows, to analyze the time-series

forecasting task from multiple perspectives:

(1) DTW: We evaluate the difference of the overall shape be-

tween 𝑌 and 𝑌 via DTW. In particular, the more volatile

the data is, the more emphasis is placed on using these met-

rics. Small DTW values mean the overall shapes of 𝑌 and 𝑌 .

However, one pitfall of DTW is that it ignores delays.

(2) TDI: TDI quantifies the disparity between the optimal paths

of𝑌 and𝑌 . Further details on TDI can be found inAppendix F.

Utilizing TDI, a metric for assessing temporal distortion, is

critical for precise predictions. Smaller TDI values indicate

minimal prediction delays, aligning with the objectives of

this paper.

4.2 Experimental results
In this subsection, we analyze the experimental results of six datasets

by dividing them into a total of three evaluationmetrics (MSE, DTW,

and TDI) [21]. Table 3 introduces our experimental results for time-

series forecasting with 6 datasets from various fields. We also report

our time complexity and model usage in Appendix H.

Stocks: The past five years of stock data for AAPL, AMZN, GOOG,

and MSFT exhibit both sharp rises and sharp falls, rendering them

suitable for assessing accurate time series predictions across var-

ious aspects. PatchTST demonstrates specialization in MSE and

surpasses other models based on differential equations and trans-

formers. Autoformer exhibits reasonable DTW scores. Among the

differential equation-basedmodels, including CONTIME, the lowest

TDI scores are observed. Notably, most baseline models special-

ize in a single metric, such as MSE or DTW, whereas CONTIME

outperforms across all metrics with the lowest standard deviation.

Exchange: Table 3 presents the experimental findings for the Ex-

change dataset. Most models exhibit small MSE values; conversely,

the NODE and NCDE models demonstrate superior TDI perfor-

mance compared to others, indicating the efficacy of models based

on differential equations in addressing prediction delays. Signifi-

cantly, our suggested model, CONTIME, performs second-best with

an MSE difference of only about 0.005 when compared to DLinear.

In addition, CONTIME performs fairly well in TDI, indicating its

capacity to efficiently reduce prediction delays.

Weather: In Table 3, our proposed model demonstrates supe-

riority over all other models across all metrics. While DLinear

and PatchTST exhibit reasonable performance in MSE and DTW,

CONTIME consistently outperforms them. Specifically, CONTIME

shows an average decrease of 0.168 in TDI compared to the second-

best model across all prediction lengths. Furthermore, NODE and

NCDE exhibit remarkable performance, reaffirming the efficiency

of differential-equation-based models in mitigating prediction de-

lays. Unlike baselines that excel in only one of the three metrics,

CONTIME clearly demonstrates the best performance across all.

4.3 Visualization
Figure 4 provides a visualization of AAPL, AMZN, Exchange, and

Weather forecasting results that prove CONTIME’s outstanding per-

formance over various aspects compared to state-of-the-art (SOTA)

models, such as PatchTST and DLinear. For instance, focusing on

the highlighted section in yellow in Figure 4.(a), the SOTA models

(blue and green line) predict the opposite of the stock price fluctua-

tion due to delays in the prediction. Specifically, unlike the ground

truth, which starts to decline around August, 28th, 2023, state-of-

the-art (SOTA) models fail to promptly recognize this change due

to a delay. In contrast, CONTIME (red line) accurately captures

the actual stock price (black line) in terms of shape, and timing.

Figure 4.(b) illustrates the visualization results for the AMZN stock.

Across the entire time, CONTIME closely matches the shape of

the ground truth and makes predictions without any noticeable

delays. Similarly, in Figure 4.(c), while the SOTA models exhibit

similarities in terms of shape, their results are delayed; compared

to the ground-truth with a high OT value on January 6, 2010, SOTA

models predict a high OT value on January 11 due to a delay while

CONTIME predicts on time. In Figure 4(d), most models exhibit

a shape similar to the ground-truth. Notably, in the highlighted

sections of our model (indicated in yellow), the fluctuations of T

(degC) are predicted in detail. Conversely, the baseline models made

predictions with a slight delay.

4.4 Sensitivity analysis & ablation study
4.4.1 Ablation study on loss function. Table 4 summarizes the re-

sults of the ablation study for the loss functions applied to CON-

TIME. Three types of loss functions are utilized. 𝐿𝑇𝑎𝑠𝑘 is a plain

MSE loss function to compare 𝑌 and 𝑌 . 𝐿𝑇𝐷𝐼 uses the TDI-based

regularization proposed in [21] to address the prediction delay

problem. This regularization minimizes TDI using Equation (28)

of Appendix F. The Δ𝑡 loss function aims to reduce the computed

time-derivative explicitly. Through this ablation study, we evaluate

the effectiveness of the time-derivative regularization process in

alleviating prediction delays.

CONTIME (Only 𝐿𝑡𝑎𝑠𝑘 ), which trains with the task loss, exhibits

reasonable performance in terms of MSE. However, it becomes

apparent that it does not effectively learn in other aspects such as

TDI and DTW. On the other hand, 𝐿𝑇𝐷𝐼 and 𝐿Δ𝑡 , employing differ-

ent types of regularization respectively, demonstrate exceptional

performance in terms of TDI. Though CONTIME (𝐿𝑡𝑎𝑠𝑘 + 𝐿𝑇𝐷𝐼 )

performs well on TDI, it exhibits unstable performance in terms of

MSE or DTW. However, CONTIME (𝐿𝑡𝑎𝑠𝑘 + 𝐿Δ𝑡 ) excels the others

in all three evaluation metrics, proving efficacy of our Δ𝑡 loss.

Relationship between 𝐿𝑇𝐷𝐼 and 𝐿Δ𝑡 . The experimental results in

Table 4 of the paper show that CONTIME (𝐿Δ𝑡 ) has superior TDI

values compared to CONTIME (𝐿𝑇𝐷𝐼 ). The TDI loss, calculated

from the optimal DTW path 𝐴 between 𝑦 and 𝑦, exhibits good

performance in TDI, which is slghtly inferior to our methodology.

Unlike the TDI loss, solely focusing on aligning the timing of the

DTW path, our methodology improves performance on both DTW
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Table 3: Experimental results on 6 datasets. The best results are in bold and the second best are underlined.

Datasets APPL AMZN GOOG MSFT Exchange Weather

𝑃 TDI DTW MSE TDI DTW MSE TDI DTW MSE TDI DTW MSE TDI DTW MSE TDI DTW MSE

D
L
i
n
e
a
r 24 3.180 1.409 0.084 3.855 2.239 0.265 3.766 1.297 0.166 4.327 1.430 0.197 3.629 0.533 0.044 3.505 1.894 0.119

36 5.106 1.940 0.187 5.396 2.726 0.372 4.835 2.229 0.199 6.103 2.385 0.319 5.638 0.781 0.065 5.944 1.436 0.144

48 7.751 2.323 0.213 8.915 2.964 0.408 7.518 2.568 0.262 7.324 3.738 0.468 7.989 1.742 0.084 8.208 1.817 0.161

60 10.84 2.907 0.258 9.252 3.017 0.347 12.39 2.848 0.294 12.10 4.247 0.492 11.01 2.304 0.107 10.16 1.771 0.174

N
O
D
E

24 3.739 4.330 0.168 3.063 3.275 0.397 3.684 6.399 1.298 4.596 3.389 0.359 2.085 2.855 0.525 2.758 4.262 0.336

36 4.911 2.916 0.328 5.479 4.893 0.464 5.793 4.223 0.646 6.769 4.329 0.496 4.055 9.289 1.137 4.314 6.193 1.261

48 7.482 4.203 0.535 7.149 6.436 0.813 7.795 5.112 0.794 8.868 4.656 0.504 6.104 6.028 1.100 6.827 6.294 1.261

60 8.702 10.25 1.149 8.954 6.333 1.033 9.513 5.648 0.874 10.72 7.963 0.618 9.822 6.621 1.056 10.54 7.652 1.506

N
C
D
E

24 5.039 4.555 0.227 2.984 5.493 0.261 3.719 4.601 0.517 4.842 2.809 0.445 1.874 3.689 0.576 2.489 5.609 0.854

36 6.651 3.199 0.462 5.829 4.022 0.335 4.946 3.541 0.582 6.687 2.902 0.628 4.184 8.137 0.542 4.661 4.059 0.799

48 7.303 4.028 0.440 7.113 5.817 0.711 8.132 6.161 0.756 9.018 4.327 0.690 6.012 7.957 0.874 6.922 4.682 0.783

60 11.47 3.882 0.459 9.041 7.936 1.352 10.02 5.637 0.771 12.35 5.221 0.766 8.105 6.516 0.604 9.900 5.882 0.989

A
u
t
o
f
o
r
m
e
r

24 3.085 1.551 0.150 3.576 1.485 0.174 3.289 1.239 0.167 4.222 1.690 0.246 3.158 1.120 0.098 2.586 1.938 0.327

36 6.561 1.882 0.171 5.541 2.032 0.203 5.782 2.210 0.199 5.111 2.474 0.288 4.724 1.516 0.125 4.662 2.393 9.349

48 9.814 2.307 0.170 6.941 2.388 0.219 7.606 2.943 0.289 7.335 2.810 0.287 8.245 1.760 0.129 6.955 2.855 0.415

60 13.82 2.651 0.188 9.414 2.723 0.275 10.80 3.248 0.279 12.14 3.668 0.380 10.53 2.026 0.139 9.944 2.854 0.415

F
E
D
f
o
r
m
e
r

24 3.417 1.396 0.129 3.108 1.764 0.232 3.154 1.587 0.204 4.335 1.754 0.243 3.311 0.887 0.079 2.872 1.506 0.215

36 6.335 1.826 0.149 5.878 2.201 0.249 5.311 2.203 0.215 6.794 2.505 0.304 5.638 1.079 0.085 5.108 1.801 0.313

48 12.64 1.932 0.135 7.664 2.691 0.289 8.489 2.312 0.225 8.203 2.891 0.308 7.952 1.692 0.108 6.342 2.053 0.226

60 16.39 2.642 0.204 12.84 2.980 0.354 12.13 2.785 0.244 12.76 3.209 0.321 10.68 2.714 0.128 9.495 2.083 0.199

P
a
t
c
h
T
S
T 24 3.166 1.253 0.091 3.969 1.574 0.177 3.706 1.554 0.165 4.222 1.529 0.215 3.658 0.903 0.056 3.089 1.796 0.119

36 5.358 1.417 0.118 6.679 1.733 0.168 4.882 2.766 0.191 6.388 2.154 0.234 5.603 0.766 0.078 4.849 1.128 0.149

48 7.984 1.809 0.130 8.706 2.521 0.220 7.840 2.342 0.203 10.49 3.075 0.356 8.083 1.701 0.099 6.687 1.473 0.181

60 11.00 2.626 0.202 12.24 3.475 0.275 10.64 2.673 0.244 14.09 3.883 0.693 11.32 2.210 0.106 10.40 1.988 0.229

C
O
N
T
I
M
E

24 2.378 1.114 0.074 2.866 1.529 0.167 3.052 1.541 0.165 4.218 1.528 0.184 1.761 0.884 0.049 2.254 1.023 0.117
36 4.807 1.541 0.089 5.275 1.881 0.193 4.712 2.189 0.189 5.371 2.334 0.256 3.488 1.221 0.063 4.120 1.390 0.136
48 7.300 1.912 0.114 6.844 2.300 0.209 7.364 2.297 0.188 7.296 2.755 0.262 5.366 1.683 0.097 6.226 1.805 0.159
60 7.932 2.625 0.147 8.885 2.873 0.239 9.271 2.741 0.210 11.83 3.261 0.292 7.452 2.139 0.125 9.366 2.121 0.174
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CONTIMEPatchTSTDLinearGround truth

(a) AAPL from June 30th,2023 to November 21th,2023

���
���

���
�

���
���

��


���
���

���
�

����

��


���

��


���

��


�	�

�	


�
�
�
�

���
���

���
�

���
���

���
�

���
���

��


���
���

���
�

���
���

���
	

���
���

���
�

����

���

���

���

���

�	�

�
�

�
�
�
�

CONTIMEPatchTSTDLinearGround truth

(b) AMZN from June 30th,2023 to November 21th,2023
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(d) Weather from 6 hours at December 30th, 2020

Figure 4: Forecasting visualization on 4 datasets. More figures are in Appendix G

(shape) and TDI (timing) through the explicit gradient modeling at

each time 𝑡 .

4.4.2 Sensitivity to 𝛼, 𝛽 . In Figure 5, we discern the impact of our

Δ𝑡 loss on TDI, DTW, and MSE with the sensitivity curve w.r.t 𝛽

(varying from 0.1 to 0.001), compared to the top 3 baselines in each

metric. Across all settings, CONTIME consistently outperforms

the baselines in terms of DTW and TDI, demonstrating the effi-

cacy of our model. Regarding MSE, CONTIME exhibits reasonable

performance across all settings. These results indicate stable perfor-

mance of our model trained with Δ𝑡 loss, thereby leading to more

effective elimination of prediction delays and it also shows stable

performance in DTW and MSE.

4.4.3 Additional experiments on other 3 datasets. To evaluate the

performance of our model in different domains, we evaluate the

model on ILL (National Disease) and ETTh1 and ETTh2. Compared

to PatchTST and DLinear, we show slightly better performance in
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Figure 5: Sensitivity to 𝛼, 𝛽 in AAPL

Table 4: Comparison on TDI loss and Δ𝑡 loss

Models 𝑃
AMZN Exchange

TDI DTW MSE TDI DTW MSE

CONTIME

(Only 𝐿𝑇𝑎𝑠𝑘 )

24 3.481 2.122 0.202 1.887 1.343 0.105

36 5.854 1.947 0.194 3.825 1.970 0.113

48 7.775 2.255 0.214 6.301 2.836 0.242

60 11.99 2.695 0.221 8.716 1.859 0.102

CONTIME

(𝐿𝑇𝑎𝑠𝑘 + 𝐿𝑇𝐷𝐼 )

24 2.816 3.263 1.269 1.782 3.264 0.325

36 4.715 2.936 0.355 3.557 4.992 0.843

48 6.923 4.341 0.535 5.229 3.596 0.852

60 8.924 5.456 0.826 7.522 2.857 0.257

CONTIME

(𝐿𝑇𝑎𝑠𝑘 + 𝐿Δ𝑡 )

24 2.866 1.529 0.167 1.761 0.884 0.049
36 5.275 1.881 0.193 3.488 1.221 0.063
48 6.844 2.300 0.209 5.366 1.683 0.097
60 8.885 2.873 0.239 7.452 2.139 0.125

Table 5: Additional experimental results on 3 datasets

Datasets 𝑃
CONTIME PatchTST DLinear

TDI DTW MSE TDI DTW MSE TDI DTW MSE

ILL

24 1.552 4.122 1.357 1.744 4.311 1.449 2.013 4.278 1.980

36 1.739 5.108 1.501 1.927 5.258 1.541 3.124 6.018 1.873

48 1.042 4.916 0.778 1.224 5.986 1.673 4.171 9.701 2.296

60 2.404 6.626 1.688 2.421 8.376 1.549 5.281 8.240 2.334

ETTh1

24 1.199 2.235 0.445 1.921 2.204 0.329 1.709 2.907 0.398

36 1.443 2.389 0.441 2.205 2.426 0.364 2.231 3.294 0.388

48 1.872 2.832 0.437 2.475 2.758 0.338 2.621 3.907 0.378

60 2.201 4.008 0.453 2.674 4.071 0.354 2.988 4.227 0.386

ETTh2

24 1.952 1.571 0.177 2.162 2.319 0.187 2.266 2.359 0.181

36 2.231 1.957 0.199 2.479 2.675 0.202 2.509 2.883 0.217

48 2.417 2.087 0.219 2.537 2.014 0.246 3.120 2.912 0.228

60 3.370 2.481 0.233 3.485 2.528 0.271 3.839 3.387 0.263

terms of MSE (value), but excellent performance in TDI and DTW

metrics that measure timing and shape.

4.4.4 To deal with distribution shift problem. Themost difficult part

of predicting time series benchmarked datasets is the distribution

shift problem [18]. In this paper, we use the shift method as in

NLinear [33] to solve this situation.

shift term = 𝑌 (0) − X(𝑇 ),
𝑌 = 𝑌 + shift term,

(14)

, where X(𝑇 ) refers to the last observations of the input sequences.

We calculate the difference between the last observation X(𝑇 ) and
the first prediction value𝑌 (0). By simply adding shift term to the
forecasting result 𝑌 , We can reduce the distribution shift problem,

Table 6: Comparison betweenCONTIMEandCONTIME (shift
term)

Models 𝑃
AAPL Weather

TDI DTW MSE TDI DTW MSE

CONTIME

24 2.378 1.114 0.074 2.323 1.115 0.129

36 4.807 1.541 0.089 4.094 1.563 0.154

48 7.338 1.941 0.112 6.273 2.043 0.183

60 7.932 2.625 0.147 9.243 2.253 0.194

CONTIME

(shift term)

24 2.917 1.111 0.074 2.254 1.023 0.117

36 4.802 1.602 0.094 4.120 1.390 0.136

48 7.300 1.912 0.114 6.226 1.805 0.159

60 7.964 2.625 0.148 9.366 2.121 0.174

5 CONCLUSIONS
This paper suggests yet another view on the time series forecasting

research in other perspectives. To mitigate the prediction latency

in time series forecasting, we suggest CONTIME, a unique architec-

ture that enables the explicit supervision of the time-derivative of

observations in the continuous time domain by continuously gen-

eralizing the bi-directional GRU. With this distinctive architecture,

we effectively addressed the prediction delay problem, which has

long been an obstacle of time series forecasting. By applying the

continuous bi-directional GRU and Δ𝑡 loss to naturally supervise

the time-derivative, CONTIME alleviates the prediction delay prob-

lem. We quantify these phenomena by measuring not just MSE but

also TDI and DTW as evaluation metrics. As a result, we exhibit

superior overall performance when compared to 6 state-of-the-art

baselines for 6 datasets from various fields.
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A DERIVATIVES OF z(𝑡), g(𝑡), r(𝑡)
time-derivative of z(𝑡): The continuous update gate is written

as z(𝑡) = 𝜎
(
W𝑧x(𝑡) + U𝑧h(𝑡 − 𝜏) + b𝑧

)
= 𝜎 (A(𝑡, 𝑡 − 𝜏)), and its

derivative, denoted
𝑑z(𝑡 )
𝑑𝑡

, is as follows:

𝑑z(𝑡)
𝑑𝑡

= 𝜎
(
A(𝑡, 𝑡 − 𝜏)) (1 − 𝜎 (A(𝑡, 𝑡 − 𝜏))

) 𝑑A(𝑡, 𝑡 − 𝜏)
𝑑𝑡

, (15)

where A(𝑡, 𝑡 − 𝜏) = W𝑧x(𝑡) + U𝑧h(𝑡 − 𝜏) + b𝑧 , and 𝑑A(𝑡,𝑡−𝜏 )
𝑑𝑡

=

W𝑧
𝑑x(𝑡 )
𝑑𝑡
+ U𝑧

𝑑h(𝑡−𝜏 )
𝑑𝑡

.

time-derivative of g(𝑡): The continuous update vector has the

form of g(𝑡) = 𝜙
(
W𝑔x(𝑡) +U𝑔

(
r(𝑡) ⊙ h(𝑡 −𝜏)

)
+b𝑔

)
= 𝜙 (B(𝑡, 𝑡 −𝜏),

and its derivative,
𝑑g(𝑡 )
𝑑𝑡

, can be calculate as follows:

𝑑g(𝑡)
𝑑𝑡

=
(
1 − 𝜙2 (B(𝑡, 𝑡 − 𝜏)

) 𝑑B(𝑡, 𝑡 − 𝜏)
𝑑𝑡

, (16)

where B(𝑡, 𝑡−𝜏) = W𝑔x(𝑡)+U𝑔
(
r(𝑡)⊙h(𝑡−𝜏)

)
+b𝑔 , and 𝑑B(𝑡,𝑡−𝜏 )

𝑑𝑡
=

W𝑔
𝑑x(𝑡 )
𝑑𝑡
+ U𝑔

𝑑r(𝑡 )
𝑑𝑡

h(𝑡 − 𝜏) + U𝑔r(𝑡) 𝑑h(𝑡−𝜏 )𝑑𝑡
.

time-derivative of r(𝑡): The continuous reset gate is defined as

r(𝑡) = 𝜎
(
W𝑟x(𝑡) + U𝑟h(𝑡 − 𝜏) + b𝑟

)
, and its derivative

𝑑r(𝑡 )
𝑑𝑡

is

derived as follows:

𝑑r(𝑡)
𝑑𝑡

= 𝜎
(
C(𝑡)) (1 − 𝜎 (C(𝑡, 𝑡 − 𝜏))

) 𝑑C(𝑡, 𝑡 − 𝜏)
𝑑𝑡

, (17)

where C(𝑡, 𝑡 − 𝜏) = W𝑟x(𝑡) + U𝑟h(𝑡 − 𝜏) + b𝑟 , and 𝑑C(𝑡,𝑡−𝜏 )
𝑑𝑡

=

W𝑟
𝑑x(𝑡 )
𝑑𝑡
+ U𝑟

𝑑h(𝑡−𝜏 )
𝑑𝑡

.
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B PROOF OF EQUATION.9
First, let z(𝑡), g(𝑡), and r(𝑡) be the update gate, the update vector,
and the reset gate of GRU:

z(𝑡) = 𝜎
(
W𝑧x(𝑡) + U𝑧h(𝑡 − 𝜏) + b𝑧

)
,

g(𝑡) = 𝜙
(
W𝑔x(𝑡) + U𝑔

(
r(𝑡) ⊙ h(𝑡 − 𝜏)

)
+ b𝑔

)
,

r(𝑡) = 𝜎
(
W𝑟x(𝑡) + U𝑟h(𝑡 − 𝜏) + b𝑟

)
,

(18)

To simplify the equations, we will define them as follows:

z(𝑡) = 𝜎
(
A(𝑡, 𝑡 − 𝜏)

)
,

g(𝑡) = 𝜙
(
B(𝑡, 𝑡 − 𝜏)

)
,

r(𝑡) = 𝜎
(
C(𝑡, 𝑡 − 𝜏)

)
,

(19)

where A(𝑡, 𝑡 −𝜏) = W𝑧x(𝑡) +U𝑧h(𝑡 −𝜏) +b𝑧 , B(𝑡, 𝑡 −𝜏) = Wℎx(𝑡) +
Uℎ

(
r(𝑡) ⊙ h(𝑡 −𝜏)

)
+ bℎ , and C(𝑡, 𝑡 −𝜏) = W𝑟x(𝑡) +U𝑟h(𝑡 −𝜏) + b𝑟 .

The derivatives of z(𝑡), g(𝑡), and r(𝑡) are defined as follows:

𝑑z(𝑡)
𝑑𝑡

= 𝜎 (A(𝑡, 𝑡 − 𝜏)) (1 − 𝜎 (A(𝑡, 𝑡 − 𝜏)))𝑑A(𝑡, 𝑡 − 𝜏)
𝑑𝑡

𝑑g(𝑡)
𝑑𝑡

= (1 − 𝜙2 (B(𝑡, 𝑡 − 𝜏)))𝑑B(𝑡, 𝑡 − 𝜏)
𝑑𝑡

𝑑r(𝑡)
𝑑𝑡

= 𝜎 (C(𝑡, 𝑡 − 𝜏)) (1 − 𝜎 (C(𝑡, 𝑡 − 𝜏)))𝑑C(𝑡, 𝑡 − 𝜏)
𝑑𝑡

(20)

Lastly, the hidden state h(𝑡) of GRU is written as follows:

h(𝑡) = z(𝑡) ⊙ h(𝑡 − 𝜏) + (1 − z(𝑡)) ⊙ g(𝑡) . (21)

The derivative of the hidden state h(𝑡) is defined by the chain

rule as follows:

𝑑h(𝑡)
𝑑𝑡

=
𝑑z(𝑡)
𝑑𝑡
⊙ h(𝑡 − 𝜏) + z(𝑡) ⊙ 𝑑h(𝑡 − 𝜏)

𝑑𝑡

− 𝑑z(𝑡)
𝑑𝑡
⊙ g(𝑡) + (1 − z(𝑡)) ⊙ 𝑑g(𝑡)

𝑑𝑡
,

=
𝑑z(𝑡)
𝑑𝑡
⊙
(
h(𝑡 − 𝜏) − g(𝑡)

)
+ z(𝑡) ⊙

(𝑑h(𝑡 − 𝜏)
𝑑𝑡

− 𝑑g(𝑡)
𝑑𝑡

)
+ 𝑑g(𝑡)

𝑑𝑡
,

=
𝑑z(𝑡)
𝑑𝑡
⊙ 𝜁 (𝑡, 𝑡 − 𝜏) + z(𝑡) ⊙ 𝑑𝜁 (𝑡, 𝑡 − 𝜏)

𝑑𝑡
+ 𝑑g(𝑡)

𝑑𝑡
,

(22)

where 𝜁 (𝑡, 𝑡 − 𝜏) = h(𝑡 − 𝜏) − g(𝑡). So, we can rewrite
𝑑h(𝑡 )
𝑑𝑡

as

follows:

𝑑h(𝑡)
𝑑𝑡

=
𝑑 (z(𝑡) ⊙ 𝜁 (𝑡, 𝑡 − 𝜏))

𝑑𝑡
+ 𝑑g(𝑡)

𝑑𝑡
(23)

C DETAILED DESCRIPTIONS OF
INTERPOLATION METHODS

In Section. 3.2, we calculated
𝑑𝑋 (𝑡 )
𝑑𝑡

by using Cubic Hermite spline

method. In this section, we describe why we choose the Cubic

Hermite spline method not the Natural cubic spline which creates

the continuous path 𝑋 (𝑡). There are two interpolation methods

that create continuous path 𝑋 (𝑡), Natural cubic splines and Cubic

Hermite splines.

Natural cubic splines: Natural cubic splines used inNeural CDE [17]
require the entire time series to be used as a control signal. That is,

a change in future time step may interfere past time steps, thereby

making interpolated result unreliable. In other words, it is an inter-

polation method that cannot be used in online prediction.

Cubic Hermite splines: This approach mitigates the discontinuity

of linear control while maintaining the same online properties by

joining adjacent viewpoints with cubic splines that use additional

degrees of freedom to smooth out gradient discontinuities. This

results in faster integration times than linear control. The main

difference from natural cubic splines is that Cubic Hermite splines

solve a single equation for each [𝑖, 𝑖 + 1) piece independently. As
a result, it changes more quickly than the natural cubic spline

and therefore has a slower integration time than the natural cubic

spline [26].

Due to the above two differences, we believe that the Cubic Her-

mite spline is more suitable for real-world time series forecasting,

so we use this method to create a continuous path 𝑋 (𝑡).

D DATASETS
The datasets used in our experiments are publicly available and can

be downloaded at the following locations:

(1) AAPL: https://finance.yahoo.com/quote/AAPL/history?p=

AAPL,

(2) AMZN: https://finance.yahoo.com/quote/AMZN/history?p=

AMZN,

(3) MSFT: https://finance.yahoo.com/quote/MSFT/history?p=

MSFT,

(4) GOOG: https://finance.yahoo.com/quote/GOOG/history?p=

GOOG,

(5) Exchange: https://drive.google.com/drive/folders/1ZOYpTUa82_

jCcxIdTmyr0LXQfvaM9vIy,

(6) Weather: https://drive.google.com/drive/folders/1ZOYpTUa82_

jCcxIdTmyr0LXQfvaM9vIy,

We split the entire dataset into training/validating/testing parts. The

first 70% of the data is used as training, 10% is used for validating,

and the last 20% is used for testing.

E HYPERPARAMETER
All of the models follow the same experimental setup with predic-

tion horizon 𝑃 ∈ {24, 36, 48, 60} for all 6 datasets.

E.1 Hyperparameter for CONTIME
In Table 10, we showed our best hyperparameter for all 6 datasets.

F HOW TO CALCULATE TDI
We adopted TDI loss calculation for time-series sequence from [21].

The calculation below is applied to each feature of data 𝑋 defined

in Section. 3.2.

We define A as a binary warping path of prediction length

𝑃 , i.e. A ⊂ {0, 1}𝑃×𝑃 , with 𝐴ℎ,𝑗 = 1 if 𝑌ℎ is associated with 𝑌𝑗
and otherwise 0, where ℎ, 𝑗 are a time point of each sequence.

Δ(𝑌,𝑌 ) :=
[
(𝑌ℎ − 𝑌𝑗 )2

]
ℎ,𝑗

, which means measuring dissimilarity

of two sequences by euclidean distance. We calculate TDI from the

optimal path matrix A★
of DTW as follows:

DTW(𝑌𝑖 , 𝑌𝑖 ) = min

A∈𝐴𝑃,𝑃

⟨A,Δ(𝑌𝑖 , 𝑌𝑖 )⟩ (24)

https://finance.yahoo.com/quote/AAPL/history?p=AAPL
https://finance.yahoo.com/quote/AAPL/history?p=AAPL
https://finance.yahoo.com/quote/AMZN/history?p=AMZN
https://finance.yahoo.com/quote/AMZN/history?p=AMZN
https://finance.yahoo.com/quote/MSFT/history?p=MSFT
https://finance.yahoo.com/quote/MSFT/history?p=MSFT
https://finance.yahoo.com/quote/GOOG/history?p=GOOG
https://finance.yahoo.com/quote/GOOG/history?p=GOOG
https://drive.google.com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy
https://drive.google.com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy
https://drive.google.com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy
https://drive.google.com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy
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Figure 6: Forecasting visualization on 2 datasets

Table 9: Model usage

Models AAPL AMZN GOOG MSFT Exchange Weather

DLinear 179.1 179.1 179.1 179.1 173.2 180.7

NODE 26.05 26.05 26.05 26.05 27.37 35.39

NCDE 7.027 7.027 7.027 7.027 10.78 50.69

Autoformer 112.4 112.4 112.4 112.4 1,243 1,244

FEDformer 496.7 496.7 496.7 496.7 635.1 804.1

PatchTST 102.3 102.3 102.3 102.3 116.8 625.2

CONTIME 198.7 198.7 198.7 198.7 117.7 131.8

Table 7: Best hyperparameter for CONTIME

Hyperparameter 𝑃 AAPL AMZN GOOG MSFT Exchange Weather

𝜆

24 0.005 0.005 0.005 0.005 0.01 0.001

36 0.005 0.001 0.005 0.001 0.005 0.001

48 0.005 0.005 0.005 0.005 0.005 0.001

60 0.005 0.005 0.005 0.005 0.005 0.001

𝛼

24 0.9 0.8 0.8 0.9 0.9 0.9

36 0.8 0.8 0.8 0.8 0.9 0.9

48 0.9 0.9 0.8 0.9 0.9 0.9

60 0.9 0.9 0.8 1.0 0.9 0.9

𝛽

24 0.1 0.1 0.05 0.001 0.1 0.001

36 0.01 0.01 0.01 0.001 0.1 0.001

48 0.001 0.1 0.05 0.001 0.1 0.001

60 0.1 0.005 0.1 0.001 0.01 0.001

𝑇

24 144 104 144 144 60 60

36 144 144 144 104 60 60

48 144 144 144 104 60 60

60 144 104 144 144 60 60

A★
:= arg min

A∈𝐴𝑃,𝑃

⟨A,Δ(𝑌𝑖 , 𝑌𝑖 )⟩ (25)

TDI(𝑌𝑖 , 𝑌𝑖 ) := ⟨A★,Ω⟩ =
〈
arg min

A∈𝐴𝑝,𝑝

⟨A,Δ(𝑌𝑖 , 𝑌𝑖 )⟩,Ω
〉

(26)

where Ω is a square matrix of size 𝑃 × 𝑃 penalizing each element

𝑌ℎ being associated to an 𝑌𝑗 , for ℎ ≠ 𝑗 : e.g. Ω(ℎ, 𝑗) = (ℎ− 𝑗 )
2

𝑃2
.

To make TDI differentiable, we approximate A★
with A★

𝛾 using the

fact that A★ = ∇ΔDTW(𝑌𝑖 , 𝑌𝑖 ):

A★
𝛾 := ∇ΔDTW𝛾 (𝑌𝑖 , 𝑌𝑖 ) =

1

𝑍

∑︁
A∈𝐴𝑃,𝑃

A exp− ⟨A,Δ(𝑌𝑖 , 𝑌𝑖 )⟩
𝛾

(27)

where 𝑍 = exp− ⟨A,Δ(𝑌𝑖 ,𝑌𝑖 ) ⟩𝛾 . The resulting TDI loss is:

𝐿𝑇𝐷𝐼 := TDI(𝑌𝑖 , 𝑌𝑖 ) := ⟨A★
𝛾 ,Ω⟩ (28)

G FORECASTING VISUALIZATION
In this section, we additionally visualize forecasting results on all 6

datasets.

H COMPUTATIONAL TIME AND MODEL
USAGE

In this section, we report computational time of our model and

model usage for all 6 datasets.

Table 8: Computational time

Models AAPL AMZN GOOG MSFT Exchange Weather

DLinear 6.436 5.653 6.289 6.371 41.25 240.9

NODE 14.08 13.85 13.67 13.81 43.40 9.935

NCDE 80.68 82.72 77.69 36.52 34.94 86.29

Autoformer 8.414 7.949 8.704 8.191 31.99 350.2

FEDformer 14.58 10.03 9.598 11.20 39.18 312.83

PatchTST 2.495 2.240 2.751 2.236 22.62 289.6

CONTIME 23.25 21.79 23.65 32.37 33.68 29.93

I HYPERPARAMETER
All of the models follow the same experimental setup with predic-

tion horizon 𝑃 ∈ {24, 36, 48, 60} for all 6 datasets.

I.1 Hyperparameter for baselines
For the best outcome of baselines and our method, we conduct

a hyperparameter search for them based on the recommended

hyperparameter set from each paper. Considered hyperparameter

sets are as follows:

Stocks:
(1) DLinear : We train for 100 epochs with a learning rate 𝜆 in

{0.01, 0.05, 0.001, 0.005, 0.0001}. Input sequence length 𝑇 in

{96, 104, 144}
(2) Differential-equation based models: For Neural ODE and

Neural CDE, we train for 100 epochs with a learning rate 𝜆

in {0.01, 0.05, 0.001, 0.005, 0.0001}. Hidden size in {39, 49, 59}.
(3) Transformer-based models: For Autoformer and FEDformer,

we train for 50 epochs with a learning rate 𝜆 in {0.01, 0.05,
0.001, 0.005, 0.0001}. Input sequence length𝑇 in {96, 104, 144}

(4) PatchTST: We train for 50 epochs with a learning rate 𝜆 in

{0.01, 0.05, 0.001, 0.005, 0.0001}. Input sequence length 𝑇 in

{96, 104, 144}. Other settings follow the same experimental

settings in the baseline.
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Table 10: Best hyperparameter for CONTIME

Hyperparameter 𝑃 AAPL AMZN GOOG MSFT Exchange Weather

𝜆

24 0.005 0.005 0.005 0.005 0.01 0.001

36 0.005 0.001 0.005 0.001 0.005 0.001

48 0.005 0.005 0.005 0.005 0.005 0.001

60 0.005 0.005 0.005 0.005 0.005 0.001

𝛼

24 0.9 0.8 0.8 0.9 0.9 0.9

36 0.8 0.8 0.8 0.8 0.9 0.9

48 0.9 0.9 0.8 0.9 0.9 0.9

60 0.9 0.9 0.8 1.0 0.9 0.9

𝛽

24 0.1 0.1 0.05 0.001 0.1 0.001

36 0.01 0.01 0.01 0.001 0.1 0.001

48 0.001 0.1 0.05 0.001 0.1 0.001

60 0.1 0.005 0.1 0.001 0.01 0.001

𝑇

24 144 104 144 144 60 60

36 144 144 144 104 60 60

48 144 144 144 104 60 60

60 144 104 144 144 60 60

Exchange:
(1) DLinear : We train for 100 epochs with a learning rate 𝜆 in

{0.01, 0.05, 0.001, 0.005, 0.0001}. Input sequence length 𝑇 in

{60, 72, 96}.
(2) Differential-equation based models: For Neural ODE and

Neural CDE, we train for 100 epochs with a learning rate 𝜆

in {0.01, 0.05, 0.001, 0.005, 0.0001}. Hidden size in {39, 49, 59}.
Input sequence length 𝑇 in {60, 72, 96}.

(3) Transformer-based models: For Autoformer and FEDformer,

we train for 50 epochs with a learning rate 𝜆 in {0.01, 0.05,
0.001, 0.005, 0.0001}. Input sequence length 𝑇 in {60, 72, 96}.
Other settings follow the same experimental settings in the

baseline.

(4) PatchTST: We train for 50 epochs with a learning rate 𝜆

in {0.01, 0.05, 0.001, 0.005, 0.0001}. Input sequence length 𝑇
in {60, 72, 96}. Other settings follow the same experimental

settings in the baseline.

Weather:
(1) DLinear : We train for 100 epochs with a learning rate 𝜆 in

{0.01, 0.05, 0.001, 0.005, 0.0001}. Input sequence length 𝑇 in

{96, 104, 144}
(2) Differential-equation based models: For Neural ODE and

Neural CDE, we train for 100 epochs with a learning rate 𝜆

in {0.01, 0.05, 0.001, 0.005, 0.0001}. Hidden size in {39, 49, 59}.
Input sequence length 𝑇 in {60, 72, 96}.

(3) Transformer-based models: For Autoformer and FEDformer,

we train for 50 epochs with a learning rate 𝜆 in {0.01, 0.05,
0.001, 0.005, 0.0001}. Input sequence length 𝑇 in {60, 72, 96}.
Other settings follow the same experimental settings in the

baseline.

(4) PatchTST: We train for 50 epochs with a learning rate 𝜆

in {0.01, 0.05, 0.001, 0.005, 0.0001}. Input sequence length 𝑇
in {60, 72, 96}. Other settings follow the same experimental

settings in the baseline.

I.2 Hyperparameter for CONTIME
For reproducibility, we report the hyperparameters search range as

follows:

Stocks: We train for 100 epochs with a batch size of 256. A

learning rate 𝜆 in {0.001, 0.005, 0.01, 0.05} are used. Coefficient of

𝐿𝐶𝑂𝑁𝑇𝐼𝑀𝐸𝛼 in {0.7, 0.8, 0.9, 1.0} and 𝛽 in {0.001, 0.005, 0.01, 0.05, 0.1}.
We used rk4 as an ODE solver. Our input sequence length 𝑇 in

{96, 104, 144}.

Exchange: We train for 100 epochs with a batch size of 256. A

learning rate 𝜆 in {0.001, 0.005, 0.01, 0.05} are used. Coefficient of

𝐿𝐶𝑂𝑁𝑇𝐼𝑀𝐸𝛼 in {0.7, 0.8, 0.9, 1.0} and 𝛽 in {0.001, 0.005, 0.01, 0.05, 0.1}.
We used rk4 as an ODE solver. Our input sequence length 𝑇 in

{60, 72, 96}.

Weather: We train for 150 epochs with a batch size of 256. A

learning rate 𝜆 in {0.001, 0.005, 0.01, 0.05} are used. Coefficient of

𝐿𝐶𝑂𝑁𝑇𝐼𝑀𝐸 𝛼 in {0.7, 0.8, 0.9, 1.0} and 𝛽 in {0.001, 0.005, 0.01, 0.05, 0.1}.
We used rk4 as an ODE solver. Our input sequence length 𝑇 in

{60, 72, 96}.
In Table 10, we showed our best hyperparameter for all 6 datasets.

J EXPERIMENTAL RESULTS WITH
STANDARD DEVIATION

In Table 11 and Table 12, we repeat training and testing procedures

with three different random seeds and report their mean squared

error and standard deviations of all 6 datasets.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009
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Table 11: Experimental results on 3 datasets. The best results are in bold and the second best are underlined.

Datasets APPL AMZN GOOG

P TDI DTW MSE TDI DTW MSE TDI DTW MSE

D
L
i
n
e
a
r 24 3.810 ± 0.031 1.409 ± 0.034 0.105 ± 0.004 3.855 ± 0.048 2.239 ± 0.050 0.265 ± 0.008 3.766 ± 0.031 1.297 ± 0.006 0.166 ± 0.008

36 5.106 ± 0.028 1.940 ± 0.049 0.187 ± 0.008 5.396 ± 0.051 2.726 ± 0.054 0.372 ± 0.006 4.835 ± 0.044 2.229 ± 0.084 0.199 ± 0.008

48 7.751 ± 1.060 2.323 ± 0.033 0.213 ± 0.008 8.915 ± 0.056 2.964 ± 0.073 0.408 ± 0.008 7.518 ± 0.077 2.568 ± 0.034 0.262 ± 0.003

60 10.84 ± 1.276 2.907 ± 0.143 0.258 ± 0.010 9.252 ± 0.047 3.017 ± 0.055 0.347 ± 0.009 12.39 ± 0.038 2.848 ± 0.061 0.294 ± 0.009

N
O
D
E

24 3.739 ± 0.047 4.330 ± 0.008 0.168 ± 0.007 3.063 ± 0.021 3.275 ± 0.009 0.397 ± 0.001 3.684 ± 0.055 6.399 ± 0.010 1.298 ± 0.091

36 4.911 ± 0.071 2.916 ± 0.008 0.328 ± 0.008 5.479 ± 0.033 4.893 ± 0.009 0.464 ± 0.001 5.793 ± 0.167 4.223 ± 0.012 0.646 ± 0.001

48 7.482 ± 0.028 4.203 ± 0.010 0.535 ± 0.001 7.149 ± 0.092 6.436 ± 0.009 0.813 ± 0.087 7.795 ± 0.041 5.112 ± 0.006 0.794 ± 0.001

60 8.702 ± 0.030 10.25 ± 0.007 1.149 ± 0.021 8.954 ± 0.073 6.333 ± 0.011 1.033 ± 0.001 9.513 ± 0.065 5.648 ± 0.014 0.874 ± 0.001

N
C
D
E

24 5.039 ± 0.020 4.555 ± 0.033 0.227 ± 0.014 2.984 ± 0.037 5.493 ± 0.041 0.261 ± 0.012 3.719 ± 0.046 4.601 ± 0.040 0.517 ± 0.017

36 6.651 ± 0.032 3.199 ± 0.074 0.462 ± 0.082 5.829 ± 0.036 4.022 ± 0.032 0.335 ± 0.016 4.946 ± 0.057 3.541 ± 0.042 0.582 ± 0.009

48 7.303 ± 0.044 4.028 ± 0.056 0.440 ± 0.019 7.113 ± 0.038 5.817 ± 0.063 0.711 ± 0.011 8.132 ± 0.053 6.161 ± 0.073 0.756 ± 0.011

60 11.47 ± 0.093 3.882 ± 0.002 0.459 ± 0.015 9.041 ± 0.043 7.936 ± 0.062 1.352 ± 0.014 10.02 ± 0.025 5.637 ± 0.053 0.771 ± 0.011

A
u
t
o
f
o
r
m
e
r

24 3.085 ± 0.024 1.551 ± 0.023 0.150 ± 0.024 3.576 ± 0.037 1.485 ± 0.022 0.174 ± 0.001 3.289 ± 0.031 1.239 ± 0.021 0.167 ± 0.001

36 6.561 ± 0.025 1.882 ± 0.029 0.171 ± 0.001 5.541 ± 0.087 2.032 ± 0.018 0.203 ± 0.011 5.782 ± 0.061 2.210 ± 0.021 0.199 ± 0.034

48 9.814 ± 0.031 2.307 ± 0.019 0.170 ± 0.001 6.941 ± 0.063 2.388 ± 0.013 0.219 ± 0.017 7.606 ± 0.040 2.943 ± 0.027 0.289 ± 0.061

60 13.82 ± 0.052 2.651 ± 0.019 0.188 ± 0.001 9.414 ± 0.035 2.723 ± 0.021 0.275 ± 0.001 10.80 ± 0.021 3.248 ± 0.023 0.279 ± 0.001

F
E
D
f
o
r
m
e
r

24 3.417 ± 0.045 1.396 ± 0.063 0.129 ± 0.009 3.108 ± 0.100 1.764 ± 0.056 0.232 ± 0.004 3.154 ± 0.034 1.587 ± 0.041 0.204 ± 0.005

36 6.335 ± 0.031 1.826 ± 0.052 0.149 ± 0.005 5.878 ± 0.078 2.201 ± 0.043 0.249 ± 0.079 5.311 ± 0.071 2.203 ± 0.030 0.215 ± 0.004

48 12.64 ± 0.074 1.932 ± 0.031 0.135 ± 0.004 7.664 ± 0.103 2.691 ± 0.071 0.289 ± 0.003 8.489 ± 0.080 2.312 ± 0.016 0.225 ± 0.003

60 16.39 ± 0.081 2.642 ± 0.102 0.204 ± 0.007 12.84 ± 0.108 2.980 ± 0.027 0.354 ± 0.007 12.13 ± 0.081 2.785 ± 0.021 0.244 ± 0.008

P
a
t
c
h
T
S
T 24 3.166 ± 0.149 1.253 ± 0.046 0.084 ± 0.006 3.969 ± 0.078 1.574 ± 0.051 0.177 ± 0.006 3.706 ± 0.066 1.554 ± 0.043 0.165 ± 0.007

36 5.358 ± 0.123 1.417 ± 0.556 0.118 ± 0.006 6.679 ± 0.089 1.733 ± 0.022 0.168 ± 0.008 4.882 ± 0.054 2.766 ± 0.037 0.191 ± 0.009

48 7.984 ± 0.693 1.809 ± 0.459 0.130 ± 0.063 8.706 ± 0.062 2.521 ± 0.045 0.220 ± 0.011 7.840 ± 0.061 2.342 ± 0.051 0.203 ± 0.006

60 11.00 ± 1.025 2.626 ± 0.042 0.202 ± 0.057 12.24 ± 0.042 3.475 ± 0.076 0.275 ± 0.009 10.64 ± 0.043 2.673 ± 0.061 0.244 ± 0.007

C
O
N
T
I
M
E 24 2.378 ± 0.019 1.114 ± 0.013 0.074 ± 0.008 2.866 ± 0.022 1.529 ± 0.017 0.167 ± 0.001 3.052 ± 0.011 1.541 ± 0.017 0.165 ± 0.004

36 4.807 ± 0.033 1.541 ± 0.016 0.089 ± 0.002 5.275 ± 0.008 1.881 ± 0.035 0.193 ± 0.090 4.712 ± 0.021 2.189 ± 0.010 0.189 ± 0.007

48 7.300 ± 0.011 1.912 ± 0.008 0.114 ± 0.002 6.844 ± 0.012 2.300 ± 0.016 0.209 ± 0.001 7.364 ± 0.020 2.297 ± 0.016 0.188 ± 0.003

60 7.932 ± 0.017 2.625 ± 0.016 0.147 ± 0.009 8.885 ± 0.018 2.873 ± 0.013 0.239 ± 0.006 9.271 ± 0.015 2.741 ± 0.012 0.210 ± 0.001
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Table 12: Experimnetal results on 3 datasets.

Datasets MSFT Exchange Rate Weather

P TDI DTW MSE TDI DTW MSE TDI DTW MSE

D
L
i
n
e
a
r 24 4.327 ± 0.044 1.430 ± 0.091 0.197 ± 0.071 3.629 ± 0.052 0.533 ± 0.003 0.044 ± 0.091 3.505 ± 0.071 1.894 ± 0.838 0.119 ± 0.041

36 6.103 ± 0.083 2.385 ± 0.044 0.319 ± 0.062 5.638 ± 0.088 0.781 ± 0.023 0.065 ± 0.071 5.944 ± 0.091 1.436 ± 0.064 0.144 ± 0.838

48 7.324 ± 0.087 3.738 ± 0.014 0.468 ± 0.071 7.989 ± 0.852 1.742 ± 0.041 0.084 ± 0.052 8.208 ± 0.041 1.817 ± 0.002 0.161 ± 0.064

60 12.10 ± 0.062 4.247 ± 0.062 0.492 ± 0.048 11.01 ± 0.174 2.304 ± 0.029 0.107 ± 0.064 10.16 ± 0.057 1.771 ± 0.041 0.174 ± 0.014

N
O
D
E

24 4.596 ± 0.071 3.389 ± 0.002 0.359 ± 0.012 2.085 ± 0.031 2.855 ± 0.020 0.525 ± 0.014 2.758 ± 0.084 4.262 ± 0.052 0.336 ± 0.013

36 6.769 ± 0.022 4.329 ± 0.012 0.496 ± 0.019 4.055 ± 0.081 9.289 ± 0.051 1.137 ± 0.011 4.314 ± 0.090 6.193 ± 0.031 0.489 ± 0.012

48 8.868 ± 0.101 4.656 ± 0.030 0.504 ± 0.013 6.104 ± 0.073 6.028 ± 0.031 1.100 ± 0.018 6.827 ± 0.082 6.294 ± 0.022 1.261 ± 0.018

60 10.72 ± 0.073 7.973 ± 0.025 0.618 ± 0.031 9.822 ± 0.091 6.621 ± 0.021 1.056 ± 0.021 10.54 ± 0.080 7.652 ± 0.032 1.506 ± 0.020

N
C
D
E

24 4.842 ± 0.022 2.809 ± 0.081 0.445 ± 0.064 1.874 ± 0.081 3.689 ± 0.092 0.576 ± 0.030 2.489 ± 0.031 5.609 ± 0.061 0.854 ± 0.081

36 6.687 ± 0.082 2.902 ± 0.034 0.628 ± 0.016 4.184 ± 0.045 8.137 ± 0.033 0.542 ± 0.087 4.661 ± 0.027 4.059 ± 0.061 0.799 ± 0.038

48 9.018 ± 0.071 4.327 ± 0.065 0.690 ± 0.063 6.012 ± 0.082 7.957 ± 0.088 0.874 ± 0.024 6.922 ± 0.075 4.682 ± 0.046 0.783 ± 0.076

60 12.35 ± 0.091 5.221 ± 0.022 0.766 ± 0.012 8.105 ± 0.049 6.516 ± 0.029 0.604 ± 0.094 9.900 ± 0.039 5.882 ± 0.081 0.989 ± 0.053

A
u
t
o
f
o
r
m
e
r

24 4.222 ± 0.041 1.690 ± 0.037 0.246 ± 0.009 3.158 ± 0.158 1.120 ± 0.158 0.098 ± 0.000 2.586 ± 0.000 1.938 ± 0.000 0.327 ± 0.000

36 5.111 ± 0.001 2.474 ± 0.022 0.288 ± 0.015 4.724 ± 0.046 1.516 ± 0.132 0.125 ± 0.019 4.662 ± 0.042 2.393 ± 0.016 0.349 ± 0.036

48 7.335 ± 0.037 2.810 ± 0.029 0.287 ± 0.009 8.245 ± 0.407 1.760 ± 0.041 0.129 ± 0.001 6.955 ± 0.507 2.855 ± 0.067 0.415 ± 0.077

60 12.14 ± 0.066 3.668 ± 0.102 0.380 ± 0.071 10.53 ± 0.132 2.026 ± 0.022 0.139 ± 0.002 9.944 ± 0.132 2.854 ± 0.132 0.415 ± 0.132

F
E
D
f
o
r
m
e
r

24 4.335 ± 0.021 1.754 ± 0.051 0.243 ± 0.009 3.311 ± 0.064 0.887 ± 0.036 0.079 ± 0.006 2.872 ± 0.027 1.506 ± 0.058 0.215 ± 0.007

36 6.794 ± 0.022 2.505 ± 0.063 0.304 ± 0.010 5.638 ± 0.093 1.079 ± 0.014 0.085 ± 0.009 5.108 ± 0.023 1.801 ± 0.039 0.313 ± 0.003

48 8.203 ± 0.033 2.891 ± 0.101 0.308 ± 0.000 7.952 ± 0.077 1.692 ± 0.019 0.108 ± 0.002 6.342 ± 0.096 2.053 ± 0.033 0.226 ± 0.004

60 12.76 ± 0.054 3.209 ± 0.091 0.321 ± 0.000 10.68 ± 0.226 2.714 ± 0.054 0.128 ± 0.009 9.495 ± 0.132 2.083 ± 0.132 0.199 ± 0.132

P
a
t
c
h
T
S
T 24 4.222 ± 0.098 1.529 ± 0.102 0.215 ± 0.009 3.658 ± 0.138 0.903 ± 0.122 0.056 ± 0.064 3.089 ± 0.132 1.796 ± 0.132 0.119 ± 0.132

36 6.388 ± 0.094 2.154 ± 0.099 0.234 ± 0.007 5.603 ± 0.436 0.776 ± 0.026 0.078 ± 0.034 4.849 ± 0.436 1.428 ± 0.436 0.149 ± 0.036

48 10.49 ± 0.090 3.075 ± 0.110 0.356 ± 0.088 8.083 ± 0.647 1.701 ± 0.027 0.099 ± 0.046 6.687 ± 0.647 1.473 ± 0.647 0.181 ± 0.017

60 14.09 ± 0.088 3.883 ± 0.098 0.693 ± 0.009 11.32 ± 0.169 2.210 ± 0.016 0.106 ± 0.006 10.40 ± 0.049 1.988 ± 0.029 0.229 ± 0.169

C
O
N
T
I
M
E 24 4.218 ± 0.021 1.528 ± 0.041 0.184 ± 0.002 1.761 ± 0.027 0.884 ± 0.013 0.049 ± 0.007 2.254 ± 0.011 1.023 ± 0.021 0.117 ± 0.002

36 5.371 ± 0.018 2.334 ± 0.007 0.256 ± 0.003 3.488 ± 0.017 1.221 ± 0.007 0.063 ± 0.009 4.120 ± 0.015 1.390 ± 0.012 0.136 ± 0.003

48 7.296 ± 0.024 2.755 ± 0.010 0.262 ± 0.005 5.366 ± 0.037 1.683 ± 0.071 0.097 ± 0.011 6.226 ± 0.033 1.805 ± 0.010 0.159 ± 0.005

60 11.83 ± 0.041 3.261 ± 0.009 0.292 ± 0.007 7.452 ± 0.080 2.139 ± 0.001 0.125 ± 0.004 9.366 ± 0.019 2.121 ± 0.091 0.174 ± 0.002
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