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Abstract

Fine-tuning pre-trained models on targeted001
datasets enhances task-specific performance002
but often comes at the expense of generaliza-003
tion. Model merging techniques, which inte-004
grate multiple fine-tuned models into a single005
multi-task model through task arithmetic at var-006
ious levels: model, layer, or parameter, offer007
a promising solution. However, task interfer-008
ence remains a fundamental challenge, lead-009
ing to performance degradation and suboptimal010
merged models. Existing approaches largely011
overlook the fundamental role of individual012
neurons and their connectivity, resulting in a013
lack of interpretability in both the merging pro-014
cess and the merged models. In this work, we015
present the first study on the impact of neuronal016
alignment in model merging. We decompose017
task-specific representations into two comple-018
mentary neuronal subspaces that regulate neu-019
ron sensitivity and input adaptability. Lever-020
aging this decomposition, we introduce Neu-021
roMerging, a novel merging framework devel-022
oped to mitigate task interference within neu-023
ronal subspaces, enabling training-free model024
fusion across diverse tasks. Through extensive025
experiments, we demonstrate that NeuroMerg-026
ing achieves superior performance compared027
to existing methods on multi-task benchmarks028
across both vision and natural language do-029
mains. Our findings highlight the importance of030
aligning neuronal mechanisms in model merg-031
ing, offering new insights into mitigating task032
interference and improving knowledge fusion.033

1 Introduction034

Pre-trained models (PTMs), such as founda-035

tion models and large language models (LLMs)036

(Vaswani et al., 2017; Achiam et al., 2023; Tou-037

vron et al., 2023), have revolutionized AI by038

learning rich representations from large-scale039

datasets. These models demonstrate general capa-040

bilities while enabling effective fine-tuning for task-041

specific adaptation (Touvron et al., 2023). PTMs042

Figure 1: Impacts on neuronal subspaces decomposition
of T5-Large. Retaining the orthogonal subspace while
removing the parallel subspace preserves near-perfect
performance across all tasks. In contrast, keeping the
parallel subspace while removing the orthogonal sub-
space leads to a significant performance drop.

have driven significant advancements across core 043

AI domains, including natural language process- 044

ing (NLP), computer vision (CV), as well as appli- 045

cations in medicine, law, education (Bommasani 046

et al., 2021; Moor et al., 2023; Ray, 2023). Build- 047

ing on this success, multi-task learning (MTL) has 048

been a paradigm for integrating task-specific abil- 049

ities into a model (Fifty et al., 2021), allowing 050

generalization across multiple specialized tasks. 051

Nonetheless, MTL requires simultaneous training 052

on all targeted datasets, which can be costly and 053

pose privacy concerns. Model Merging (Wortsman 054

et al., 2022; Ilharco et al., 2023; Du et al., 2024) 055

has recently emerged as an alternative paradigm 056

to MTL for task adaptation, enabling the training- 057

free integration of fine-tuned models, which are 058

increasingly being shared publicly (e.g., on Hug- 059

ging Face). 060

Model Merging began with weight interpo- 061
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Table 1: Model merging with different scales and gran-
ularity levels.

Method Scale Granularity Level
Fisher Merging[NeurIPS22] Fisher Matrix Parameter

RegMean[ICLR23] Inner Product Matrix Parameter
Task Arithmetic[ICLR23] Uniformed Task
Ties-Merging[NeurIPS23] Uniformed Parameter

DARE[ICML24] 1/(1− p) Parameter
LoraHub[COLM24] Evolver Searched Task

AdaMerging[ICLR24] Unsupervised Optimized Layer
PCB-Merging[NeurIPS24] Balancing Matrix Parameter

NeuroMerging (Ours) L1-Norm Neuron

lation (Wortsman et al., 2022) to combine the062

strengths of different models and has since evolved063

into techniques that balance competition and co-064

operation within shared representation and enable065

task editing in weight space (Du et al., 2024; Il-066

harco et al., 2023; Ortiz-Jimenez et al., 2024). In067

NLP, methods such as merging task-specific lan-068

guage models have been explored to build and up-069

date foundation models with multi-task capabili-070

ties (Raia, 2021; Wan et al., 2024; Akiba et al.,071

2025; Wan et al., 2025). Similarly, in CV, ap-072

proaches like merging Vision Transformers (ViTs)073

trained on different tasks or domains have been in-074

vestigated to create unified models capable of han-075

dling diverse visual tasks (Kim et al., 2021; Bao076

et al., 2022; Wang et al., 2024). In the multi-modal077

space, model merging has been applied to integrate078

models from different modalities, such as text and079

images, enhancing tasks like audio-visual ques-080

tion answering and image captioning (Sung et al.,081

2023; Sundar et al., 2024; Dziadzio et al., 2024).082

These advancements underscore model merging as083

a promising avenue for future research.084

Existing methods for model merging primarily085

operate at three granularities—model-level, layer-086

level, or parameter-level (Ilharco et al., 2023; Yang087

et al., 2023; Du et al., 2024)—while overlooking088

the fundamental role of individual neurons and089

their connectivity (Suhaimi et al., 2022; Stelzer090

et al., 2021), which underpins the learning process091

all neural networks from Perception (Rosenblatt,092

1958) to LLMs (Touvron et al., 2023). In Figure 1,093

we illustrate that modifying model weights along094

two complementary neuronal subspaces—by re-095

moving one and retaining the other—leads to dis-096

tinct impacts on task performance. Notably, one097

subspace preserves most of the task-specific ca-098

pabilities. This observation motivates us to ex-099

plore model merging at the neuronal level, which100

could have important implications for mitigating101

task interference and could yield more robust102

merged models. 103

In this work, we present the first study to exam- 104

ine task interference at the neuronal level. Specif- 105

ically, we investigate the role of neuronal align- 106

ment in model merging, illustrated in Figure 2. 107

We begin by decomposing task-specific representa- 108

tions into two complementary neuronal subspaces 109

that regulate neuron sensitivity and input adaptabil- 110

ity. Leveraging the insights from the decomposi- 111

tion, we introduce NeuroMerging, a novel merging 112

framework designed to mitigate task interference 113

within neuronal subspaces, enabling training-free 114

model fusion across diverse tasks. To evaluate 115

our approach, we conduct experiments on multi- 116

task benchmarks across both vision and natural 117

language domains, considering various settings, 118

including in-domain and out-of-domain generaliza- 119

tion. Empirically, our method outperforms existing 120

approaches. The main contributions of our paper 121

are as follows: 122

• We present the first exploration into the impact 123

of neuronal alignment in the merging process, 124

introducing a decomposition of task-specific 125

representations into two complementary neu- 126

ronal subspaces. 127

• Based on the insights from the neuronal sub- 128

spaces, we propose NeuroMerging, a new 129

framework developed to reduce task interfer- 130

ence in alignment with neuronal mechanism. 131

• We show that NeuroMerging achieved supe- 132

rior performance compared to existing ap- 133

proaches on multi-task benchmarks in both 134

vision and natural language processing. 135

2 Related Work 136

Multi-task learning (MTL) (Fifty et al., 2021) lever- 137

ages transferable knowledge to handle multiple 138

related tasks simultaneously. Existing MTL ap- 139

proaches primarily rely on architectural design or 140

optimization strategies. Architectural-based meth- 141

ods, such as Mixture of Experts (MoE) (Shazeer 142

et al., 2017), introduce specialized subnetworks 143

that dynamically route inputs to task-specific ex- 144

perts, effectively reducing interference. However, 145

these methods require modifying the pretrained 146

model structure, increasing computational com- 147

plexity, and limiting scalability (Liu et al., 2019; 148

Shen et al., 2024). Optimization-based approaches, 149

on the other hand, focus on balancing task gradients 150

or loss functions to mitigate task conflicts during 151
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(Rosenblatt, 1958)

Figure 2: Illustration of our proposed framework. Neuronal Task Vector: Neuronal task vectors τ for the kth neuron
are defined as the difference between the fine-tuned and pre-trained neuron for each task. Decomposition: The
pre-trained kth neuron is decomposed into its parallel and orthogonal complementary subspaces, followed by the
projection of neuronal task vectors onto these subspaces. NeuroMerging: Our proposed NeuroMerging operates
within these complementary subspaces for neuronal model merging.

training (Bai et al., 2023; Kendall et al., 2018).152

While these methods improve convergence, they153

still depend on task-specific training data, which154

may be impractical in real-world applications due155

to privacy concerns or data scarcity (Liang et al.,156

2020). In contrast, model merging offers an al-157

ternative paradigm by integrating knowledge from158

multiple fine-tuned models into a single unified159

model without requiring additional training data or160

architectural modifications (Wortsman et al., 2022;161

Ilharco et al., 2023). Notwithstanding the promis-162

ing findings, a key challenge in model merging is163

task conflict (Yadav et al., 2024; Du et al., 2024),164

where different tasks compete for model capacity,165

potentially leading to suboptimal performance.166

To resolve task conflicts, existing model merg-167

ing methods can be categorized into three levels168

based on their granularity. Model-level merging169

combines entire model weights, typically through170

averaging or weighted aggregation, but often re-171

sults in performance degradation due to the loss172

of task-specific knowledge, as seen in methods173

like Task Arithmetic (Ilharco et al., 2023) and Lo-174

RAHub (Huang et al., 2023). Layer-level merging 175

selectively integrates layers from different models 176

under the assumption of shared representations; for 177

instance, AdaMerging (Yang et al., 2023) adapts 178

layer selection to better preserve task-specific infor- 179

mation. Parameter-level merging directly manip- 180

ulates individual parameters to blend knowledge 181

from multiple models, enhancing adaptability and 182

robustness. Techniques such as Fisher Merging 183

(Matena and Raffel, 2022), RegMean (Jin et al., 184

2023), TIES-Merging (Yadav et al., 2024), DARE 185

(Le et al., 2024), and PCB-Merging (Du et al., 186

2024) exemplify this approach. However, exist- 187

ing methods largely overlook the fundamental role 188

of neuron and neuron-level interactions in task spe- 189

cialization. In this work, we aim to bridge this gap. 190

Current neural network models, from the Per- 191

ceptron invented by Rosenblatt (1958) to recent 192

massive LLMs (Touvron et al., 2023), have grown 193

significantly in scale and complexity. Nevertheless, 194

the core principle remains unchanged: individual 195

neurons and their connectivity still underpin the 196

learning process (Stelzer et al., 2021; Suhaimi et al., 197
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2022). During the pre-training and fine-tuning pro-198

cess, neurons are not merely passive components199

but active elements of the network, each contribut-200

ing to learning and inference (Jiang et al., 2024;201

Islam et al., 2023). In this work, we conduct the202

first in-depth study on neuronal alignment in model203

merging, aiming to uncover its role in preserving204

task-specific knowledge and its potential to miti-205

gate task conflict.206

3 Methodology207

In this section, we first formalize the concept of208

neuronal task vector for model merging and then209

decompose neuronal task vectors into two com-210

plementary neuronal subspaces. Subsequently, we211

introduce our framework, NeuroMerging, showed212

in Algorithm 1, which performs merging in the213

neuronal subspaces.214

3.1 Preliminaries215

In this work, we consider the model merging of a216

set of T task specific models, (θ1, . . . , θt, . . . , θT ),217

fine-tuned from a pretrained model θ0. With218

the task vector notation, each task is defined as219

τt = θt − θ0. The merged model is θ̄ = θ0 +220

ϕ(τ1, ..., τt, ..., τT ), where ϕ(·) represents the trans-221

formation applied to each task vector τt and fol-222

lowed by merging. As entries of the task vector223

with larger magnitudes are more relevant to task-224

specific adaptation, only the top r% of τt with the225

largest magnitudes are kept, while the others are226

set to zero (Yadav et al., 2024). The masked task227

vector is defined as τmasked
t = mt ◦ τt, where mt is228

the mask that keeps the top r% of the elements of229

each task vector. In the following section, we use τt230

to represent the masked task vector for readability.231

3.2 Neuronal Task Vector232

Zooming in to the neuronal level of τt, we define233

wk
t ∈ Rd to represent the weight vector of kth234

neuron in model θt. The task-specific adaptation235

of this neuron, relative to the pre-trained model, is236

given by the neuronal task vectors:237

τkt = wk
t −wk

0 , (1)238

where wk
0 corresponds to the weight of the kth neu-239

ron in the pre-trained model θ0. Figure 2 illustrates240

our proposed neuronal task vector.241

3.3 Neuronal Subspace Decomposition242

To examine how task-specific modifications impact243

individual neurons, we decompose the neuronal244

Algorithm 1 NeuroMerging
Input: Task-specific models τ1, τ2, . . . , τT , pre-

trained model θ0, Mask ratio r
Output: Merged model θ̄
τt = mt ◦ τt // Mask task vector based on r
for k ← 1 to K do

for t← 1 to T do
▷ Create neuronal task vector.

τkt = wk
t −wk

0

▷ Decompose neuronal subspaces.

τk∥,t = Pτkt , τk⊥,t = (I−P)τkt
end

end
▷ Merge neuronal task vectors.
for k ← 1 to K do

if Validation data is available then
Tune λ1 and λ2 using the validation dataset

else
σt =

∥τmasked
t ∥1
∥τt∥1 , σ = max(σ1, .., σT )

λ1 = 0, λ2 =
1

1−σ

end
τk = λ1ψ∥(τ

k
∥,1, .., τ

k
∥,T ) + λ2ψ⊥(τ

k
⊥,1, .., τ

k
⊥,T )

end
▷ Reconstruct the merged task vector τ by

combining the τk for each neuron.
θ̄ = θ0 + τ // final merged model

return θ̄

task vectors into two complementary neuronal sub- 245

spaces, visualized in Figure 2. Mathematically, this 246

decomposition is formulated as: 247

τkt = τk∥,t + τk⊥,t, (2) 248

where τk∥,t = Pτkt projects the neuronal task vec- 249

tors onto the pre-trained model’s weight space, Par- 250

allel Subspace (P), capturing neuron sensitivity. 251

Here, P is the projection matrix onto the span of 252

Wk
0 . τk⊥,t = (I − P)τkt captures the complemen- 253

tary orthogonal modifications, in the Orthogonal 254

Subspace (O), reflecting task-specific adaptability. 255

The role of each complementary subspace: 256

• Parallel Subspace (P): this subspace cap- 257

tures transformations that preserve shared rep- 258

resentations with the wk
0 . It is also closely 259

related to neuron sensitivity with larger mag- 260

nitudes corresponding to higher sensitivity to 261

changes in input activations. 262
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• Orthogonal Subspace (O): The orthogo-263

nal complementary subspace of P represents264

novel task-specific adaptations introduced dur-265

ing fine-tuning, capturing input adaptability266

to task specific representation.267

The impact of weight editing in these comple-268

mentary subspace on task adaption is discussed in269

Section 6.3.270

3.4 NeuroMerging271

Our proposed NeuroMerging merges neuronal task272

vectors along two complementary neuronal spaces:273

τk = λ1ψ∥

(
τk∥,1, . . . , τ

k
∥,t, . . . , τ

k
∥,T

)
(3)274

+ λ2ψ⊥

(
τk⊥,1, . . . , τ

k
⊥,t, . . . , τ

k
⊥,T

)
275

whereψ∥(·) denotes the merging function for τk∥,t ∈276

R, which can be a commonly used weighted aver-277

age, TIES’s disjoint merge (Yadav et al., 2024), and278

others. ψ∥(·) is also applied to non-neuronal pa-279

rameters such as bias and pre-norm. For τk⊥,t ∈ RT ,280

we first find dominant orthogonal subspaces within281

O using singular value decomposition (SVD) with282

rank being the number of tasks interact within the283

same neuron, and then project τk⊥,t along each di-284

mension of the SVD subspace, before applying285

ψ∥(·) to them.286

λ1 and λ2 are scaling parameters. When vali-287

dation data is available λ1 and λ2 could be tuned.288

However, when validation is unavailable, we pro-289

pose setting λ1 = 0 (as the corresponding subspace290

is observed to have little impact in Section 6.4) and291

estimate λ2 based on the impact of top r% men-292

tioned in Section 3.1. Specifically, λ2 is estimated293

as λ2 = 1
1−σ , where σ = max(σ1, ..., σt, ..., σT )294

and σt is the ratio of the L1−Norm of the zeroed-295

out elements in the task vector in Section 3.1296

to the L1 − Norm of the original task vector:297

σt =
∥τmasked

t ∥1
∥τt∥1 . Detailed discussion on the pa-298

rameters is provided in Section 6.4.299

Subsequently, we reconstruct the task vector τ300

with the all the merged neuronal task vectors τk.301

Finally, we obtained the final merged model θ =302

θ0 + τ rescaled.303

4 Experimental Setup304

Baseline Methods. Our baselines comprise two305

main categories: (1) non-model merging ap-306

proaches, which include individually fine-tuned307

models and a multitask model trained jointly on the308

combined dataset serving as our theoretical upper 309

bound, and (2) various advanced model merging 310

techniques, including Simple Averaging (Worts- 311

man et al., 2022), Fisher Merging (Matena and 312

Raffel, 2022), RegMean (Jin et al., 2023), Task 313

Arithmetic (Ilharco et al., 2023), TIES-Merging- 314

Merging (Yadav et al., 2024), PCB-Merging (Du 315

et al., 2024), and our proposed NeuroMerging 316

method. We report average accuracy across all 317

tasks’ test sets as our primary evaluation metric. 318

Validation Set Availability. Previous works ex- 319

hibit varying dependencies on a validation set. 320

Fisher Merging inherently requires a validation set 321

to compute the Fisher matrix. Other approaches 322

may optionally utilize validation data for hyperpa- 323

rameter tuning, while RegMean leverages training 324

data to compute and store inner product matrices 325

for model merging. However, since these matrices 326

match the dimensions of the original model, they 327

introduce substantial storage and computational 328

overhead, limiting scalability to larger models and 329

more extensive merging tasks. 330

Notably, task vector-based approaches such as 331

Task Arithmetic, Ties-Merging, and PCB-Merging, 332

along with our proposed NeuroMerging, are sub- 333

stantially more lightweight and efficient. These 334

approaches are training-free and do not rely on a 335

validation set, making them highly practical for 336

real-world applications. To further evaluate this 337

advantage, we conducted additional experiments 338

comparing task vector-based methods in scenarios 339

where validation sets were unavailable. 340

Hyperparameters. In the absence of an additional 341

validation set, we set λ = 1 as the default value for 342

all task-vector-based methods. For TIES-Merging 343

and PCB-Merging, which require a masking ratio, 344

we follow the settings of Yadav et al. (2024) and Du 345

et al. (2024), applying r = 0.2 as the default value 346

across all experiments. For NeuroMerging, we set 347

a default masking ratio of r = 0.15, with λ1 fixed 348

at 0, while λ2 is automatically adjusted according 349

to the methodology described in Section 3.4. 350

When validation is allowed, we configure the 351

non-diagonal multiplier α in RegMean to 0.9, ex- 352

cept for the T5-base model, where it is set to 0.1. 353

For Task Arithmetic, we perform a grid search 354

over λ ranging from 0.2 to 1.5 with a step size of 355

0.1. For TIES-Merging, PCB-Merging, and Neu- 356

roMerging, we search for the optimal masking ratio 357

r in the range [0.05, 0.2] with a step size of 0.05, 358

and λ (λ2 for NeuroMerging) from 0.8 to 5.0 with 359

a step size of 0.1. 360
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Table 2: Test set performance when merging T5-Large models on seven NLP tasks.

Task(→) Test Set Performance
Method(↓) Validation Average

paws qasc quartz story_cloze wiki_qa winogrande wsc
Zeroshot - 53.1 58.2 54.2 54.1 54.3 70.9 49.2 63.9

Finetuned - 88.0 94.4 97.1 85.3 91.0 95.7 71.6 80.6
Multitask - 88.1 94.2 98.5 89.3 92.0 95.4 73.5 73.6

Averaging[ICML22] ✗ 51.6 59.2 26.3 69.6 53.8 67.3 49.1 36.1
Task Arithmetic[ICLR23] ✗ 59.7 60.9 31.7 57.8 73.0 73.5 55.7 65.3
TIES-Merging[NeurIPS23] ✗ 76.7 80.8 92.4 77.7 81.9 78.4 61.9 63.9
PCB-Merging[NeurIPS24] ✗ 76.9 82.9 93.2 79.0 84.4 75.6 63.5 59.7

NeuroMerging (Ours) ✗ 77.6 81.1 94.3 81.6 84.7 81.2 56.7 83.9
Fisher Merging[NeurIPS22] ✓ 68.7 68.4 83.0 65.5 62.4 94.1 58.2 49.2

RegMean[ICLR23] ✓ 79.8 83.9 97.2 73.2 82.6 94.1 63.2 64.4
Task Arithmetic[ICLR23] ✓ 74.6 72.7 91.3 76.4 85.6 74.4 61.0 61.1
TIES-Merging[NeurIPS23] ✓ 79.5 82.6 94.9 72.8 87.4 85.2 66.6 66.7
PCB-Merging[NeurIPS24] ✓ 81.0 87.0 95.2 76.4 88.1 88.4 64.3 68.1

NeuroMerging (Ours) ✓ 82.2 86.4 94.3 75.9 87.9 91.2 65.9 73.6

5 Results361

5.1 Merging NLP Models362

Following the experimental settings from Yadav363

et al. (2024), we use the T5-base and T5-large mod-364

els (Raffel et al., 2020), which are encoder-decoder365

transformers (Vaswani et al., 2017) pretrained via366

masked language modeling on a large text corpus,367

and fine-tune them independently on seven tasks:368

Khot et al.’s (2019) QASC, Yang et al.’s (2015)369

WikiQA, and Tafjord et al.’s (2019) QuaRTz for370

Question Answering; Zhang et al.’s (2019) PAWS371

for Paraphrase Identification; Sharma et al.’s (2018)372

Story Cloze for Sentence Completion; and Sak-373

aguchi et al.’s (2021) Winogrande together with374

Levesque et al.’s (2012) WSC for Coreference Res-375

olution. Table 2 and 7 demonstrated that our ap-376

proach has superior performance over state-of-the-377

art methods, achieving improvements of 0.6% and378

1.2% for T5-base and T5-large, respectively. More-379

over, NeuroMerging without validation showed380

even more substantial gains, surpassing previous381

methods by 1.4% for T5-base and 0.7% for T5-382

large. For comprehensive results across all tasks383

and model variants, see Appendix B.2.384

5.2 Out-of-Domain Generalization385

Building upon the experimental setup of Yadav386

et al. (2024), we also investigated how merged387

models between tasks enhance generalization in388

different domains. Following the approach used in389

prior NLP models, we merged models on seven in-390

domain datasets and evaluated their performance391

on six held-out datasets from the T0 mixture (Sanh392

et al., 2022) to assess cross-task generalization.393

These datasets encompass diverse tasks, cover- 394

ing three Question Answering datasets: Huang 395

et al.’s (2019) Cosmos QA, Sap et al.’s (2019) 396

Social IQA, and Rogers et al.’s (2020) QuAIL; one 397

Word Sense Disambiguation dataset: Pilehvar and 398

Camacho-Collados’s (2019) WiC; and two Sen- 399

tence Completion datasets: Gordon et al.’s (2012) 400

COPA and Zellers et al.’s (2019) H-SWAG. As 401

shown in Figure 3, NeuroMerging outperformed 402

the strongest baseline by 0.7% and 0.5% for T5- 403

base and T5-large models, respectively, showcasing 404

enhanced out-of-domain generalization capabili- 405

ties. For more comprehensive results, please refer 406

to Appendix B.2 Table 10 and 11. 407

5.3 Merging LLMs 408

We follow the experimental setup of Du et al. 409

(2024) and extend our NeuroMerging to larger 410

LLMs. Specifically, we merged three domain- 411

Figure 3: In-domain v.s. Out-domain performance.
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specialized Llama-2-7b models (Touvron et al.,412

2023), and each is fine-tuned for distinct capabili-413

ties: Chinese language understanding1, mathemati-414

cal reasoning2 (Yu et al., 2024), and code genera-415

tion3 (Roziere et al., 2023). To rigorously evaluate416

the performance of each specialized model, we417

employed established benchmarks tailored to their418

respective domains: Li et al.’s (2024) CMMLU419

for assessing Chinese language proficiency, Cobbe420

et al.’s (2021) GSM8K for mathematical capabili-421

ties, and Chen et al.’s (2021) HumanEval for code422

generation competency. As demonstrated in Ta-423

ble 3, our NeuroMerging approach exhibited sub-424

stantial performance improvements, surpassing the425

strongest baseline by 0.9%. Notably, our method426

even outperformed the PCB-Merging utilizing Evo-427

lution Strategies (ES) optimization algorithm by428

0.7%, underscoring the effectiveness of our pro-429

posed methodology.430

Table 3: Performance comparison on LLaMA2.

Model CMMLU GSM8K Human-Eval Average
Chinese 38.6 2.3 13.4 18.1

Math 31.2 65.6 0.0 32.3
Code 33.3 0.0 17.1 16.8

Averaging[ICML22] 35.6 48.5 6.7 30.3
Task Arithmetic[ICLR23] 35.4 46.1 9.8 30.4
TIES-Merging[NeurIPS23] 36.5 53.4 12.8 34.3
PCB-Merging[NeurIPS24] 36.4 52.3 16.5 35.1

PCB-Merging+ES [NeurIPS24] 36.4 53.1 16.5 35.3
NeuroMerging (Ours) 36.1 57.2 14.6 36.0

5.4 Merging Vision Models431

We also examined the modality of vision by ad-432

hering to the experimental setup outlined by Il-433

harco et al. (2022, 2023). Specifically, we adopted434

two variants of the CLIP model (Radford et al.,435

2021), ViT-B/32 and ViT-L/14, as visual encoders436

(Dosovitskiy et al., 2021). During the fine-tuning437

process, we optimized the visual encoder across438

eight distinct tasks while maintaining a fixed text439

encoder configuration. This comprehensive eval-440

uation spans multiple classification domains, en-441

compassing remote sensing, traffic analysis, and442

satellite imagery recognition, with evaluations con-443

ducted on standard benchmark datasets, including444

Cars (Krause et al., 2013), DTD (Cimpoi et al.,445

2014), EuroSAT (Helber et al., 2019), GTSRB446

(Stallkamp et al., 2011), MNIST (LeCun, 1998),447

1https://huggingface.co/LinkSoul/
Chinese-Llama-2-7b

2https://huggingface.co/meta-math/
MetaMath-7B-V1.0

3https://huggingface.co/qualis2006/
llama-2-7b-int4-python-code-18k

Table 4: Performance comparison on ViT.

Method Validation ViT-B/32 Avg. ViT-L/14 Avg.
Individual - 90.5 94.2
Multi-task - 88.9 93.5

Averaging[ICML22] ✗ 65.8 79.6
Task Arithmetic[ICLR23] ✗ 60.4 83.3
TIES-Merging[NeurIPS23] ✗ 72.4 86.0
PCB-Merging[NeurIPS24] ✗ 75.9 86.9

NeuroMerging (Ours) ✗ 76.4 87.9
Fisher Merging[NeurIPS22] ✓ 68.3 82.2

RegMean[ICLR23] ✓ 71.8 83.7
Task Arithmetic[ICLR23] ✓ 70.1 84.5
TIES-Merging[NeurIPS23] ✓ 73.6 86.0
PCB-Merging[NeurIPS24] ✓ 76.3 87.5

NeuroMerging (Ours) ✓ 76.5 88.3

RESISC45 (Cheng et al., 2017), SUN397 (Xiao 448

et al., 2016), and SVHN (Netzer et al., 2011). 449

Table 4 presented the results of NeuroMerging, 450

demonstrating its competitive performance across 451

different validation scenarios. When employing 452

validation data, our method achieved performance 453

improvements of 0.2% for ViT-B/32 and 0.8% for 454

ViT-L/14 over state-of-the-art baselines. In the 455

absence of additional validation, NeuroMerging 456

further improved upon the strongest baseline by 457

0.5% and 1.0% for ViT-B/32 and ViT-L/14, respec- 458

tively. These results substantiated the broad model 459

compatibility of our approach. 460

6 Additional Results and Analysis 461

6.1 Merging without Validation Sets 462

When validation data is unavailable, we examine 463

the parameters λ1 and λ2 selected according to 464

Section 3.4, where λ1 is set to zero, as the corre- 465

sponding subspace is observed to have little impact 466

in Section 6.4. The value of λ2 is computed based 467

on the L1-norm of masked and unmasked task vec- 468

tors. Figure 7 and Table 2 and Appendix Tables 2, 469

8, and 9 present the evaluation of NeuroMerging 470

on NLP and CV tasks across various model sizes, 471

comparing it with existing methods. NeuroMerg- 472

ing achieves the highest average accuracy across all 473

tasks. This demonstrates that our proposed method, 474

with a simple rescaling, outperforms existing meth- 475

ods on average. Specifically, it achieved a 1.4% 476

and 0.7% improvement over the strongest baseline 477

for T5-Base and T5-Large, respectively. For vision 478

models, it outperforms the strongest baseline by 479

0.5% and 1.0% for ViT-B/32 and ViT-L/14, respec- 480

tively. 481

6.2 Ablation Study on Merging Functions 482

We conducted ablation experiments on various 483

merging functions ψ(·) to evaluate their effective- 484
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Table 5: Comparison of ψ(·) on Avg. Accuracy.

Method Avg. Acc
elect + mean 82.2
elect + sum 79.6

mean 79.7
sum 79.8

ness in combining numerics. As shown in Ta-485

ble 5, among all merging functions, the elect+mean486

approach from TIES-Merging achieves the high-487

est performance at 82.2%. In comparison, using488

elect+sum, averaging, and sum methods resulted in489

performance decreases of 2.6%, 2.5%, and 2.4%,490

respectively.491

6.3 Role of Neuronal Subspaces492

Figure 1 and Appendix Table 12 illustrated the493

impacts of neuronal subspace decomposition on494

T5-Large. To examine the impact of each subspace,495

ablation was performed separately on each sub-496

space by retaining one while removing the other.497

Retaining the orthogonal subspace while removing498

the parallel subspace preserved near-perfect perfor-499

mance of finetuned checkpoints or even improved500

them across most tasks for T5-Large, achieving501

88.0% in-domain, 53.9% out-of-domain, and an502

average of 58.8%. In contrast, keeping the parallel503

subspace while removing the orthogonal subspace504

resulted in a significant performance drop.505

Table 6: In/Out-domain Performance of T5-large.

T5-large In-domain Out-domain Total Average
Fine-tuned 88.0 53.8 58.7

Keep Orthogonal 88.0 53.9 58.8
Keep Parallel 52.7 51.8 51.9

6.4 Robustness of Hyperparameters506

We systematically investigated the impact of hyper-507

parameters on merging performance: λ1 and λ2,508

which control the parallel and orthogonal subspace509

contributions, respectively, and the mask ratio r.510

Relationship Between λ1 and λ2. To examine the511

effects of λ1 and λ2, we conducted a grid search512

with λ1 ∈ [0, 1.0] and λ2 ∈ [3.0, 4.0] at 0.1 inter-513

vals, fixing r = 10%. As visualized in Figure 4, the514

performance exhibited column-wise uniformity in515

the heatmap, indicating insensitivity to variations516

in λ1, which aligns with our earlier discussion on517

the role of the orthogonal subspace in Section 6.3.518

The optimal performance occurred at λ2 = 3.6,519

attributed to the substantial proportion of masked520

variables.521

Figure 4: Impacts of λ1 and λ2 on T5-Large.

Masking Ratio r. We observed robust perfor- 522

mance across different ratios, with accuracy peaks 523

at 15% and 10% for T5-Base and T5-Large, re- 524

spectively. Performance variations remain bounded 525

(within 2.5% for T5-Base and 4% for T5-Large) 526

and stabilize beyond 35%. 527

7 Conclusion 528

In this paper, we revisited model merging from the 529

core principle neuron and its connectivity that un- 530

derpin the learning process of recent deep neural 531

networks and LLMs. Specifically, we presented 532

the first exploration into the impact of neuronal 533

alignment in the model merging process, by de- 534

composing of task-specific representations into two 535

complementary neuronal subspaces and examining 536

their roles. Based on these insights, we proposed 537

NeuroMerging, a novel framework designed to re- 538

duce task interference within neurons. Our empir- 539

ical evaluations demonstrate that NeuroMerging 540

achieves superior performance compared to exist- 541

ing approaches on multi-task benchmarks across 542

both vision and natural language processing tasks. 543

Future work could extend NeuroMerging to 544

larger models or multimodal architectures with 545

more tasks. While our study introduces a neu- 546

ronal mechanistic perspective on task interference 547

in model merging, it captures only one aspect of 548

neuronal mechanisms, as it does not yet explore in- 549

teractions between synchronized neuron groups or 550

neuronal dynamics. Further research is needed to 551

investigate these factors and deepen our understand- 552

ing of neuronal mechanisms in model merging or 553

even multi-task learning. 554
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8 Limitations555

While our work provides the first neuronal mecha-556

nistic perspective on task interference when merg-557

ing language models, (1) it remains a partial view558

of neuronal mechanisms as it does not yet explore559

interactions between synchronized neuron groups560

or neuronal dynamics during merging and infer-561

ence, which require further investigation. More-562

over, this work shares similar limitations with cur-563

rent SOTA model merging methods, including (2)564

the effectiveness of task arithmetic in model merg-565

ing relies on selecting fine-tuned checkpoints that566

are beneficial for specific domains, ensuring they567

originate from the same pretrained model, and ad-568

dressing hyperparameter sensitivity; and (3) More569

effort is needed to develop a mathematical under-570

standing of why and when task arithmetic in model571

merging works well, despite its simplicity and effi-572

ciency.573
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A Statistical Analysis of Parameters951

From the statistical analysis of neuronal versus non-952

neuronal parameters, it is observed that neuronal953

parameters dominate the T5-Base and T5-Large,954

showed in Figure. 5. As a result, they play a major955

role in shaping the model’s learning dynamics, task956

adaptability, and overall performance. This domi-957

nance suggests that understanding and optimizing958

neuronal parameter interactions is crucial for im-959

proving model merging, reducing task interference,960

and enhancing generalization across diverse tasks.961

Figure 5: Statistical analysis of neuronal versus non-
neuronal parameters.

B Additional Results962

B.1 Mask Ratio vs. Performance963

When validation is available, we analyze the im-964

pact of the mask ratio on performance, showed965

in Figure 6. Maintaining r at 10–20% improves966

performance, whereas exceeding this range often967

leads to degradation. This suggests that an optimal968

masking ratio balances information retention and969

redundancy reduction.970

Figure 6: Impacts on mask ratio r.

B.2 Comprehensive Task-Level Results971

We provide all task-level results in T5-Base, T5-972

Large (Raffel et al., 2020), LLaMA2 (Touvron973

et al., 2023), ViT-B/32, and ViT-L/14 (Dosovitskiy 974

et al., 2021), respectively. The task-level results of 975

the in-domain experiments for all models can be 976

found in Tables 7, 8, 9. The task-level results of the 977

out-domain experiments for T5-Base and T5-Large 978

can be found in Tables 10 and 11. Lastly, Table 12 979

shows the task-level results from Section 6.3 when 980

only one of the neuronal subspace is retained. 981

C Implementation Details 982

We executed all our experiments on Nvidia A6000 983

GPUs equipped with 48GB RAM. The merging 984

experiments demonstrated highly computational 985

efficiency, with evaluation times under 2 min- 986

utes for T5-Base, T5-Large, ViT-B/32, and ViT- 987

L/14 models. For large language model, specifi- 988

cally LLaMA2, the validation process across three 989

datasets required approximately 40 minutes per 990

complete evaluation cycle. 991

D Dataset Details 992

We utilized several datasets, and each of 993

them comes with specific licenses. The fol- 994

lowing datasets are available under the Cre- 995

ative Commons License: WiC (Pilehvar and 996

Camacho-Collados, 2019), WSC (Levesque et al., 997

2012), Story Cloze (Sharma et al., 2018), 998

QuaRTz (Tafjord et al., 2019), Cars (Krause 999

et al., 2013), and GTSRB (Stallkamp et al., 1000

2011). Winogrande (Sakaguchi et al., 2021) and 1001

QASC (Khot et al., 2019) are distributed un- 1002

der the Apache License, while COPA (Gordon 1003

et al., 2012) is covered by the BSD-2 Clause Li- 1004

cense. WikiQA (Yang et al., 2015) is governed by 1005

the Microsoft Research Data License Agreement. 1006

Cosmos QA (Huang et al., 2019) is licensed under 1007

the CC BY 4.0. QuAIL (Rogers et al., 2020) and 1008

CMMLU (Li et al., 2024) are licensed under the 1009

CC BY-NC-SA 4.0. H-SWAG (Zellers et al., 2019), 1010

GSM8K (Cobbe et al., 2021), HumanEval (Chen 1011

et al., 2021), and EuroSAT (Helber et al., 2019) 1012

fall under the MIT License, and MNIST (LeCun, 1013

1998) is licensed under the GNU General Public 1014

License. 1015

For the datasets DTD (Cimpoi et al., 2014), 1016

RESISC45 (Cheng et al., 2017), SUN397 (Xiao 1017

et al., 2016), SVHN (Netzer et al., 2011), 1018

Social IQA (Sap et al., 2019), and PAWS (Zhang 1019

et al., 2019), we were unable to determine specific 1020

licenses. However, they are publicly shared for 1021

research and education purposes. 1022
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Table 7: Test set performance when merging T5-Base models on seven NLP tasks. Please refer to Section 5.1 for
experimental details.

Task(→) Test Set Performance
Method(↓) Validation Average

paws qasc quartz story_cloze wiki_qa winogrande wsc
Zeroshot - 53.5 49.9 35.8 53.3 48.1 76.2 50.0 61.1

Finetuned - 79.6 93.9 98.0 81.4 82.5 95.4 51.9 54.2
Multitask - 83.6 94.0 97.9 82.5 86.7 95.0 64.1 65.3

Averaging[ICML22] ✗ 64.2 65.1 81.1 59.9 48.8 94.7 50.9 48.6
Task Arithmetic[ICLR23] ✗ 60.6 78.5 30.0 56.8 65.6 95.0 49.6 48.6
TIES-Merging[NeurIPS23] ✗ 73.6 82.4 94.1 71.9 66.0 91.2 51.5 58.3
PCB-Merging[NeurIPS24] ✗ 73.4 83.1 92.6 72.6 73.4 88.0 51.5 52.8

NeuroMerging (Ours) ✗ 74.8 81.8 96.5 69.3 67.9 94.8 51.0 62.5
Fisher Merging[NeurIPS22] ✓ 68.3 66.7 85.6 63.5 57.1 90.1 54.2 60.8

RegMean[ICLR23] ✓ 72.7 77.2 93.8 63.6 64.6 90.4 58.4 60.7
Task Arithmetic[ICLR23] ✓ 73.6 83.2 89.9 69.3 72.9 95.2 52.1 52.8
TIES-Merging[NeurIPS23] ✓ 76.4 88.6 94.1 74.5 75.6 92.1 53.2 56.9
PCB-Merging[NeurIPS24] ✓ 76.9 88.2 95.2 71.0 77.3 95.1 51.9 59.7

NeuroMerging (Ours) ✓ 77.5 87.5 95.7 68.2 76.8 94.5 51.8 68.1

Table 8: Test set performance when merging ViT-B/32 models on eight vision tasks. Please refer to Section 5.4 for
experimental details.

Task(→) Test Set Performance
Method(↓) Validation Average

SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD
Individual - 90.5 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4
Multitask - 88.9 74.4 77.9 98.2 98.9 99.5 93.9 72.9 95.8

Averaging[ICML22] ✗ 65.8 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1
Task Arithmetic[ICLR23] ✗ 60.4 36.7 41.0 53.8 64.4 80.6 66.0 98.1 42.5
TIES-Merging[NeurIPS23] ✗ 72.4 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2
PCB-Merging[NeurIPS24] ✗ 75.9 65.8 64.4 78.1 81.1 84.9 77.1 98.0 58.4

NeuroMerging (Ours) ✗ 76.4 64.7 64.2 77.0 83.9 86.2 78.0 98.5 58.7
Fisher Merging[NeurIPS22] ✓ 68.3 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9

RegMean[ICLR23] ✓ 71.8 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0
Task Arithmetic[ICLR23] ✓ 70.1 63.8 62.1 72.0 77.6 74.4 65.1 94.0 52.2
TIES-Merging[NeurIPS23] ✓ 73.6 64.8 62.9 74.3 78.9 83.1 71.4 97.6 56.2
PCB-Merging[NeurIPS24] ✓ 76.3 66.7 65.5 78.5 79.3 86.4 77.1 98.2 59.1

NeuroMerging (Ours) ✓ 76.5 65.3 65.7 77.1 84.8 84.5 77.9 98.3 58.5

Table 9: Test set performance when merging ViT-L/14 models on eight vision tasks. Please refer to Section 5.4 for
experimental details.

Task(→) Test Set Performance
Method(↓) Validation Average

SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD
Individual - 94.2 82.3 92.4 97.4 100 98.1 99.2 99.7 84.1
Multitask - 93.5 90.6 84.4 99.2 99.1 99.6 96.3 80.8 97.6

Averaging[ICML22] ✗ 79.6 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8
Task Arithmetic[ICLR23] ✗ 83.3 72.5 79.2 84.5 90.6 89.2 86.5 99.1 64.3
TIES-Merging[NeurIPS23] ✗ 86.0 76.5 85.0 89.3 95.7 90.3 83.3 99.0 68.8
PCB-Merging[NeurIPS24] ✗ 86.9 75.8 86.0 89.2 96.0 88.0 90.9 99.1 70.0

NeuroMerging (Ours) ✗ 87.9 77.0 86.9 90.3 96.3 89.9 92.1 99.2 71.8
Fisher Merging[NeurIPS22] ✓ 82.2 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70.0

RegMean[ICLR23] ✓ 83.7 73.3 81.8 86.1 97.0 88.0 84.2 98.5 60.8
Task Arithmetic[ICLR23] ✓ 84.5 74.1 82.1 86.7 93.8 87.9 86.8 98.9 65.6
TIES-Merging[NeurIPS23] ✓ 86.0 76.5 85.0 89.4 95.9 90.3 83.3 99.0 68.8
PCB-Merging[NeurIPS24] ✓ 87.5 76.8 86.2 89.4 96.5 88.3 91.0 98.6 73.6

NeuroMerging (Ours) ✓ 88.3 77.3 87.1 90.1 96.1 91.0 92.2 99.4 73.0
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Table 10: Out-of-Distribution performance of T5-Base models checkpoints on six tasks. Please refer to Section 5.2
for experimental details.

Method (↓) Average cosmos_qa social_iqa quail wic copa h-swag
paws 37.2 25.0 37.0 29.9 49.5 57.4 24.5
qasc 36.5 21.2 37.4 29.5 49.8 54.4 26.7

quartz 36.9 24.7 36.9 28.8 48.5 57.4 25.0
story_cloze 36.8 21.9 36.4 25.7 53.6 57.4 26.1

wiki_qa 36.2 25.9 36.3 29.9 51.2 48.5 25.2
winogrande 36.8 23.9 37.9 24.1 51.8 58.8 24.4

wsc 39.5 26.9 38.1 29.5 55.4 61.8 25.2
Pretrained 36.8 22.9 36.4 29.9 50.8 55.9 24.8

Averaging[ICML22] 37.4 23.7 36.8 29.3 51.3 58.8 24.8
Fisher Merging[NeurIPS22] 33.8 15.6 21.9 24.9 65.6 53.1 21.9
Task Arithmetic[ICLR23] 36.9 19.0 35.6 29.5 54.0 55.9 27.7

RegMean[ICLR23] 34.3 23.1 28.1 24.9 48.4 62.5 18.8
TIES-Merging[NeurIPS23] 38.5 21.9 37.4 29.3 52.0 64.7 25.5
PCB-Merging[NeurIPS24] 38.5 22.8 37.5 29.1 51.3 63.2 27.0

NeuroMerging (Ours) 39.2 21.2 37.3 29.9 52.0 69.1 25.4

Table 11: Out-of-Distribution performance of T5-Large models checkpoints on six tasks. Please refer to Section 5.2
for experimental details.

Method (↓) Average cosmos_qa social_iqa quail wic copa h-swag
paws 38.2 28.4 37.6 25.4 60.9 51.5 25.2
qasc 37.9 23.1 37.0 25.5 49.0 64.7 28.1

quartz 36.2 26.1 38.0 25.7 51.3 50.0 26.2
story_cloze 37.9 22.9 37.5 24.5 51.2 64.7 26.6

wiki_qa 35.0 23.2 37.4 26.1 51.2 47.1 25.1
winogrande 36.1 25.2 39.6 24.1 51.3 50.0 26.4

wsc 37.2 26.2 38.8 28.8 55.4 48.5 25.8
Pretrained 36.3 23.7 37.8 28.1 51.2 51.5 25.5

Averaging[ICML22] 36.7 25.3 37.0 23.4 51.5 57.4 25.9
Fisher Merging[NeurIPS22] 32.0 34.4 25.0 26.1 40.6 56.2 9.4
Task Arithmetic[ICLR23] 39.2 24.6 38.0 27.3 58.6 58.8 28.1

RegMean[ICLR23] 36.0 34.4 28.1 25.3 62.5 50.0 15.6
TIES-Merging[NeurIPS23] 40.1 25.1 40.8 23.0 56.3 67.6 27.6
PCB-Merging[NeurIPS24] 40.4 25.6 40.7 25.7 55.1 66.2 29.3

NeuroMerging (Ours) 40.9 24.7 40.7 26.6 56.4 69.1 27.9
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Table 12: Test set performance comparison of T5-Large models under different keeping strategies (naive finetuned,
keep orthogonal, and keep parallel) across seven NLP tasks. Please refer to Section 1 and 6.3 for experimental
details.

Task(→) Test Set Performance
Method(↓) Dataset (↓)

paws qasc quartz story_cloze wiki_qa winogrande wsc Average

Fine-tuned

paws 94.4 18.0 53.3 53.1 87.9 49.8 54.2 58.7
qasc 54.3 97.1 55.7 64.7 66.3 49.8 41.7 61.4

quartz 59.9 65.1 85.3 51.2 72.5 48.9 62.5 63.6
story_cloze 53.4 31.9 54.2 91.0 57.4 49.1 56.9 56.3

wiki_qa 55.8 16.3 50.9 53.7 95.7 48.7 63.9 55.0
winogrande 55.7 50.2 62.4 55.3 78.4 71.6 56.9 61.5

wsc 55.8 16.3 57.7 48.5 73.3 47.4 80.6 54.2
Total Avg. In-Domain: 88.0 Out-Domain: 53.8 All: 58.7

Orthogonal

paws 94.4 18.1 53.3 53.3 88.1 49.6 56.9 59.1
qasc 54.4 97.1 55.6 64.8 66.3 50.0 43.1 61.6

quartz 60.0 65.0 85.3 51.5 72.5 48.5 63.9 63.8
story_cloze 53.3 31.8 53.8 90.9 57.7 49.0 56.9 56.2

wiki_qa 55.8 16.3 51.1 53.5 95.7 48.2 63.9 54.9
winogrande 55.7 49.8 62.2 55.8 78.4 71.7 56.9 61.5

wsc 55.8 16.6 57.4 48.2 73.4 47.4 80.6 54.2
Total Avg. In-Domain: 88.0 Out-Domain: 53.9 All: 58.8

Parallel

paws 54.4 14.5 53.4 54.2 71.8 49.5 63.9 51.7
qasc 55.3 14.9 54.0 54.3 71.0 48.6 63.9 51.7

quartz 55.3 14.3 55.6 54.2 71.7 49.4 63.9 52.1
story_cloze 55.3 14.3 54.1 53.8 71.1 49.3 63.9 51.7

wiki_qa 55.6 14.7 54.5 54.3 77.1 49.1 63.9 52.7
winogrande 55.3 14.8 54.2 53.6 71.8 49.5 63.9 51.9

wsc 55.3 14.7 53.7 53.7 72.5 49.5 63.9 51.9
Total Avg. In-Domain: 52.7 Out-Domain: 51.8 All: 51.9

Figure 7: Comparison of merging methods on NLP with T5-Large (Left) and CV with ViT-L/14 (Right) without
validation datasets. NeuroMerging outperforms existing methods in most tasks. Please refer to Section 6.1 for more
discussion.
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