
PERTURB AND LEARN: ENERGY-BASED MODELLING
IN DISCRETE SPACES WITHOUT MCMC

Anonymous authors
Paper under double-blind review

ABSTRACT

Energy-based models (EBMs) offer a flexible framework for probabilistic mod-
elling across various data domains. However, training EBMs on discrete data poses
significant challenges, primarily due to the intricacies of sampling in such spaces.
In this work, we propose to train discrete EBMs with Energy Discrepancy which
only requires the evaluation of the energy function at data points and their per-
turbed counterparts, thus eliminating the need for demanding sampling techniques
like Markov chain Monte Carlo. Energy discrepancy offers theoretical guarantees
applicable to a broad class of perturbation processes, of which we investigate three
types: perturbations based on Bernoulli noise, deterministic transforms, and neigh-
bourhood structures. We estimate the energy discrepancy loss effectively using
importance sampling with two types of proposal distributions: uninformed and
gradient-informed. Empirically, we demonstrate the efficacy of the proposed ap-
proaches in a wide range of applications, including Ising models training, discrete
density estimation, graph generation, and discrete image modelling.

1 INTRODUCTION

Discrete structures are intrinsic to most types of data such as text, graphs, and images. Estimating
the data generating distribution pdata of discrete data sets with a probabilistic model can contribute
greatly to downstream inference and generation tasks. Energy-based models (EBMs) are probabilistic
models of the form pebm ∝ exp(−U), where the flexible choice of the energy function U allows
great control in the modelling of different data structures. However, energy-based models are, by
definition, unormalised models and notoriously difficult to train due to the intractability of their
normalisation, especially in discrete spaces.

Energy-based models are typically trained with the contrastive divergence (CD) algorithm (Hinton,
2002) which performs approximate maximum likelihood estimation by approximating the gradient of
the log-likelihood with Markov Chain Monte Carlo (MCMC) techniques. This method has led to
rich research results on sampling from discrete distributions to enable fast and accurate estimation
of energy-based models (Zanella, 2020; Grathwohl et al., 2021; Zhang et al., 2022b; Sun et al.,
2022b;a; 2023). However, the training of energy-based models with contrastive divergence remains
challenging, as it relies on sufficiently fast mixing of Markov chains. Since accurate sampling
from the EBM typically cannot be achieved, contrastive divergence lacks theoretical guarantees
(Carreira-Perpinan & Hinton, 2005) and leads to biased estimates of the energy landscape (Nijkamp
et al., 2019).

The recently introduced Energy Discrepancy (ED) (Schröder et al., 2023) is a new type of contrastive
loss functional that, by definition, depends on neither gradients nor MCMC methods. Instead, the
definition of ED only requires the evaluation of the energy function on positive and contrasting,
negative samples which are generated by perturbing the data distribution. Currently, the work in
Schröder et al. (2023) has two limitations: Firstly, it only relies on Gaussian perturbations, limiting
the approach to continuous settings. Secondly, the variance of the contrastive potential can not be
controlled, forcing the practitioner to use a relatively small noise scale which provably limits the
expressiveness of energy discrepancy.

In this work, we propose a framework to train energy-based models with energy discrepancy on
discrete data. Our approach offers both flexibility and theoretical guarantees in the construction
of negative samples, of which we mainly consider three types of perturbation based on Bernoulli
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noise, deterministic transform, and neighbourhood structures. We then relate energy discrepancy
to importance sampling, which not only provides a novel interpretation of contrastive samples
used in the construction of the loss function, but also a new approach to constructing negative
samples using gradient information. Finally, we demonstrate the effectiveness of energy discrepancy
training on various discrete estimation tasks and show that energy discrepancy scales gracefully to
high-dimensional image datasets and graphs.

2 ENERGY DISCREPANCIES

Energy-based models (EBMs) are a parametric family of distributions pθ defined as

pθ(x) =
exp(−Uθ(x))

Zθ
, Zθ =

∑
x∈X

exp(−Uθ(x)), (1)

where Uθ is the energy function parameterised by θ and Zθ denotes the normalisation constant. In
this work, we restrict X to a discrete space and mainly consider it to be {0, 1}d. Given a set of
i.i.d. samples {xi}Ni=1 from an unknown data distribution pdata(x), our goal is to learn an EBM
pθ(x) to approximate pdata(x). The de facto standard for finding such θ is to minimise the negative
log-likelihood of pθ under the data distribution via gradient decent

−∇θEpdata(x)[log pθ(x)] = Ex∼pdata
[∇θUθ(x)]− Ex−∼pθ

[∇θUθ(x−)]. (2)

The intuition behind this update is to decrease the energy of positive data samples x ∼ pdata(x) and
to increase the energy of negative samples x− ∼ pθ(x). However, the computation of gradient in (2)
is known to be NP-hard in general (Jerrum & Sinclair, 1993). Consequently, existing approaches
resort to sampling from the model pθ to approximate the gradient of log-likelihood via Monte Carlo
estimation. In discrete settings, the most popular sampling methods include the locally informed
sampler (Zanella, 2020), Gibbs with gradients (GwG) (Grathwohl et al., 2021), discrete Langevin
(Zhang et al., 2022b), and generative flow networks (GFlowNet) (Zhang et al., 2022a). Despite their
established success in discrete energy-based modelling, these methods necessitate a trade-off that
hampers scalability: running the sampler for an extended duration escalates the cost of maximum
likelihood training, while shorter sampler runs yield inaccurate approximations of the likelihood
gradient and introduce biases into the learned energy.

Energy Discrepancy (Schröder et al., 2023) is a recently proposed method to train energy-based
models without the need for an extensive sampling process. Instead, it constructs negative samples
by perturbing the data, thus bypassing the sampling step while still yielding a valid training objective.
To elucidate, the energy discrepancy is formally defined as follows:
Definition 1 (Energy Discrepancy). Let pdata be a positive density on a measure space (X , dx)1and
let q(y|x) be a conditional probability density. Define the contrastive potential induced by q as2

Uq(y) := − log
∑
x′∈X

q(y|x′) exp(−U(x′)) (3)

We define the energy discrepancy between pdata and U induced by q as
EDq(pdata, U) := Epdata(x)[U(x)]− Epdata(x)Eq(y|x)[Uq(y)]. (4)

The validity of this loss functional is given by the following non-parametric estimation result:
Proposition 1 (Schröder et al. (2023)). Let pdata be a positive probability density on (X , dx). Under
mild conditions on q, energy discrepancy EDq is functionally convex in U and has, up to additive
constants, a unique global minimiser U∗ = argminEDq(pdata, U). Furthermore, this minimiser is
the Gibbs potential for the data distribution, i.e. pdata ∝ exp(−U∗).

Beyond non-parametric estimation, the validity of energy discrepancy can be understood from other
perspectives. Specifically, the loss function defined in (4) is equivalent to the expected negative
log-likelihood of the posterior pebm(x|y)

argmin
U

EDq(pdata, U) ⇔ argmin
U

−Epdata(x)Eq(y|x)[log pebm(x|y)] (5)

1On discrete spaces dx is assumed to be a counting measure. On continuous spaces X , the appearing sums
and expectations turn into integrals with respect to the Lebesgue measure

2With a slight abuse of notations, we represent the contrastive potential induced by distribution q as Uq and
denote the energy function as U with or without the subscript θ.
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where pebm(x|y) ∝ exp(−U(x))q(y|x). Furthermore, minimising energy discrepancy is also
equivalent to minimising the KL-contraction divergence (Lyu, 2011; Luo et al., 2023)

argmin
U

EDq(pdata, U) ⇔ argmin
U

KLCQ(pdata, pebm), pebm ∝ exp(−U), (6)

where KLCQ(p1∥p2) := KL(p1∥p2)−KL(Qp1∥Qp2) denotes the KL-contraction divergence and
Qp(y) :=

∑
x∈X q(y|x)p(x) is a convolution operator. Notably, KLCQ(p1, p2) is non-negative and

equals zero if and only if p1 = p2, a.e.. Energy discrepancy has demonstrated notable effectiveness in
training EBMs in continuous spaces (Schröder et al., 2023). In the next section, we take this concept
a step further by applying it to the training of EBMs in discrete spaces.

3 ENERGY DISCREPANCIES FOR DISCRETE DATA

To apply energy discrepancy in the training of energy-based models in discrete spaces, it is critical to
select a suitable discrete perturbation q(y|x), and establish an effective approach for estimating the
contrastive potential Uq . In this section, we begin by introducing various types of perturbations and
then delve into the estimation of Uq using importance sampling. We will focus on binary discrete
data, i.e. X = {0, 1}d, and discuss possibilities for extensions to other types of discrete data briefly.

3.1 VARIANTS OF DISCRETE PERTURBATION

As per Proposition 1, the perturbation q(y|x) can be chosen quite generally as long as it can be
guaranteed that computing y comes at a loss of information. In the following, we introduce three
categories for constructing such perturbative processes.

Bernoulli Perturbation. As proposed previously in (Schröder et al., 2023, Appendix B.3), q can be
defined via a Bernoulli distribution, i.e. the Bernoulli perturbed data point is obtained as y = x+ ξ
mod 2 for ξ ∼ Bernoulli(ε)d, ε ∈ (0, 1). This induces a symmetric transition density q(y|x) on
{0, 1}d. The Bernoulli random variable ξk indicates in each dimension whether to flip the entry of x.
The value of ϵ controls the information loss induced by the perturbation. In theory, larger values of ϵ
lead to a more data-efficient loss, while smaller values of ϵ may be more practical as they contribute
to improved training stability. On discrete spaces with more than two states per dimension, this
perturbation can be generalised to a Markov transition density on the state space {0, . . . ,K − 1}d.

Deterministic Transformation. The perturbation q can also be defined through a deterministic
information loosing map. Specifically, consider a mapping g : X → Y , which is not injective at
any x ∈ X , i.e., for all y ∈ Y , we have |{x ∈ X : g(x) = y}| > 1. Then, the characteristic
function q(y|x) = δ{g(x)}(y) is a suitable perturbation, where δ denotes the indicator function3. It is
noteworthy that such transformations offer flexibility, and common augmentation techniques (Zhao
et al., 2020), like pooling, resizing, cutout, etc., are suitable options. In this paper, we primarily focus
on mean pooling (details in Appendix B.1), but exploring more tailored transformations for specific
forms of data is a potential avenue for future research.

Neighbourhood-based Perturbation. Inspired by concrete score matching (Meng et al., 2022), we
introduce the last perturbation scheme based on neighbourhood maps: x 7→ N (x), which assigns
each data point x ∈ X a set of neighbours N (x). In this case, the forward transition density is given
by the uniform distribution over the set of neighbours, i.e., q(y|x) = 1

|N (x)|δN (x)(y). In this work,
we mainly consider the grid neighbourhood, which is constructed as

Ngrid(x) = {y ∈ {0, 1}d : y − x = ±ek, k = 1, 2, . . . , d}, (7)
where ek is a vector of zeros with a one in the k-th entry. Notably, this neighbourhood structure
also exhibits symmetry, i.e., N−1

grid(x) = Ngrid(x), which will make the computation of contrastive
potential particularly simple. Neighbourhood structures are particularly suitable for adaptation to
other types of discrete data as they offer great modelling flexibility.

3.2 ESTIMATING CONTRASTIVE POTENTIAL WITH IMPORTANCE SAMPLING

The primary challenge in turning energy discrepancy into a practical loss function lies in the estimation
of the contrastive potential Uq. To make the estimation tractable, we first turn the intractable sum

3The indicator function δS(x) equals 1 if x ∈ S else 0 if x /∈ S.
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over the whole state space X into an expectation using importance sampling, i.e.,

Uq(y) = − log
∑
x∈X

exp(−U(x))q(y|x) = − logEρy(x) [wy(x) exp(−U(x))] , (8)

where ρy(x) is a conditional distribution in x, and wy(x) :=
q(y|x)
ρy(x)

denotes the importance weight.
The minimum-variance proposal takes the form of the posterior distribution (Robert et al., 1999)

ρ∗y(x) ∝ exp(−U(x))q(y|x), . (9)

We need to make a trade-off between finding tractable approximations of ρ∗y and the computational
complexity of our approach. Ideally, one chooses large perturbations such as the Bernoulli perturba-
tion that are capable of perturbing multiple dimensions at once and explore the state space effectively,
yielding a data efficient loss function. Since this makes the estimated loss more noisy, an ideal
proposal distribution ρy should be easy to sample from and yield a low variance estimator.

3.3 UNINFORMED PROPOSALS

If the perturbing distribution q can be normalised in x, a naive approach is to replace ρ∗y with

πy(x) :=
q(y|x)∑

x∈X q(y|x)
.

We call this the uninformed proposals, which involve replacing the energy-based factor of ρ∗ with
a uniform distribution, implying that no information about U is utilised in estimating Uq. In this
case, the importance weight only contributes a constant to the contrastive potential independent of
U . Schröder et al. (2023) utilise this approach to approximate the energy discrepancy loss based on
Gaussian perturbations which are symmetric in y and x and are thus normalised by definition.

In discrete settings, the corresponding uninformed proposals πy for the three types of proposed
perturbation have simple forms and allow easy approximations of the contrastive potential. For
the Bernoulli perturbation, the likelihood q is symmetric in x and y and thus already normalised,
i.e., πy(x) =

∏d
k=1 ϵ

ξk(1 − ϵ)1−ξk with ξ := |y − x| ∈ {0, 1}d. Hence, we can approximate
expectations by sampling Bernoulli noise and flipping entries of the data vector accordingly, i.e.

x− := (y + ξ mod 2) ∼ πy(x) where ξ ∼ Bernoulli(ϵ) . (10)

For the deterministic transformation y = g(x), the appropriate normalised proposal distribution πy is
obtained by sampling wuniformly from the preimage of g, i.e. x− ∼ Uniform({x ∈ X : g(x) = y}).
In this case, the importance weight is given by wy := |{g−1(y)}| which is independent of U . The
grid-neighbourhood case can be treated similarly. Here, the contrastive potential can be expressed
in terms of the inverse neighbourhood y 7→ N−1(y), i.e., by sampling uniformly from the set of
points that have y to their neighbour. In all the above cases, the contrastive potential can finally be
approximated by sampling from πy(x) which yields

Uq(y) ≈ log
1

M

M∑
i=1

exp(−U(xi
−)) + logwy, xi

− ∼ πy(x). (11)

4 IMPROVEMENT WITH GRADIENT GUIDANCE AND STABILISATION

While utilising the uninformed proposal πy can effectively estimate the contrastive potential, it is
desirable to reduce its variance through a better approximation of the optimal potential ρ∗y.In this
section, we tackle this issue by initially introducing gradient-informed proposals, drawing inspiration
from Grathwohl et al. (2021), and subsequently enhancing training stability through the use of
w-stabilisation as proposed by Schröder et al. (2023).

4.1 GRADIENT-INFORMED PROPOSALS

For many choices of perturbation, such as Bernoulli and Grid-neighbourhood perturbations, the
distribution q(y|x) only depends on the difference between x and y. Sampling from the proposal

4



ρy(x) can be simplified when ρy(x) also only depends on this difference. Inspired by the usage
of gradients in Grathwohl et al. (2021); Liu et al. (2023), we suggest achieving this via a Taylor
expansion U(x) ≈ U(y)+∇U(y)T (x−y). This leads to the gradient-informed proposals, which
is a first-order approximation to the optimal proposal ρ∗y in (9)

ρy(x) ∝ exp

(
−1

τ
∇U(y)T (x− y)

)
q(y|x). (12)

Here, U(y) was absorbed into the normalisation of the proposal, and we introduce a temperature
parameter τ to control the sharpness of the proposal. Obviously, when τ → ∞, the gradient-informed
proposal converges to the uninformed proposal. When τ → 0, the proposal only tries to minimise
the linearised energy landscape which may miss the information of local low-energy states. Zanella
(2020) suggests using τ = 2 to balance the two effects for locally balanced proposals, which was
also used in Grathwohl et al. (2021) for the gradient-informed proposal.

Note that the Taylor series is technically not well-defined for discrete data x ∈ {0, 1}. However, the
inner product ∇U(y)T (x−y) is still a meaningful approximation of the difference U(x)−U(y) and
can expressed as ∇U(y)T (x− y) = (∇U(y)⊙ (1− 2y))T ξ, where ⊙ denotes a dimension-wise
multiplication and ξ = |x − y| ∈ {0, 1}d. To abbreviate the notation, we write ∇bitU(y) :=
(∇U(y)⊙ (1−2y)) for the gradient in {0, 1}d. In the Bernoulli case, the gradient-informed proposal
is again Bernoulli with parameter

pk :=
exp(− 1

τ∇
bit
k U(y))ϵ

1− ϵ+ exp(− 1
τ∇

bit
k U(y))ϵ

for k = 1, 2, . . . , d (13)

i.e., the proposal takes the form ρ∇y (x) =
∏d

k=1 p
ξk

k (1− pk)
1−ξk . In the case of grid-neighbourhood

perturbation, we flip at exactly one dimension which is determined via the categorical distribution

y¬k ∼ ρ∇y (x) where k ∼ Categorical

(
softmax

(
−1

τ
∇bitU(y)

))
, (14)

where y¬k = y + ek mod 2 denotes the vector y with the entry in the kth dimension flipped. In
both cases, the calculation of the importance weight reduces to wy(x) ∝ exp

(
1
τ∇

bitU(y)T ξ
)
. The

proportionality constant is given by the normalisation of ρ∇y (x) which is independent of the negative
samples and hence does not influence the direction of the parameter gradient. We give derivations for
the gradient-informed proposals in Appendix A.

Comparison to CD-1. In the special case of one negative sample per data point, the importance
weight does not influence the gradient of energy discrepancy and the parameter update induced by
one data point takes the form ∇θUθ(x)−∇θUθ(x−) with x− ∼ ρ∇y (x). For the grid neighbourhood,
this update closely resembles the parameter update of contrastive divergence with one step of Gibbs
with gradients (Grathwohl et al., 2021), with the primary difference that the sampler is initialised at
y ∼ q(y|x) instead of x. However, energy discrepancy provides a framework to increase the number
of negative samples per data point and incorporate importance weights wy(x−). In the limit, we
approximate EDq(pdata, Eθ) (see Theorem 1), which offers theoretical guarantees. Consequently,
energy discrepancy with gradient-informed proposals has the capacity to learn more accurate energy
landscapes than CD-1. This assertion is further substantiated by empirical evidence presented in
Table 6, where we observe that energy discrepancy significantly outperforms CD-1.

4.2 TRAINING DISCRETE EBMS WITH ENERGY DISCREPANCIES

The above schemes permit the approximation of the contrastive potential from M samples which
are generated by first sampling y ∼ q(y|x), after which we compute M approximate recoveries
{xj

−}Mj=1. The full loss can then be constructed for each data point x ∼ pdata by calculating
log
∑M

j=1 exp(U(x)−U(xj
−)+ logwy(x

j
−))− log(M) using the numerically stabilised logsumexp

function. However, this estimator for energy discrepancy is biased due to the logarithm and can
exhibit high variance. As in Schröder et al. (2023), we stabilise training by introducing an offset
for the logarithm which introduces a deterministic lower bound for the loss. This yields the energy
discrepancy loss function
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Algorithm 1 Training Discrete EBMs with Energy Discrepancies
Input: Training data D = {xi}Ni=1; parameterised energy function Uθ; perturbation dist. q; number
of negative samples M ; stabilisation parameter w.

1: repeat
2: Sample a batch of data {xi} ∼ D
3: Sample perturbed data yi ∼ q(y|xi) for each xi

4: Compute the gradient ∇yiUθ(y
i) if using gradient-informed proposals

5: Sample M negative samples {xi,j
− }Mj=1 for each xi from proposals in (9), (13) or (14)

6: Update θ based on ∇θLq,M,w(Uθ) via (15)
7: until convergence of parameter θ

Lq,M,w(U) :=
1

N

N∑
i=1

log

w +

M∑
j=1

exp(U(xi)− U(xi,j
− ) + logwyi(xi,j

− ))

− log(M) (15)

with xi ∼ pdata, yi ∼ q(·|xi), and xi,j
− ∼ πyi or ρyi . It is worth noting that the importance weight

wyi(xi,j
− ) remains constant when employing the uninformed proposal πyi and can therefore be

omitted during optimisation. Alternatively, if using the gradient-informed proposals, wyi(xi,j
− ) can

be explicitly computed due to their closed-form expressions defined in (13) and (14). Notably, as
shown in the following theorem, this approximation is consistent for any fixed w:
Theorem 1. For every ε>0 there exist N,M ∈N such that |Lq,M,w(U)−EDq(pdata, U)|<ε a.s..

We adapted the proof of Theorem 1 to the case of discrete perturbations and gradient proposals in
Appendix B.2. The training procedure is outlined in Algorithm 1, where we present five distinct
approaches: i) ED-Bern with Bernoulli perturbation and uninformed proposal; ii) ED-Pool with mean-
pooling transformation and uninformed proposal; iii) ED-Grid with grid-neighbourhood perturbation
and uninformed proposal; iv) ED-∇Bern with Bernoulli perturbation and gradient-informed proposal;
and v) ED-∇Grid with grid-neighbourhood perturbation and gradient-informed proposal.

5 RELATED WORK

Contrastive loss functions. Our work is based on energy discrepancies first introduced in (Schröder
et al., 2023). Energy discrepancy is equivalent to certain types of KL contraction divergences which
were already introduced in Lyu (2011), however, only for its theoretical properties. Interestingly, the
structure of the stabilised energy discrepancy loss shares similarities with other contrastive losses
such as Ceylan & Gutmann (2018); Gutmann & Hyvärinen (2010); van den Oord et al. (2018). This
poses the question of possible classification-based interpretations of energy discrepancy and of the
w-stabilisation.

Contrastive divergence and Sampling. Contrastive divergence is commonly utilized for training
energy-based models in continuous spaces with Langevin dynamics (Xie et al., 2016; 2018; 2022;
Du et al., 2020; Xiao et al., 2020). In discrete spaces, EBM training heavily relies on contrastive
divergence methods as well, driving extensive exploration and development in the realm of discrete
sampling strategies. The improvement of the standard Gibbs method was proposed by Zanella (2020)
through locally informed proposals. This method was extended to include gradient information
(Grathwohl et al., 2021) to drastically reduce the computational complexity of flipping bits of binary
valued data and to flipping bits in several places (Sun et al., 2022b; Emami et al., 2023; Sun et al.,
2022a). Moreover, the discrete version of Langevin sampling have been introduced based on this
idea (Zhang et al., 2022b; Rhodes & Gutmann, 2022; Sun et al., 2023). Consequently, most current
implementations of contrastive divergence use multiple steps of a gradient-based discrete sampler.
Alternatively, energy-based models can be trained using generative flow networks which learn a
Markov chain to construct data by optimising a given reward function. The Markov chain can be used
to obtain samples for contrastive divergence without MCMC from the EBM (Zhang et al., 2022a).

Other training methods for discrete EBMs. There also exist some MCMC-free approaches for
training discrete EBMs. Our work has connections to concrete score matching (Meng et al., 2022)
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Table 1: Experimental results of discrete density estimation. We display the negative log-likelihood
(NLL). The results of baselines are taken from Zhang et al. (2022a).

Metric Method 2spirals 8gaussians circles moons pinwheel swissroll checkerboard

NLL↓

PCD 20.094 19.991 20.565 19.763 19.593 20.172 21.214
ALOE+ 20.062 19.984 20.570 19.743 19.576 20.170 21.142
EB-GFN 20.050 19.982 20.546 19.732 19.554 20.146 20.696
ED-Bern 20.039 19.992 20.601 19.710 19.568 20.084 20.679
ED-∇Bern 20.048 19.979 20.603 19.717 19.553 20.089 20.677
ED-Grid 20.049 19.965 20.601 19.715 19.564 20.088 20.678
ED-∇Grid 20.092 20.005 20.605 19.740 19.577 20.087 21.439

through the usage of neighbourhood structures to define a replacement of the continuous score
function. Another sampling-free approach for training discrete EBMs is ratio matching (Hyvärinen,
2007; Lyu, 2012). It has been found that gradient information drastically improves the performance
of ratio matching as well (Liu et al., 2023). Moreover, Dai et al. (2020) proposed to apply variational
approaches to train discrete EBMs instead of MCMC. Eikema et al. (2022) replaced the widely-
used Gibbs algorithms with quasi-rejection sampling to trade off the efficiency and accuracy of the
sampling procedure. The perturb-and-map (Papandreou & Yuille, 2011) is also recently utilised to
sample and learn in discrete EBMs (Lazaro-Gredilla et al., 2021).

6 EXPERIMENTS

We demonstrate the efficacy of our methods on various tasks, including training Ising models, density
estimation on a discretised 2D plane, graph generation, and discrete image modelling. Here we
mainly showcase the empirical results of ED-Bern, ED-∇Bern, ED-Grid, and ED-∇Grid, but leave
the results of ED-Pool on density estimation and more implementation details in Appendix C.

6.1 TRAINING ISING MODELS

Figure 1: Results on learning Ising models. Left to right:
ground truth, ED-Bern, ED-∇Bern, ED-Grid, ED-∇Grid.

We first evaluate our methods on train-
ing the lattice Ising model, which has
the form of

p(x) ∝ exp(xTJx), x ∈ {−1, 1}D,

where J = σAD with σ ∈ R and AD

being the adjacency matrix of a D×D grid. Following Grathwohl et al. (2021); Zhang et al. (2022b;a),
we generate training data through Gibbs sampling and use the generated data to fit a symmetric matrix
J via energy discrepancy. Note that the training algorithms do not have access to the data-generating
matrix J , only to the collection of samples. In Figure 1, we consider D = 10 × 10 grids with
σ = 0.2 and illustrate the learned matrix J using a heatmap. It can be seen that the variants of energy
discrepancy can identify the pattern of the ground truth, confirming the effectiveness of our methods.
We defer experimental details and quantitative results comparing with baselines to Appendix C.1.

6.2 DISCRETE DENSITY ESTIMATION

In this experiment, we follow the experimental setting of Dai et al. (2020); Zhang et al. (2022a),
which aims to model discrete densities over 32-dimensional binary data that are discretisations of
continuous densities on the plane (see the top row in Figure 2). Specifically, we convert each planar
data point x̂ ∈ R2 to a binary data point x ∈ {0, 1}32 via Gray code (Gray, 1953). Consequently, the
models face the challenge of modelling data in a discrete space, which is particularly difficult due to
the non-linear transformation from x̂ to x. The experimental details are given in Appendix C.2.

We compare our methods to three baselines: PCD (Tieleman, 2008), ALOE+ (Dai et al., 2020),
and EB-GFN (Zhang et al., 2022a). In Tables 1 and 4, we quantitatively evaluate different methods
by evaluating the negative log-likelihood (NLL) and the exponential Hamming MMD (Gretton
et al., 2012), respectively. We observe that energy discrepancy outperforms the baseline methods in
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Figure 2: Visualization of training samples and the learned energy landscapes for discrete density
estimation. Top to Bottom: training samples, energy landscapes learned by ED-Bern and ED-Grid.
We defer more qualitative results to Figure 3.

most settings, all without the need for MCMC simulations (as in PCD) or the training of additional
variational networks (like ALOE and EB-GFN). This performance gain is likely explained by the
theoretical guarantees of energy discrepancy. In contrast, PCD and ALOE introduce biases due to
their reliance on short-run MCMC sampling and variational proposals that may not have converged.
Additionally, we provide a qualitative visualisation of the energy landscapes learned by our methods
in Figure 2. This visualisation illustrates that energy discrepancy excels at faithfully modeling
multi-modal distributions and accurately capturing sharp data support edges. For further qualitative
comparisons, please refer to Figure C.2 of Zhang et al. (2022a), which presents energy landscapes for
baseline methods.

6.3 GRAPH GENERATION

Table 2: Graph generation results in terms of
MMD. Avg. denotes the average over three
MMD results.

Method Degree Cluster Orbit Avg.

GraphVAE 0.130 0.170 0.050 0.117
DeepGMG 0.040 0.100 0.020 0.053
GraphRNN 0.090 0.220 0.003 0.104
GNF 0.030 0.100 0.001 0.044
GraphAF 0.030 0.110 0.001 0.047
GraphDF 0.040 0.130 0.010 0.060
EDP-GNN 0.052 0.093 0.007 0.050
EBM (GWG) 0.095 0.061 0.032 0.063
RMwGGIS 0.066 0.042 0.036 0.048

ED-Bern 0.063 0.054 0.014 0.044
ED-∇Bern 0.033 0.046 0.020 0.033
ED-Grid 0.036 0.050 0.019 0.035
ED-∇Grid 0.040 0.040 0.021 0.036

The efficacy of our methods can be further demon-
strated by producing high-quality graph samples. Fol-
lowing the setting in You et al. (2018), our model
is evaluated on the Ego-small dataset, which com-
prises one-hop ego graphs extracted from the Cite-
seer network (Sen et al., 2008). We parametrise the
energy function using graph convolutional neural net-
works (GCNs) (Kipf & Welling, 2016) and train it
by minimising the energy discrepancy. After training,
new graphs are sampled utilizing the Gibbs-With-
Gradient (GWG) sampler (Grathwohl et al., 2021).
To assess the quality of these samples, we employ
the MMD metric, evaluating it across three graph
statistics, i.e., degrees, clustering coefficients, and
orbit counts. Additional comprehensive details can
be found in Appendix C.3.

We consider some recent works in graph generation
as baselines4, including GraphVAE (Simonovsky & Komodakis, 2018), DeepGMG (Li et al., 2018),
GraphRNN (You et al., 2018), GNF (Liu et al., 2019), GrappAF (Shi et al., 2020), GraphDF (Luo
et al., 2021), EDP-GNN (Niu et al., 2020), RMwGGIS (Liu et al., 2023), and contrastive divergence
with GWG sampler (Grathwohl et al., 2021). As summarised in Table 2, our methods outperform
most baselines in terms of the average of the three MMD metrics, indicating the faithful energy
landscapes learned by the energy discrepancy approaches. Additionally, we further visualise the
generated samples in Figure 11. It can be seen that the generated samples are one-hop ego graphs,
illustrating their adherence to the graph characteristics in the training data.

4There is insufficient information to reproduce EBM (GwG) and RMwGGIS precisely from Liu et al. (2023).
We reran these two baselines with controlled hyperparameters (details are presented in Appendix C.3) for a fair
comparison, while other baseline results were taken from their original papers.
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Table 3: Experimental results on discrete image modelling. We report the negative log-likelihood
(NLL) on the test set for different models. The results of Gibbs, GWG, and DULA are taken from
Zhang et al. (2022b), and the result of EB-GFN is from Zhang et al. (2022a).

Dataset \ Method Gibbs GWG EB-GFN DULA ED-Bern ED-∇Bern ED-Grid ED-∇Grid

Static MNIST 117.17 80.01 102.43 80.71 96.11 90.16 90.61 91.24
Dynamic MNIST 121.19 80.51 105.75 81.29 97.12 90.15 90.19 91.03
Omniglot 142.06 94.72 112.59 145.68 97.57 95.56 93.94 110.31

6.4 DISCRETE IMAGE MODELLING

Here, we evaluate our methods in discrete high-dimensional spaces. Following the settings in
Grathwohl et al. (2021); Zhang et al. (2022b), we conduct experiments on four different binary image
datasets. Training details are given in Appendix C.4. After training, we employ annealed importance
sampling (Neal, 2001) to estimate the negative log-likelihood (NLL).

The baselines include persistent contrastive divergence with vanilla Gibbs sampling, Gibbs-With-
Gradient (Grathwohl et al., 2021, GWG), Generative-Flow-Network (Zhang et al., 2022a, GFN),
and Discrete-Unadjusted-Langevin-Algorithm (Zhang et al., 2022b, DULA). Table 3 displays the
NLLs on the test dataset. It is evident that energy discrepancy achieves comparable performance
to the baseline methods on the Omniglot dataset. Despite the performance gap compared to the
contrastive divergence methods on the MNIST dataset, energy discrepancy stands out for its efficiency,
requiring only M (in this instance, M = 32) evaluations of the energy function per data point, all
executed in parallel. This represents a significant computational reduction compared to contrastive
divergence, which lacks the advantage of parallelisation and involves simulating multiple MCMC
steps. Additionally, our methods show superiority over CD-1 by a substantial margin, as demonstrated
in Table 6, affirming the effectiveness of our approach. Notably, ED-∇Bern consistently outperforms
ED-Bern, thanks to the efficacy of the gradient-informed proposal. However, ED-∇Grid does not
exhibit performance improvement compared to ED-Grid. This is partly because the gradient-informed
proposal, when coupled with the grid-neighbourhood transformation, tends to get trapped in local
modes as it only flips one bit for each negative sample. For further insights, we provide visualizations
of the generated samples in Figure 12, showcasing images generated by our methods.

7 CONCLUSION AND OUTLOOK

In this paper we demonstrate that energy discrepancy can be used for efficient and competitive
training of energy-based models on discrete data without MCMC. The loss can be defined based on
a large class of perturbative processes of which we explore three types, the Bernoulli perturbation
(Schröder et al., 2023), the deterministic transform and the neighbourhood-based perturbation. We
establish that this simple and computationally cheap approach can achieve competitive results even
for intricate data sets such as discrete images.

Furthermore, we introduce a novel interpretation of the negative samples in energy discrepancy via
importance sampling. This interpretation allows us to seamlessly incorporate gradient information
of the energy function to obtain more informative negative samples while preserving the theoretical
guarantees of energy discrepancy. This modification leads to major improvements when learning
energy-based models with a Bernoulli perturbation, and drastically outperforms CD-1 despite com-
parable computational complexity. However, we observe empirically that the gradient information
achieves the same improvement for the grid-neighbourhood, despite the success of gradient-informed
bit flips in the literature (Grathwohl et al., 2021; Liu et al., 2023). Since the grid-neighbourhood
leads to the smallest possible perturbation among all approaches discussed, it is possible that energy
discrepancy gets trapped in local modes due to the locality of the approach.

For future work, we are interested in how this work extends to larger highly structured types of data
such as molecules or text. These settings may require a deeper understanding of how the perturbation
influences the performance of ED and how to harness the information from energy-based models and
base distribution in an improved way during training.
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Appendix for "Perturb and Learn: Energy-Based
Modelling in Discrete Spaces without MCMC"
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A DERIVATION OF THE GRADIENT-INFORMED PROPOSALS

A.1 GRADIENT-INFORMED PROPOSAL FOR THE BERNOULLI PERTURBATION

In the case of the Bernoulli perturbation, the proposal takes the form

ρy(x) =

∏d
k=1 exp

(
− 1

τ∇
bit
k U(y)ξk

)
ϵξk(1− ϵ)(1−ξk)

ZU,ϵ
(16)

with ξ = |x−y|, componentwise. To factorise this distribution we need to compute the normalisation
ZU,ϵ. This can be done conveniently by iteratively summing over one dimension, i.e. we have

ZU,ϵ =
∑

ξ∈{0,1}d

d∏
k=1

exp

(
−1

τ
∇bit

k U(y)ξk

)
ϵξk(1− ϵ)(1−ξk) (17)

=
∑

{ξd=0}

d∏
k=1

exp

(
−1

τ
∇bit

k U(y)ξk

)
ϵξk(1− ϵ)(1−ξk)

+
∑

{ξd=1}

d∏
k=1

exp

(
−1

τ
∇bit

k U(y)ξk

)
ϵξk(1− ϵ)(1−ξk)

=

(
exp

(
−1

τ
∇bit

d U(y)

)
ϵ+ 1− ϵ

) ∑
ξ∈{0,1}d−1

d−1∏
k=1

exp

(
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τ
∇bit

k U(y)ξk

)
ϵξk(1− ϵ)(1−ξk)

=

d∏
k=1

(
exp

(
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τ
∇bit

k U(y)

)
ϵ+ 1− ϵ

)
Hence, the proposal takes the Bernoulli form

ρy(x) =

d∏
k=1

(
exp

(
− 1

τ∇
bit
k U(y)

)
ϵ

exp
(
− 1

τ∇
bit
k U(y)

)
ϵ+ 1− ϵ

)ξk
(

1− ϵ

exp
(
− 1

τ∇
bit
k U(y)

)
ϵ+ 1− ϵ

)1−ξk

(18)
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From this, we identify the parameter of the distribution as

pk :=
exp

(
− 1

τ∇
bit
k U(y)

)
ϵ

exp
(
− 1

τ∇
bit
k U(y)

)
ϵ+ 1− ϵ

(19)

as claimed.

A.2 GRADIENT-INFORMED PROPOSAL FOR THE GRID NEIGHBOURHOOD

For the grid neighbourhood, the unnormalised probability is

ρy(x) ∝ exp

(
−1

τ
∇bitU(y)T |x− y|

)
δN−1(y)(x) (20)

The inverse grid neighbourhood only consists of elements that differ of y in exactly one dimension,
i.e.

N−1(y) = {y¬k : k = 1, 2, . . . , d} (21)

Hence, we can restrict the proposal to this support which allows for tractable normalisation:

ρy(y¬k) =
exp

(
− 1

τ∇
bit
k U(y)

)∑d
k=1 exp

(
− 1

τ∇
bit
k U(y)

) = softmax

(
exp

(
−1

τ
∇bitU(y)

))
k

(22)

B DETERMINISTIC TRANSFORMATION AND PROOF OF CONSISTENT
APPROXIMATION

B.1 MEAN POOLING TRANSFORM

We describe the mean-pooling transform on the example of image data which takes values in the
space {0, 1}h×w. We fix a window size s and reshape each data-point into blocks of size s× s, i.e.

{0, 1}h×w → {0, 1}s×s×h
s ×

w
s , x 7→ x̄

The mean pooling transform gpool computes the average over each block x̄•,•,i,j for i = 1, 2, . . . , h/s
and j = 1, 2, . . . , w/s. The corresponding preimage of the mean pooling transform is given by the
set of points which are identical to x up to block-wise permutation, i.e.

g−1(gpool(x)) = {x′ ∈ X : there exist πi,j ∈ Ss×s s.t. x̄′
l,k,i,j = x̄′

πi,j(l,k),i,j
for all l, k, i, j}

where Ss×s denotes the permutation group for matrices of size s× s. In practice, the mean-pooled
data point has to never be computed, only the block wise permutations of the data point are required.
Consequently, we obtain negative samples through xi,j

− ∼ U(g−1(gpool(x
i))), i.e. via block wise

permutation of the entries of each data point xi.

Strictly speaking, this transformation violates the assumptions of Proposition 1 for data points that
only consist of blocks that average to 1 or 0. Since this is only the case for a small set of the state
space, we assume this violation to be negligible.

B.2 CONSISTENCY OF OUR APPROXIMATION

The following proof is similar to Schröder et al. (2023). We first restate the consistency result:

Theorem 1. For every ε>0 there exist N,M ∈N such that |Lq,M,w(U)−EDq(pdata, U)|<ε a.s..

Proof. For N data points xi
+ ∼ pdata and perturbed points yi ∼ q(·|xi

+), denote the M correspond-
ing negative samples by xi,j

− ∼ ρyi(x), where ρyi(x) can be the uninformed or gradient-informed
proposal. Notice that the distribution of the negative samples depends on yi. Using the triangle
inequality, we can upper bound the difference |EDq(pdata, U)− Lq,M,w(U)| by upper bounding the
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Table 4: Experimental results of discrete density estimation. We display the MMD (in units of
1× 10−4). The results of baselines are taken from Zhang et al. (2022a).

Metric Method 2spirals 8gaussians circles moons pinwheel swissroll checkerboard

MMD↓

PCD 2.160 0.954 0.188 0.962 0.505 1.382 2.831
ALOE+ 0.149 0.078 0.636 0.516 1.746 0.718 12.138
EB-GFN 0.583 0.531 0.305 0.121 0.492 0.274 1.206
ED-Bern 0.120 0.014 0.137 -0.088 0.046 0.045 1.541
ED-∇Bern 0.148 -0.059 -0.028 0.060 0.045 0.015 1.276
ED-Grid 0.097 -0.066 0.022 0.018 0.351 0.097 2.049
ED-∇Bern 2.079 0.912 0.185 1.397 0.535 0.235 6.901

following two terms, individually:∣∣∣∣∣EDq(pdata, U)− 1

N

N∑
i=1

logE
[
exp(U(xi

+)− U(xi,j
− ) + logwyi(xi,j

− ))
∣∣∣xi

+,y
i
] ∣∣∣∣∣

+

∣∣∣∣∣ 1N
N∑
i=1

logE
[
exp(U(xi

+)− U(xi,j
− ) + logwyi(xi,j

− ))
∣∣∣xi

+,y
i
]
− Lq,M,w(U)

∣∣∣∣∣
The conditioning expresses that the expectation is only taken in xi,j

− ∼ ρyi(x) while keeping the
values of the random variables xi

+ and yi fixed. The first term can be bounded by a sequence
εN

a.s.−−→ 0 due to the normal strong law of large numbers. For the second term one needs to consider
that the distribution ρyi(x) depends on the random variable yi. For this reason, we notice that xi,j

−
are conditionally independent given xi

+,y
i and employ a conditional version of the strong law of

large numbers (Majerek et al., 2005, Theorem 4.2) to obtain

1

M

M∑
j=1

exp
(
U(xi

+)−U(xi,j
− )+logwyi(xi,j

− )
)

a.s.−−→ E
[
exp(U(xi

+)−U(xi,j
− )+logwyi(xi,j

− )
∣∣∣xi

+,y
i
]

Next, we have that the deterministic sequence w/M → 0. Thus, adding the stabilisation w/M does
not change the limit in M . Furthermore, since the logarithm is continuous, the limit also holds after
applying the logarithm. Finally, the estimate translates to the sum by another application of the
triangle inequality: For each i = 1, 2, . . . , N there exists a sequence εi,M

a.s.−−→ 0 such that∣∣∣∣∣ 1N
N∑
i=1

logE
[
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− )
∣∣∣xi

+,y
i
]
− Lq,M,w(U)

∣∣∣∣∣
≤ 1

N

N∑
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∣∣∣logE [exp(U(xi
+)− U(xi,j

− ) + logwyi(xi,j
− )
∣∣∣xi
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i
]
− Lq,M,w(U)

∣∣∣
<

1

N

N∑
i=1

εi,M ≤ max(ε1,M , . . . , εN,M ) .

Hence, for each ε > 0 there exists an N ∈ N and an M(N) ∈ N such that |EDq(pdata, U) −
Lq,M(N),w(U)| < ε almost surely.

C MORE ABOUT EXPERIMENTS

C.1 TRAINING ISING MODELS

Experimental Details. As in Grathwohl et al. (2021); Zhang et al. (2022a;b), we train a learnable
connectivity matrix Jϕ to estimate the true matrix J in the Ising model. To generate the training
data, we simulate Gibbs sampling with 1, 000, 000 steps for each instance to construct a dataset of
2, 000 samples. For energy discrepancy, we choose w = 1,M = 32 for all variants, ϵ = 0.1 in
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Figure 3: Visualization of the learned energy landscapes. Top to bottom: ED-Pool, ED-∇Bern,
ED-∇Grid, ED-Gaussian. The last row illustrates the failure of employing energy discrepancy with
Gaussian perturbation in discrete spaces.

Bernoulli perturbations, and τ = 2 in gradient-informed proposals. The parameter Jϕ is learned by
the Adam (Kingma & Ba, 2014) optimizer with a learning rate of 0.0001 and a batch size of 256.
Following Zhang et al. (2022a), all models are trained with an l1 regularization with a coefficient
in {100, 50, 10, 5, 1, 0.1, 0.01} to encourage sparsity. The other setting is basically the same as
Section F.2 in Grathwohl et al. (2021). We report the best result for each setting using the same
hyperparameter searching protocol for all methods.

Table 5: Mean negative log-RMSE (higher is better) between
the learned connectivity matrix Jϕ and the true matrix J for
different values of D and σ. The results of baselines are
directly taken from Zhang et al. (2022a).

D = 102 D = 92

Method \ σ 0.1 0.2 0.3 0.4 0.5 −0.1 −0.2

Gibbs 4.8 4.7 3.4 2.6 2.3 4.8 4.7
GWG 4.8 4.7 3.4 2.6 2.3 4.8 4.7
EB-GFN 6.1 5.1 3.3 2.6 2.3 5.7 5.1
ED-Bern 5.1 4.0 2.9 2.5 2.3 5.1 4.3
ED-∇Bern 5.0 4.2 3.0 2.6 2.3 5.0 4.2
ED-Grid 4.6 4.0 3.1 2.6 2.3 4.5 4.0
ED-∇Grid 4.6 4.1 3.2 2.6 2.3 4.8 4.7

Quantitative Results. We consider
D = 10 × 10 grids with σ =
0.1, 0.2, . . . , 0.5 and D = 9× 9 grids
with σ = −0.1,−0.2. The meth-
ods are evaluated by computing the
negative log-RMSE between the esti-
mated Jϕ and the ture matrix J . As
shown in Table 5, our methods demon-
strate comparable results to the base-
lines and, in certain settings, even out-
perform Gibbs and GWG, indicating
that energy discrepancy is able to dis-
cover the underlying structure within
the data.

C.2 DISCRETE DENSITY
ESTIMATION

Experimental Details. This experiment keeps a consistent setting with Dai et al. (2020). We
first generate 2D floating-points from a continuous distribution p̂ which lacks a closed form but
can be easily sampled. Then, each sample x̂ := [x̂1, x̂2] ∈ R2 is converted to a discrete data
point x ∈ {0, 1}32 using Gray code. To be specific, given x̂ ∼ p̂, we quantise both x̂1 and x̂2

into 16-bits binary representations via Gray code (Gray, 1953), and concatenate them together
to obtain a 32-bits vector x. As a result, the probabilistic mass function in the discrete space
is p(x) ∝ p̂ ([GrayToFloat(x1:16),GrayToFloat(x17:32)]). It is noteworthy that learning on this
discrete space presents challenges due to the highly non-linear nature of the Gray code transformation.

The energy function is parameterised by a 4 layer MLP with 256 hidden dimensions and Swish
(Ramachandran et al., 2017) activation. We train the EBM for 105 steps and adopt an Adam optimiser
with a learning rate of 0.002 and a batch size of 128 to update the parameter. For the energy
discrepancy, we choose w = 1,M = 32 for all variants, ϵ = 0.1 in Bernoulli perturbations, and
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Figure 5: Density estimation results of ED-Bern on the pinwheel with different ϵ,M and w = 1.

τ = 2 in gradient-informed proposals. For deterministic transformation, we use mean pooling with
the window size 32 × 1 in EDP. After training, we quantitatively evaluate all methods using the
negative log-likelihood (NLL) and the maximum mean discrepancy (MMD). To be specific, the NLL
metric is computed based on 4, 000 samples drawn from the data distribution, and the normalisation
constant is estimated using importance sampling with 1, 000, 000 samples drawn from a variational
Bernoulli distribution with p = 0.5. For the MMD metric, we follow the setting in Zhang et al.
(2022a), which adopts the exponential Hamming kernel with 0.1 bandwidth. Moreover, the reported
performances are averaged over 10 repeated estimations, each with 4, 000 samples, which are drawn
from the learned energy function via Gibbs sampling.

The Effect of ϵ in Bernoulli Perturbation. Perhaps surprisingly, we find that the pro-
posed energy discrepancy loss with Bernoulli perturbation is very robust to the noise scalar ϵ.

Figure 4: Density estimation results of ED-Bern on the pin-
wheel with different ϵ and M = 32, w = 1.

In Figure 4, we visualise the learned
energy landscapes with different ϵ.
The results demonstrate that ED-Bern
is able to learn faithful energy func-
tions, even with extreme values of ϵ,
such as ϵ ∈ {0.999, 0.001}. This
highlights the robustness and effec-
tiveness of our approach. In Figure 5,
we further show that, with ϵ ∈ {0.9999, 0.0001}, ED-Bern can still learn a faithful energy landscape
using a large value of M . However, when ϵ ∈ {1, 0}, ED-Bern fails to work. It is noteworthy that
the choice of ϵ is highly dependent on the specific structure of the dataset. While ED-Bern exhibits
robustness to different values of ϵ in the synthetic data, we have observed that a large value of ϵ
(ϵ ≥ 0.1) is not effective for discrete image modelling.

Figure 6: Density estimation results of
ED-Pool on the pinwheel with different win-
dow sizes, M and w = 1.

The Effect of Window Size in Mean Pooling Trans-
formation. To investigate the effectiveness of the
window size in ED-Pool, we conduct experiments
in Figure 6 with different window sizes. The re-
sults indicate that employing a small window size
(e.g., 2× 1) does not provide sufficient information
for energy discrepancy to learn the underlying data
structure effectively. Furthermore, our empirical find-
ings suggest that solely increasing the value of M
is not a viable solution to address this issue. Again,
the choice of the window size should depend on the
underlying data structure. In the discrete image mod-
elling, we find that even with a small window size
(i.e., 4 × 4), energy discrepancy yields energy with
low values on the data-support but rapidly diverging values outside of it. Therefore, it fails to learn a
faithful energy landscape.

Qualitatively Understanding the Effect of w and M . The hyperparameters w and M play a crucial
role in the estimation of energy discrepancy. Increasing M can reduce the variance of the Monte Carlo
estimation of the contrastive potential in (3), while a proper value of w can improve the stabilisation
of training. Here, we evaluate the effect of w and M on the variants of energy discrepancy in Figures 7
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Figure 7: Density estimation results of ED-Bern on the pinwheel with different w,M and ϵ = 0.1.

Figure 8: Density estimation results of ED-Pool on the pinwheel with different w,M and the window
size is 32× 1.

to 9. Based on empirical observations, we observe that when w = 0 and M is small (e.g., M ≤ 32 for
ED-Bern and M ≤ 64 for ED-Pool and ED-Grid), energy discrepancy demonstrates rapid divergence
and fails to converge. Additionally, we find that increasing M can address this issue to some extent
and introducing a non-zero value for w can significantly stabilize the convergence, even with M = 1.
Moreover, larger w tends to produce a flatter estimated energy landscapes, which also aligns with the
findings in continuous scenarios of energy discrepancy (Schröder et al., 2023).

The Failure of Gaussian Perturbation. As highlighted in Grathwohl et al. (2021), the deep energy
Uθ(x) is a differentiable function that accepts real-valued inputs, despite being evaluated solely on a
discrete subset of their domain. This observation inspires us to train discrete EBMs using continuous
relaxation. Consequently, we train the energy function Uθ using Gaussian perturbations as proposed
in (Schröder et al., 2023, see the loss function Lt,M,w(θ)). Specifically, we chose w = 1,M = 32
and the noise scale at t = 0.5, which is the optimal choice among the range of {0.01, 0.1, 0.5, 1}.
We demonstrate the learned energy landscape in the last row of Figure 3. Notably, it is evident that
the energy discrepancy with Gaussian perturbation falls short when it comes to training energy-based
models on discrete data. This inadequacy prompts the need for the development of new perturbations
tailored to the challenges posed by discrete datasets.

C.3 GRAPH GENERATION

Experimental Details. In this experiment, we assess the performance of our proposed methods using
the Ego-small dataset, which consists of 200 ego graphs. Following the setup in You et al. (2018),
80% of these graphs are allocated for training, with the remaining 20% designated for testing. To
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Figure 9: Density estimation results of ED-Grid on the pinwheel with different w,M .

provide better insight into this task, we illustrate a subset of training data in Figure 10. Notably, these
training data examples closely resemble realistic one-hop ego graphs.

For a fair comparison, we parametrise the energy function via a 5-layer GCN (Kipf & Welling, 2016)
with the ReLU activation and 16 hidden states for all energy-based approaches, {i.e.,} EBM (GWG),
RMwGGIS, and the variants of energy discrepancy. For hyperparameters, we choose M = 32, w = 1
for all variants of energy discrepancy and ϵ = 0.1 for ED-Bern and ED-∇Bern. Following the
configuration in Liu et al. (2023), we apply the advanced version of RMwGGIS with the number of
samples s = 50 (Liu et al., 2023, Equation 11). Regarding the EBM (GWG) baseline, we train it using
persistent contrastive divergence with a buffer size of 200 samples and the MCMC steps being 50.

Figure 10: Illustration of the train-
ing data in graph generation.

To train the models, we use the Adam optimizer with a learning
rate of 0.0001 and a batch size of 200. After training, we
generate new graphs by first sampling N , which is the number
of nodes to be generated, from the empirical distribution of
the number of nodes in the training dataset, and then applying
the GWG sampler with 50 MCMC steps from a randomly
initialised Bernoulli noise. Following the evaluation scheme
in Liu et al. (2019), We trained 5 separate models of each type
and performed 3 trials per model, then averaged the result over
15 runs.

Qualitative Results. We provide a visualization of generated
graphs from variants of our methods in Figure 11. Notably,
the majority of these generated graphs resemble one-hop ego
graphs, demonstrating the faithfulness of the energy landscapes
learned through energy discrepancies.

C.4 DISCRETE IMAGE MODELLING

Experimental Details. In this experiment, we parametrise the energy function using ResNet (He
et al., 2016) following the settings in Grathwohl et al. (2021); Zhang et al. (2022b), where the network
has 8 residual blocks with 64 feature maps. Each residual block has 2 convolutional layers and uses
Swish activation function (Ramachandran et al., 2017). We choose M = 32, w = 1 for all variants of
energy discrepancy, ϵ = 0.001 in Bernoulli perturbations, and τ = 2 in gradient-informed proposals.
Note that here we choose a relatively small ϵ since we empirically find that the loss of energy
discrepancy converges to a constant rapidly with larger ϵ, which can not provide meaningful gradient
information to update the parameters. All models are trained with Adam optimiser with a learning
rate of 0.0001 and a batch size of 100 for 50, 000 iterations. We perform model evaluation every
5, 000 iteration by conducting Annealed Importance Sampling (AIS) with a Gibbs-With-Gradient
sampler for 10, 000 steps. The reported results are obtained from the model that achieves the best
performance on the validation set. After training, we finally report the negative log-likelihood by
running 300, 000 iterations of AIS.
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(a) ED-Bern (b) ED-∇Bern

(c) ED-Grid (d) ED-∇Grid

Figure 11: Visualisation of the samples drawn from the energy-based models learned by the variants
of our approaches on the Ego-small dataset.

Qualitative Results. The images generated in the final step of AIS are displayed in Figure 12.
Although these samples exhibit favourable likelihoods, it is apparent that they still contend with mode
collapse. We posit that this challenge could potentially be mitigated by employing more advanced
sampling techniques, which we leave for future research.

Comparison to Contrastive Divergence with Different MCMC Steps. Given the resemblance
between energy discrepancy with gradient-informed proposals and contrastive divergence, this study
undertakes a thorough comparison of these two methods. Specifically, we employ the officially
open-sourced implementation5 of DULA to conduct contrastive divergence training, with varying
MCMC steps. As depicted in Table 6, our findings indicate that energy discrepancy significantly
outperforms contrastive divergence when employing a single MCMC step, and achieves performance
comparable to CD-10. We attribute this superiority to the fact that CD-1 involves a biased estimation
of the log-likelihood gradient due to inherent issues with non-convergent MCMC processes. In
contrast, energy discrepancy mitigates this problem by introducing important weights, resulting in a
consistent approximation, as indicated in Theorem 1.

Time Complexity Comparison for Energy Discrepancy and Contrastive Divergence. In this
experiment, we evaluate the running time per iteration and epoch for energy discrepancy and con-
trastive divergence in training a discrete EBM on the static MNIST dataset. The experiments include
contrastive divergence with varying MCMC steps and variants of energy discrepancy with a fixed
value of M = 4. The results, presented in Table 7, highlight that ED-Bern and ED-Grid are the fastest
options, as they don’t involve gradient computations during training. In contrast, ED-∇Bern and

5https://github.com/ruqizhang/discrete-langevin
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Table 6: Experimental results of the comparison between energy discrepancy and contrastive diver-
gence with varying MCMC steps.

Dataset \ Method CD-1 CD-3 CD-5 CD-7 CD-10 ED-Bern ED-∇Bern ED-Grid ED-∇Grid

Static MNIST 182.53 130.94 102.70 98.07 88.13 96.11 90.16 90.61 91.24
Dynamic MNIST 157.14 130.56 97.50 91.00 84.16 97.12 90.15 90.19 91.03
Omniglot nan. 161.96 142.91 149.68 146.11 97.57 95.56 93.94 110.31

Table 7: Running time complexity comparison for energy discrepancy and contrastive divergence.

Time \ Method CD-1 CD-5 CD-10 ED-Bern ED-∇Bern ED-Grid ED-∇Grid

Per Iteration (s) 0.0583 0.1904 0.3351 0.0490 0.0576 0.0479 0.0630
Per Epoch (s) 29.1660 95.2178 167.5718 24.5265 28.8305 23.9861 31.5008

ED-∇Grid require one gradient computation for each parameter update, placing them in a comparable
computational complexity range with CD-1 and expected to be more efficient than CD-10.

The Efficacy of the Number of Negative Samples. In all experiments, we selected the number of
negative samples as M = 32 irrespective of the dimension of the problem, to maximise computational
efficiency within the constraints of our GPU capacity. We have demonstrated in Figures 7 to 9 that our
results remain largely unchanged when choosing the number of negative samples as smaller or larger.

Table 8: Discrete image modelling results of
ED-Grid on the static MNIST dataset with differ-
ent M and w = 1.

M = 4 M = 8 M = 16 M = 32

NLL 90.13 90.37 89.14 90.61

To further investigate, we conduct additional ex-
periments by training energy-based models on
the static MNIST dataset with ED-Grid for dif-
ferent values of M . As detailed in Table 8, our
results maintain comparable quality even as the
number of negative samples is decreased. No-
tably, our approach offers greater parallelization
potential compared to the sequentially computed
MCMC of contrastive divergence.
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Figure 12: Generated samples on discrete image modelling. Left to right: Static MNIST, Dynamic
MNIST, Omniglot. Top to bottom: ED-Bern, ED-∇Bern, ED-Grid, ED-∇Grid.
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