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TinyVLA: Towards Fast, Data-Efficient Vision-Language-Action Models
for Robotic Manipulation
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Ning Liu?, Ran Cheng?, Chaomin Shen"f, Yaxin Peng®, Feifei Feng?, and Jian Tang®'

Abstract— Vision-Language-Action (VLA) models have
shown remarkable potential in visuomotor control and
instruction comprehension through end-to-end learning

processes. However, current VLA models face significant
challenges: they are slow during inference and require
extensive pre-training on large amounts of robotic data,
making real-world deployment difficult. In this paper, we
introduce a new family of compact vision-language-action
models, called TinyVLA, which offers two key advantages
over existing VLA models: (1) faster inference speeds, and (2)
improved data efficiency, eliminating the need for pre-training
stage. Our framework incorporates two essential components
to build TinyVLA: (1) initializing the policy backbone with
robust, high-speed multimodal models, and (2) integrating a
diffusion policy decoder during fine-tuning to enable precise
robot actions. We conducted extensive evaluations of TinyVLA
in both simulation and on real robots, demonstrating that our
approach significantly outperforms the state-of-the-art VLA
model, OpenVLA, in terms of speed and data efficiency, while
delivering comparable or superior performance. Additionally,
TinyVLA exhibits strong generalization capabilities across
various dimensions, including language instructions, novel
objects, unseen positions, changes in object appearance,
background variations, and environmental shifts, often
matching or exceeding the performance of OpenVLA. We
believe that TinyVLA offers an interesting perspective on
utilizing pre-trained multimodal models for policy learning.
Our project is at https://tiny-vla.github.io.

I. INTRODUCTION

Training multitasking robot imitators to operate in com-
plex and uncertain environments faces considerable chal-
lenges due to limited data and the difficulty of learning
physical motion [1], [2], [3], [4]. Moreover, traditional robot
models struggle to adapt to new scenes and tasks and are
easily affected by distractors, lighting conditions, and back-
ground changes [5], [6]. Modern methods typically leverage
off-the-shelf Large Language Models (LLMs) [7], [8], [9],
[10], [11], [12] for scene descriptions to generate object
affordance, location, or heatmaps, followed by a predefined
motion planner to complete the tasks [13], [14], [15], [16],
[17], [18].
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Fig. 1: Inference Latency vs. Average Success Rate for

TinyVLA and eOpenVLA in a single-arm, real-world
Franka experiment. The y-axis represents the average success
rate across five real-world tasks, with the bubble diameter
indicating the number of model parameters. Inference latency
was measured on the same A6000 GPU for both models.
Our results show that TinyVLA-H outperforms OpenVLA,
achieving superior performance with 20 times less inference
latency.

Recently, vision-language-action (VLA) models have gar-
nered significant attention for their ability to extend pre-
trained vision-language models to robotics using a next-token
prediction approach. Notable works, such as RT-2 [19] and
OpenVLA [20], have demonstrated impressive performance
in multi-task learning and generalization. However, these
methods suffer from a critical drawback: extremely slow
inference speeds, largely due to their dependence on large
vision-language models and auto-regressive action token
generation. In robotics, inference speed is crucial for en-
abling robots to respond instantly to user queries, directly
impacting user experience and the robot’s overall effective-
ness. In addition to the inference challenges, these models
also require extensive pre-training on large-scale robotic
datasets. For example, OpenVLA is pre-trained on the 970K-
sample OpenX dataset [21], making the computational cost
of training both expensive and resource-intensive. Given
these challenges, a natural question arises:

How can we build VLA models that retain the advan-
tages of existing VLA models while being both fast and
data-efficient?

In this work, we propose TinyVLA, a compact vision-
language-action model designed for fast inference. We iden-
tify two key factors in existing VLA models that contribute to
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their high inference latency: (1) they are built on large vision-
language models, often exceeding 7 billion parameters, and
(2) they generate discrete action tokens autoregressively,
requiring repetitive inference for each degree of freedom.
To overcome these challenges, we first train and employ a
family of small yet powerful vision-language models with
fewer than 1 billion parameters. Then, instead of using
the next token prediction technique to predict action tokens
independently, we attach a diffusion-based head to the pre-
trained multimodal model for direct robot action output. Con-
sequently, we find that this combination enables TinyVLA
to retain the prior knowledge and generalization capabilities
gained from vision-language data pre-training, even without
training on large-scale robot datasets like OpenX [21]. It
efficiently adapts to new instruction and generalizes across
various settings in a faster and more data-efficient manner.

In both simulations and real-world settings, our method
demonstrates superior performance in multi-task learning
compared to the baseline. For instance, in real-world exper-
iments, TinyVLA-H achieves a 25.7% higher success rate
than OpenVLA, while using 5.5 times fewer parameters.
In bimanual real-robot experiments, we find that OpenVLA,
which heavily relies on OpenX robot data pretraining, strug-
gles to perform in bimanual settings due to OpenX consisting
only of single-arm data. In contrast, TinyVLA-H signifi-
cantly outperforms OpenVLA in these tasks. Additionally,
we observed that TinyVLA generalizes well across diverse
settings, including observational and spatial generalization,
often matching or even surpassing OpenVLA in certain
cases. We believe that TinyVLA offers a novel perspective
to building vision-language-action models for embodied con-
trol.

II. RELATED WORKS

Multimodal Models connect vision and language and
extend the reasoning ability of LLMs to process with mul-
timodal input. Numerous works have been proposed in this
direction [22], [23], [24], [25], [26], [27], [28], [29], [30].
These MLLMs typically have parameters ranging from 7B
to 70B, making the inference cost-prohibitive and limiting
the accessibility of MLLMs to a wider audience. Recently,
a select number of studies [31], [32], [33], [34], [35], [36],
[37]have delved into the exploration of efficient multimodal,
with a number of parameters less than 3B, from diverse
angles. Robot learning [38], [39], [19], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53],
[54], [55], [56], [57], [58], [59], [60], [61] is an crucial
topic in the robotics. A number of works introduce vision-
language models to the domain of embodied control, these
representative works include RT-2 [19] and OpenVLA [20].
Our paper proposes a compact version of VLA models
that does not require large-scale robot data pretraining and
enables fast inference.

III. METHOD

This section gives a comprehensive overview of our
proposed TinyVLA. TinyVLA encompasses several crucial
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Fig. 2: Model architecture.The left image illustrates the
VLM pretraining pipeline, whereas the right image demon-
strates the process of training TinyVLA using robotic data.

designs: 1) We adopt a pre-trained Multimodal model as
the initialization of a policy network; 2) During training the
robot data, we freeze the pre-trained parts and utilize the
parameter-efficient fine-tuning technique LoRA [62], where
the trainable parameters account for only 5% of the entire
model; 3) We introduce a policy decoder that concatenated to
pre-trained multimodal model through a simple but efficient
linear projection and output the executable action of the
robot. An illustration of TinyVLA is given in Figure [2]

A. Building TinyVLA with Efficient Vision-Language Models

The initial step involves acquiring pre-trained multimodal
language models. While existing works typically focus on
vision-language models with over three billion parameters,
we trained a more compact vision-language model with
parameters ranging from 40 million to 1.4 billion. Our model
utilizes Pythia [63] as the language model backend. We then
followed the training pipeline of LLaVA [25], using their
vision-language dataset to train this family of VLMs. For
robot data fine-tuning, we retained all modules from our
VLM, including the visual backbone and the vision-language
alignment module.

B. Robot Data Finetuning for Manipulation

Frozen weights and low-rank adaptation. We employ
the parameter-efficient training method, LoRA [62], which
limits gradient updates to a low-dimensional space. This is
achieved by modifying the weight matrix W € R¥** to
Wo + AW = Wy + BA, with B € R¥" and A € R™*F,
where r is significantly smaller than either d or k. We
incorporate low-rank matrices into the attention mechanisms’
weights (@, K, V) while freezing the remaining weights of
the Transformer.

Furthermore, the model must preserve the intrinsic knowl-
edge of the language models. The trainable parameters
constitute only 5.0% of the entire transformer’s parameters.
We posit that this approach enables the pre-trained model
to process inputs with maximum linguistic fidelity while
retaining flexibility. After training is completed, we apply
re-parameterization techniques to integrate the LoRA mod-
ule seamlessly into the standard language model, thereby
enhancing inference speed.
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Fig. 3: Real robot settings. The real robot setup for the
single-arm Franka and bimanual URS.

Learning action with diffusion policy decoder. We need
a way to represent the action space to control the robot.
One method is to use discrete tokenization for the actions,
as has been done in RT-2. However, using tokenization
for continuous or high-dimensional data has proven to be
extremely challenging for training [64], requires a huge
amount of data [65], [66], and tends to converge to a single
state [67]. Therefore, instead of converting actions into token
space, we leverage a policy head to further learn the action
space of the robot.

Specifically, we leverage the Diffusion Policy (DP) [5].
DP formulates robot policies using Denoising Diffusion
Probabilistic Models (DDPMs) [68] which mainly involves
two processes: adding noise and denoising. During training,
a random value K is selected from O to [V, indicating the
number of times Gaussian noise is added to the original
actions. Subsequently, DP denoises the noisy actions by
predicting the added noise and minus it to acquire denoised
actions. In the inference phase, starting from a pure noise
a sampled from Gaussian distribution, DP generates a
series of intermediate actions, {a",a""!,...;a'}, until a
desired noise-free output a® is formed. The whole model
structure is shown in Figure 2] right, we directly connect
DP and multimodal model backbone through two simple
Linear projections and one LayerNorm. The multimodal
model backbone jointly encodes the current observations and
language instructions to generate a multimodal embedding
that controls the denoising process of DP as conditions.

IV. EXPERIMENTS

In our experiments, we aim to study the following ques-
tions:

e Does TinyVLA achieve a higher success rate in multi-
tasking robotic manipulation compared to the baselines?

o Can TinyVLA interpret and follow novel instructions?

o Is TinyVLA capable of generalizing to unseen environ-
ments, adapting to new backgrounds, varying lighting
conditions, changing camera view, and remaining robust
against novel distractors?

o Does TinyVLA adhere to the scaling law, where a larger
model size correlates with improved performance and
better generalization?

A. Experimental Setup

To better distinguish the model sizes, we categorized
TinyVLA into three sizes based on the scale of the mul-
timodal model: TinyVLA-S (Small), TinyVLA-B (Base) and
TinyVLA-H (Huge).

TABLE I: Comparing TinyVLA with Diffusion Policy in
simulation. We report the average success rate on multiple
tasks, We use TinyVLA-H as our method. All methods are
trained in a multi-task setting.

Metaworld (50 tasks)
Model \ Tasks Easy (28)

Medium (11)  Hard (6)  Very Hard (5) ‘ Avg.
Diffusion Policy [5] 23.1 10.7 1.9 6.1 10.5
TinyVLA-H 7.6 215 114 15.8 31.6

1) Simulation Benchmark: We evaluate our approach on
MetaWorld. The 50 tasks in MetaWorld [69] can be catego-
rized into multiple levels [70], i.e., easy, medium, hard, and
very hard.

Baseline. We compare our approach with the Diffusion
Policy [5]. We report the average success rate. All methods
are trained in a multi-task learning fashion with 50 demon-
strations. It is evaluated with 3 seeds, and for each seed, the
success rate was averaged over five different iterations.

2) Real Robot Setup: TinyVLA is both evaluated on
a single arm setup utilizing a Franka Panda 7Dof robot
arms and a bimanual setup with two URS robotic arms as
illustrated in Figure [3] The single-arm scene is perceived
via two external ZED 2 stereo cameras fixed on both sides
of the robot. The bimanual robot’s scene is captured by two
cameras on wrists with an extra camera at the top. These
cameras are Realsense D435i.

Tasks. In the single-arm setting, there are five tasks: 1)
closing the drawer (CloseDrawer), 2) stacking the pink cube
on top of the blue cube (StackCubes), 3) opening the lid
of the box (OpenBox), 4) placing a tennis ball into the
ball box, and 5) uprighting a tipped-over mug (FlipMug).
In the bimanual robot experiment, we set up three tasks that
involved cooperation between two arms: 1) transferring bread
to a plate (TransferBread), 2) unzipping the bag and placing
a tennis ball inside it (PlaceTennisBag), and 3)stacking cubes
on a plate (StackCubes). It is worth noting that the action
spaces of tasks vary considerably. For instance, flip mug
necessitates the robot to perform wide-ranging rotations to
insert the gripper into the mug laterally, which is completely
different from stack cubes which is pick&place type. The
span of different trajectories within the same task varies
markedly as well, e.g., the length of stack cubes trajectories
ranges from 100 to 300. This provides TinyVLA with more
challenges in learning to perform these tasks.

Data collection. We collect the dataset through teleopera-
tion. We record the RGB stream from two camera views and
robot states e.g., joint position during the whole robot control
process. TinyVLA predicts the 6D pose, including position
(z,y, z) and rotation (roll, pitch, yaw). For all the tasks we
do not add additional distractors except in the remove the
lid of the box task, in order to better evaluate the model’s
generalization capability to distractors. In total, we collected
100 trajectories for each task to balance data distribution
across all 5 tasks.

Baseline. We evaluated our method against Diffusion Pol-
icy (DP) [5], Multimodal Diffusion [71] and OpenVLA [20].
We did a few modifications to ensure the comparison is fair.



TABLE II: Quantitative results in real-world experiments. We report the average success rate across multiple tasks and

the count of trainable parameters for all models.

Pre-trained Total Trainable RealWorld(5 tasks)
Model \ Tasks Trajectory | Params Params PlaceTennis FlipMug StackCubes  CloseDrawer OpenBox | Avg.
Diffusion Policy [5] N/A 111IM 111M 16.7+0.6 30+0.2 3.340.1 73.34+0.1 53.34+0.1 353
Multimodal Diffusion[71] N/A 230M 230M 23.3£0.3 13.3+1.3 6.7+0.3 36.7+£0.3 10.0+0 18.0
OpenVLA[20] 970K 7.2B 195M 83.3+1.1 51.743.1 40.0+0.1 85.0£1 81.740.6 68.3
TinyVLA-S N/A 422M 101 M 8.34+0.1 6.7+0.1 6.71+0.1 60.04+0.2 35.0£0.3 233
TinyVLA-B N/A 740M 138M 76.7£0.6 76.7+0.1 71.7£0.1 81.7+£0.1 80.0+0.2 77.4
TinyVLA-H N/A 1.3B 143M 90.0£0.2 98.3+£0.1 98.31+0.1 96.71+0.3 86.710.1 94.0

TABLE III: Quantitative results for bimanual URS real
robot experiments. We report the average success rate over
10 trials. All models are trained in multi-task settings.

Trainable RealWorld(3 tasks)
Model \ Tasks Params PlaceBread  StackCubes  PlaceTennisBag
DP [5] 111M 40.3+1.7 31.3%£1.3 43423
OpenVLA [20] 195M 0£0 040 00
TinyVLA-H ‘ 143M ‘ 76.7+2.3 36.742.3 30+1
Instruction Generalization
Task Temp. Train Data Out-of-Domain
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Fig. 4: Instruction Generalization. We conducted three
different types of instruction generalization experiments with
progressively increasing difficulty.

First of all, the vanilla OpenVLA is finetuned on a single
view, which is incompatible with our approach. To ensure
all camera views are utilized for OpenVLA, we process
images from different views separately through the shared
visual backbone, and then concatenate the visual tokens and
feed them into the language models. Secondly, the vanilla
DP does not incorporate language instructions. Therefore,
following RT-1 [39] and YAY [72], we integrate language
information into the visual backbone using FiLM [73].

B. Experimental Results on Multi-Task Learning

Simulation experimental results. The experimental re-
sults are presented in Table Specifically, TinyVLA’s
average success rate exceeds that of Diffusion Policy by
21.5%. Notably, the performance disparity widens in more
complex tasks; for instance, on the MetaWorld Hard sce-
nario, TinyVLA’s performance is sixfold better than that of
Diffusion Policy. These results showcase the superiority of
our proposed method.

Real-world experimental results. The experimental re-
sults are shown in Table [l We evaluate each model 20
trials per task in single arm setting. We report the mean
and standard deviation of success rates across 3 checkpoints.

Notably, TinyVLA-H attained a 98.3% success rate in flip-
ping a mug, stacking cubes, and a 90% success rate in place
tennis, leading a large margin over other baselines. It is also
worth mentioning that both place tennis and stack cubes are
position-sensitive tasks. Also, both objects are rigid bodies,
which makes the task challenging. Specifically, regarding the
average success rate over five tasks, the result of TinyVLA-H
surpasses OpenVLA by 25.7%.

C. Generalization to Unseen Instructions

In this work, we investigate the generalization capabilities
of TinyVLA-H, which demonstrates the best performance in
both real-world scenarios and simulations. Since TinyVLA
uses a pre-trained multimodal model as its backbone, we
observe similar embodied capabilities driven by the rich
world knowledge implicitly stored in these models, even
though the fine-tuned version is not trained on question-
answering pair data like RT-2 [19]. As demonstrated in
Figure 4] we evaluated with a fixed list of instructions (i.e.,
“Pick the [object]””), where [object] are randomized objects
that have not been seen in the training data. We use obj. as
the abbreviation of objects in Figure @] We test with three
objects, a mug, a toy car, and a pink cube.

The first level challenges TinyVLA to differentiate be-
tween an object with a seen color and one with an unseen
color. Specifically, we placed two mugs of seen and unseen
colors on the table and instructed Tiny VLA to flip the green
mug. Note that the green color has not been seen in the
training data. TinyVLA successfully completed the task,
demonstrating its inherent understanding of different object
attributes.

The second level involves grasping the object. Both objects
presented have been part of the training data. We asked
the model to “pick the cube”. Despite the environment and
instruction not being part of the training data, TinyVLA
successfully picked up the cube. This indicates that Tiny VLA
effectively maps textual descriptions to physical objects.

To further increase the difficulty of the test, we designed
the third level, where the model is instructed to “pick a
toy car” and “place it into the box”. The toy car is not
in the training data. We placed a pink cube beside the
toy car to assess whether the model could comprehend
the instructions. Additionally, the command “place into the
box” introduces a new skill-object combination, suggesting
that even though the object is familiar, its function has
been altered. Successfully completing this task indicates that
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Fig. 5: View Generalization. We evaluated the view generalization capability of our model in a new environment, which
we designed to be as consistent with the training environment as possible. We tested 3 tasks respectively, and the results
under 8 viewing angle changes (the two cameras each correspond to 4 changes).

TinyVLA possesses the ability to recognize novel objects
and identify new functionalities in familiar ones.

D. More Real-World Experiments: Bimanual Robot

We further conducted experiments on the Bimanual URS
Robot, applying it to three distinct tasks: PlaceBread, Stack-
Cube, and PlaceTennisBag. These tasks vary significantly
in both duration and required skills, posing challenges for
training a multi-task policy model. As shown in Table [[TI}
while the Diffusion Policy excels in the PlaceTennisBag
task, our TinyVLA-H model achieved an average success
rate of 44.5%, surpassing the Diffusion Policy’s 38.2%.
Notably, the OpenVLA fails in every trial. We suspect this
is because OpenVLA is pre-trained on the OpenX dataset,
which consists entirely of single-arm robot data, making it
ineffective when applied to bimanual robots.

E. Experiments on Generalization

In our approach, we integrate a pre-trained multimodal
model with a Diffusion Policy head to generate robot ac-
tions. We demonstrate that leveraging a pre-trained multi-
modal model enhances the model’s generalization capabil-
ities across various perspectives. This integration not only
optimizes action output but also significantly boosts the
system’s adaptability in diverse environments. For all ex-
periments on generalization, we conduct one trial for each
setting. Following DP3 [6], we use the same evaluation met-
rics. We use a cross mark to denote the failure of the model
and a checkmark to indicate successful task completion.

Generalization to new views. Imitation learning, when
trained on limited views, faces challenges in generalizing
its learned capabilities to adapted views. In Figure 5] we
compare the view generalization capabilities of TinyVLA
and Diffusion Policy. It appears that the Diffusion Policy is
extremely sensitive to changes in viewpoint; even a slight
shift can cause the model to fail. In contrast, TinyVLA
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Fig. 6: Background Generalization. We utilized six differ-
ent backgrounds, testing three of them on Task a and the
remaining three on Task b.

demonstrates a certain degree of robustness in handling view
generalization. For example, in tasks requiring high precision
in object manipulation, such as Task B (StackCube) and Task
C (FlipMug), our method can accommodate camera view
shifts of up to 30 degrees to the left or right. Although
it occasionally fails, TinyVLA still shows a significantly
stronger view generalization compared to Diffusion Policy
and OpenVLA, underscoring the benefits of using diffusion-
based policy head.

Background generalization: We varied the background
by using tablecloths of different colors and materials, in-
cluding a wooden tabletop, mouse pad, desk mat, etc. In
total, there are six distinct styles of backgrounds. We tested
three of them on Task A and the remaining three on Task B.
As shown in Figure [6] our model accurately locates objects
and successfully completes tasks across various scenarios,
including position-sensitive tasks like placing a tennis ball,
demonstrating performance comparable to the OpenVLA.

Generalization to different light conditions: Regarding
light conditions, conventional policy networks are sensitive
to variations in lighting. As shown in Figure [7(bottom), we
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the task. Level L2 involves the inclusion of identical cubes
in various colors, adding complexity to the visual environ-
ment. Regarding illumination settings, Level L1 represents
conditions with reduced lighting, while Level L2 describes
scenarios with minimal lighting.

analyze the impact of three different lighting scenarios. The
left image represents our training data. The middle image
depicts the scenario when the overhead lights are turned
off, and the right image shows conditions with all our lights
turned off. We observe that TinyVLA remains unaffected by
these variations in lighting, whereas the OpenVLA fails to
complete the task under low light conditions. This reinforces
our previous findings, confirming that our method is highly
robust against changes in background lighting.

Generalization to distractor: It is known that the dif-
fusion policy is sensitive to distractors, meaning that when
objects not present in the collected data appear, the policy
typically fails to complete the tasks. Indeed, adding strong
augmentation could alleviate this problem. We aim to study
whether the model, without data augmentation, could be
robust to the appearance of distractors. In Figure [/| (top), we
present the StackCube task featuring an additional distractor,
categorized into two difficulty levels. Our model effectively
manages both types of distractors at each difficulty level,
whereas the Diffusion Policy and OpenVLA struggles with
both. This demonstrates that utilizing a pre-trained multi-
modal model significantly enhances generalization capabili-
ties in the presence of distractors.

F. Spatial Generalization

Spatial generalization [74], [75], [76], [77] refers to the
generalization to unseen setup of objects (entities) locations
in one task, which instead requires physical common sense
about space and object. In Figure 0] we present the spatial
generalization performance of our methods. Intriguingly,
although our TinyVLA model was not trained on the specific
locations of objects in the training dataset, it successfully
completes tasks involving these objects. Furthermore, we
have tested our method in locations significantly distant from
those in our training data, as illustrated in Figure [0} We
observe that OpenVLA performs slightly better than our
approach, likely because it is trained on large-scale robotic
data, allowing the model to “see” more diverse robot actions
during pre-training. In contrast, the Diffusion Policy, which
is trained on the same data as our model, consistently fails
to generalize spatially across the tested locations.
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Fig. 8: Object & Appearance generalization. For object
generalization, we replace the objects with previously unseen
ones that have different shapes or colors. For appearance
generalization, we only alter the colors of the objects.
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Fig. 9: Spatial generalization. We conducted evaluations at
multiple positions thoroughly outside the training zone on
two position-sensitive tasks:place tennis and flip mug.

G. Visual Generalization

Visual generalization pertains to the adaptation to novel
visual textures. In robotic manipulation tasks, this type of
generalization can be seen in variations in background color,
object texture, or ambient lighting. These visual changes
do not impact the fundamental task structure, such as the
positioning of objects and targets. Instead, they necessitate
that the robot accurately interpret the semantic meanings
associated with these visual cues.

Appearance generalization: We altered the color of the
target objects, as demonstrated in Figure [§] (right). Initially,
the mug was brown, and the lid was white; we then mod-
ified their colors. We observe that TinyVLA successfully
generalizes to objects with varying colors, demonstrating
a capability similar to that of OpenVLA. Notably, our
approach achieves appearance generalization without relying
on data augmentation during training. This indicates that the
generalization capability of our model stems from the pre-
trained vision-language data.

V. CONCLUSION

In this work, we explore the potential of leveraging pre-
trained multimodal models for robotic manipulation. Our
approach overcomes the limitations of previous methods by
enabling fast inference and significantly reducing the com-
putational resources required for training. We demonstrate
the effectiveness of our method through both simulation and
real-world experiments. We believe our approach offers a
novel solution for building fast, data-efficient VLA models.
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