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Abstract

Skeleton-based action recognition has gained significant attention
for its ability to efficiently represent spatiotemporal information in
a lightweight format. Most existing approaches use graph-based
models to process skeleton sequences, where each pose is repre-
sented as a skeletal graph structured around human physical con-
nectivity. Among these, the Spatiotemporal Graph Convolutional
Network (ST-GCN) has become a widely used framework. Alterna-
tively, hypergraph-based models, such as the Hyperformer, capture
higher-order correlations, offering a more expressive representation
of complex joint interactions. A recent advancement, termed Taylor
Videos, introduces motion-enhanced skeleton sequences by embed-
ding motion concepts, providing a fresh perspective on interpreting
human actions in skeleton-based action recognition. In this paper,
we conduct a comprehensive evaluation of both traditional skele-
ton sequences and Taylor-transformed skeletons using ST-GCN
and Hyperformer models on the NTU-60 and NTU-120 datasets.
We compare skeletal graph and hypergraph representations, an-
alyzing static poses against motion-injected poses. Our findings
highlight the strengths and limitations of Taylor-transformed skele-
tons, demonstrating their potential to enhance motion dynamics
while exposing current challenges in fully using their benefits. This
study underscores the need for innovative skeletal modeling tech-
niques to effectively handle motion-rich data and advance the field
of action recognition.
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Figure 1: Visual comparison of (Left) a static pose and (Right)
a Taylor-transformed skeleton for the action cheer up. Mo-
tion dynamics are overlaid on the original skeleton for en-
hanced visualization. The size of the green circles indicates
motion intensity, with larger circles representing bigger mo-
tions. Taylor-transformed skeletons emphasize dominant
motions and dynamic patterns, while static poses highlight
spatial arrangements of the joints. Additional visualizations
are provided in the Appendix.

1 Introduction

Skeletal action recognition has seen significant progress due to its
ability to represent human motion in a structured manner, with
applications ranging from surveillance to healthcare and entertain-
ment [10, 22, 47, 65, 68, 82-84, 87, 88, 92, 93, 111]. However, as the
field matures, new challenges continue to emerge. While traditional
skeleton-based methods [5, 13, 44, 82, 84, 98, 104, 106, 114, 116] excel
at encoding the static spatial relationships of body joints, they often
struggle to capture the full spectrum of dynamic motion[19, 20, 128],
particularly in complex and highly coordinated actions.

Addressing this challenge requires moving beyond simple static
representations and incorporating richer, motion-centric features
that can better model the temporal evolution of human actions
[5, 7-9, 13, 44, 62, 67, 104]. The recent rise of graph-based mod-
els, particularly Spatial-Temporal Graph Convolutional Networks
(ST-GCN)[110], has provided a powerful framework for skeleton-
based action recognition by using the relationships between body
joints over both space and time. These models represent human
skeletons as graphs, where joints are nodes and their interactions,
whether spatial or temporal, are encoded as edges. While effective
in modeling pairwise dependencies between joints, such graph-
based methods [42, 50, 60, 64, 84, 102, 121] still face limitations
when attempting to capture complex, higher-order relationships,
particularly in actions where the coordination between multiple
joints is essential.

In response to these limitations, more advanced techniques have
been introduced, such as Taylor-transformed skeleton sequences[95],
which extend traditional representations by embedding motion
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dynamics through higher-order temporal derivatives (Figure 1).
This transformation introduces additional layers of information,
such as velocity and acceleration, which enhance the temporal
representation of human motion and are particularly useful for
distinguishing between similar actions that differ in their dynamics.
Furthermore, hypergraph-based models, such as Hyperformer[120],
have emerged as a promising approach to address the complexity of
joint interactions by representing not only pairwise relationships
but also higher-order joint dependencies through hyperedges[2, 11,
33, 63, 81, 89, 126].

Despite the promising potential of these approaches, there has
been limited work comparing their effectiveness across different
domains and contexts. This paper aims to fill this gap by evaluat-
ing three key aspects of skeleton-based action recognition: (1) the
comparison between ST-GCN and Hyperformer in their ability to
model both spatial and temporal relationships, (2) the examination
of traditional skeleton sequences versus Taylor-transformed skele-
ton sequences in terms of their ability to capture dynamic motion,
and (3) the evaluation of skeletal graphs versus hypergraphs in
their capacity to represent joint dependencies and action dynamics.
The contributions of this paper are as follows:

i. We provide a comparative evaluation of ST-GCN and Hyper-
former, shedding light on their respective strengths and weak-
nesses in modeling complex human actions, with a focus on
their ability to capture spatial, temporal, and higher-order joint
dependencies.

ii. We investigate the impact of using traditional skeleton se-
quences versus Taylor-transformed skeleton sequences, high-
lighting how the inclusion of motion dynamics (such as veloc-
ity) improves action recognition, particularly for dynamic and
intricate movements.

iii. We analyze the trade-offs between skeletal graphs and hyper-
graphs in representing the relationships between joints, offer-
ing insights into the conditions under which each approach
excels, and providing practical guidance for selecting the most
suitable model for specific action recognition tasks.

2 Related Work

Below, we review the most closely related works, categorizing them
by key methodologies, and highlighting the novel contributions of
our work in evaluating these different approaches.

Graph-based models. The use of graph-based models, partic-
ularly ST-GCN, has become a dominant approach for skeleton-
based action recognition. In ST-GCN [110], the human skeleton is
represented as a graph where joints serve as nodes and the con-
nections between them as edges. The edges model spatial depen-
dencies, while temporal dependencies are captured by treating
the skeleton sequence as a dynamic graph over time. ST-GCN has
been shown to be highly effective for action recognition, achiev-
ing state-of-the-art performance on several benchmark datasets
such as NTU RGB+D [56, 71] and Kinetics [6]. Several improve-
ments on the original ST-GCN have been proposed to address its
limitations[24]. These include methods that incorporate attention
mechanisms [15, 32, 48, 66, 80, 105, 117], multi-scale graph convo-
lutions [4, 23, 30, 36, 49, 78, 101, 107, 113, 127], and feature fusion
strategies [17, 40, 42, 61, 62, 75]. However, these models typically
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rely on static representations of motion, where temporal evolution
is embedded indirectly within the graph structure. As a result, they
often struggle to capture the more complex, dynamic motion transi-
tions between joints, which are crucial for distinguishing between
certain types of actions, such as running vs.walking.

While ST-GCN remains one of the foundational models in this
domain, our work differentiates itself by directly evaluating its per-
formance in comparison with other representations, specifically
Taylor-transformed skeletons. We assess how enriching skeleton
sequences with higher-order temporal derivatives improves ac-
tion recognition, especially for actions involving complex motion
dynamics. By contrasting ST-GCN with Hyperformer [120], we
provide new insights into how hypergraph-based models [3, 16, 39,
43, 51, 103, 125], which consider higher-order joint dependencies,
can outperform traditional skeletal graphs in certain tasks.

Motion-centric approaches. The limitation of static represen-
tations of skeleton sequences in ST-GCN models has led to the de-
velopment of motion-centric representations [14, 45, 53, 95, 97, 122],
such as Taylor-transformed skeleton sequences [95]. These trans-
formations use higher-order temporal derivatives (e.g., velocity and
acceleration) to enrich skeleton representations by emphasizing dy-
namic motion patterns. As introduced by [95], Taylor-transformed
skeletons allow for a more granular depiction of motion, enabling
better recognition of actions that exhibit similar joint configura-
tions but differ in motion dynamics, such as sitting vs.squatting. The
Taylor-transformation method consists of computing the zeroth-
order derivative (the original joint positions), the first-order de-
rivative (velocity), and the second-order derivative (acceleration)
for each joint in the skeleton sequence. These components cap-
ture the evolution of joint movements over time and offer richer
information for action recognition models. However, while the
transformation provides a more detailed temporal representation,
it is often integrated into traditional models like ST-GCN, which
may not fully capitalize on the additional information provided by
these derivatives.

Our evaluation directly compares the performance of traditional
skeleton sequences vs.Taylor-transformed skeleton sequences in
the context of ST-GCN and Hyperformer. This side-by-side analysis
allows us to better understand the impact of motion dynamics
on action recognition, offering a clearer picture of when Taylor-
transformed skeletons truly provide a benefit over static skeleton
sequences. Furthermore, we analyze how different models handle
these enriched representations, providing key insights into the
advantages of motion-centric features.

Hypergraph-based models. Hypergraphs, as an extension
of traditional graphs, allow for more complex relationships be-
tween entities. In the context of skeleton-based action recognition,
hypergraph-based models have emerged as a way to better capture
multi-joint interactions that cannot be modeled effectively with
pairwise connections [29, 34, 37, 41, 57, 119]. The Hyperformer
model [120] integrates hypergraphs with Transformer networks,
enabling the model to learn high-order joint dependencies and
coordinated movements more effectively. The introduction of hy-
peredges, which connect multiple joints in a single edge, helps
capture the complex interactions that occur in actions such as danc-
ing, sports, or complex gestures. The Hyperformer model operates
by embedding skeleton sequences into a hypergraph structure and
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then applying a Transformer-based self-attention mechanism to
learn the temporal dependencies between the hyperedges. This
structure enables the model to better capture joint dependencies
that are not simply spatial (between two joints) but involve coordi-
nated groupings of multiple joints, which is particularly useful for
understanding human movements in dynamic contexts.

Our work evaluates Hyperformer alongside traditional graph-
based models like ST-GCN, making a direct comparison between
skeletal graphs vs.hypergraphs. We focus on evaluating how each
model captures joint dependencies and motion dynamics. By ex-
amining the efficacy of hypergraphs in representing more intricate
relationships between joints, we provide insights into the advan-
tages and limitations of hypergraph-based models, particularly
when applied to complex, coordinated actions. Additionally, our
work contrasts skeleton vsTaylor-transformed skeleton represen-
tations within these models, highlighting how enhanced motion
representations influence performance in hypergraph-based models
like Hyperformer.

Hybrid approaches and data fusion. Several approaches have
explored combining graph-based models with other data modalities
to improve skeleton-based action recognition [26, 49, 61, 74, 112].
For instance, methods that fuse visual features[19, 20, 25, 31, 54, 85,
90, 94, 99] (e.g., from RGB cameras) with skeleton data have been
proposed to capture both spatial and appearance-related features
[18, 77, 86, 91, 115, 123]. These hybrid approaches rely on multi-
stream learning frameworks or multi-modal fusion techniques, aim-
ing to combine the advantages of skeleton data with rich appear-
ance information [12, 53, 55, 58, 69, 70, 89, 108, 124]. However,
while these methods may improve performance, they often intro-
duce challenges in terms of data synchronization, computational
complexity, and the alignment of features from different modalities
[59, 72, 100].

Our focus remains on purely skeleton-based models, evaluating
different representations and models without introducing addi-
tional complexity from other data sources. This allows us to isolate
and assess the core factors influencing performance in skeleton-
based action recognition, providing a clear comparison of skeleton
vs.Taylor-transformed skeletons, graph vshypergraph representa-
tions, and the models that handle them.

Insights and challenges. A number of studies have investi-
gated the challenges faced by skeleton-based models, such as han-
dling occlusions, noise in joint estimations, and the difficulty of
recognizing actions that are similar in appearance but differ in
temporal dynamics [21, 47,52, 65, 73,76, 79, 83, 87, 88, 92, 93, 96].
While these works focus on improving robustness against these
challenges, they tend to ignore the deeper structural choices that
influence model performance. The choice of skeleton representa-
tion and the method of encoding motion dynamics are crucial in
overcoming these challenges and improving model accuracy. Our
paper directly addresses the importance of skeleton representations
and the modeling of temporal dynamics, comparing traditional
skeletons vsTaylor-transformed skeletons and evaluating graph-
based vs.hypergraph-based models. By doing so, we offer valuable
insights into the inherent strengths and weaknesses of different
representations and modeling strategies, providing a clearer path
forward for future work in skeleton-based action recognition.
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3 Key Aspects of Human Motion Modeling

Below, we discuss the key aspects of modeling human motion that
are central to this paper (Figure 2). For our evaluation, we select
the basic ST-GCN and Hyperformer models. These models serve as
foundational frameworks upon which many existing approaches
are built, offering simplicity and ease of experimentation while
providing valuable insights into skeleton-based action recognition.

3.1 Skeletal Graph and Hypergraph

Skeletal graphs and graph convolutions. Skeletal graphs rep-
resent the human body as a network of nodes (joints) and edges
(bones). This approach adheres to the body’s natural anatomical
structure. Each node represents a joint, and edges connect joints
based on their physical links or spatial connectivity. Beyond spa-
tial relationships, temporal edges are added to connect the same
joint across different time steps, capturing the motion dynam-
ics over time[38, 66, 110]. This combination of spatial and tem-
poral edges creates a comprehensive structure for representing
actions[1, 27, 28, 118]. GCNs, such as the widely used ST-GCN
[110], process these skeletal graphs by aggregating information
from neighboring nodes. The structure of the graph dictates how
information flows during convolution, enabling the model to cap-
ture the motion of individual joints and their interactions with
immediate neighbors. However, skeletal graphs inherently focus
on pairwise relationships, which may miss complex interactions
involving multiple joints simultaneously[119, 120].

Skeletal hypergraphs and hypergraph convolutions. Skele-
tal hypergraphs build upon the limitations of standard graphs by
introducing hyper-edges, which connect groups of nodes rather
than just pairs. This structure allows for modeling more complex
relationships, such as the coordinated movement of multiple joints
during an action. For example, in a running action, a hyper-edge
could connect the hip, knee, and ankle to represent the interde-
pendence of these joints in driving the motion. Hypergraph Con-
volutional Networks (HGCNs), like the Hyperformer, use these
hyper-edges to aggregate features not just from neighboring nodes
but from entire groups of related joints. This approach enables
richer representations of actions, especially those requiring intri-
cate coordination, such as gymnastics or team sports. By focusing
on group-level interactions, hypergraphs can reveal subtle patterns
that are missed in traditional graph-based models[109].

Comparative insights. The primary distinction between skele-
tal graphs and hypergraphs lies in their representation of relation-
ships. Skeletal graphs are effective at modeling direct, pairwise
connections and are well-suited for actions with clearly defined
joint dependencies, such as walking or waving. However, they may
oversimplify more complex actions where interactions among mul-
tiple joints play a critical role. In contrast, hypergraphs excel in
capturing higher-order relationships by focusing on joint groups
rather than pairs. This makes them particularly valuable for ac-
tions involving coordinated movements, such as dancing or playing
an instrument. However, the increased complexity of hypergraphs
requires careful design and computational resources, as determin-
ing which joints to group and how to weight their connections
significantly impacts performance.



WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Temporal

\ 4

Skeletons l

Hypergraph

Taylor Skeletons

Jushang Qiu and Lei Wang

U2 S8 IS

NN N N

A9 °
I/ o
QA .
°

Joint-joint attention
Joint-distance attention
Joint-group attention

Learned Partition

Hyperformer

Figure 2: The evaluation pipeline explores the performance of two state-of-the-art models, ST-GCN and Hyperformer. Both
models are tested using original skeleton sequences, which emphasize spatial relationships, and Taylor-transformed skeletons,
which highlight motion dynamics. This dual approach enables a comprehensive analysis of how spatial and temporal features
impact action recognition performance, revealing distinct strengths and limitations for each model and data representation.

3.2 Skeleton and Taylor-Transformed Skeleton

Taylor-transformed skeletons [95] offer a significant advance-
ment by integrating motion dynamics directly into skeletal se-
quences. Inspired by the mathematical framework of Taylor series
expansion, this method incorporates multiple temporal derivatives,
such as velocity and acceleration, into the skeleton’s representation.
By adding higher-order derivatives, Taylor-transformed skeletons
provide a more comprehensive and dynamic view of human ac-
tions, capturing not only the spatial configuration of the joints but
also how they change over time. This approach highlights motion-
centric features, which are crucial for differentiating between ac-
tions that may appear similar in terms of static body posture but
differ in movement dynamics.

The transformation process begins with the standard skeletal
sequence, where each frame includes the positions of body joints.
The zeroth-order component represents the static positions of the
joints. The first-order derivative, or velocity, is computed by sub-
tracting consecutive joint positions, reflecting the rate of change
in the joints’ positions over time. The second-order derivative, or
acceleration, captures the changes in velocity, providing deeper
insights into the dynamics of movement transitions. Additional
higher-order derivatives can be introduced to capture even more
complex motion details. These temporal components are combined
with the original skeleton, creating a representation that empha-
sizes dynamic motion rather than static configuration.

What makes Taylor-transformed skeletons stand out is their
ability to prioritize temporal features that are essential for recog-
nizing dynamic actions. Traditional skeletal representations [95]
often focus on the spatial arrangement of joints, but they tend to

overlook the temporal evolution of these relationships. By embed-
ding motion-related features, Taylor-transformed skeletons ensure
that action recognition models focus on meaningful temporal pat-
terns, such as the acceleration of joints during specific movements.
This approach reduces the reliance on redundant or less informa-
tive static data, allowing models to capture more nuanced motion
characteristics.

Comparative insights. When integrated into graph-based mod-
els, such as ST-GCNs, Taylor-transformed skeletons can enhance
model performance. The inclusion of motion-sensitive features
improves the propagation of information through the graph, en-
abling more effective capture of temporal dependencies. In HGCN,
the transformed skeletons allow for a more refined modeling of
complex relationships between joints, as hyper-edges can now
represent dynamic groupings of joints that move together[35, 46].
This integration across different neural architectures underscores
the versatility of Taylor-transformed skeletons in enhancing both
spatial and temporal representations of human actions.

Despite their promising potential, Taylor-transformed skeletons
also present challenges for future research. One challenge is the de-
velopment of neural architectures that can fully use the higher-order
temporal derivatives, especially when modeling more intricate and
subtle motions. Additionally, adaptive methods for selecting the
optimal level of Taylor expansion based on the complexity of the
action could improve the efficiency and effectiveness of the trans-
formation [95]. By addressing these challenges, Taylor-transformed
skeletons could redefine motion representation in action recogni-
tion, offering a more accurate, interpretable, and dynamic approach
to modeling human actions.
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3.3 ST-GCN and Hyperformer

In the realm of skeleton-based action recognition, two prominent
models have emerged: the ST-GCN [110] and the Hypergraph Trans-
former [120], known as Hyperformer. Both models aim to effectively
capture the complex spatial and temporal dynamics inherent in hu-
man skeletal movements, yet they approach this challenge through
distinct methodologies.

ST-GCN. Introduced in 2018, ST-GCN represents human skele-
tons as graphs, with joints as nodes and bones as edges. This graph-
based representation allows the model to capture spatial dependen-
cies between joints. To incorporate temporal dynamics, ST-GCN
extends this graph structure across time, forming a spatiotemporal
graph where each node connects to its temporal counterparts in
adjacent frames. Graph convolutions are then applied to extract
features that encapsulate both spatial configurations and their tem-
poral evolutions. This design enables ST-GCN to model the intricate
patterns of human motion effectively.

Hyperformer. Building upon the limitations of traditional graph-
based models, Hyperformer introduces a hypergraph-based ap-
proach to capture higher-order relationships among joints. In a
hypergraph, a single hyperedge can connect multiple nodes simul-
taneously, allowing the model to represent complex joint interac-
tions that go beyond simple pairwise connections. Hyperformer
integrates this hypergraph structure with transformer architec-
tures, utilizing a novel Hypergraph Self-Attention mechanism. This
mechanism enables the model to adaptively learn the importance
of various joint groupings, effectively capturing both spatial and
temporal dependencies without relying on a fixed topology.

Comparative insights. While both models aim to enhance
action recognition by modeling skeletal data, they differ fundamen-
tally in their representation and processing of joint relationships.
ST-GCN relies on predefined graph structures based on human
anatomy, which may limit its ability to adapt to the diverse and
dynamic nature of human actions. In contrast, Hyperformer’s use
of hypergraphs allows for a more flexible representation, captur-
ing complex joint interactions through higher-order connections.
Additionally, the transformer-based architecture of Hyperformer
facilitates adaptive learning of joint dependencies, potentially of-
fering greater generalization across varied actions.

4 Experiment

4.1 Setup

Datasets. We choose the large-scale NTU-RGB+D 60 [71] and NTU-
RGB+D 120 datasets [56] for the evaluations. The NTU-RGB+D
60 dataset, captured in a controlled laboratory environment with
Kinect sensors, comprises around 56,000 video clips across 60 action
classes. Each sample provides 3D joint coordinates for 25 body
joints. Evaluations are performed using two standard benchmarks:
the Cross-Subject benchmark, with 39,889 samples for training
and 16,390 for testing, and the Cross-View benchmark, with 37,462
samples for training and 18,817 for testing.

NTU-RGB+D 120 extends the original dataset to include around
114,000 video clips spanning 120 action classes. This dataset intro-
duces additional evaluation benchmarks: the Cross-Subject bench-
mark, with 63,026 samples for training and 25,883 for testing, and
the Cross-Setup benchmark, which provides 54,471 training samples
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and 24,911 testing samples. The expanded dataset and benchmarks
enable a more comprehensive evaluation of model performance.

Metrics. Recognition accuracies across all action classes are of-
ten visualized using a confusion matrix, which provides a detailed
view of the algorithm’s classification performance. The overall
effectiveness of the algorithm on a given dataset is assessed by cal-
culating the average recognition accuracy across all action classes.
In our evaluation, we primarily report the top-1 recognition accu-
racy, representing the percentage of correctly classified samples
where the top predicted label matches the ground truth. When
required for comparative analysis, we also report the top-5 recog-
nition accuracy, which accounts for cases where the correct label
appears among the top five predictions.

Models. We use two models for evaluation: the ST-GCN and
the Hyperformer. Both models are tested on the original skeleton
sequences as well as their Taylor-transformed counterparts. For
Taylor-transformed skeletons, we use the displacement concept
with a single term, using four frames per temporal block and a
step size of one across all datasets. No hyperparameter search, or
skeleton sequence denoising is performed in this process.

The ST-GCN model begins with batch normalization, followed
by nine spatial-temporal graph convolution layers. The network
outputs 64 channels in the first three layers, 128 channels in the
next three, and 256 channels in the final three, all using a temporal
kernel size of 9. Residual connections are incorporated to improve
stability and address gradient vanishing issues. Temporal strides
of 2 are applied at the fourth and seventh layers to enable down-
sampling, and dropout with a probability of 0.5 is applied after each
unit to mitigate overfitting. After the final layer, global pooling
generates a 256-dimensional feature vector, which is fed into a
SoftMax classifier for action recognition. The model is trained using
stochastic gradient descent with an initial learning rate of 0.01,
which decays by 0.1 every 10 epochs.

The Hyperformer model is trained for 140 epochs using a cross-
entropy loss function. The initial learning rate is set to 0.025 and
decays by 0.1 at the 110th and 120th epochs. Training is conducted
with a batch size of 64, and all sequences are resized to 64 frames.
The model comprises a 10-layer architecture with 216 hidden chan-
nels, ensuring consistency across datasets and training conditions.
These settings, along with the Taylor-transformed sequences, allow
for a robust evaluation of action recognition performance. We use
a batch size of 32 for ST-GCN and 128 for Hyperformer.

4.2 Evaluation

Taylor skeletons are not always the best. Table 1 presents the
experimental results on NTU-60 and NTU-120. The results reveal
that, overall, the Hyperformer model outperforms ST-GCN, both
with and without the use of Taylor-transformed skeletons. This
superior performance is attributed to the Hyperformer’s ability to
capture complex joint interactions through higher-order connec-
tions, whereas ST-GCN relies on predefined graph structures based
on human physical connectivity, limiting its flexibility.

For the ST-GCN model, the use of Taylor-transformed skele-
tons significantly improves recognition accuracy on both NTU-60
and NTU-120. This demonstrates that Taylor skeletons enhance
performance by introducing motion-sensitive features that better



WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia

sitin
staning up (fom siting posiion)
clapy

drink water!

ping-

reading

tear up paper;
wear jacket
take off jacket:

put on a hat/cap.

take off a hatjcap-

eer u

d waving

kicking something

into pocket.

hopping (one foot jumping)
jump up-

True Label

make a phone call/answer phone.
playing wi

on a keyboard

typin:
pointing to something with finger

taking a selfie

check time (from watch)

fub two hands together-

n0d head/bow.

hake head

wipe face

salute!

it the palms together.

put
cross hands in front (say stop)

touch chest

staggering

touch head (headache)
ain)

True Label

drink water!

W
sitting down

standing up (fom siting posiion)
clapy

Jus

hang Qiu and Lei Wang

reading
writin

tear up paper;

wear jacket

take off jacket:

put on a hat/cap.

take off a hatjcap-
eer u

d waving

kicking something

ch into pocket.

hopping (one foot jumping)
jump

make a phone call/answer phone.
layin

typin:
pointing to something with finger.

playing with

ing on a keyboard

it the palms together.

put
cross hands in front (say stop)

touch chest

staggerin
alling

touch head (headache)

in)
touch back (backache)

touch neck (neckache)

hausea or vomiting condition
use a fan (with hand or warm

hausea or vomiting conditio
use a fan (with hand or warm

pain)
touch back (backache)
touch nec)

kicking other person

kicking other person

pushing other person. pushing other person.

pat on back of other person T pat on back of other person
point inger a the ther persan 4 point inger a the ther persan
ugging other person ugging other person

giving something to other person giving something to other person
touch other person’s pocket; touch other person's pocket;

walking towards each other;
walking apart from each other.

walking towards each other’
walking apart from each other

P
on's pocket:

touch head (headache)
put the paims to

put the paims t
touch head (hea

cross hands in

walking
walking ap:

walking towards each other.
walking apart from each other i

use a fan (with hand

standing up (from
pointing to sor

standing up (from
pointing to sometl

touch chest
use a fan (with hand

Predicted Label Predicted Label

(a) Original skeletons. (b) Taylor-transformed skeletons.

Figure 3: Confusion matrices of ST-GCN on NTU-60 (X-Sub) using (a) original skeletons and (b) Taylor-transformed skeletons.
Along the diagonal, darker colors represent higher recognition accuracy for each action class. Predictions below 5% are
filtered out for clarity, with the complete confusion matrices available in the appendix. Taylor-transformed skeletons improve
recognition accuracy for actions such as using a fan (with hand or paper), wearing a shoe, and touching head (headache).
However, a decline in performance is observed for actions like hopping (one-foot jumping), sitting down, and touching chest
(stomachache/heart pain). This drop may result from noise introduced by certain motion features, which negatively impact the
model’s performance. For a detailed examination, zooming in is recommended.

Table 1: Experimental results on NTU-60 and NTU-120 datasets, using both original skeleton sequences and Taylor-transformed
skeletons evaluated with the ST-GCN and Hyperformer models.

NTU-60 NTU-120
X-Sub X-View X-Sub X-Set
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
ST-GCN (w/o Taylor skeletons) 81.5 - 88.3 - 70.7 - 73.2 -
ST-GCN (w/ Taylor skeletons) 83.5 97.2 89.4 98.7 74.1 93.0 75.8 93.4
Hyperformer (w/o Taylor skeletons)  90.7 - 95.1 - 86.6 - 88.0 -
Hyperformer (w/ Taylor skeletons) 86.7 97.4 92.1 99.0 79.1 95.0 81.9 95.7

propagate information through the graph structure, enabling more
effective capture of temporal dependencies.

In contrast, for the Hyperformer model, using Taylor-transformed
skeletons slightly decreases performance compared to the original
skeletons. However, the Hyperformer still surpasses the ST-GCN
model in all scenarios, both with and without Taylor skeletons.
The reduced performance with Taylor skeletons may be due to
the Hyperformer not being specifically designed to leverage this
data format. While Taylor skeletons excel in representing motion
dynamics, they lack detailed spatial information about joint ar-
rangements and their interactions, which the Hyperformer may
still rely on for optimal performance. These findings suggest that

while Taylor-transformed skeletons offer valuable motion-related
features, they require new model architectures tailored to han-
dle this data format effectively. Such advancements could further
elevate the performance of skeletal action recognition tasks by
combining the strengths of both motion and spatial information.
Taylor skeletons highlight distinct motion dynamics in ST-
GCN. The confusion matrices for ST-GCN on NTU-60 (X-Sub) show
distinct performance patterns between the use of original skeletons
and Taylor-transformed skeletons (see Figure 3). Both approaches
exhibit strengths and weaknesses, highlighting the trade-offs in
using motion-sensitive transformations versus relying on spatially
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Figure 4: Confusion matrices of Hyperformer on NTU-60 (X-Sub) using (a) original skeletons and (b) Taylor-transformed
skeletons. Along the diagonal, darker colors represent higher recognition accuracy for each action class. Predictions below
5% are filtered out for clarity, with the complete confusion matrices available in the appendix. Taylor-transformed skeletons
improve recognition accuracy for actions such as hopping and taking off jacket. However, a decline in performance is observed
for actions like pointing to something with finger. This drop may result from noise introduced by certain motion features,
which negatively impact the model’s performance. For a detailed examination, zooming in is recommended.

structured data. The Taylor-transformed skeletons enhance recog-
nition accuracy for several dynamic actions, such as using a fan
(with hand or paper)/feeling warm, wearing a shoe, and touching
head (headache). These actions benefit from the motion-sensitive
features introduced by the Taylor transformation, which emphasize
temporal dynamics and fine-grained motion patterns. By captur-
ing nuanced joint displacements, the Taylor skeletons improve the
propagation of information through the graph structure, allowing
the model to better understand subtle temporal dependencies.

Conversely, Taylor-transformed skeletons lead to noticeable per-
formance declines for actions such as hopping (one-foot jumping)
and sitting down. These actions often involve complex spatial in-
teractions or are characterized by repetitive, cyclic motions. The
Taylor transformation, while excellent at highlighting motion, de-
emphasizes the spatial relationships and global structure of the
skeleton. This shift can introduce noise, particularly in actions
where spatial context plays a critical role in recognition.

The original skeleton sequences, despite lacking explicit motion
emphasis, retain the full spatial arrangement of joints. This proves
advantageous for actions heavily reliant on spatial cues, e.g., walk-
ing apart from each other, where the relative positioning of joints
is crucial. The ST-GCN model, with its predefined graph structures
based on human physical connectivity, is well-suited to use such
spatial information, enabling better performance on these tasks.

The comparative results suggest that while Taylor-transformed
skeletons offer valuable insights into motion dynamics, they may
not universally enhance recognition across all action types. Dy-
namic actions with distinct joint displacements are well-served
by this transformation. However, actions requiring an understand-
ing of spatial arrangements or involving subtle, repetitive motions
may suffer from the loss of spatial information. This analysis also
underscores the need for tailored model architectures capable of
synergistically combining the strengths of motion-sensitive trans-
formations and spatially structured data. Future research could
explore hybrid models that integrate Taylor-transformed skeletons
with spatially-aware features, potentially unlocking improved per-
formance across diverse action categories.

Which actions do Taylor skeletons improve performance
on with the Hyperformer model? The comparison between the
confusion matrices of the Hyperformer model on NTU-60 (X-Sub)
using original skeleton sequences and Taylor-transformed skeletons
shows critical insights into the model’s performance dynamics
(see Figure 4). Each approach highlights distinct advantages and
limitations, providing a nuanced understanding of how these data
representations impact recognition across various action classes.

The Taylor-transformed skeletons enhance recognition accuracy
for actions with prominent motion dynamics, such as hopping (one
foot jumping). This improvement can be attributed to the Taylor
transformation’s ability to emphasize fine-grained motion patterns
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and temporal changes, which are crucial for recognizing actions that
rely heavily on dynamic motion cues. The Hyperformer, equipped
with its ability to capture higher-order connections, benefits from
this enriched temporal information, enabling a more detailed un-
derstanding of joint movements.

Despite these improvements, the Taylor-transformed skeletons
lead to performance drops in certain actions, such as pointing to
something with finger, which depend significantly on spatial config-
urations and global context. The Taylor transformation prioritizes
motion over spatial arrangement, potentially diminishing the rep-
resentation of joint relationships that are pivotal for recognizing
these actions. This shift may introduce noise or obscure key spatial
cues, leading to reduced accuracy in these categories.

The original skeleton sequences maintain a balanced representa-
tion of spatial and temporal features, which proves advantageous
for actions requiring detailed spatial context. For instance, actions
like pointing finger at the other person, which involve complex spa-
tial interactions between body parts, are better captured using the
original skeletons. The Hyperformer’s architecture, while adaptable,
appears to rely partially on this spatial information, which the origi-
nal skeletons provide more effectively than the Taylor-transformed
data. The results underscore the importance of tailoring model
architectures to use specific data transformations effectively. The
Taylor-transformed skeletons excel in representing dynamic actions
but fall short in preserving spatial relationships, suggesting a gap in
current model capabilities. Future advancements could involve hy-
brid architectures that integrate motion-sensitive features from Tay-
lor transformations with spatially structured features from original
skeletons. Such designs could achieve superior performance across
a broader range of action classes. While the Taylor-transformed
skeletons provide a unique perspective on motion dynamics, their
effectiveness is action-dependent. The Hyperformer’s performance
indicates that optimizing the interplay between spatial and tem-
poral features remains a critical direction for advancing action
recognition tasks. A model capable of dynamically adjusting its
reliance on spatial or temporal features based on the action type
could significantly enhance recognition accuracy and robustness.

ST-GCN vs.Hyperformer. The comparison between ST-GCN
and Hyperformer models, using both original skeleton sequences
and Taylor-transformed skeletons on NTU-60 (X-Sub), reveals key
distinctions in how these architectures handle spatial and temporal
features. With original skeleton sequences, Hyperformer consis-
tently outperforms ST-GCN across most action classes. This supe-
riority stems from Hyperformer’s advanced architecture, which
effectively captures higher-order joint interactions and complex
dependencies. Actions requiring detailed spatial reasoning, such as
handshaking, wearing a jacket, and hugging, benefit significantly
from Hyperformer’s ability to integrate spatial and temporal fea-
tures. In contrast, ST-GCN, reliant on predefined graph structures
based on human physical connectivity, struggles with such nuanced
interactions. However, ST-GCN still achieves reasonable accuracy,
especially for actions characterized by clear spatial patterns.

When using Taylor-transformed skeletons, Hyperformer contin-
ues to outperform ST-GCN overall but exhibits a unique sensitivity
to motion-focused transformations. The Taylor transformation en-
hances ST-GCN’s recognition performance by introducing motion-
sensitive features that improve information propagation through

Jushang Qiu and Lei Wang

its graph structure. This improvement is evident in actions like
drinking water, making a phone call, and reading, where dynamic
motion cues are critical. Hyperformer, while maintaining higher
accuracy than ST-GCN, shows performance drops for some actions
with Taylor-transformed skeletons. Actions such as clapping, walk-
ing apart, and handshaking, which rely heavily on spatial context,
are better recognized with original skeletons. The reduction in spa-
tial detail from Taylor transformations diminishes Hyperformer’s
ability to fully use its higher-order connections, suggesting that its
design still partially depends on spatially structured input.

The results underscore a trade-off between the two models. ST-
GCN benefits from Taylor-transformed skeletons, which enhance
its ability to capture temporal dependencies, narrowing the gap
with Hyperformer for certain dynamic actions. However, Hyper-
former remains superior in leveraging both spatial and temporal
information, making it more robust across a wider range of action
classes. This analysis highlights the need for hybrid approaches
that can integrate the strengths of both architectures. Combining
the motion sensitivity of Taylor transformations with the spatially
aware design of Hyperformer could unlock further advancements
in action recognition tasks, enabling models to adapt dynamically
to the specific requirements of each action.

Additional experimental results and corresponding confusion
matrices are provided in the Appendix.

5 Conclusion

We explore the effectiveness of traditional skeletons and Taylor-
transformed skeletons for action recognition using ST-GCN and
Hyperformer models on NTU-60 and NTU-120. Traditional skele-
ton sequences effectively capture spatial and temporal relationships
but face limitations in distinguishing actions with subtle temporal
variations. Taylor-transformed skeletons, by embedding motion dy-
namics, improve recognition for motion-intensive actions, though
they introduce challenges for actions requiring detailed spatial con-
text. In terms of model architectures, ST-GCN demonstrates robust
performance with graph-based representations of human physical
connectivity but struggles to capture higher-order joint interac-
tions. Conversely, the Hyperformer uses hypergraph structures to
model complex joint dependencies, outperforming ST-GCN overall,
yet showing sensitivity to the loss of spatial information in Taylor-
transformed skeletons. Key insights from our study include: (1)
the potential of Taylor-transformed skeletons to enhance motion-
sensitive recognition, (2) the advantages of hypergraph-based mod-
els like Hyperformer in representing higher-order dependencies,
and (3) the critical interplay between motion dynamics and spatial
structure in achieving optimal performance.
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A Additional Visualizations of Taylor Skeletons

Figure 5 presents an additional visual comparison between the
original skeletons and the Taylor-transformed skeletons.

B Supplementary Results on NTU-60

Table 2, 3, 4, and 5 present additional experimental results on NTU-
60.

Table 2: Top 10 action classes showing the greatest accuracy
gains and losses when comparing the performance of the ST-
GCN model using original skeleton sequences versus Taylor-
transformed skeleton sequences on NTU-60 (X-Sub).

Classes with Increased Accuracy Original  Taylor skeletons  Difference

use a fan (with hand or paper)/feeling warm 73.5 85.1 1116
wear a shoe 71.1 81.3 T10.2
touch head (headache) 66.3 76.1 19.8
writing 42.3 51.8 19.5
make a phone call/answer phone 81.1 90.2 19.1
put the palms together 79.7 88.8 19.1
take off a shoe 70.4 79.2 18.8
clapping 57.5 65.2 17.7
reach into pocket 72.3 79.6 17.3
giving something to other person 81.9 88.4 16.5

Classes with Decreased Accuracy Original Normalized Taylor Difference

hopping (one foot jumping) 98.5 924 l6.1
sitting down 96.0 90.8 15.2
touch chest (stomachache/heart pain) 90.9 86.6 143
pat on back of other person 80.4 76.8 13.6
reading 41.0 37.4 13.6
walking apart from each other 96.0 92.4 13.6
put on a hat/cap 93.4 90.1 133
falling 99.6 96.4 132
shake head 89.1 86.2 12.9
eat meal/snack 65.5 62.9 12.6

Table 3: Top 10 action classes showing the greatest accuracy
gains and losses when comparing the performance of the ST-
GCN model using original skeleton sequences versus Taylor-
transformed skeleton sequences on NTU-60 (X-View).

Classes with Increased Accuracy Original Taylor skeletons Difference

typing on a keyboard 62.7 72.2 1T9.5
touch neck (neckache) 85.1 90.8 15.7
reading 58.7 64.4 15.7
cross hands in front (say stop) 90.1 94.2 T4.1
pointing to something with finger 87.6 91.1 13.5
wear on glasses 91.1 94.3 13.2
brushing hair 84.2 87.3 131
use a fan (with hand or paper)/feeling warm 90.8 93.7 12,9
wipe face 85.8 87.7 T1.9
make a phone call/answer phone 87.0 88.9 T1.9

Classes with Decreased Accuracy Original Taylor skeletons Difference

playing with phone/tablet 83.2 72.2 l11.0
put the palms together 93.4 83.9 195
writing 56.2 47.0 19.2
take off a shoe 87.3 79.1 18.2
pat on back of other person 85.4 78.5 16.9
wear a shoe 86.3 81.0 153
taking a selfie 90.8 85.8 15.0
staggering 97.8 93.0 14.8
touch other person’s pocket 94.3 89.9 144

drop 95.9 92.1 13.8

Jushang Qiu and Lei Wang

Table 4: Top 10 action classes showing the greatest accuracy
gains and losses when comparing the performance of the
Hyperformer model using original skeleton sequences versus
Taylor-transformed skeleton sequences on NTU-60 (X-Sub).

Classes with Increased Accuracy  Original Taylor skeletons Difference

hopping (one foot jumping) 96.7 97.5 10.8
take off jacket 97.1 97.1 T0.0
Classes with Decreased Accuracy Original Taylor skeletons Difference
pointing to something with finger 82.6 62.7 1199
point finger at the other person 92.8 76.1 116.7
typing on a keyboard 70.5 54.2 1163
touch head (headache) 81.9 67.0 1149
drop 84.7 70.5 l14.2
reading 66.3 52.4 113.9
taking a selfie 91.7 78.6 113.1
check time (from watch) 89.5 78.3 1112
touch neck (neckache) 85.5 74.6 110.9
tear up paper 92.6 82.3 1103

Table 5: Top 10 action classes showing the greatest accuracy
gains and losses when comparing the performance of the
Hyperformer model using original skeleton sequences versus
Taylor-transformed skeleton sequences on NTU-60 (X-View).

Classes with Increased Accuracy  Original Taylor skeletons Difference

take off a hat/cap 98.4 98.7 10.3
standing up (from sitting position) 98.7 98.7 10.0

Classes with Decreased Accuracy Original Taylor skeletons Difference

writing 74.6 51.1 1235
reading 75.9 59.4 l16.5
touch head (headache) 90.5 77.8 1127
typing on a keyboard 77.8 65.2 112.6
check time (from watch) 96.2 85.4 1108
drop 96.2 87.3 189
brushing hair 97.2 88.6 18.6
brushing teeth 94.3 85.8 185
tear up paper 95.9 87.7 18.2
eat meal/snack 92.4 84.8 17.6

C Supplementary Results on NTU-120

Table 6, 7, 8, and 9 present additional experimental results on NTU-
120.
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dhy

Figure 5: Visual comparison of (top) original skeletons and (bottom) Taylor-transformed skeletons. From left to right, the
depicted actions are: “take off a shoe”, “wear a shoe”, “kicking something”, “nausea or vomiting”, “sneeze/cough”, and “touch
chest (stomachache/heart pain)”. Taylor-transformed skeletons are overlaid on the original skeletons, with green circles

indicating the intensity of motion.

Table 6: Top 10 action classes showing the greatest accuracy Table 7: Top 10 action classes showing the greatest accuracy
gains and losses when comparing the performance of the ST- gains and losses when comparing the performance of the ST-
GCN model using original skeleton sequences versus Taylor- GCN model using original skeleton sequences versus Taylor-
transformed skeleton sequences on NTU-120 (X-Sub). transformed skeleton sequences on NTU-120 (X-Set).
Classes with Increased Accuracy  Original Taylor skeletons Difference Classes with Increased Accuracy  Original Taylor skeletons Difference
playing with phone/tablet 49.8 57.5 17.7 move heavy objects 73.7 85.5 T11.8
tennis bat swing 67.9 75.1 17.2 kicking other person 79.5 89.6 T10.1
exchange things with other person 78.6 85.2 16.6 make victory sign 40.6 47.6 17.0
hit other person with something 47.1 53.2 T6.1 writing 31.1 37.8 16.7
reading 44.0 49.8 15.8 put on bag 78.4 84.7 T6.3
take something out of a bag 70.8 76.4 15.6 take off headphone 80.6 86.2 15.6
cross hands in front (say stop) 81.2 86.6 15.4 hit other person with something 51.9 57.2 15.3
side kick 83.3 87.8 T4.5 running on the spot 88.8 94.1 15.3
move heavy objects 74.5 78.9 T4.4 cross arms 81.4 86.5 15.1
wear jacket 91.6 95.3 13.7 high-five 84.6 89.0 T4.4
Classes with Decreased Accuracy Original Taylor skeletons Difference Classes with Decreased Accuracy Original Taylor skeletons Difference
play magic cube 54.7 31.6 123.1 pat on back of other person 90.1 71.0 119.1
cutting paper (using scissors) 49.7 27.6 1221 thumb up 64.3 48.2 116.1
take a photo of other person 84.7 68.2 l16.5 cutting paper (using scissors) 41.0 25.4 115.6
put the palms together 85.3 73.9 115.6 check time (from watch) 81.9 66.8 115.1
open bottle 60.4 45.0 1154 put the palms together 85.3 70.8 1145
brushing teeth 87.2 74.7 11255 typing on a keyboard 71.3 53.4 113.7
walking apart from each other 96.7 85.5 1112 walking apart from each other 97.4 83.3 1141
wield knife towards other person 55.0 44.4 110.6 playing with phone/tablet 67.1 53.4 113.7
follow other person 94.4 84.2 110.2 brushing teeth 86.4 75.8 110.6
step on foot 87.0 77.2 19.8 pointing to something with finger 733 63.1 110.2

Table 8: Top 10 action classes showing the greatest accuracy
gains and losses when comparing the performance of the
Hyperformer model using original skeleton sequences versus
Taylor-transformed skeleton sequences on NTU-120 (X-Sub).

Classes with Increased Accuracy  Original Taylor skeletons Difference

eat meal/snack 70.5 71.3 10.8
punching/slapping other person 85.4 85.8 T0.4
take off jacket 98.6 98.6 10.0
writing 52.6 52.6 T0.0
Classes with Decreased Accuracy Original Taylor skeletons Difference
cutting paper (using scissors) 68.8 36.3 1325
move heavy objects 95.1 63.6 1315
open a box 77.7 55.1 122.6
point finger at the other person 92.0 72.1 119.9
sniff (smell) 84.2 65.2 119.6
shake fist 82.3 63.5 118.8
cutting nails 67.0 48.3 1187
open bottle 76.8 58.5 1183

reading 64.5 46.5 118.0
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Table 9: Top 10 action classes showing the greatest accuracy
gains and losses when comparing the performance of the
Hyperformer model using original skeleton sequences versus
Taylor-transformed skeleton sequences on NTU-120 (X-Set).

Classes with Increased Accuracy  Original Taylor skeletons Difference

touch other person’s pocket 86.7 89.3 T2.6
handshaking 94.8 95.6 10.8
throw 89.0 89.6 T0.6
Classes with Decreased Accuracy Original Taylor skeletons Difference
cutting paper (using scissors) 63.5 34.8 128.7
shoot at other person with a gun 82.7 56.9 125.8
point finger at the other person 94.4 69.4 125.0
move heavy objects 94.0 69.9 1241
play magic cube 71.6 50.3 1213
make victory sign 62.2 41.8 120.4
staple book 52.7 33.8 118.9
wield knife towards other person 73.2 55.1 118.1
open a box 75.1 58.0 117.1

check time (from watch) 89.7 73.2 1165

Jushang Qiu and Lei Wang

D Full Confusion Matrix Visualizations

Figure 6, 7, 8, 9, 10, 11, 12, and 13 display the complete confusion
matrix visualizations for NTU-60 and NTU-120.
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Figure 6: Confusion matrix of ST-GCN on NTU-60 (X-Sub) using original skeletons. Along the diagonal, darker colors represent
higher recognition accuracy for each action class. For a detailed examination, zooming in is recommended.
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Figure 7: Confusion matrix of ST-GCN on NTU-60 (X-Sub) using Taylor-transformed skeletons. Along the diagonal, darker
colors represent higher recognition accuracy for each action class. For a detailed examination, zooming in is recommended.
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Figure 8: Confusion matrix of Hyperformer on NTU-60 (X-Sub) using original skeletons. Along the diagonal, darker colors
represent higher recognition accuracy for each action class. For a detailed examination, zooming in is recommended.
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Figure 9: Confusion matrix of Hyperformer on NTU-60 (X-Sub) using Taylor-transformed skeletons. Along the diagonal, darker
colors represent higher recognition accuracy for each action class. For a detailed examination, zooming in is recommended.
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Figure 10: Confusion matrix of ST-GCN on NTU-120 (X-Sub) using original skeletons. Along the diagonal, darker colors
represent higher recognition accuracy for each action class. For a detailed examination, zooming in is recommended.
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Figure 11: Confusion matrix of Hyperformer on NTU-120 (X-Sub) using original skeletons. Along the diagonal, darker colors
represent higher recognition accuracy for each action class. For a detailed examination, zooming in is recommended.
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Figure 12: Confusion matrix of ST-GCN on NTU-120 (X-Sub) using Taylor skeletons. Along the diagonal, darker colors represent
higher recognition accuracy for each action class. For a detailed examination, zooming in is recommended.
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Figure 13: Confusion matrix of Hyperformer on NTU-120 (X-Sub) using Taylor skeletons. Along the diagonal, darker colors
represent higher recognition accuracy for each action class. For a detailed examination, zooming in is recommended.
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