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ABSTRACT

The discovery of new materials is essential for enabling technological advance-
ments. Computational approaches for predicting novel materials must effectively
learn the manifold of stable crystal structures within an infinite design space. We
introduce Open Materials Generation (OMatG), a unifying framework for the gen-
erative design and discovery of inorganic crystalline materials. OMatG employs
stochastic interpolants (SI) to bridge an arbitrary base distribution to the target
distribution of inorganic crystals via a broad class of tunable stochastic processes,
encompassing both diffusion models and flow matching as special cases. In this
work, we adapt the SI framework by integrating an equivariant graph representation
of crystal structures and extending it to account for periodic boundary conditions
in unit cell representations. Additionally, we couple the SI flow over spatial co-
ordinates and lattice vectors with discrete flow matching for atomic species. We
benchmark OMatG’s performance on two tasks: crystal structure prediction (CSP)
for specified compositions, and de novo generation (DNG) aimed at discovering
stable, novel, and unique structures. In our ground-up implementation of OMatG,
we refine and extend both CSP and DNG metrics compared to previous works.
OMatG establishes a new state-of-the-art in generative modeling for materials
discovery, outperforming purely flow-based and diffusion-based implementations.
These results underscore the importance of designing flexible deep learning frame-
works to accelerate progress in materials science. The OMatG code is available at
https://github.com/FERMat-ML/OMatG.

1 INTRODUCTION

A core objective of materials science is the discovery of new synthesizable structures and compounds
with the potential to meet critical societal demands. The development of new materials such as
room-temperature superconductors (Boeri et al., 2022), high-performance alloys with exceptional
mechanical properties (Gludovatz et al., 2014; 2016; George et al., 2019), advanced catalysts (Strmc-
nik et al., 2016; Nakaya & Furukawa, 2023), and materials for energy storage and generation (Liu
et al., 2010; Snyder & Toberer, 2008) holds the potential to drive technological revolutions.

Exploring the vast compositional and structural landscape of multicomponent materials with novel
properties is essential, yet exhaustive experimental screening is infeasible (Cantor, 2021). Quan-
tum and classical molecular simulation offer a powerful alternative, enabling a more targeted and
efficient exploration. In recent decades, both experimental (Potyrailo et al., 2011; Maier, 2019)
and computational (Jain et al., 2011; Curtarolo et al., 2013) high-throughput pipelines have led to a
proliferation of materials databases for crystal structures (Bergerhoff et al., 1983; Mehl et al., 2017)
and simulations (Blaiszik et al., 2016; Vita et al., 2023; Fuemmeler et al., 2024). These advances
have already facilitated the development of more accurate machine-learned interatomic potentials
(Batzner et al., 2022; Batatia et al., 2022; Chen & Ong, 2022).

Still, efficiently sampling the manifold of stable materials structures under diverse constraints—
such as composition and target properties—remains a major challenge. Traditional approaches to
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materials discovery have relied on first-principles electronic structure methods such as DFT—or
more sophisticated theory, depending on the property (Booth et al., 2013; Zaki et al., 2014; Isaacs &
Marianetti, 2020)—which, while powerful and fairly accurate, are very computationally expensive.
These methods include ab initio random structure searching (AIRSS) (Pickard & Needs, 2011) or
genetic algorithms for structure and phase prediction (Tipton & Hennig, 2013), both of which have
successfully predicted new crystal structures and some of which have even been experimentally
realized (Oganov et al., 2019). However, the high computational cost of these approaches has limited
the scope and speed of material exploration, highlighting the need for cutting-edge ML techniques to
significantly accelerate the discovery of stable inorganic crystalline materials.

1.1 RELATED WORKS

Recent advances in machine learning techniques have generated significant interest in applying
data-driven approaches for inorganic materials discovery. Among these, Graph Networks for Ma-
terials Exploration (GNoME) has demonstrated remarkable success by coupling coarse sampling
strategies for structure and composition with AIRSS that leverages a highly accurate machine-learned
interatomic potential (MLIP) to predict material stability, leading to the identification of millions
of new candidate crystal structures (Merchant et al., 2023). Other frameworks have approached the
generation of composition and structure jointly through fully ML-based methods. Crystal Diffusion
Variational Autoencoder (CDVAE) leverages variational autoencoders and a graph neural network
representation to sample new crystal structures from a learned latent space (Xie et al., 2022). To date,
state-of-the-art performance in both crystal structure prediction for given compositions and de novo
generation of novel stable materials has been achieved by diffusion models such as DiffCSP (Jiao
et al., 2023) and MatterGen (Zeni et al., 2025), as well as conditional flow-matching frameworks
such as FlowMM (Miller et al., 2024).

While these approaches have demonstrated that ML can push the boundaries of computational
materials discovery, it remains uncertain whether score-based diffusion or flow-matching represent
the definitive methodological frameworks for this problem. Furthermore, the extent to which the
optimal approach depends on the training data remains an open question. Thus far, each new method
has typically outperformed its predecessors across datasets.

1.2 OUR CONTRIBUTION

The work we present in this paper is the first implementation and extension of the stochastic in-
terpolants (SIs) framework (Albergo et al., 2023) for the modeling and generation of inorganic
crystalline materials. SIs are a unifying framework that encompasses both flow-based and diffusion-
based methods as specific instances, while offering a more general and flexible framework for
generative modeling. In this context, SIs define a stochastic process that interpolates between pairs of
samples from a known base distribution and a target distribution of inorganic crystals. By learning
the drift terms of either ordinary differential equations (ODEs) or stochastic differential equations
(SDEs), new samples can be generated by numerically integrating these equations. The flexibility of
the SI framework stems from the ability to tailor the choice of interpolants, and the incorporation of
an additional random latent variable, further enhancing its expressivity. With their many degrees of
freedom, SIs thus provide an ideal framework for optimizing generative models for materials design.

We implement the SI framework in the open-source Open Materials Generation (OMatG) package,
released alongside this paper. OMatG allows to train and benchmark models for two materials
generation tasks: Crystal structure prediction (CSP) which only learns to generate atomic positions
and lattice vectors for a given composition, and de novo generation (DNG) which learns to generate
both crystal structure and composition to predict novel materials. We discover that optimizing
interpolation schemes for different degrees of freedom substantially improves performance across
diverse datasets. As a result, our approach achieves a new state of the art—outperforming both
DiffCSP (Jiao et al., 2023) and FlowMM (Miller et al., 2024)—in CSP and DNG across all evaluated
datasets for both existing, revised, and new performance measures.
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2 BACKGROUND

2.1 DIFFUSION MODELS

A widely used approach in generative modeling uses diffusion models (Sohl-Dickstein et al., 2015),
which define a stochastic process that progressively transforms structured data into noise. A model
is then trained to approximate the reverse process, enabling the generation of new samples. These
models are often formulated in terms of SDEs, where the forward process follows a predefined
diffusion dynamic.

Score-based diffusion models (SBDMs) are an instantiation of diffusion models that learn a score
function—the gradient of the log probability density—to guide the reversal of the diffusion process
via numerical integration (Song et al., 2021). SBDMs have demonstrated remarkable success in
generating high-quality and novel samples across a wide range of applications where the target
distribution is complex and intractable, such as photorealistic image generation (Saharia et al., 2022)
and molecular conformation prediction (Corso et al., 2023).

2.2 CONDITIONAL FLOW MATCHING

Conditional flow matching (CFM) (Lipman et al., 2023) is a generative modeling technique that
learns a flow which transports samples from a base distribution at time t = 0 to a target distribution
at time t = 1. This process defines a probability path that describes how samples are distributed at
any intermediate time t ∈ [0, 1]. The velocity field associated with this flow governs how individual
samples evolve over time. CFM learns the velocity indirectly by constructing conditional vector
fields that are known a priori. Once trained, samples drawn from the base distribution can be evolved
numerically to generate new samples from the target distribution. Originally, CFM was formulated
using Gaussian conditional probability paths, but Tong et al. (2024) later extended this framework to
allow for arbitrary probability paths and couplings between base and target distributions. A further
extension, particularly relevant to physics and chemistry, is Riemannian flow matching (RFM), which
generalizes CFM to Riemannian manifolds (Chen & Lipman, 2024). This allows in particular to use
the flow-matching framework for systems with periodic boundary conditions as they appear in unit
cell representations of inorganic crystals (Miller et al., 2024).

3 OPEN MATERIALS GENERATION

3.1 STOCHASTIC INTERPOLANTS

SIs provide a unifying mathematical framework for generative modeling, generalizing both SBDMs
and CFM (Albergo et al., 2023). The SI x(t, x0, x1, z) bridges the base distribution ρ0 with a target
distribution ρ1 by learning a time-dependent drift bθ(t, x). In this work, we focus on stochastic
interpolants of the form:

xt ≡ x(t, x0, x1, z) = α(t)x0 + β(t)x1 + γ(t)z. (1)

Here, t ∈ [0, 1] represents time and (x0, x1) are paired samples drawn from ρ0 and ρ1, respectively.
The random variable z is drawn from a standard Gaussian N (0, I) independently of x0 and x1. The
functional forms of α, β, and γ are flexible, subject to few constraints (see Appendix A.2). The
inclusion of the latent variable γ(t)z allows sampling of an ensemble of paths around the mean
interpolant I(t, x) = α(t)x0+β(t)x1, and is theorized to improve generative modeling by promoting
smoother and more regular learned flows (Albergo et al., 2023).

The time-dependent density ρ(t) of the stochastic process xt in Eq. (1) can also be realized either via
deterministic sampling through an ODE (derived from a transport equation) or stochastic sampling
through an SDE (derived from a Fokker–Planck equation) only requiring x0 ∼ ρ0 (see Appendix A.1).
This enables generative modeling by evolving samples from a known base distribution ρ0 to the
target distribution ρ1. For both ODE- and SDE-based sampling, the required drift term bθ(t, x) :
[0, 1]× Rd → Rd is learned by minimizing the loss function

Lb(θ) = Et,z,x0,x1

[
|bθ(t, xt)|2 − 2 ∂tx(t, x0, x1, z) · bθ(t, xt)

]
, (2)

3



Published at AI for Accelerated Materials Design (AI4Mat) at ICLR 2025

a. d. c.

Linear Enc. Dec. a = 0 a = 0.2 = 0γ γ(t) = sin2(πt)

 

Enc. Dec. Interpolant

 

Interpolant choice

  

Tuning γ(t) = at(1 − t)
ODE SDE

Sampling scheme
Trig. a = 0.1

b. 

Figure 1: Visualization of the tunable components of the SI framework for bridging samples x0 (gray
particles) and x1 (purple particles). Interpolation paths are shown only for one pair of highlighted
particles. (a) The choice of the interpolant changes the path of the time-dependent interpolation
trajectory. (b) During inference, the learned drift term bθ(t, x) and denoiser zθ(t, x) generate new
samples via ODE or SDE integration, here for a linear interpolant with γ =

√
0.07t(1− t). (c)

The inclusion of a latent variable γ(t)z changes the interpolation path. (d) The function γ(t, a) =√
at(1− t) depends on a that also influences the interpolation path.

where the expectation is taken independently over t ∼ U(0, 1) with U(0, 1) the uniform distribution
between 0 and 1, z ∼ N (0, I), x0 ∼ ρ0, and x1 ∼ ρ1. For SDE-based sampling, an additional
denoiser zθ(t, x) : [0, 1]× Rd → Rd must be learned by minimizing an additional loss

Lθ
z(θ) = Et,z,x0,x1

[
|zθ(t, xt)|2 − 2 zθ(t, xt) · z

]
. (3)

The drift term, along with the denoiser in the case of SDE-based sampling, enables the generation
of samples from the target distribution (Albergo et al., 2023). Note that minimizing with respect to
these loss functions amounts to minimizing with respect to a mean-squared error loss function (see
Appendix B.2). For ODE-based sampling, γ(t) = 0 is a possible choice. However, for SDE-based
sampling, γ(t) > 0 is required for all t ∈ (0, 1) (see Appendix A.1).

By appropriately selecting interpolation functions α, β, γ and choosing between deterministic (ODE)
and stochastic (SDE) sampling schemes, the SI framework not only recovers CFM and SBDM as
special cases but also enables the design of a broad class of novel generative models (see Appendix A.2
for examples). The strength of OMatG’s SI implementation for materials discovery lies in its ability
to tune both the interpolation and sampling schemes, as illustrated in Fig. 1 for a pair of structures
sampled from ρ0 and ρ1. By systematically optimizing over this large design space, we achieve
superior performance for CSP and DNG tasks across datasets, as discussed in Section 5.

3.2 CRYSTAL REPRESENTATION AND GENERATION

A crystalline material is defined by its idealized repeat unit, or unit cell, which encodes its period-
icity. In the OMatG representation, a unit cell is described by separating the material’s chemical
composition—given by its atomic species A ∈ ZN

>0, where N is the number of atoms in the unit
cell—from its structural representation—its fractional coordinates X ∈ [0, 1)3×N with periodic
boundaries and lattice vectors L ∈ R3×3. During training, all three components {A,X,L} are con-
sidered simultaneously. We apply the SI framework only to the continuous structural representations
{X,L} with loss functions defined in Eqs (2) and (3), and use discrete flow matching (DFM) on the
chemical species A (Gat et al., 2024). The number of atoms N in the structure x0 sampled from the
base distribution ρ0 is determined by the number of atoms in the corresponding structure x1 sampled
from the target distribution ρ1.

3.2.1 ATOMIC COORDINATES

We specify the base distribution for the fractional coordinates x ∈ [0, 1) for all x ∈ X via a
uniform distribution (except for the score-based diffusion interpolant that requires a wrapped normal
distribution ρ0(x) following the approach of Jiao et al. (2023); see Section 4.1). For treating fractional
coordinates, we implement a variety of periodic interpolants that connect the base to the target data
distributions. To satisfy periodic boundary conditions on the paths defined by the interpolants, we
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extend the SI framework to the surface of a four-dimensional torus in this paper. Reminiscent of
RFM (Chen & Lipman, 2024), the linear interpolant on the torus traverses a path equivalent to the
shortest-path geodesic which is always1 well-defined. Other interpolants, however, are more complex.
In order to uniquely define them, we always define the interpolation with respect to the shortest-path
geodesic. That is, for interpolation between x0 and x1 with a periodic boundary at 0 and 1, we first
unwrap x1 to the periodic image x′

1 which has the shortest possible distance from x0. Following
this, the interpolation between x0 and x′

1 is computed given a choice of interpolant, and the traversed
path is wrapped back into the boundary from 0 to 1. This approach is illustrated in Appendix A.4.

3.2.2 LATTICE VECTORS

Lattice vectors L are treated with a wide range of (non-periodic) stochastic interpolants (see Sec-
tion 4.1 again). To construct the base distribution, we follow Miller et al. (2024) and construct
an informative base distribution ρ0(L) by combining a uniform distribution over the lattice angles
with a log-normal distribution fitted to the empirical distribution of the lattice lengths in each target
dataset. This choice brings the base distribution closer to the target distribution. Unlike SBDM,
which requires a Gaussian base distribution, the SI framework allows such flexibility. Importantly,
the model still has to learn to generate a joint, correlated distribution of lattice vectors, fractional
coordinates, and atomic species.

3.2.3 ATOMIC SPECIES

The discrete nature of chemical compositions A in atomic crystals requires a specialized approach for
generative modeling. To address this, we implement discrete flow matching (DFM) (Campbell et al.,
2024). In our implementation of the DFM framework, each atomic species a ∈ A can take values in
{1, 2, . . . , 100} ∪ {M}; where {1− 100} are atomic element numbers and M is a masking token
used during training. The base distribution is defined as ρ0(a) = [M ]

N , meaning that initially all N
atoms are masked. As sampling progresses, the identities of the atoms evolve via a continuous-time
Markov Chain (CTMC), and are progressively unmasked to reveal valid atomic species. At t = 1,
all masked tokens are replaced. To learn this process, we define a conditional flow pt|1(at|a1) that
linearly interpolates in time from the fully masked state a0 toward a1 and thus yields the composition
at of the interpolated structure xt. Based on these conditional flows, a neural network is trained to
approximate the denoising distribution pθ1|t(a1|xt), which yields the probability for the composition
a1 given the entire structure xt, by minimizing a cross-entropy loss

LDFM(θ) = Et,x1,xt

[
log pθ1|t(a1|xt)

]
. (4)

In doing this, we are able to directly construct the marginal rate matrix Rθ
t (at, i) for the CTMC that

dictates the evolution of at at time t to the next time step during generation (see Appendix A.5). It is
important to note that the learned probability path is a function of the entire atomic configuration
{A,X,L} which is necessary for the prediction of chemical composition from structure.

3.3 JOINT GENERATION WITH STOCHASTIC INTERPOLANTS

For both CSP and DNG tasks, we seek to generate samples from a joint distribution over multiple
coordinates. For DNG, this joint distribution ρ1 encompasses all elements of a crystal unit cell. For
CSP we similarly model the joint distribution, ρ1, but with atom types fixed to compositions sampled
from the target dataset. For both tasks, the total loss function is formulated as a weighted sum of the
individual loss functions for each variable (see Appendix B.2), and their relative weights are optimized
(see Appendix B.3). We illustrate both types of models and their structure generation process in Fig. 2.

Additionally, for DNG, we consider a two-step process in which composition is learned separately
from structure, as seen in Fig. 2b. In this approach, we first train a Chemical Formula Prediction
(CFP) model (see Appendix B.1) to generate compositions optimized for SMACT stability (Davies
et al., 2019), similarity in the distribution of N -arity of known structures, as well as uniqueness
and novelty. The predicted compositions are then used as input for a pretrained CSP model, which
generates the corresponding atomic configurations.

1The only exception being when two points are precisely half the box length apart. However, this case is not
relevant for the given base distribution.
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Figure 2: Illustration of CSP and DNG tasks. (a) For CSP, the species A are fixed with known
compositions from t = 0. From this, we predict X and L from randomly sampled initial values.
For DNG, we predict (A,X,L) jointly. Our implementation of DFM initializes A as a sequence
of masked particles that are unmasked through a series of discrete jumps to reveal a physically
reasonable composition. (b) Two avenues for performing de novo generation of materials. The first
uses two steps: a CFP model predicts compositions and then uses a CSP model to find accompanying
stable structures. The second trains a DNG model over cell, species, and fractional coordinates jointly
as shown in (a).

4 METHODOLOGY

4.1 CHOICE OF INTERPOLANT

In training OMatG, we optimize the choice of the interpolating function that is used during training
for the lattice vectors and the fractional coordinates (with periodic boundary conditions). Albergo
et al. (2023) introduced four interpolants of the form defined in Eq. (1), each shaping the interpolation
trajectory differently (see also Appendix A.2 for further details).

The linear interpolant defines a constant velocity trajectory from x0 to x1. When combined with
an ODE sampling scheme and γ = 0, this reproduces a particular choice of CFM. If the sampling
scheme or γ is changed, however, the use of linear interpolants becomes distinct from CFM. The
trigonometric interpolant prescribes trajectories with more curvature than the linear interpolant.
The encoder-decoder interpolant first evolves samples from ρ0 at t = 0 to follow an intermediate
Gaussian distribution at a switch time Tswitch, before mapping them to samples from the target distri-
bution ρ1 at t = 1. This approach has been found to interpolate more smoothly between distributions,
potentially mitigating the formation of spurious features in the probability path at intermediate times
(Albergo et al., 2023). Lastly, we consider the variance preserving score-based diffusion (SBD)
interpolant. When paired with an SDE sampling scheme, this interpolant is mathematically equivalent
to an SBDM, but on the continuous time interval [0, 1]. The SBD interpolant assumes that ρ0 is a
Gaussian, and unlike the previous three interpolants it involves no explicit latent variable; instead
the α(t)x0 term takes on this role. We note that the trajectory of the encoder-decoder interpolant
between times t = Tswitch and t = 1 resembles that of the SBD interpolant between times t = 0
and t = 1. For the example of using the encoder-decoder interpolant only for the coordinates,
however, we emphasize that the Gaussian-distributed coordinates at t = Tswitch are conditioned on
other coordinates that are partially interpolated at this point. Conversely, for SBD interpolation, the
Gaussian distributed coordinates at t = 0 are only conditioned on other random variables since, at
this point, all elements of x0 are randomly distributed.

To investigate how different interpolants affect generative performance, we consider all interpolants
outlined above for both the atomic positions X and the lattice vectors L. We noted that learning ac-
curate drifts and denoisers for the atomic positions, X , is more challenging than for the other degrees
of freedom. Accordingly, we optimize all hyperparameters—including the choice of interpolant for
L—separately for each interpolant applied to X . This results in a set of experiments specific to the
position interpolants, where the best performing lattice interpolant may vary.
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4.2 EQUIVARIANT REPRESENTATION OF CRYSTAL STRUCTURES

Imposing inductive biases on the latent representation of the crystal structure can promote data
efficiency and improve learning. The CSPNet architecture (Jiao et al., 2023), originally adopted
in DiffCSP, is an equivariant graph neural network (EGNN) (Satorras et al., 2021) that produces a
permutation- and rotation-equivariant, as well as translation-invariant representation of the crystal
structures.

In the current OMatG implementation, we employ CSPNet as an encoder that is trained from scratch.
The CSPNet architecture encodes atomic types using learnable atomic embeddings and represents
fractional coordinates through sinusoidal positional encodings (see Appendix B.1). These features
are processed through six layers of message-passing, after which the encoder produces the drift
bθ(t, x) of both the lattice and the fractional coordinates, as well as potentially predicting the denoiser
zθ(t, x). For DNG, the network must also predict log pθ1|t(a1|xt). The resulting outputs inherently
preserve the permutation, rotational, and translational symmetries embedded in CSPNet.

The output of CSPNet is invariant with respect to translations of the fractional coordinates in the input.
Thus, one should, in principle, use a representation of the fractional coordinates that does not contain
any information about translations. While this is straightforward in Euclidean space by removing the
mean of the coordinates of the given structure, this cannot be done with periodic boundary conditions
where the mean is not uniquely defined. We follow Miller et al. (2024) and instead remove the
center-of-mass motion when computing the ground-truth ∂tx(t, x0, x1, z) in Eq. (2).

Alternative EGNNs such as NequIP (Batzner et al., 2022), M3GNet (Chen & Ong, 2022), or MACE
(Batatia et al., 2022) which have been widely used for the development of MLIPs can also serve
as plug-and-play encoders within OMatG’s SI framework. Integrating different architectures is a
direction that we plan to explore in future iterations of the framework.

4.3 COMPARISON TO OTHER FRAMEWORKS

We compare our results to existing DiffCSP and FlowMM models. We detail in Section 5 how
we improve the extant benchmarks used in the field and therefore recompute all CSP and DNG
benchmarks for these models. In nearly all cases, we were able to generate structures using the
DiffCSP and FlowMM source code whose metrics closely matched (within ∼1%) the previously
reported metrics in their respective manuscripts. The observed differences can be attributed to the use
of a newer version of SMACT composition rules2 (Davies et al., 2019) and to natural fluctuations
arising from model retraining.

Since the focus of this work is to assess our model’s ability to learn unconstrained and unconditioned
flows, we do not compare against symmetry-constrained generation methods (AI4Science et al., 2023;
Cao et al., 2024; Zhu et al., 2024; Kazeev et al., 2024; Jiao et al., 2024). Symmetry constraints can be
incorporated in future extensions of the flexible OMatG framework.

5 EXPERIMENTS

5.1 PERFORMANCE METRICS

We assess the performance of OMatG’s and competing models using a variety of standard, refined,
and contributed benchmarks. For full details of all metrics, see Appendix C. Briefly, for the CSP
task, the most commonly computed metrics are the match rate and root mean square error (RMSE)
between matched generated and reference structures. Match rate is defined as the percentage of
generated structures that match those found in the reference set, where matching is computed
according to Pymatgen’s StructureMatcher module (Ong et al., 2013).

For the DNG task, a variety of validity, coverage, property, and stability metrics are computed.
Among them, the S.U.N. (stable, unique, and novel) rate is perhaps the most important as it represents
the model’s ability to propose new candidate materials. The S.U.N. rate is defined as the percentage
of generated structures that are stable with respect to a reference convex hull (within 0.1 eV/atom),
are not found within the reference set (novel), and are not duplicated within the generated set itself

2The SMACT Python library updated its default oxidation states with the release of version 3.0.
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Table 1: Results from crystal structure prediction. Match rate and RMSE of matched structures
without (left) and with (right) filtering for structural and compositional validity are reported for all
models. For OMatG’s model, the choice of positional interpolant, latent variable component γ, and
sampling scheme are noted.

Method
perov-5 MP-20 MPTS-52 Alex-MP-20

Match (%) ↑ RMSE ↓ Match (%) ↑ RMSE ↓ Match (%) ↑ RMSE ↓ Match (%) ↑ RMSE ↓

DiffCSP 53.08/51.94 0.0774/0.0775 57.82/52.51 0.0627/0.0600 15.79/14.29 0.1533/0.1489 -
FlowMM 53.63/51.86 0.1025/0.0994 66.22/59.98 0.0661/0.0629 22.29/20.28 0.1541/0.1486 -

OMatG
83.06/81.27 0.3753/0.3755 69.83/63.75 0.0741/0.0720 27.38/25.15 0.1970/0.1931 69.44/61.38 0.1303/0.1289

SBD; ODE; σ = 0.28 Linear; ODE; γ = 0 Linear; ODE; γ = 0 Linear; ODE; γ = 0

(unique). The stability-based metrics are calculated using MatterGen’s code base (MatterGen, 2025),
in which the machine-learned interatomic potential MatterSim (Yang et al., 2024) is utilized for
structural relaxation. This requires significantly less compute time in comparison to running DFT
relaxations and is shown to correlate well with DFT predictions.

5.2 BENCHMARKS AND DATASETS

We use the following datasets to benchmark the OMatG model: perov-5 (Castelli et al., 2012), a
dataset of perovskites with 18 928 samples with five atoms per unit cell in which only lattice lengths
and atomic types change; MP-20 (Jain et al., 2013; Xie et al., 2022) from the Materials Project that
contains 45 231 structures with a maximum of N = 20 atoms per unit cell, and MPTS-52 (Baird
et al., 2024) which is a time split of the Materials Project with 40 476 structures with up to N = 52
atoms per unit cell and is typically the most difficult to learn. We use the same 60-20-20 splits as
Xie et al. (2022); Jiao et al. (2023); Miller et al. (2024). Additionally, we consider the Alex-MP-20
dataset (Zeni et al., 2025), where we used an 80-10-10 split constructed from MatterGen’s 90-10
split, in which we removed 10% of the training data to create a test dataset. This dataset contains
675 204 structures with 20 or fewer atoms per unit cell from the Alexandria (Schmidt et al., 2022a;b)
and MP-20 datasets. We do not include the carbon-24 dataset (Pickard, 2020) in our results, as the
match rate metric is ill-defined for this dataset; because all elements are carbon, it is not clear how
many generated structures are unique and producing a structure that matches one in the reference
dataset is trivial.3

5.3 RESULTS

We report performance for the CSP task in Tab. 1 and for the DNG task in Tabs 2 and 3 for
DiffCSP, FlowMM, and OMatG models. For the CSP task, OMatG significantly outperforms
previous approaches on all datasets. We emphasize the particularly strong performance of the SBD
and trigonometric positional interpolants with ODE sampling schemes in achieving high match rates
for the perov-5 dataset as shown in Tabs 1 and 5. Likewise for DNG metrics, OMatG shows state-of-
the-art performance for multiple positional interpolants. Figure 3 compares the distributions of the
average energies above the hull for generated structures, exhibiting OMatG’s superior performance for
the generation of stable structures. OMatG consistently produces lower energy structures compared
to previous models, and they are also generated closer to their relaxed configuration. This, together
with high novelty rates, begets improved S.U.N. rates.

3Previous papers (Xie et al., 2022; Jiao et al., 2023; Miller et al., 2024) report match rate for carbon-24, but
they do not compare the generated structure to the entirety of the reference dataset; their results suggest the
match tolerance is larger than the differences between the carbon-24 structures.

4We do not bold any values in the structural validity category as the CDVAE model reports the state-of-the-art
with 100% structural validity. For the Wasserstein distances of the density and Nary distributions, we only bold
values lower than 0.075 and 0.079 respectively, as these were the values reported by FlowMM for their model
with 500 integration steps (not included in this table).

5OMatG’s performance is comparable to the 22.56% S.U.N. Rate and 0.11Å RMSD reported by the
MatterGen-MP model when trained on MP-20 Zeni et al. (2025), though we cannot directly compare to these
benchmarks as those structures are relaxed using DFT.
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Table 2: Results from de novo generation of 10,000 structures with models trained on the MP-20
dataset. The integration steps for OMatG is chosen based on best overall performance. For OMatG’s
model, the choice of positional interpolant, latent variable component γ, and sampling scheme are
noted. Best scores in each category are bolded.4

Method Integration steps Validity (% ↑) Coverage (% ↑) Property (↓)
Structural Composition Combined Recall Precision wdist (ρ) wdist (Nary) wdist (⟨CN⟩)

DiffCSP 1000 99.91 82.68 82.65 99.67 99.63 0.3133 0.3193 0.3053
FlowMM 1000 92.26 83.11 76.94 99.34 99.02 1.0712 0.1130 0.4405

OMatG

Linear (SDE); γ =
√

0.018t (1− t) 710 99.04 83.40 83.40 99.47 98.81 0.2583 0.0418 0.4066
Trig (ODE); γ =

√
0.027t (1− t) 680 95.05 82.84 82.84 99.33 94.75 0.0607 0.0172 0.1650

Enc-Dec (ODE); γ = sin2 πt 840 97.25 86.35 84.19 99.62 99.61 0.1155 0.0553 0.0465
SBD (SDE); σ = 7.14 870 93.38 80.66 80.66 98.95 92.76 0.1865 0.0768 0.1637
CFP + CSP (Linear, γ = 0) 130+210 97.95 79.68 78.21 99.67 99.50 0.5614 0.2008 0.6256

Figure 3: Histogram of the com-
puted energies above the convex
hull for structures generated by
FlowMM, DiffCSP, and OMatG
(Enc-Dec interpolant). The OMatG
model consistently produces lower
energy structures compared to
FlowMM and DiffCSP. See Ap-
pendix C.3 for calculation details.

Method ⟨E⟩/N (↓) RMSD Novelty Stability S.U.N.
above hull (Å, ↓) Rate (%, ↑) Rate (%, ↑) Rate (%, ↑)

DiffCSP 0.1984 1.295 72.73 43.04 19.00
FlowMM 0.2509 0.651 72.76 37.47 13.86

OMatG

Linear 0.1823 0.615 72.00 45.00 22.07
Trig 0.1857 0.657 65.35 51.40 19.96
Enc-Dec 0.1699 0.390 54.97 58.56 17.59
SBD 0.2189 0.763 75.80 42.60 22.10
CFP + CSP 0.2340 0.488 75.85 42.21 20.50

Table 3: Stability (defined as ≤ 0.1 eV/atom above hull),
uniqueness, and novelty results from de novo generation on
the MP-20 dataset computed for the same models as in Tab. 2.
All evaluations are performed with the MatterGen code base
(MatterGen, 2025) with respect to the included reference
Alex-MP-20 dataset. The average RMSD is between the
generated and the relaxed structures, and the average energy
above hull is reported in units of eV/atom.5

OMatG also outperforms FlowMM in settings where large language models are used as base distribu-
tions Sriram et al. (2024), with results shown in Appendix D.

6 DISCUSSION AND CONCLUSIONS

We demonstrate OMatG’s capabilities for learning the manifold of stable materials and generating
novel structures. The match rates for the CSP task on the perov-5 dataset achieved using the SBD
and trigonometric positional interpolants, as shown in Tabs 1 and 5, greatly surpass (by 1.6×) the
match rates of previous models. We also outperform previous models’ match rate for CSP on the
MP-20 dataset with the linear (both ODE and SDE sampling schema) and the trigonometric positional
interpolants; similarly, the fraction of stable, novel, and unique structures is highest across almost all
positional interpolants. Our results and hyperparameters are further discussed in Appendix B.3.

In conclusion, we show state-of-the-art performance of OMatG across nearly all benchmarks
for both crystal structure prediction as well as de novo generation of stable, novel, and unique
structures. In our discussion in Appendix B.3, we highlight several ways in which hyperparameters
and interpolation paths influence learning, though a more systematic theoretical analysis is needed
to fully understand why specific choices affect model performance. Future work can also extend
the flexibility of OMatG to additional interpolating functions. We underscore the importance of
flexible ML frameworks like OMatG, which can adapt to different types of materials datasets by
optimizing the generative model accordingly. Our work represents a key step forward in applications
of machine-learning methods to materials discovery.
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Jake Smith, Lixin Sun, Qian Wang, Lingyu Kong, Chang Liu, Hongxia Hao, and Ziheng Lu.
MatterSim: A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures,
May 2024. URL http://arxiv.org/abs/2405.04967.

Jason Yim, Andrew Campbell, Andrew Y. K. Foong, Michael Gastegger, José Jiménez-Luna, Sarah
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A IMPLEMENTATION DETAILS OF STOCHASTIC INTERPOLANTS

A.1 OMATG FRAMEWORK

Figures 4 and 5 summarize the training and the integration pipeline of the OMatG framework,
respectively. Depending on the specific task, there are several stochastic interpolants at once. For CSP,
one stochastic interpolant considers lattice vectors L, and another one considers fractional coordinates
X . The model output of CSPNet (see Appendix B.1) depends on the full structural representation
{A,X,L} and time t, where A are the atomic species. For the DNG task, we additionally use
discrete flow matching for the atomic species A (Campbell et al., 2024).

During the numerical integration in the CSP task, X and L are integrated jointly while A is fixed. For
DNG, A is evolved according to discrete flow matching (Campbell et al., 2024) (see Appendix A.5).
For the SDE sampling scheme in Fig. 5, one chooses a time-dependent noise ε(t) that only appears
during integration and not during training. Also, γ(t) has to be unequal zero in order to prevent
the divergence in 1/γ(t). However, since γ(t) necessarily vanishes at times t = 0 and t = 1 (see
Appendix A.2), one should choose a time-varying ε(t) that vanishes near these endpoints (Albergo
et al., 2023).

D
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(Perov-5, M
P-20,

M
PTS-52, Alex-M

P)

For structure
 in batch

Stochastic Interpolants:

MSE Loss  between
 and 

Update batch loss

Minimization step
on C over CSPNet

 parameters

Time  and
initial structure Draw batch

CSPNet:

After computation of
batch loss 

Figure 4: Training pipeline of the OMatG framework: A batch of structures is drawn from a dataset
with target distribution ρ1. Every structure x1 ∼ ρ1 is connected with a structure x0 from the base
distribution ρ0 with stochastic interpolants that yield the interpolated structure xt = x(t, x0, x1, z)
and the drift bt = ∂txt at time t ∼ U(0, 1), possibly using a random variable z ∼ N (0, I). The
model CSPNet predicts bθt = bθ(t, xt) and zθt = z(t, xt) and its parameters are minimized based on
the MSE losses in Eqs 2 and 3.

For time
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 ODE: 
 SDE: 

Initial structure 
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CSPNet:

Figure 5: Numerical integration pipeline of the OMatG framework: An initial structure x0 from the
base distribution ρ0 is numerically integrated following either an ODE or an SDE based on the model
predictions bθt and zθt . For an SDE, one can choose a noise ε(t) during integration.
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Table 4: SI parameters from Albergo et al. (2023).

Stochastic Interpolant α(t) β(t) γ(t)

linear 1− t t
√
at(1− t)

Arbitrary ρ0 trig cos
(
π
2 t
)

sin
(
π
2 t
) √

at(1− t)

enc-dec cos2(πt)1[0, 12 )(t) cos2(πt)1( 1
2 ,1]

(t) sin2(πt)

Gaussian ρ0 SBD
√
1− t2 t 0

A.2 INTERPOLANT CHOICE

In this work, we are concerned with interpolants with spatially linear interpolants of the form specified
in Eq. (1). Here, the following conditions must be met (Albergo et al., 2023):

α(0) = β(1) = 1, α(1) = β(0) = γ(0) = γ(1) = 0, γ(t) > 0 ∀t ∈ (0, 1). (5)

Under these constraints, the form of the SI is relatively flexible, and many different interpolants can
be defined. Also, the base distribution can be arbitrary as in CFM (Tong et al., 2024). In this work,
we mostly rely on interpolants originally defined in Albergo et al. (2023) and listed in Tab. 4. For
the SBD interpolant, we allow for different variances σ of the Gaussian base distribution ρ0. The
encoder-decoder (enc-dec) interpolant as defined in Tab. 4 evolves samples from the base distribution
ρ0 to follow an intermediate Gaussian distribution with variance 1 at the switch time Tswitch = 0.5,
before mapping them to a sample from ρ1. This can be generalized to arbitrary variances a > 0 and
switch times Tswitch ∈ (0, 1):

α(t) = cos2
(

π(t− Tswitcht)
p

(Tswitch − Tswitcht)p + (t− Tswitcht)p

)
1[0,Tswitch)(t),

β(t) = cos2
(

π(t− Tswitcht)
p

(Tswitch − Tswitcht)p + (t− Tswitcht)p

)
1(Tswitch,1](t),

γ(t) =
√
a sin2

(
π(t− Tswitcht)

p

(Tswitch − Tswitcht)p + (t− Tswitcht)p

)
,

(6)

where p ≥ 1/2. We consider the cases p ∈ {1/2, 1} and note that the general interpolant in Eq. (6)
reduces to the interpolant in Tab. 4 for a = 1, p = 1, and Tswitch = 0.5.

A.3 ANTITHETIC SAMPLING

As shown by Albergo et al. (2023), the loss function can become unstable around t = 0 and t = 1
for certain choices of γ(t). To account for this, we implement antithetic sampling. This requires to
compute the loss at both x+ and x− where:

x+(t, x0, x1, z) = α(t)x0 + β(t)x1 + γ(t)z, (7)

x−(t, x0, x1, z) = α(t)x0 + β(t)x1 − γ(t)z. (8)

A.4 INTERPOLATION WITH PERIODIC BOUNDARY CONDITIONS

We show in Fig. 6 how we implement periodic versions of interpolants in order to represent fractional
coordinates in a unit cell with periodic boundary conditions. We emphasize that this procedure is
important not only for the choice of interpolant, but also for the addition of the latent variable γ(t)z
which also moves the interpolation trajectory away from the geodesic.

A.5 DFM DETAILS

DFM allows for generative modeling of discrete sequences of tokens while respecting the discrete
nature of the design space. As discussed, a parameterized neural network pθ1|t(x1|xt) is learned, which
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a. c.b.

Figure 6: Extending interpolants to incorporate periodic boundary conditions. (a–b) The path for a
score based diffusion interpolant is calculated by first computing the shortest-path geodesic (blue)
between the initial (green dot) and final positions (red dot). Next, the path of the interpolant moving
the final position outside the bounding box is computed (green), and finally the path is wrapped
back into the bounding box to produce the interpolant trajectory (orange). (c) The effect of adding a
latent variable to any interpolant must be handled similarly to calculating the path of a non-linear
interpolant. For a linear interpolant with a nonzero γ, we show samples of possible paths (blue) and
their averaged path (orange) which collapses onto the path of the linear interpolant.

attempts to predict the final sequence from the current sequence. Borrowing from Campbell et al.
(2024), we choose a conditional rate matrix Rt(xt, i|x1) generating the conditional flow pt|1(xt|x1)
of the form:

Rt(xt, i|x1) =
ReLU

(
∂tpt|1(i|x1)− ∂tpt|1(xt|x1)

)
S · pt|1(xt|x1)

, (9)

where S is the number of possible tokens a sequence element can take on. This conditional rate
matrix can be modified by including a term that introduces stochasticity in the form of a detailed
balance rate matrix RDB

t by writing Rη
t = Rt + ηRDB

t . Here, (Campbell et al., 2024):

RDB
t (i, j|x1) = ηδ{i, x1}δ{j,M}+ ηt

1− t
δ{i,M}δ{j, x1}, (10)

where M is the masking token. The parameter η ∈ R+ represents the level of stochasticity that only
appears during generation.

During generation, our objective is to compute Rθ
t (xt, i) based on the learned distribution pθ1|t(x1|xt).

Formally, we have
Rθ

t (xt, i) = Epθ
1|t(x1|xt)

[
Rη

t (xt, i|x1)
]

(11)

In practice, Campbell et al. (2024) show that we need not compute a full expectation, but rather,
simply draw x1 ∼ pθ1|t(x1|xt), evaluate the conditional rate matrix, and perform an update of xt to
xt+∆t with discrete time step ∆t directly from this by sampling xt+∆t according to

pt+∆t|t(xt+∆t|x1, xt) = δ{xt, xt+∆t}+Rη
t (xt, i|x1)∆t. (12)

A.6 VELOCITY ANNEALING

Velocity annealing—rescaling the learned velocity field during generation to increase velocity over
time as bθ(t, x) → (1 + st) bθ(t, x) with s as an hyperparameter during integration—has been
empirically shown to improve performance in a number of studies that apply CFM to physical
systems (Yim et al., 2023; Bose et al., 2024; Miller et al., 2024). For instance, Miller et al. (2024)
demonstrated that applying velocity annealing significantly improves performance in CSP and DNG
benchmarks for materials. Motivated by these findings, we include velocity annealing in OMatG as a
tunable hyperparameter, while emphasizing that this technique lacks a formal theoretical justification
within the mathematical frameworks underlying flow models and stochastic interpolants.

A.7 DATA-DEPENDENT COUPLING

SIs have been used with data-dependent couplings (Albergo et al., 2024), where a coupling function
ν(x0, x1) enables biasing of x0 based on the sampled x1. In OMatG, we incorporate an optional
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data-dependent coupling that enforces an ordering (i.e., a permutation on the order of atomic elements
within a structure) that produces the minimum fractional-coordinate distance between each particle
pair (xi

0,x
i
1) from structures x0 ∈ ρ0 and x1 ∈ ρ1. We find that the inclusion of this data-dependent

coupling is optimal during hyperparameter tuning depending on the type of model: CSP models
typically performed better without this coupling, but DNG models (see Tab. 10) can benefit in certain
cases from minimizing traveled distance via permutation of elements.

Formally, our coupling is conditional on the sampled (x0, x1) and is defined as

argmin
p

∑
i

d(p(xi
0), x

i
1). (13)

Here, d(·, ·) is a distance metric which we define on a periodic manifold in fractional-coordinate
space (i.e., a four-dimensional torus) and p is some permutation function that permutes the discrete
indices i. Under this coupling, we still sample (x0, x1) independently but then bias the sampled x0

to travel the minimum permutational distance necessary to reach the target structure.
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B MODEL ARCHITECTURE

B.1 GRAPH NEURAL NETWORK

We implement a message-passing GNN with CSPNet as introduced in Jiao et al. (2023):

hi
(0) = ϕh(0)

(ai) (14)

mij
(s) = φm

(
hi
s−1,h

j
s−1, l,SinusoidalEmbedding(xj − xi)

)
(15)

mi
(s) =

N∑
j=1

mij
(s) (16)

hi
(s) = hi

(s−1) + φh(h(s−1),m
i
(s)) (17)

bx = φx

(
hi
(max s)

)
(18)

bl = φl

(
1

n

n∑
i=1

hi
(max s)

)
(19)

Here, node embeddings, h, are initialized as a function of the atom types, a. Embeddings are then
updated by a message passing scheme through a series of graph convolution layers. Messages are
computed with a parameterized neural network, φm, from neighboring node embeddings as well as
information about the lattice, l, and distance between the fractional coordinates x. All necessary drift
and denoiser terms are computed from single layer MLPs applied to the final node embeddings.

For the CFP model that should only predict compositions, we simply remove the input of the lattice l
and the fractional coordinates x from the computation of the message in Eq. (15). This ensures that
the output pθ1|t(a1|xt) of CSPNet for the composition does not depend on lattice vectors or fractional
coordinates, while preserving permutational equivariance.

B.2 LOSS FUNCTION

With Eqs (2), (3), and (4), we can construct a loss function for the modeling of our joint distribution
of interest,

L(θ) =Et,z,x0,x1

[
λx,b

[
|bθx(t, xt)|2 − 2∂tx(t, x0, x1, z) · bθx(t, xt)

]
+ λx,z

[
|zθx(t, xt)|2 − 2zθx(t, xt) · z

]
+ λl,b

[
|bθl (t, xt)|2 − 2∂tx(t, x0, x1, z) · bθl (t, xt)

]
+ λl,z

[
|zθl (t, xt)|2 − 2zθl (t, xt) · z

]
+ λa

[
log pθ1|t(a1|xt)

] ]
.

(20)

where the λ terms correspond to the relative weights of each term in the loss function. These
weighting factors are hyperparameters that are included in our hyperparameter sweep. The respective
terms for the fractional coordinates and lattice vectors corresponding to Eqs (2) and (3) are equivalent
to a mean-squared error (MSE) loss function. They only differ by a constant term that does not
influence gradients. We do not include that constant term because the possible divergence of ∂tγ(t)
near t = 0 and t = 1 can artifically inflate the absolute value of the loss, even when antithetic
sampling is applied (see Section A.3).

B.3 HYPERPARAMETER OPTIMIZATION

For every choice of the positional interpolant, an independent hyperparameter optimization was
performed using the Ray Tune package (Liaw et al., 2018) in conjunction with the HyperOpt
Python library (Bergstra et al., 2013) for Bayesian optimization. The tuned hyperparameters include
both those relevant during training—the relative losses λ, the choice of stochastic interpolant for
the lattice vectors, the parameters for chosen γ(t) (if necessary), the sampling scheme, the usage of
data-dependent coupling, the batch size, and the learning rate—and during inference—the number of
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integration steps, the choice of the noises ε(t) and η, and the magnitude of the velocity annealing
parameter s for both lattice vectors and atomic coordinates. Additionally, OMatG provides the option
to use the Niggli-reduced primitive cell (Grosse-Kunstleve et al., 2004; Hjorth Larsen et al., 2017) for
training.

We provide hyperparameter-tuned models with the relevant performance metrics and hyperparameters
for perov-5 CSP in Tabs 5 and 6, MP-20 CSP in Tabs 7 and 8, and MP-20 DNG in Tabs 9 and 10.

B.4 DISCUSSION ON PERFORMANCE AND OPTIMAL HYPERPARAMETERS

By adjusting the relative cost between the position, cell, and species terms in the loss, as well as
optionally including data-dependent coupling (minimum distance permutation), Niggli-reduction,
and velocity annealing, we observe that the main learning challenge lies in the accurate prediction
of the atomic coordinates, which tended to have a higher relative weight in calculating the full loss
function in Eq. (20) (see Tabs 6 and 8). However, the two best-performing models for the perov-5
dataset instead exhibited the opposite—lending the most weight to learning of the cell vectors.

For the CSP task on the perov-5 dataset, we highlighted the particularly strong performance of the
SBD and trigonometric interpolants in achieving a high match rate, as shown in Tab. 1. Unlike other
datasets, perov-5 has a fixed number of atoms N = 5 per unit cell and a fixed (cubic) cell with varying
side lengths and similar fractional positions—a combination which should not expose the model to a
large variety of unit cell choices during interpolation or generation. By contrast, in other datasets, no
unique representation of the periodic repeat unit is imposed on flows, meaning the model cannot learn
the invariance (or even equivariance) to the choice of periodic repeat unit.6 This likely contributes to
the difficulty of unconstrained flow-based models in generating highly symmetric structures. Thus,
the perov-5 dataset presents a unique case where the invariance to unit cell choice does not need to be
learned, making this dataset a useful benchmark for evaluating positional interpolant performance. It
is possible that the superior performance of the SBD or trigonometric interpolants arise from their
more circuitous interpolation, and therefore generation trajectories, by comparison to the strictly
geodesic paths imposed by the linear interpolant—akin to the reasoning behind using latent variables
to enhance learning in SIs (Albergo et al., 2023).

For the CSP task on the MP-20 dataset, we noted several models in Tab. 7 which surpassed the
previous state-of-the-art for match rate: the linear positional interpolant, with both an ODE and SDE
sampling scheme, as well as the trigonometric positional interpolant with an SDE sampling scheme
(which also requires a nonzero latent variable γ(t)z).

Finally, we note trends among the best-performing DNG models identified through hyperparameter
optimization. We show in Tabs 9 and 10 the performance metrics and hyperparameters for each model
by choice of positional interpolant, sampling scheme, and γ(t) in the latent variable. In particular, we
observe several of our best performing models (with respect to S.U.N. and RMSD) possess lower
levels of ‘species noise’ η which sets the probability that an atom will change its identity if already
in an unmasked state (see Appendix A.5). Additionally, we find a correlation between enabling
element order permutation (to minimimize the distance between x0 and x1) and the use of linear
or trigonometric interpolation paths, with both favoring the use of minimum distance permutation
in contrast to the encoder-decoder and SBD postional interpolants. With respect to species noise,
we noted that all models with the trigonometric positional interpolant had a high weighting relative
to other positional interpolants. Finally, we note that SBD models require a similar magnitude of
annealing for positions and lattices. This is in stark contrast to all other models, where a significantly
larger annealing parameter s is required for generating positions.

6Using Niggli reduction during learning to enforce a unique choice of unit cell on structures from our datasets
is not sufficient for enforcing this invariance during generation of structures.
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Table 5: Study for the perov-5 dataset comparing CSP performance metrics for choice of positional
interpolant, sample scheme, and γ(t) in the latent variable (or Gaussian width σ for SBD interpolants).

Positional Positional Positional Match rate RMSE
interpolant sampling scheme γ(t) (%, Full / Valid) (Full / Valid)

Linear ODE 0 51.86% / 50.62% 0.0757 / 0.0760
Linear ODE

√
0.034t(1− t) 72.21% / 62.54% 0.3510 / 0.3444

Linear SDE
√

0.028t(1− t) 74.16% / 72.87% 0.3307 / 0.3315
Trigonometric ODE 0 81.51% / 52.36% 0.3674 / 0.3628
Trigonometric ODE

√
0.011t(1− t) 80.85% / 79.55% 0.3864 / 0.3873

Trigonometric SDE
√

0.063t(1− t) 73.37% / 71.60 % 0.3610 / 0.3614

Encoder-Decoder ODE
√
0.66 sin2

(
π(t−0.80t)

(0.80−0.80t)+(t−0.80t)

)
68.08% / 64.60% 0.4005 / 0.4003

Encoder-Decoder SDE
√
8.45 sin2

(
π(t−0.61t)

(0.61−0.61t)+(t−0.61t)

)
78.28% / 76.80% 0.3616 / 0.3620

Score-Based Diffusion ODE - (σ = 0.28) 83.06% / 81.27% 0.3753 / 0.3755
Score-Based Diffusion SDE - (σ = 0.13) 76.54% / 64.46% 0.3529 / 0.3402

Table 6: Study for the perov-5 dataset CSP comparing hyperparameters for each choice of positional
interpolant, sample scheme, and γ(t) (as reported in Tab. 5).

Pos. interpolant, Cell interpolant Annealing param. s Integration Min. dist.
Niggli λx,b/λl,b/λx,z/λl,z

Sampling scheme, γ Sampling scheme, γ(t) (Pos. / Cell) steps permutation

Linear, ODE, None Linear, ODE, γ = 0 14.11 / 2.90 820 False False 0.9729 / 0.0271 / - / -

Linear, ODE, LatentSqrt Linear, ODE, γ = 0 0.008 / 12.19 820 True True 0.9724 / 0.0276 / - / -

Linear, SDE, LatentSqrt Linear, ODE, 8.20 / 1.46 910 True True 0.0024 / 0.0051 / 0.9925 / -

γ =
√

0.013t(1− t)

Trig, ODE, None Linear, ODE, 14.99 / 14.97 880 True False 0.9983 / 0.0017 / - / -

γ =
√

0.021t(1− t)

Trig, ODE, LatentSqrt Linear, ODE, γ = 0 9.68 / 2.42 110 False False 0.1130 / 0.8870 / - / -

Trig, SDE, LatentSqrt Linear, ODE, 3.43 / 0.03 900 True True 0.6868 / 0.0643 / 0.2489 / -

γ =
√

0.051t(1− t)

Enc-Dec, ODE, Enc-Dec Linear, ODE, γ = 0 14.94 / 0.318 460 True True 0.8563 / 0.1437 / - / -

Enc-Dec, SDE, Enc-Dec Linear, ODE, 14.55 / 0.075 930 True False 0.2828 / 0.0004 / 0.7168 / -

γ =
√

0.154t(1− t)

SBD, ODE SBD, SDE, σ = 0.61 12.79 / 2.69 130 True True 0.0035 / 0.0121 / - / 0.9844

SBD, SDE Trig, SDE, 11.54 / 11.53 350 True False 0.2898 / 0.1960 / 0.3259 / 0.1883

γ =
√

0.029t(1− t)

Table 7: Study for the MP-20 dataset comparing CSP performance metrics for choice of positional
interpolant, sample scheme, and γ(t) in the latent variable (or Gaussian width σ for SBD interpolants).

Positional Positional Positional Match rate RMSE
interpolant sampling scheme γ(t) (%, Full / Valid) (Full / Valid)

Linear ODE 0 69.83% / 63.75% 0.0741 / 0.0720
Linear ODE

√
0.257t(1− t) 55.60% / 50.04% 0.1531 / 0.1494

Linear SDE
√
0.063t(1− t) 68.20% / 61.88% 0.1632 / 0.1611

Trigonometric ODE 0 65.30% / 58.94% 0.1184 / 0.1149
Trigonometric ODE

√
0.033t(1− t) 65.62% / 59.15% 0.1038 / 0.0998

Trigonometric SDE
√
0.049t(1− t) 67.47% / 61.39% 0.1340 / 0.1321

Encoder-Decoder ODE
√
1.99 sin2

(
π(t−0.65t)

(0.65−0.65t)+(t−0.65t)

)
55.15% / 49.45% 0.1306 / 0.1260

Encoder-Decoder SDE
√
0.04 sin2

(
π(t−0.42t)0.5

(0.42−0.42t)0.5+(t−0.42t)0.5

)
57.69% / 52.44% 0.1160 / 0.1125

Score-Based Diffusion ODE - (σ = 0.22) 43.21% / 37.39% 0.2005 / 0.1890
Score-Based Diffusion SDE - (σ = 2.29) 42.29% / 38.08% 0.2124 / 0.2088
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Table 8: Study for the MP-20 dataset comparing CSP performance metrics for choice of positional
interpolant, sample scheme, and γ(t) (as reported in Tab. 7).

Pos. interpolant, Cell interpolant Annealing param. s Integration Min. dist.
Niggli λx,b/λl,b/λx,z/λl,z

Sampling scheme, γ Sampling scheme, γ(t) (Pos. / Cell) steps permutation

Linear, ODE, None Linear, ODE, γ = 0 10.18 / 1.82 210 False False 0.9994 / 0.0006 / - / -

Linear, ODE, LatentSqrt Trig, ODE, 7.76 / 4.12 690 False True 0.9976 / 0.0024/ - / -

γ =
√

2.976t(1− t)

Linear, SDE, LatentSqrt Linear, SDE, 11.58 / 5.08 310 False False 0.0073 / 0.0642 / 0.9154 / 0.0131

γ =
√

0.132t(1− t)

Trig, ODE, None Enc-Dec, SDE, 12.34 / 3.61 170 False False 0.9967 / 0.0023 / - / 0.0010

γ =
√
5.27 sin2

(
π(t−0.41t)0.5

(0.41−0.41t)0.5+(t−0.41t)0.5

)
Trig, ODE, LatentSqrt Linear, SDE, 13.54 / 2.38 780 False True 0.9830 / 0.0167 / - / 0.0003

γ =
√

0.017t(1− t)

Trig, SDE, LatentSqrt Trig, ODE, γ = 0 11.48 / 0.43 740 True True 0.2468 / 0.0301 / 0.7231 / -

Enc-Dec, ODE, Enc-Dec Trig, SDE, 12.29 / 4.30 820 False True 0.6892 / 0.1235 / - / 0.1873

γ =
√

0.219t(1− t)

Enc-Dec, SDE, Enc-Dec Linear, ODE, 3.78 / 1.14 710 False True 0.6143 / 0.0063 / 0.3794 / -

γ =
√

4.961t(1− t)

SBD, ODE Linear, ODE, γ = 0 6.61 / 2.45 890 True True 0.9598 / 0.0402 / - / -

SBD, SDE Linear, ODE, 6.46 / 0.67 600 True True 0.6060 / 0.0112 / 0.3828 / -

γ =
√

3.684t(1− t)

Table 9: Study for the MP-20 dataset comparing DNG performance metrics for choice of positional
interpolant, sample scheme, and γ(t) in the latent variable (or Gaussian width σ for SBD interpolants).

Positional Positional Positional S.U.N. RMSD
interpolant sampling scheme γ(t) Rate

Linear ODE 0 18.59% 0.2939
Linear ODE

√
1.450t(1− t) 9.95% 1.6660

Linear SDE
√

0.018t(1− t) 22.07% 0.6148
Trigonometric ODE 0 19.63% 0.8289
Trigonometric ODE

√
0.027t(1− t) 19.96% 0.6570

Trigonometric SDE
√

0.023t(1− t) 17.60% 0.7763
Encoder-Decoder ODE sin2(πt) 17.59% 0.3899

Encoder-Decoder SDE
√
0.10 sin2

(
π(t−0.73t)0.5

(0.73−0.73t)0.5+(t−0.73t)0.5

)
16.27% 1.1795

Score-Based Diffusion ODE - (σ = 0.23) 17.30% 1.1376
Score-Based Diffusion SDE - (σ = 7.14) 22.10% 0.7631
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Table 10: Study for the MP-20 dataset comparing DNG performance metrics for choice of positional
interpolant, sample scheme, and γ(t) (as reported in Tab. 9).

Pos. interpolant, Cell interpolant Annealing param. s Integration Min. dist.
Niggli

Species
λx,b/λl,b/λx,z/λl,z/λa

Sampling scheme, γ Sampling scheme, γ(t) (Pos. / Cell) steps permutation noise (η)

Linear, ODE, None Linear, ODE, γ = 0 13.62 / 1.07 150 True False 7.08 0.9775/0.0006/-/-/0.0218

Linear, ODE, LatentSqrt Enc-Dec, SDE, 14.83 / 5.91 130 True False 23.87 0.7683/0.0089/-/0.0012/0.2216

γ =
√
7.88 sin2

(
π(t−0.14t)

(0.14−0.14t)+(t−0.14t)

)
Linear, SDE, LatentSqrt Linear, ODE, γ = 0 6.33 / 1.07 710 True False 0.19 0.1309/0.0065/0.2708/-/0.5918

Trig, ODE, None Trig, ODE, 8.59 / 0.29 860 True False 32.69 0.3302/0.0023/-/-/0.6675

γ =
√
1.183t(1− t)

Trig, ODE, LatentSqrt Linear, SDE, 7.79 / 0.30 680 True True 27.25 0.2322/0.0035/-/0.3338/0.4306

γ =
√
0.848t(1− t)

Trig, SDE, LatentSqrt Trig, ODE, 12.80 / 4.36 760 True False 13.15 0.6304/0.1582/0.0753/-/0.1360

γ =
√
0.316t(1− t)

Enc-Dec, ODE, Enc-Dec Linear, ODE, γ = 0 10.27 / 0.08 840 False False 0.85 0.7268/0.0084/-/-/0.2648

Enc-Dec, SDE, Enc-Dec Linear, ODE, 7.87 / 3.92 610 False False 19.78 0.2143/0.1547/0.1968/-/0.4341

γ =
√
1.651t(1− t)

SBD, ODE Trig, ODE, 2.30 / 2.74 710 False False 20.27 0.4053/0.0447/-/-/0.5500

γ =
√
7.797t(1− t)

SBD, SDE Trig, SDE, 9.06 / 11.77 870 False False 8.52 0.5184/0.0044/0.0008/0.1180/0.3584

γ =
√
3.100t(1− t)
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C METRICS FOR EVALUATING LEARNED MODELS

We consider a variety of different benchmarks to evaluate the performance of OMatG and its
competitors. For the CSP task (see Tab. 1), we generate a structure for every composition in the test
dataset. We then attempt to match every generated structure with the corresponding test structure
using Pymatgen’s StructureMatcher module (Ong et al., 2013) with tolerances (stol = 0.5,
ltol = 0.3, angletol = 10). We finally report the match rate and the average root-mean square
displacement (RMSE) between the test structures and matched generated structures. Here, the RMSEs
computed by Pymatgen are normalized by (V/N)1/3, where V is the (matched) volume and N is the
number of atoms.

For the DNG task (see Tab. 2), metrics include validity (structural and compositional), coverage (recall
and precision), and Wasserstein distances between distributions of properties including density ρ,
number of unique elements N (i.e., an Nary material), and average coordination number by structure
⟨CN⟩. We introduce the average coordination number benchmark in part due to the difficulty of
generating symmetric structures; a structure’s average coordination number is a useful fingerprint,
and higher-coordinated structures tend to be more symmetric. In addition, the stability rate, the S.U.N.
(stable, unique, and novel) rate, the root mean squared displacements (RMSD) between the generated
and relaxed structures (unnormalized, in units of Å), and the average energy above the convex hull
are computed.

C.1 MATCH RATE AND RMSE

Previously reported match rates filtered the matched generated structures by their structural and
compositional validity. We note, however, that the datasets themselves contain invalid structures—for
example, the MP-20 test dataset has ∼ 10% compositionally invalid structures. Thus, we argue that
the removal of these invalid structures for computation of match rate and RMSE is not reasonable
for assessing learning performance; we do, however, provide both match rates (with and without
validation filtering).

We note that the match rate (computed with each generated-reference structure pair) does not account
for cases where multiple stable polymorphs of the same composition exist in the reference dataset.

We include here a discussion on the tradeoff between match rate and RMSE, as we noticed this most
strongly influences the perov-5 dataset. We show in Fig. 7 how different positional interpolants for
the atomic coordinates (trigonometric vs. linear with ODE sampling schemes) learn to generate
matched structures differently. For the linear case the change in matching tolerance (ltol) makes
little difference; for the trigonometric interpolant it makes a far more significant difference and
leads to a much higher match rate, suggesting that the trigonometric interpolant learns structures
more reliably but less accurately. However, match rate remains the primary metric of interest, as the
generated structure can always be relaxed after generation if seeking minimum energy structures (i.e.,
at zero temperature).

C.2 VALIDITY METRICS

The structural validity of generated structures is defined according to the bond lengths present in
the structure—all lengths must be >0.5 Å to be considered valid. The compositional validity is
defined according to the SMACT software package (Davies et al., 2019). We note that the default
oxidation states have been updated with the release of SMACT version 3.0 which changed the DNG
compositional validity rates by several percent. This also impacts the CSP match rate when filtered
by valid structures. As such, all values for all models were recomputed with the most up-to-date
version (3.0) of the SMACT software.

C.3 CALCULATION OF S.U.N. RATES

Evaluation of DNG structures was performed using scripts provided by the developers of MatterGen
(MatterGen, 2025). A total of 10,000 structures were generated from each of OMatG, DiffCSP, and
FlowMM. These structures were then filtered to remove any that contained elements not supported by
the MatterSim potential (version MatterSim-v1.0.0-1M) or the reference convex hull. These
included heavy elements with atomic numbers >89, radioactive elements, and the noble gases
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Figure 7: We show here the effect of making matching more difficult by decreasing the length
tolerance used by pymatgen’s StructureMatcher. We plot the density of the normalized RMSE
distributions from CSP models trained on the perov-5 dataset. We note that the curves for all generated
structures and only valid generated structures overlap significantly.

(specifically: ‘Ac’, ‘U’, ‘Th’, ‘Ne’, ‘Tc’, ‘Kr’, ‘Pu’, ‘Np’, ‘Xe’, ‘Pm’, ‘He’, ‘Pa’). Stability and
novelty were computed with respect to the default dataset provided by MatterGen which contains
845 997 structures from the MP-20 (Jain et al., 2013; Xie et al., 2022) and Alexandria (Schmidt et al.,
2022b;a) datasets. This provides a more challenging reference for computing novelty as each model
was trained only on the ∼ 27 000 structures from the MP-20 training set.

MatterSim serves as a replacement for a full DFT relaxation, requiring far less compute resources. In
order to confirm that reasonable conclusions can be made based on MatterSim relaxations, we compare
the S.U.N. rates for the same structures based on MatterSim and DFT relaxations, respectively, in
Tab. 11. Overall, there is a strong qualitative agreement between the two, with DFT based S.U.N.
rates slightly lower than the MatterSim ones. Figure 8 compares the energies above hull of generated
structures from MatterSim and DFT. There is again a very strong correlation between the two results,
suggesting that the use of MatterSim can lead to reasonable conclusions. All DFT relaxations utilized
MPGGADoubleRelaxStatic flows from the Atomate2 Ganose et al. (2025) package to produce
MP20-compatible data.

C.4 STABILITY AND STRUCTURAL ANALYSIS OF GENERATED STRUCTURES

In Fig. 9, we show the distribution of computed energies above the convex hull across various OMatG
models, showing best stability of generated structures for linear, encoder-decoder, trigonometric, and
SBD positional interpolants.

By evaluating the distribution of N -ary structures (Fig. 10), the distribution of average coordination
numbers (both by structure in Fig. 11 and by species in Fig. 12), as well as distribution of crystal
systems (Fig. 13) which are related to a structure’s Bravais lattice, we provide qualitative analysis for
model performance. Space groups (and thus crystal systems) were determined using the spglib soft-
ware (Togo et al., 2024). Generally, OMatG and DiffCSP showed the best performance in matching
the distribution of average coordination number for each structure, particularly for high-coordinated
structures. DiffCSP performed most poorly among the four models on the N -ary structural similarity.
The average coordination number for species were best-matched by the two OMatG models, and
of these two the linear interpolant generated the distribution of crystal systems best.
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MatterSim S.U.N. DFT S.U.N.
0.16 0.09
0.13 0.12
0.06 0.06
0.12 0.10
0.14 0.12
0.13 0.12
0.16 0.15
0.10 0.09
0.13 0.13
0.11 0.08

Table 11: Comparison of MatterSim based and DFT based S.U.N. rates (reported as a fraction) for 10
different sets of 100 randomly selected generated structures.

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
MatterSim E above hull (eV/Atom)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

DF
T 

E 
ab

ov
e 

hu
ll 

(e
V/

At
om

)

Comparison of MatterSim and DFT Energies Above Hull

Figure 8: Comparison of energies above hull for generated structures computed by MatterSim and
DFT. There is strong correlation between the two methods suggesting that MatterSim is a cost
effective method for evaluating the stability of generated structures.
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Figure 9: Histogram of the computed energies above the convex hull for structures generated by four
OMatG DNG models. We show that all positional interpolants are effective at generating structures
close to the convex hull, with the SBD interpolant performing slightly worse than other interpolants.
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Figure 10: Qualitative performance of the distribution of N -ary crystals for (a) Non-OMatG models
and (b) OMatG models across structural benchmarks computed on generated structures and test set
structures from the MP-20 dataset.
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Figure 11: Qualitative performance of the distribution of average coordination number by structure
for (a) Non-OMatG models and (b) OMatG models across structural benchmarks computed on
generated structures and test set structures from the MP-20 dataset.
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Figure 12: Qualitative performance of the distribution of average coordination number by species
(listed left to right in order of atomic number) for (a) Non-OMatG models and (b) OMatG models
across structural benchmarks computed on generated structures and test set structures from the MP-20
dataset.
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Figure 13: Qualitative performance of the distribution of crystal system by structure for (a) Non-
OMatG models and (b) OMatG models across structural benchmarks computed on generated struc-
tures and test set structures from the MP-20 dataset.
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Table 12: FlowLLM’s and OMatG-LLM’s performance (with linear and the trigonometric inter-
polants) when using the same fine-tuned LLM (Gruver et al., 2024) as the base distribution. The best
performance for each metric is in bold.

Method Validity (% ↑) Coverage (% ↑) Property (↓)
Structural Composition Combined Recall Precision wdist (ρ) wdist (Nary) wdist (⟨CN⟩)

FlowLLM 96.27 86.40 83.55 97.98 96.55 0.9922 0.5427 0.5936

OMatG-LLM

Linear 97.86 86.40 84.85 99.16 98.40 0.9100 0.5427 0.8600
Trigonometric 97.78 86.40 84.72 97.41 99.12 3.6214 0.5427 0.4448

D LARGE LANGUAGE MODELS AS BASE DISTRIBUTIONS

FlowLLM (Sriram et al., 2024) combines large language models (LLMs) with the conditional flow-
matching framework FlowMM (Miller et al., 2024) to design novel crystalline materials. A fine-tuned
LLM serves as the base distribution and samples initial structures; FlowMM then refines the fractional
coordinates and lattice parameters as in the CSP task. This idea can be similarly applied to OMatG,
which then allows to combine LLMs with the general SI framework for materials generation.

We extend OMatG to OMatG-LLM by allowing for LLM-generated structures as the initial struc-
tures. We evaluate both FlowLLM and OMatG-LLM on the LLM dataset released by FlowLLM.
Specifically, we use the training (containing 40 000 structures) and validation sets (6000 struc-
tures) from https://github.com/facebookresearch/flowmm and the LLM-generated
initial structures (10 000 structures) from https://github.com/facebookresearch/
crystal-text-llm as the test set. These initial structures are generated by a fine-tuned Llama-
70B model (Gruver et al., 2024). As shown in Tab. 12, OMatG-LLM’s linear and trigonometric
interpolants outperform FlowLLM in almost all DNG metrics. Since the Wasserstein distance with
respect to the N -arity distributions and the compositional validity only depend on the atomic species
generated by the LLM, these two metrics are necessarily equal for FlowLLM and OMatG-LLM. Note
that the original FlowLLM Sriram et al. (2024) is trained on 3M LLM-generated structures while our
experiments are conducted on the 40K structures open-sourced by the authors. The performance of
FlowLLM in our experiments thus differs from the scores reported in Sriram et al. (2024).
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