(Un)interpretability of Transformers: a case study with Dyck grammars
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Abstract

Understanding the algorithm implemented by a
model is important for trustworthiness when de-
ploying large-scale models, which has been a
topic of great interest for interpretability. In this
work, we take a critical view of methods that ex-
clusively focus on individual parts of the model,
rather than consider the network as a whole. We
consider a simple synthetic setup of learning a
Dyck language. Theoretically, we show that the
set of models that can solve this task satisfies a
structural characterization derived from ideas in
formal languages (the pumping lemma). We use
this characterization to show that the set of optima
is qualitatively rich: in particular, the attention pat-
tern of a single layer can be “nearly randomized”,
while preserving the functionality of the network.
We also show via extensive experiments that these
constructions are not merely a theoretical artifact:
even with severe constraints to the architecture
of the model, vastly different solutions can be
reached via standard training. Thus, interpretabil-
ity claims based on individual heads or weight
matrices in the Transformer can be misleading.

1. Introduction

Transformer-based models, typically pretrained with next-
token prediction objectives, serve as the basis for various
applications. Being able to interpret the pretrained solu-
tions is essential for building trustworthiness towards these
models. However, certain interpretability methods can be
misleading despite being highly intuitive (Jain & Wallace,
2019; Serrano & Smith, 2019; Rogers et al., 2020; Grimsley
et al., 2020; Brunner et al., 2020; Meister et al., 2021).

In this work, we aim to understand the theoretical limita-
tion of interpretability methods by characterizing the set
of viable solutions. We focus on a particular toy setup in
which Transformers are trained to generate Dyck grammars,
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Figure 1: Second-layer attention patterns of two-layer
Transformers on Dyck with (a,b) or without (c,d) position
embedding: typical attention patterns do not exactly match
the intuitively interpretable stack-like pattern in Ebrahimi
et al. (2020); Yao et al. (2021). The blue boxes indicate
the locations of the last unmatched open brackets, as they
would appear in a stack-like pattern. All models reach
> 97% accuracy (darker color indicates a higher value).

a classic type of formal language grammar consisting of
balanced parentheses of multiple types. Dyck is a useful
sandbox, as it captures properties like long-range depen-
dency and hierarchical tree-like structure that commonly ap-
pear in natural and programming language syntax, and has
been an object of interest in many theoretical studies (Hahn,
2020; Yao et al., 2021; Liu et al., 2022b; 2023). Dyck is
canonically parsed using a stack-like data structure. Such
stack-like patterns (Figure 1) have been observed in the
attention heads (Ebrahimi et al., 2020; Yao et al., 2021).

Recent works (Liu et al., 2023; Li et al., 2023) show via
explicit constructions of Transformer weights that Trans-
formers are sufficiently expressive to admit very different
solutions that perform equally well on the training distribu-
tion. This calls into question:

(Q1) Do empirical solutions match the theoretical con-
structions given in these representational results (Fig-
ure 1)? In particular, are interpretable stack-like pattern
in Ebrahimi et al. (2018) the norm or the exception?

(Q2) More broadly, can we understand in a principled man-
ner the fundamental obstructions to reliably “reverse
engineering” the algorithm implemented by a Trans-
former by looking at individual attention patterns?

(Q3) Among models that perform (near-)optimally on the
training distribution, even if we cannot fully reverse
engineer the algorithm implemented by the learned
solutions, can we identify properties that characterize
performance beyond the training distribution?
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Our contributions. We provide theoretical evidence that
individual components (e.g. attention patterns or weights)
of a Transformer should not be expected to be interpretable.

* A perfect balance condition (Theorem 3.2) on the atten-
tion pattern that is sufficient and necessary for 2-layer
Transformers with a minimal first layer (Assumption 3.1)
to predict optimally on Dyck of any length. We then show
that this condition permits abundant non-stack-like atten-
tion patterns that do not necessarily reflect any structure
of the task, including uniform attentions (Corollary 3.3).
We show similar results with a near-optimal counterpart
for bounded-length Dyck (Theorem C.1).

* Indistinguishability from a single component (Theo-
rem 3.4) in the sense that any Transformer can be approx-
imated by pruning a larger random Transformer, proved
via a Lottery Ticket Hypothesis style argument.

We further accompany these theoretical findings with an
extensive set of empirical investigations.

Is standard training biased towards interpretable solutions?
While both stack-like and non-stack like patterns can pro-
cess Dyck theoretically, the inductive biases of the archi-
tecture or the optimization process may prefer one solution
over the other in practice. In Section ??, based on a wide
range of Dyck distributions and model architecture ablations,
we find that Transformers that generalize near-perfectly in-
distribution (and reasonably well out-of-distribution) do not
typically produce stack-like attention patterns, showing that
the results reported in prior work (Ebrahimi et al., 2018)
should not be expected from standard training.

Do non-interpretable solutions perform well in practice?
As a corroboration to our theory, in Section E.2, we empiri-
cally verify that we can guide Transformers to learn more
balanced attention by regularizing for the balance condition,
leading to better generalization.

2. Problem Setup

Dyck languages A Dyck language (Schiitzenberger, 1963)
is generated by a context-free grammar, where the valid
strings consist of balanced brackets of different types (for
example, “[()]” is valid but “([)]” is not). Dyck, denote
the Dyck language defined on k types of brackets. The
alphabet of Dyck,, is denoted as {1,2,---,2k} = [2k],
where for each type ¢t € [k], tokens 2t — 1 and 2t are a
pair of corresponding open and closed brackets. Dyck lan-
guages can be recognized by a push-down automaton. For
astring w and 7 < j € Z,, we use w;; to denote the sub-
string of w between position ¢ and position j (both ends
included). For a valid prefix wy.;, the grammar depth of
w14, depth(wy.;) is defined as the depth of the stack after
processing wy.;: depth(wy.;) £ #Open Brackets in wy.; —
#Closed Brackets in w;.;.

We overload the same notation depth(w;.;) to also denote
the grammar depth of the bracket at position i. We will use
7;,4 to denote a token of type i € [2k] placed at grammar
depth d € N. We consider bounded-depth Dyck languages
following Yao et al. (2021). Specifically,

Dyck;, p := {w1., € Dyck,, | m?>]< depth(wy.;) < D}
’ i€(n

is a subset of Dyck,, such that the depth of any prefix of a
word is bounded by D. While a bounded grammar depth
might seem restrictive, it suffices to capture many practi-
cal settings; e.g., the level of recursion occurring in natural
languages is typically bounded by a small constant (Karls-
son, 2007; Jin et al., 2018). We further define the length-N
prefix set of Dyck, p as Dyck, p vy = {winy | In >
N,wni1n € [2K]" N, s.t. wi, € Dycky p}. Our theo-
retical setup uses a fixed data distribution Dy . p n. Here ¢
intuitively denotes the probability of seeing an open bracket
at the next position. The formal definition is deferred to Ap-
pendix D.

Training Objectives. Given a model f, parameterized by 6,
we train with a next-token prediction language modeling ob-
jective on a given D, 1, p, n. Here the training loss is defined
as Lo (.’L‘) = EIULNNDq,k,D,N [% Zzzil l(fg (wl?ifl)’ Cw; )]
For our theory analysis, we will use mean squared error as
[ and for experiments, we will use the cross entropy loss
following common practice.

Transformer Architectures. We consider a general formu-
lation of Transformer in this work: the /-th layer is param-

eterized by #() := {Wg)7Wl((l)jw‘(/l),param(g(l))} €6,

where Wg), g) € R™MaX™ and W‘(/l) € R™*™ gre the
key, query, and value matrices of the attention module;
param(g(l)) are parameters of a feed-forward network g(*),
consisting of fully connected layers, (optionally) Layer-
Norms and residual links. Given X € R the matrix
of d-dimensional features on a length- N sequence, the [-th
layer of a Transformer computes

F(X;00) = gO (LN(W‘(,Z)XAttn(X)) + X), 1)

(W X)T(WHX)
)

where o is the column-wise softmax operation defined

exp(Ai
as 0(A);; = %

wise LayerNorm operation defined as LN(A)i.m,; =

PL Al:nz," : :
vm + (5. P denotes the projection orthogonal

to the 11" subspace and allows for a compact way to write
the mean subtraction in LayerNorm. C is the causal mask
matrix defined as C; ; = 1[i < j]. We call Attn(X) the
Attention Pattern of the Transformer layer [. We consider
single-head attentions in this work, whose simplicity further
strengthens the messages in this work.

with Attn(X) = 0(6 .

, LN represents column-
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A L-layer Transformer 7, consists of L above layers, and a
word embedding matrix Wg € R?*2* and a linear decoding
head with weight Wieaq € R?%*% and bias byeaq € R?.
Let Z € R?**N denote the one-hot embedding of a length-
N sequence, then 77, computes for Z as

7}4(2) = WHeade("'(fl (WEZ)) +bHead- (2)

Further, define the nonstructural pruning as:

Definition 2.1 (Nonstructural pruning). The nonstructural
pruning ' of a Transformer refers to the type of pruning
where some entries of the weight matrices are set to zero,
and some LayerNorms are set as the identity.

3. Theoretical Analysis

Many prior works have looked for intuitive interpretations
of Transformer solutions by studying the attention patterns
of particular heads or some individual components of a
Transformer (Clark et al., 2019; Vig & Belinkov, 2019; Dar
et al., 2022). However, we show next why this methodol-
ogy can be insufficient even in simple settings. Namely, in
Transformer solutions for Dyck, neither attention patterns
nor individual local components are guaranteed to encode
structures specific for parsing Dyck. We further argue that
the converse is also insufficient: when a Transformer does
produce interpretable attention patterns, there could be lim-
itations of such interpretation as well, as discussed in Ap-
pendix B. Together, our results provide theoretical evidence
that careful analyses (beyond heuristics) are required when
studying interpretations from Transformer.

3.1. Interpretability Requires Inspecting More Than
Attention Patterns

This section focuses on Transformers with 2 layers, which
are sufficient for processing Dyck (Yao et al., 2021). We
will show that even under this simplified setting, attention
patterns alone are not sufficient for interpretation. In fact,
we will further restrict the set of 2-layer Transformers by re-
quiring the first-layer outputs to only depend on information
necessary for processing Dyck:

Assumption 3.1 (Minimal First Layer). We consider 2-layer
Transformers with a minimal first layer fi: let Z € R2k>*N
denote the one-hot embeddings of inputs ¢1, ..., tx € [2k],
then the j;;, column of the output f; (W Z) only depends
on the type and depth of ¢;, Vj € [N].

The Minimal First Layer is a strong condition, as it requires
the first layer output to depend only on the bracket type
and depth and eliminate all other information, including
positions. There are multiple constructions of a minimal

! As opposed to structural pruning which prunes some channels
of weight matrices.

first layer, such as the one in (Yao et al., 2021). When
working with a minimal first layer, we will not explicitly
reason about its parameterization, but instead work directly
with its output. Specifically, e(; 4) the output of 7, 4 for
t € [2k],d € [D].

Perfect Balance Condition We find that the attention pat-
terns alone can be too flexible to be helpful, even for the
restricted class of a two-layer Transformer with a minimal
first layer (Assumption 3.1) and even on a language as sim-
ple as Dyck. In particular, the second-layer attention matrix

@) 1172 : oo
(W W, only needs to satisfy one condition:

Theorem 3.2 (Perfect Balance, informal). Consider a
two-layer Transformer T using a minimal first layer with
output embeddings {e(T;a)}ac[p)ici2r)- Let 0 .=
{W(Q), Wl(f), W‘(,2), param(g®)} denote the second layer
weights. Under some assumptions on 0, there exist
{e(7i.a)} and 0'® that minimize the mean squared error
(Egn. 11) on Dycky p, for any length N, if and only if
Vi, j1,j2 € [k],0<d < D,1<dy <dy <D,

(e(r2i—1,a41) — e(TQi’d/))T (WI(?))ng) 3)

(e(Tlevdl) - 6(7_2]'27612)) =0. 4
Recall that e(72;,_1,4+1), €(72;,4’) denote the first-layer out-
puts of a matching pair. Equation (3) says that since match-
ing brackets do not affect future predictions, their embed-
dings should balance out each other. It is important to note
that the perfect balance condition does not restrict much
on the attention patterns. For example, even the uniform
attention satisfies the condition and can solve Dyck:

Corollary 3.3. There exists a two-layer Transformer with
uniform attention and without position embedding that can
generate the Dyck language of arbitrary length.

Uniform attention patterns are hardly reflective of any struc-
ture of Dyck, hence Corollary 3.3 proves that attention pat-
terns can be oblivious about the underlying task, violating
the “faithfulness” criteria for an interpretation (Jain & Wal-
lace, 2019). We will further show in Appendix B.1 that
empirically, seemingly structured attention patterns may not
accurately represent the inherent structure of the task.

3.2. Interpretability Requires Inspecting More Than
Any Single Weight Matrix

Another line of interpretability works involves inspecting
the weight matrices of the model (Li et al., 2016; Dar et al.,
2022; Eldan & Li, 2023), some of which are done locally,
neglecting the interplay between different parts of the model.
Our next result shows from a representational perspective
that isolating single weights may also be misleading:

Theorem 3.4 (Indistinguishability From a Single Com-
ponent, informal). Consider a L-layer Transformer T
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with embedding dimension m, width w and g™*) (z) =
LN (Wék)ReLU (Wl(k)m)
larger random Transformer Ty, with 4L layers, embed-
ding dimension 4m, and width O(max{m log LN 1),
and same architecture choice for g, whose weights are sam-
pled as W; ; ~ U(—1,1) for every W € Tiyge. Then,
with probability 1 — § over the randomness of Tiarge,
nonstructural pruning (Definition 2.1) of Tiurge, denote
Tiarger €an €-approximate T. That is, VX € RN with
[ X-illa <1, Vi € [N, | Tigrge (X) = T(X)][2 < €.

large
Moreover, pick any W € Tiarge, with probability 1 — 6, for
any smaller Transformers Ty, Tz satisfying same conditions
as T, we have two pruned Transformers Trarge.1, Trarge,2
based on Tiarge, such that they coincide on the pruned weight
of W, and Tiarge i €-approximate T;, Vi € {1,2}.

) + x. Consider a polynomial

4. Experiments: Varoius Dyck Solutions

Our theory in Section 3 proves the existence of abundant
non-stack-like attention patterns, all of which suffice for
(near-)optimal generalization on Dyck. However, could
there be implicit biases in the architecture and the optimiza-
tion algorithm, which would potentially make the learned
attention patterns more frequently stack-like? In this sec-
tion, we show there is no evidence for such implicit bias in
standard training .We will also show a modified objective
based on our theory can be used to explicitly regularize the
model towards better length generalization (Section E.2).

We empirically verify our theoretical findings that Dyck
solutions can give rise to a variety of attention patterns. We
use the Adam optimizer (Kingma & Ba, 2014) unless speci-
fied otherwise. We use Transformers with 2 layers, 1 head,
hidden dimension 50 and word embedding dimension 50.
We test the accuracy of the model by randomly generating a
Dyck prefix that ends with a closing bracket, and evaluating
whether the model predicts correctly the type of the last
closing bracket given the rest of the prefix. Note that in this
setting a correct parser should always be able to uniquely
determine the correct closing bracket type (for the sequence
to remain a valid Dyck sequence). We train on valid Dyck, 4
sequence with length less than 28 generated with ¢ = 0.5,
where all models are able to achieve > 97% test accuracy.

Qualitative Results. As a response to (Q1), we observe that
attention patterns of Transformers trained on Dyck are not
always stack-like (Figure 1). In fact, the attention patterns
vary even across different random initializations. Moreover,
while Theorem 3.2 predicts that position encoding is not nec-
essary for a Transformer to generate Dyck (this is verified
by experiments, as Transformers with no positional encod-
ing achieve > 97% accuracy), we observe that adding the
position encoding 2 does affect the attention patterns. We

*We use the linear positional encoding following (Yao et al.,

also try fixing the attention layer as uniform attention and
verify that they can also fit the distribution almost perfectly,
which is consistent with our theory.
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Figure 2: Second-layer attention patterns of two-layer
Transformers with a minimal first layer: (a), (b) are based
on embedding Type 1 with different learning rates, where
the attention patterns show much variance as Theorem 3.2
predicts. (c), (d) are based on embedding Type 2 and Type
3. Different embedding functions lead to diverse attention
patterns, most of which are not stack-like.

We then experiment with two-layer Transformers with a
minimal first layer. We experiment with three different types
of embeddings e, the exact format is shown in Appendix E.1.
As one can observe from Figure 2, the attention patterns
learned by Transformers exhibit large variance between
different choices of architectures and learning rates. We
observe that most of the attention patterns learned by the
Transformer are not stack-like.

Quantiative Experiments. We now quantify the variation
in attention by comparing across multiple random initial-
izations. We define the attention variation between two
attention patterns A, Ay € RV*N over an length-N input
sequence as Variation(Ay, Az) = |41 — Az||%. We will
then calculate the average variation of an architecture by
running 7 = 40 random initializations and calculate the
average variation between the attention patterns of the n
random initializations on sequence [[[[]]]](((()))). We will
call this quantity the average attention variation.

We observe that for standard two layer training with lin-
ear position embedding, the average attention variation is
2.20. For training without position embedding, the average
attention variation is 2.27. Both variation is closed to the
random baseline value of 2.85 3, showing that the attention
head learned by different initializations indeed tend to be
very different. We also experiment with Transformer with a
minimal first layer and the embedding in Equation (Type
1), which reduces the average variation to 0.24. We hypoth-
esize that the structural constraints in this setting provide
sufficiently strong inductive bias that limit the variability of
attention patterns.

2021), where for the i, position, define encoding e, (i) :=
1/ Tmax- for some Tiax.

3The random baseline is calculated by generating purely ran-
dom attention patterns (from the simplex, i.e. random square
matrices s.t. each row sums up to 1) and calculate the average
attention variation between them.
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Appendix

A. Related Work

There has been a flourishing line of work on interpretability in natural language processing. Multiple “probing” tasks have
been designed to extract syntactic or semantic information from the learned representations (Raganato & Tiedemann, 2018;
Liu et al., 2019; Hewitt & Manning, 2019; Clark et al., 2019). However, the effectiveness of probing often intricately depend
on the architecture choices and task design, and sometimes may even result in misleading conclusions (Jain & Wallace,
2019; Serrano & Smith, 2019; Rogers et al., 2020; Brunner et al., 2020; Prasanna et al., 2020; Meister et al., 2021). While
these challenges do not completely invalidate existing approaches (Wiegreffe & Pinter, 2019), it does highlight the need for
more fundamental understanding of interpretability.

Towards this, we choose to focus on the synthetic setup of Dyck whose solution space is easier to characterize than natural
languages, allowing us to identify a set of feasible solutions. While similar representational results have been studied in prior
work (Yao et al., 2021; Liu et al., 2023; Zhao et al., 2023), our work emphasizes that theoretical constructions do not resemble
the solutions found in practice. Moreover, the multiplicity of valid constructions suggest that understanding Transformer
solutions require analyzing the optimization process, which a number of prior work has made progress on (Jelassi et al.,
2022; Li et al., 2023; Deng et al., 2023).

Finally, it is worth noting that the challenges highlighted in our work do not contradict the line of prior works that aim to
improve mechanistic interpretability into a trained model or the training process (Elhage et al., 2021; Olsson et al., 2022;
Nanda et al., 2023; Li et al., 2023), which aim to develop circuit-level understanding of a particular model or the training
process.

Interpreting Transformer solutions Prior empirical works show that Transformers trained on natural language data can
produce representations that contain rich syntactic and semantic information, by designing a wide range of “probing” tasks
(Raganato & Tiedemann, 2018; Liu et al., 2019; Hewitt & Manning, 2019; Clark et al., 2019; Tenney et al., 2019; Hewitt
& Liang, 2019; Kovaleva et al., 2019; Lin et al., 2019; Wu et al., 2020; Belinkov, 2022) (or other approaches using the
attention weights or parameters in neurons directly Vig & Belinkov, 2019; Htut et al., 2019; Sun & Marasovié, 2021; Eldan
& Li, 2023). However, there is no canonical way to probe the model, partially due to the huge design space of probing tasks,
and even a slight change in the setup may lead to very different (sometimes even seemingly contradictory) interpretations of
the result (Hewitt & Liang, 2019). In this work, we tackle such ambiguity through a different perspective—by developing
formal (theoretical) understanding of solutions learned by Transformers. Our results imply that it may be challenging to try
to interpret Transformer solutions based on individual parameters (Li et al., 2016; Dar et al., 2022), or based on constructive
proofs (unless the Transformer is specially trained to be aligned with a certain algorithm, as in Weiss et al., 2021).

Interpreting attention patterns Prior works (Jain & Wallace, 2019; Serrano & Smith, 2019; Rogers et al., 2020; Grimsley
et al., 2020; Brunner et al., 2020; Prasanna et al., 2020; Meister et al., 2021; Bolukbasi et al., 2021, inter alia) present
negative results on deriving explanations from attention weights using approaches by Vig & Belinkov (2019); Kobayashi
et al. (2020, inter alia). However, Wiegreffe & Pinter (2019) argues to the contrary by pointing out flaws in the experimental
design and arguments of some of the prior works; they also call for theoretical analysis on the issue. Hence, a takeaway from
these prior works is that expositions on explainability based on attention requires clearly defining the notion of explainability
adopted (often task-specific). In our work, we restrict our main theoretical analysis to the fully defined data distribution
of Dyck language (Definition D.1), and define “interpretable attention pattern” as the stack-like pattern proposed in prior
theoretical (Yao et al., 2021) and empirical (Ebrahimi et al., 2020) works. These concrete settings and definitions allow us to
mathematically state our results and provide theoretical reasons.

Theoretical understanding of representability Methodologically, our work joins a long line of prior works that char-
acterize the solution of neural networks via the lens of simple synthetic data, from class results on RNN representabil-
ity (Siegelmann & Sontag, 1992; Gers & Schmidhuber, 2001; Weiss et al., 2018; Suzgun et al., 2019; Merrill, 2019; Hewitt
et al., 2020), to the more recent Transformer results on parity (Hahn, 2020), Dyck (Yao et al., 2021), topic model (Li et al.,
2023), and formal grammars in general (Bhattamishra et al., 2020a; Li & Risteski, 2021; Zhang et al., 2022; Liu et al.,
2023; Zhao et al., 2023). Our work complements prior works by showing that although representational results can be
obtained via intuitive “constructive proofs” that assign values to the weight matrices, the model does not typically converge
to those intuitive solutions in practice. Similar messages are conveyed in Liu et al. (2023), which presents different types of
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constructions using different numbers of layers. In contrast, we show that there exist multiple different constructions even
when the number of layers is kept the same.

There are also theoretical results on Transformers in terms of Turing completeness (Bhattamishra et al., 2020b; Perez et al.,
2021), universal approximatability (Yun et al., 2020), and statistical sample complexity (Wei et al., 2021; Edelman et al.,
2022), which are orthogonal to our work.

Transformer optimization Given multiple global optima, understanding Transformer solutions requires analyzing the
training dynamics. Recent works theoretically analyze the learning process of Transformers on simple data distributions,
e.g. when the attention weights only depend on the position information (Jelassi et al., 2022), or only depend on the
content (Li et al., 2023). Our work studies a syntax-motivated setting in which both content and position are critical. We
also highlight that Transformer solutions are very sensitive to detailed changes, such as positional encoding, layer norm,
sharpness regularization (Foret et al., 2020), or pre-training task (Liu et al., 2022a). On a related topic but towards different
goals, a series of prior works aim to improve the training process of Transformers with algorithmic insights (Nguyen
& Salazar, 2019; Xiong et al., 2020; Liu et al., 2020; Zhang et al., 2020; Li & Gong, 2021, inter alia). An end-to-end
theoretical characterization of the training dynamics remains an open problem; recent works that propose useful techniques
towards this goal include Gao et al., 2023; Deng et al., 2023.

Mechanistic interpretability Finally, it is worth noting that the challenges highlighted in our work do not contradict the
line of prior works that aim to improve mechanistic interpretability into a trained model or the training process (Cammarata
et al., 2020; Elhage et al., 2021; Olsson et al., 2022; Nanda et al., 2023; Li et al., 2023): although we prove that components
(e.g. attention scores) of trained Transformers do not generally admit intuitive interpretations based on the data distribution,
it is still possible to develop circuit-level understanding about a particular model, or measures that closely track the training
process, following these prior works.

A.1. Limitations and future work.

Our results do not preclude that interpretable attention patterns can emerge in multi-head, overparameterized Transformers
trained on more complex data distributions. In that case, we discuss some limitations of such interpretation in Appendix B.

Interesting directions of future work include extending our theoretical results to more complex settings (in terms of both
architecture choice and data distribution), theoretical characterization of the learning dynamics, and more experiments in
controlled settings for testing the connections between the training approach, interpretability, and task performance. We
motivate these questions and discuss some relevant trade-offs in Appendix B.
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B. Are interpretable attention patterns useful?

Our results Section 3 and Section ?? demonstrate that Transformers are sufficiently expressive that a (near-)optimal loss on
Dyck languages can be achieved by a variety of attention patterns, many of which may not be interpretable.

However, multiple prior works have shown that for multi-layer multi-head Transformers trained on natural language datasets,
it is often possible to locate attention heads that produce interpretable attention patterns (Vig & Belinkov, 2019; Htut et al.,
2019; Sun & Marasovié, 2021). Hence, it is also illustrative to consider the “converse question” of (Q1): when some
attention heads do learn to produce attention patterns that suggest intuitive interpretations, what benefits can they bring?

We discuss this through two perspectives:

* Reliability of interpretation: Is the Transformer necessarily implementing a solution consistent with such interpretation
based on the attention patterns? (Section B.1)

» Usefulness for task performance: Are those interpretable attention heads more important for the task than other
uninterpretable attention heads? (Section B.2)

We present preliminary analysis on these questions, and motivate future works on the interpretability of attention patterns
using rigorous theoretical analysis and carefully designed experiments.

B.1. Can interpretable attention patterns be misleading?

We show through a simple argument that interpretations based on attention patterns can sometimes be misleading, as we
formalize in the following proposition:

Proposition B.1. Consider an L-layer Transformer T (Equation (2)). For any W(l) W(l) € Rmaxm (] € [L]), there exist
Whead € R2¥*% and byeaq € R?* such that T(Z) = 0,V 2.

While its proof is trivial (simply setting Wiecaq = 0 and bpeaq = 0 suffices), Proposition B.1 implies that the solution
represented by the Transformer could possibly be independent of the attention patterns in all the layers (1 through /). Hence,
it could be misleading to interpret Transformer solutions solely based on these attention patterns.

Empirically, Transformers trained on Dyck indeed sometimes produce misleading attention patterns.
We present one representative example in Figure 3, and Figure 4, in which all interpretable attention patterns are misleading.

We also present additional results in Figure 5, in which some interpretable attention patterns are misleading, and some are
not.

S ) e |
2o bt A

Figure 3: Even interpretable attention patterns can be misleading: For a 4-layer Transformer trained on Dyck with the
copying task (with > 96% validation accuracy), i.e. the output should be exactly the same as the input, the attention patterns
in some layers seem interpretable: (layer 2) attending to bracket type a) or (b; (layer 3) attending to closing bracketss; (layer
4) neve attending to bracket type a); However, none of them are informative of the copying task. This is possible because
Transformers can use the residual connections (or weights MLPs or the value matrices) to solve copying, bypassing the need
of using attention.

Similar message has been conveyed in prior works (Bolukbasi et al., 2021), and future works may aim to achieve the
faithfulness, completeness, and minimality conditions in (Wang et al., 2023).

12



Submission and Formatting Instructions for ICML 2023

sentence0 layer0 head0
START (b (b b) b) (a a) (a (b b) a) (a (a a) a) (b (a a) (b b) b) (a (aa)a)

b B B @ a @ b b a @ @ a a b @ a b b b @ @

(b (b START

b)

b @ a (@ b

b a @ (b a a (@ (@ a b

b)

a a (@ (@ b

START (b (b

Figure 4: Even interpretable attention patterns can be misleading: For a 1-layer Transformer trained on Dyck with the
copying task (with > 90% validation accuracy), i.e. the output should be exactly the same as the input, the attention pattern
seems to be attending to closing brackets only, but that is not informative of the copying task.

sentenced layer2 heado
sentenced layer0 headd (bibb) 5} (3} {2 (b b} ) (s a2} ) (b a a @ (aala)
START (b (b b)) (22} (a (b b1 2 (2 (2 2) 2 (b 2 2) 8 b) b) (2 (2 2} 2) START (b (bbb} (2.3} (s (b b} ) (a (s ) ) (b (a.0) (b b) (o o 2)

(a) layer 1 of 4 (b) layer 3 of 4

Figure 5: Even interpretable attention patterns can be misleading: For a 4-layer Transformer trained on Dyck with
the copying task (with > 96% validation accuracy), i.e. the output should be exactly the same as the input, both types of
attention patterns are common: (a) attending to closing bracketss, which is uninformative of the copying task; (b) attending
to the current position, which solves the copying task.
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B.2. Can interpretable attention patterns be important?

Kovaleva et al. (2019) observes that, when the “importance” of an attention head is defined as the performance drop the
model suffers when the head is disabled, then for most tasks they test, the most important attention head in each layer does
not tend to be interpretable.

However, experiments by Voita et al. (2019) led to a seemingly contradictory observation: when attention heads are
systematically pruned by finetuning the Transformer with a relaxation of Ly-penalty (i.e. encouraging the number of
remaining attention heads to be small), most remaining attention heads that survive the pruning can be associated with
certain functionalities such as positional, syntactic, or attending to rare tokens.

These works seem to bring mixed conclusions to our question: are interpretable attention heads more important for the task
than other uninterpretable attention heads? We interpret these results by conjecturing that the definition of “importance”
(reflected in their experimental design) plays a crucial role:

* When the importance of an attention head is defined treating all other attention heads as fixed, motivating experiments
that prune/disable certain heads while keeping other heads unchanged (Michel et al., 2019; Kovaleva et al., 2019), the
conclusion may be mostly pessimistic: mostly no strong connection between interpretability and importance.

* On the other hand, when the importance of an attention head is defined allowing all other attention heads to adapt to its
change, motivating experiments that jointly optimize all attention heads while penalizing the number of heads (Voita et al.,
2019), the conclusion may be more optimistic: the heads obtained as a result of this optimization tend to be interpretable.

We think the following trade-offs apply:

* On one hand, the latter setting is more practical, since Transformers are typically not trained to explicitly ensure that the
model performs well when a single attention head is individually disabled; rather, it would be more intuitive to think of a
group of attention heads as jointly representing some transformation, so when one head is disabled, other heads should be
fine-tuned to adapt to the change.

* On the other hand, when all other heads change too much during such fine-tuning, the resulting set of attention heads
no longer admit an unambiguous one-to-one map with the original set of (unpruned) attention heads. As a result, the
interpretability and importance obtained from the set of pruned heads do not necessarily imply those properties of the
original heads.

A comprehensive study of this question involves multi-head extensions of our theoretical results (Section 3), and carefully-
designed experiments that take the above-mentioned trade-offs into consideration. We think these directions are interesting
future work.

14
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C. Approximate Balance Condition For Finite Length Training Data

The condition in Theorem 3.2 requires the model to reach the optimal loss for data of any length. However, in practice,
one can only train the model on finite-length data and the model can only reach a low but non-optimal loss for finite length
data. In this case, the condition in Theorem 3.2 is not precisely met. However, one can show that a similar condition is still
necessary if one restricted the Lipschitz constant of the projection function g. We first define two quantities that measure the
deviation from the previous ideal scenario:

Saar,ig[0] = HU(sz,d,Tzi,d') + U(T2j>da72i—1,d'+1)‘ ) ®)
t = arg min Z U(sz,d; Tth/,d/) ©)
tel o

+ u(T2j,d; T2j—1,d41) + (7254, TQj,d)H2~

Z U(sz,d,thd,,d/) @)

&'<d

Py;[0®]=  min
7 t/ (k)4 b #ty

+ u(T24,d, T2j—1,d+1) + (7254, T2j,d) H2

The first term Sy 4/ ; ;[0(?)] measures the change in the input of the LayerNorm layer for the last token 75, 4, when a matching
pair of brackets (72; 4/, T2i—1,4/4+1) is inserted into the prefix. Under the perfect balance condition, Sq 4 ; ; [0®] = 0. The
second term P ; [0(2)] is measures the norm of the input of the LayerNorm layer at last token 75, 4. when the prefix only
contains open brackets. In the following theorem, P; ; will be used as a baseline to show Sy 4/ ; ;j[0(®)] cannot be too large,
i.e., the model should not be sensitive to the insertion of a matching pair of brackets.

Theorem C.1 (Approximate Balance). Consider a two-layer Transformer T with a minimal first layer trained with the
mean squared error (Equation (11)). For any v, N > 0 and sufficiently small €, suppose g®@ is ~-Lipschitz, and suppose the
set of second-layer weights 51(5) satisfies that E(T[éﬁ)], Dyk.p.N) < ¢ Ne. Then, there exists a constant C., ¢ p, such that

forany0 < d < D,1<d< D,i,j € [k], it holds that

_ C. . _
Sa.traslON) S 5L P[0, ®

Equation (8) requires Sg 4 i ; [6®] to be small relative to Py, [éﬁ)], and can be interpreted as a relaxation of ?? which
is equivalent to Sy 4, ;[0®] = 0. The proof of Theorem C.1 shares similar intuition as Theorem 3.2 and is given
in Appendix D.3. As a direct corollary of Theorem C.1, we can additionally consider adding a weight decay, in which case
approximate balance condition holds as the regularization strength goes to 0:

Corollary C.2. Consider the setting where a Transformer with a fixed minimal first layer is trained to minimize L\* =

Lo(x) + )\%, which is the squared loss with \ weight decay. Suppose the function g\®) of the Transformer is a fully

connected network. Then, for any length N, there exists constant C > 0, such that for parameters 0y minimizing L\*, it

holds Y0 < d' < D,1<d< D,i,j € [k] that,

. Sa,d 1,510 N
lim sup ———"———"—

] <
r—0  Pail0an]+1

¢
<.
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D. Omitted Proofs in Section 3
D.1. Detailed Setup

Data Distribution We will first formaly define the distribution we are considering.

Definition D.1 (Dyck distribution). The distribution D, ., p, n, specified by g € (0, 1), is defined over Dyck,, p, 5 such that
le;N c Dkak,D,N’

P(wl:N) o((q/k)#{zhul is open, depth(wy.;)>1}
X (]_ _ q)#{i\wi is closed, dePth(w1;i)<D71}. )

That is, ¢ € (0, 1) denote the probability of seeing an open bracket at the next position, except for two corner cases: 1) the
next bracket has to be open if the current grammar depth is 0 (1 after seeing the open bracket); 2) the next bracket has to be
closed if the current grammar depth is D.

Loss Function the next token prediction task uses fy to predict the next token for any fixed prefix. Precisely, given a
prefix wy.n € Dyck, p n and aloss function I(-,-) — R, fp is trained to minimize the loss function ming L () for

N
1
£9(I) 7]Ew1 N~Dg.k,D,N Nzl f9 Wi:i—1 ewi)]' (10)
=1

We will also consider a ¢>-regularized version Ly (z) = Lo(z) + )\% with parameter A > 0.
For our theory, we will consider the mean squared error (MSE) as the loss function,
li=lgq(m,e;) = |z — ;|3 11

In our experiments, we apply the cross entropy loss following common practice.

D.2. Proof of Theorem 3.2

The key step is already shown in Section 3. We will restate the proof rigorously here.

Theorem D.2 (Perfect Balance; formal version of Theorem 3.2). Consider a two-layer Transformer T with a minimal first
layer with output embeddings {€(7i a) }ac|p],ic|2k)- Let 62 = {Wg), WI((Q), T/V‘(,Q)7 param(g®)} denote the second layer
weights.

Define the balance condition to be the condition that for any i, j1, j2 € [k] and d',dy,ds € [D),

(e(r2im1.r) — e(mia—)) T W) WG (e(r2jy.ar) — e(maj.a,)) = 0. (12)
Then, for the existence of {e(r; 4)} and 62 that achieves the Bayes-optimal loss for the mean squared error (Eqn. 11) on
Dycky, p for any length N, it holds that:
o If W‘(/z) satisfies P, W‘(,Z)e(n,d) # 0,Vt € [k],d € [D] then the balanced condition is necessary to show existence.

* Conversely, if the set of 2k encodings {e(72i—1,a), €(T2i,a) }ic[) are linearly independent for any d' € [D), then the
balanced condition is sufficient to show existence.

Remark: Recall that P projects to the subspace orthogonal 117. The assumption in the necessary condition can be

intuitively understood as requiring all tokens to have nonzero contributions to the prediction, because otherwise W‘(,Q) e(T.q)
will not contribute to prediction after the LayerNorm.

Proof. Necessity of the balanced condition. By Equation (1), the attention output is directly used as the input of LayerNorm,
thus we ignore the normalization from the softmax operation. For any prefix p ending with a closed bracket 5 4 for d > 1
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and containing brackets of all depths in [D], let p,, be the prefix obtained by inserting m pairs of {79;_1 4/, T2; ¢/—1} for
arbitrary ¢ € [k] and depth d’ € [D]. Denote the projection of the unnormalized attention output by

T
U(Tey dy» Tta,ds) = PL €Xp (e(nhdl) (WI(?))TWéQ)e(Tt27d2)) W‘(/Q)e(nl,dl). (13)

Then, by Equation (2), we have,
T(om) = 9 (IN® (0 4 1m0 (u(raj 0, Tarar 1) + w(rajas T2 1.00))) + €(7250)) (14)

where v denotes the unnormalized second-layer output given p as input.

Towards reaching a contradiction, suppose u(72j,4, T2i,q/) + ©(T2j,d, T2i—1,+1) 7 0. Based on the continuity of the
projection function and the LayerNorm Layer, we can show that lim,, ,~ 7 (pr,) depend only on grammar depths d, d’
and types 27, 2¢ — 1, 2¢, which, however, are not sufficient to determine the next-token probability from p,,, since the latter
depends on the type of the last unmatched open bracket in p. This contradicts the assumption that the model achieves the
Bayes-optimal loss for any length N. Hence we must have

w(Toj,d, T2i,d'—1) + (72,4, T2i—1,ar) = 0. (15)

Finally, since we assume P W‘(/Q)e (7+,a) # 0, we conclude that

PLWye i—1,d’
(e(T%_l,d,)e(md,_l)f(W;fwwg)e(md)1n<| LWye (r ”)2).

[PLWve (r2ia—1) |2
Note that the right hand side is independent of j, d. This concludes the proof for the necessity of the condition.

Sufficiency of the balance condition. We will show a construction, using the embedding function e(7; 4) as given
in Equation (Type 1). Fix any j € [k], d € [D]. By Equation (12), we can assume that there exists an a € R¥* such that
fori € [k], d’',d € [D], it satisfies

Qg d é (e (T2i—1,d’) — e (Tgivd/_l))—r (WI(?))TWC(;)G (7’2]‘7(1) .

We can then choose W‘(/?) for i € [k] and d’ € [D] such that

W‘(/Q)e (T26,ar—1) = — eXp(ai,d’)O(2i71)><(D71)+d’-
WP (roi1,a) = O(2i—1)x(D—1)+d' - (16)

Such W‘(,Q) is guaranteed to exist: solving for W‘(,Q) is equivalently to solving the linear equation W‘(,2)E = O, where
E, O c R?FP*2ED are defined according to Equation (16) # and E is of full rank by the linear independence assumption.

It can be checked that choosing W‘(/Q) to satisfy Equation (16) will also make Equation (15) satisfied. Hence for any
prefix p of length n ending with a closed bracket 75 4 satisfying d > 1, suppose the list of unmatched open brackets in
pis [7‘2]'1,1’1, T2ja—1,25- - ,ngm,l,d], then suppose X is the input of the second layer, we will have the last column (i.e.
corresponding to the last position) of the input to the LayerNorm satisfies,

W(Q)X T W(2)X
wZx - Ja(c (Wi )WT( 9 ))}n - ;u(%fl,mm (17

where C denotes the causal mask.

Finally we can choose the weights in the LayerNorm to be sufficiently small such that the largest index of the last column of
input to ¢(® is determined by X ..n- This weights can always be chosen because the norm of the output of LayerNorm is
bounded by 1 and e(7; 4) are linearly independent, hence nonzero. Then the next token probability can be determined by:

*Specifically, E = [e(71,1), €(71,2), - - - , €(T2r,p—2), €(Tar,p—1)], i.e. E is the collection of all e(7¢,4). O is defined such that for
every d/, O:,t(D—1)+d/ = — exp(at/g,d/)o(t_l)(p_1)+d/ if t is even, and 0:,t(D—1)+d’ = O¢(D—1)+d’ if t is odd.
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1. The last bracket in p, when p ends with an open bracket or a closed bracket with depth 0,

2. The type of last unmatched open bracket in p: suppose the grammar depth of this unmatched open bracket is d, then we
only need to look at indices (2¢ — 1) x (D — 1) 4+ d for i € [k]. Among values of these indices, if the value is maximized
at ¢’ € [k], then the correct type of the unmatched bracket is i’

To complete the proof, note that the above functionality can be implemented with a combination of feedforward layers.
Specifically, since there are only a finite number of possible input to g, we can construct a 2-layer ReLU network that
memorize the values for all inputs, which requires a width that is polynomial in the number of possible inputs. O

D.2.1. PROOF OF COROLLARY 3.3

Corollary D.3 (Corollary 3.3, restated). There exists a two-layer Transformer with uniform attention and without position
embedding (but with causal mask) that can generate the Dyck language of arbitrary length.

Proof. 1t is easy to see that the condition in Theorem 3.2 is satisfied. Hence it suffices to construct a uniform attention first
layer that can generate the embedding in Equation (Type 1). Let W‘(/l) be the identity matrix, and suppose Z is the one-hot
embeddings of a prefix p of length n, where each token of type ¢ for ¢ € [2k] is encoded as o;. Then, the last column of Z
satisfies

D) AT 7D 2k
1) (Wi 2) (Wy'2) - .
Wy, Z[a (C A ))} s 2:1 #{token of type ¢ in p}o;. (18)

where C denotes the causal mask.

The depth of the n;, token can then be determined by counting the number of ¢ satisfying the value of index 2¢ — 1 and 2i
in the last column of Z are different by 1. Similar to the proof of Theorem D.2, this function can be implemented with a
combination of feedforward layers and LayerNorm layers and the proof is then completed. O

D.3. Proof of Theorem C.1

Let’s first define a quantity for convenience of later exposition. Let u be defined as in Equation (13). For any ¢ € [k],d € [D]
and t € [k]?~1, denote the quantity

Q(i,d,t) := Z U(T2i,d—15 Tog,, —1,0r) + W(T20,d-1, T2i-1,d) + W(T2i,a-1, T2i,d-1), (19)
1<d'<d

where £ denotes the d;,, entry of t. That is, t is a string of d — 1 open brackets. Let 7; denote a bracket of type i € [2k]
without specifying the grammar depth (i.e. the grammar depth is implicit from the context), then (¢, d, t) can be considered

as the unnormalized output of the second-layer attention of a Transformer on the input sequence @ To;_17o; °.

Theorem D.4 (Approximate Balance; formal version of Theorem C.1). Consider a two-layer Transformer T with a minimal
first layer trained with the mean squared error (Equation (11)). For any v, N > 0 and sufficiently small €, suppose g(*
is y-Lipschitz, and suppose the set of second-layer weights 51(5) satisfies that E(T[éﬁ)}, Dyk.p.N) < ¢ Ne. Then, there
exists a constant C . p, such that forany 0 < d' < D,1 < d < D,1,j € [k], it holds that

_ C,. _
S i glON'] < =52 Pa O8] (20)
where
Sa,d ij 03] = HU(sz,d,Tzi,d') + U(T2j,da7'2i—1,d’+1)‘ ) 21
P;[0®) = min [|Q(i,d,t)]2 (22)

t'elk]di-1,t) £ty

35 @ t denotes the concatenation of two strings s, ¢, same as in Equation (Type 1)-(Type 3). The concatenation of two tokens 7;, 7 is
simply written as 7;7;.
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fort = argming ¢ g1 [|Q(24, d, )2 ©

Proof. The key idea is similar to the proof of necessity in Theorem 3.2. That is, we will construct two input sequences with
different next-word distributions, and show that the approximate balance condition must hold so that inserting (a bounded
number of) pairs of matching brackets does not collapse the two predicted distributions given by the Transformer.

Constructing the input sequences.

Let t := arg minge a1 [|Q(27, d, t)||2, and let ¢’ denote the prefix that minimizes ||Q (27, d, £)||2 subject to the constraint
that ¢’ must differ from ¢ in the last (i.e. (d — 1),,,) position, i.e.

t =arg min Q(2j,d, E’)
Fe[k]i—1,t,_ Ata 1

The motivation for such choices of £, is that since they differ at least by the last position which is an open bracket, they
must lead to different next-word distributions. Note also that P; ;[0®)] = ||Q(24,d,t')||.

With the above definition of ¢, ¢, consider two valid Dyck prefixes p; and po with length no longer than N, defined as
follows: for any d,d’ € [D],4,j € [k], consider a common prefix p = To;_1...To;—1 Toi—172i - - - T2i—1T2; T2 - - - T2

>

d’ open brackets L N-—2d'—2d | pairs d’ closed brackets
2

and set:
P1=pDtD T2 172,
=p®t @117,

In the following, we will show that the approximate balance condition must hold for the predictions on p;, ps to be
sufficiently different.

Bounding the difference in Transformer outputs. The Transformer outputs on p1, po satisfies

1T (p1) — TP (p2)]l2 = 1 — TV (p1, pa2) — 0c(1) = Q(1), (23)

where TV (p1, p2) denotes the TV distance in the next-word distributions from p; and p2, and o.(1) means the term will go
to zero for sufficiently small €. The former is bounded by the construction of p;, p2. The latter is bounded because of the
assumption on A, which states that the set of second-layer weights A7) satisfies that £(7[0'7], Dy.x.0.x) < ¢~ Ve with
sufficiently small e.

Define by A, the contribution of p to the attention output (before LayerNorm) of the last position of p1, pa, i.e.

Ay = Z (u(725,d—1, T2i,a7 ) + w(T24,d—1, T2i—1,d+1))
0<d’<d’

N —-2d' —2d
=

2
The attention outputs (before LayerNorm) of p1, pa, denoted by A(p1) and A(p2), satisfy that

PJ_A(pl) = PJ. (Ap + Q(Z.]a da t))a
PJ_A(pQ) =P, (Ap + Q(Qj, d, t/)). (25)

| (w(rej,a—1,T2s.ar) + w(T25,d—1, T2i-1,d'+1)) - (24)

Note that for any prefix p’, ’T[@_ﬁ)] (p') = g@(PLA(pP')). Then, since g is »-Lipschitz,

H PLA(p1) P A(p2) H o L= TV(p1,p2) = Oc(1)
[PLA()ll2  [IPLA®P2)]2 12 v

=Q,(1). (26)

We show that A,, should not be too much larger in norm than Q(27, d, t) or Q(24,d, t’). First let’s state a helper lemma
about the contrapositive:

SErratum: This definition of P, [6'(2)} is slightly different from the one in the original main paper submitted on May 17th. The
definition here and in the current main paper have been corrected.
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Lemma D.5. For any ¢ > 0, there exists a constant R,, such that for any a,b € R% and any r € R? such that
[I7ll2 > Re - max{||all2, ||b||2}, it holds that

H a+r b+r
|

— <e
a+r|sz ||b—|—7"||2H2 -

Proof. Denote 7o := max{||al|2, ||b]|2}. Then R, := %22 + 1 suffices:

r+a r+b 1 1 lal| ||B]]

H - b HSHTH - b ’+ b

[r+allz |7+ b2 [r+all [r+oll " [r+al [r+0]
<| H ( 1 1 )+ 2rg

‘7‘ . —_
- 7l =ro vl +7o 7l = 7o
_ 2r¢ . ( Il 1) < 4rq < 4rq <e

7l =70 \[r[l + 70 7l =70 = Re =10

O

Lemma D.5 implies that if A,, is too large, then the output on p, p> (Equation (26)) won’t be sufficiently different. Let
Py [éﬁ)] be defined as in Equation (21) and let R, be the constant in Lemma D.5, we need to bound [P A, || by

1PLA 2 < Rel| Paj[02]]]2- 27)

As Equation (27) holds for p with any d, d’, by an induction on d’ (from 1 to d) on the second term in Equation (24), one can
show that there exists C' (depending on R.), such that,

C ~
Saarij = llu(r2j,d-1, T2i,a-1) + u(72j,d-1, T2i-1,a-1)|| < ﬁ\lpd,j[oﬁ)]llz- (28)

The proof of Equation (28) can be carried out inductively over d from 1 to D. O

Proof of Corollary C.2. This proof is in fact a direct combination of Theorems 3.2 and C.1. By Theorem 3.2 we know there
exists a weight 6(2)* that can reach zero loss for arbitrarily length N. Then it holds that |0 n||2 < [|0*| as 6, minimizes
the regularized loss. Notice bounded weight implies bounded lipschitzness of g(?), The rest follows as Theorem C.1. [

D.4. Proof of Theorem 3.4 — Indistinguishability from a single component

We now show the limitation of interpretability from a single component, using a Lottery-Ticket-style argument by pruning
from large random Transformers.

For this section only, we will make the following modifications to the Transformer architecture in (2):

* We lower bound the normalization factor in the LayerNorm by some constant C', namely we consider:

Pz
max{||PLz|2,C}’

LN¢(z) =

We need this assumption for technical reasons (to make the LayerNorm Lipschitz). We note that thresholding at C'is also
a common practice empirically due to numerical stability concerns.

* We assume all affine layers and linear head in the Transformer have zero bias. This is mainly for technical convenience,
and was also assumed in prior works on theoretical analysis of the lottery ticket hypothesis (Pensia et al., 2020). Note that
this is not a restriction since bias can be removed with homogeneous coordinates.

)

We will also consider a modified projection function Slarge

large random Transformers:

consisting of a 4-layer MLP, which will be used in the to-be-pruned

Slarge(z) = LN (W4ReLU (W3ReLU (W2ReLU (W1x)))) + z, (29)
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where Wy, W, € RWiarze XMarge [}y Wy € RWiarse X Wlarse | for SOME Wiarge, Miarge-
We are now ready to state the main theorem of this section:

Theorem D.6 (Indistinguishability From a Single Component (Theorem 3.4 restated)). Consider a L-layer Transformer
T with embedding dimension m, width w and g*) (z) = LN¢ (WQ(k)ReLU (Wl(k)x)> + x. Suppose |W |2 = O(1) for
every weight matrix W in T. For § € (0,1), consider a larger random Transformer Tiaee with 4L layers, embedding
dimension Myarge = O(dlog(d/?)), and width wiarge = O(max{m,w}}log “m;sLN), and projection function glayge, Whose
weights are randomly sampled as W; j ~ U(—1,1) for every W € Tigyge.

Then, with probability 1 — & over the randomness of Tiarge, we can obtain a nonstructural pruning (Definition 2.1) of Tiarge,
denoted as T}.,.,, which e-approximates T. That is, VX € R™*N with | X ;|2 < 1, Vi € [N],

arge’
[ Titrge(X) = T(X)l2 < €.

Moreover, pick any weight matrix W in Tjaree, with probability 1 — 0, for any smaller Transformers T, Tz satisfying same
conditions as T, we have two pruned Transformers Trarge 1, Trarge,2 based on Tiarge, such that they coincide on the pruned
weight of W, and Trarge i €-approximate T;, Vi € {1, 2}.

Proof. We will first introduce some notation. For vector z € R® and yy € R, we will use &y to denote their concatenation.
We will use 0% to denote the all-zero vector with dimension a. We will also assume without loss of generality that w > 2d. ’

In the following, a random network refers to a network whose weights have entries sampled from a uniform distribution, i.e.
W, ; ~ U(—1,1) for every weight TV in the random network.

We will first recall Lemma D.7 from (Pensia et al., 2020) which shows that a pruned 2-layer random network can approximate

a linear function.

Lemma D.7 (Theorem 1 of (Pensia et al., 2020)). Let W € R¥*? |W ||y = O(1), then for o € {ReLU, T}, for a
random network g(x) = Wao(Wyz) with Wy € R *M Wy € R for hidden dimension h = O(d log(#‘i_é})), with
probability 1 — 6, there exists boolean matrices My, My, such that for any x € R%,||z||s = O(1),

(M2 © Wa)o (M1 @ Wh)z) — Wz <,

where © denotes the Hadamard product.

We will use the following helper lemma:

1. A pruned 4-layer projection function of a Transformer layer can approximate a 2-layer ReLU network applied to each
token (Lemma D.8).

2. A pruned random Transformer layer can approximate a linear function applied independently to each token (Lemma D.9).

3. Two pruned random Transformer layers can approximate a fixed smaller Transformer layer. (Lemma D.12)

‘We can now prove the theorem.

To show e-approximation, we can prune the large Transformer to approximate the smaller Transformer layer by layer
by Lemma D.12. The linear head W ("¢29) can be pruned using Lemmas D.9 and D.11, and combined with one layer of the
Transformer, the linear head of the smaller Transformer can be approximated.

Further, as we only need 2 layers to approximate one layer of the smaller Transformer, for an arbitrary layer [, we can prune
the layer [ of the large Transformer to e-approximate identity function. This then concludes the proof for indistinguishability
from single components. O

"We can always pad dimensions if w is too small.
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D.4.1. HELPER LEMMAS FOR THEOREM D.6

We first show that a pruned 4-layer projection function in a Transformer layer can approximate a 2-layer ReLLU network
applied to each token:

Lemma D.8. Under the condition of Theorem D.6, for any two matrices W, € R4>*v W, € R“’Xd ||W1 |2, [[Wall2 = O(1),
forany § € (0,1) and | € [4L), with probability 1 — §, there exists an unstructured pruning of glar g’ gl(al ge? satisfying that
VX € R™N with | X ||z = O(1), Vi € [N],

VR € R(marse

(gfii;e (FR(D )Lm!: — WaReLU (W, X) H2 <e

where M;., . denotes the first m rows of a matrix M.

Proof. Recall the definition of the projection function of a Transformer layer is

8itnge(2) = LN (W ReLU (W' ReLU (W{"ReLU (W("z)))) + 2.

We will prune the LayerNorm by setting it to the identity. Now we only need to show that there exists boolean matrices
My, My, M3, My, such that,

(M1 © WP ReLU (M5 © W) ReLU (M © Wi ReLU (M1 © W) g] ),

m,:

— WReLU (W, X) — XH2 <e

‘We can first choose
(Ml) J(m+1,.. Miarge) — 0, (M4)(m+la~v~7mlarge)»: =0,
(MQ)(w+2m+17---7wlarge)v: = 0’ (MB):7(w+277l+1-~771)large) = 0
Then by Lemma D.7, there exists boolean matrices M7, Mo, M3, M, satisfying previous constraint, such that,
l 0y | X L €
H (Mz © W) ReLU ( (M © W) |z XH < £
R l:w+2m T 4

€ maX;e[N) ||X/1||2
B Wil

X
R/

VX' eR<w+2m>xN,H(M4@W”>)ReLU((M3@W<”) { }) — W, T -1

This then concludes the proof. O

Based on the above lemma, we can prove that a pruned Transformer layer can approximate a linear function applied
independently to each token.

Lemma D.9. Under the conditions in Theorem D.6, for any matrix W E Rmxm, Wiz = O(1), § € (0,1) and
77 satisfying that VX € R™N with

arge’

| € [AL], with probability 1 — 6, there exists an unstructured pruning of T,
|X.ill2 = O(1), Vi € [N], we have

urge’

VR € R(marge

(7)., ~wx], =

Proof. Recall that given an input X', a Transformer layer computes Targe( "= gl(;)rge (LN (W‘(,l )X Attn(X' )) + X' ),
O}

large

"o (W' X) T (W' X
where Attn(X') := O'(C' £ T

approximate a linear transformation; it remains to show that the linear transformation can compute W X.

) computes the attention pattern. Lemma D.8 already shows that g can
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We can first choose two matrices W7 € RY*™, Wy € R™*™ satisfying that

Wl — [Im7 *Im,y OmX(w72m)]T'
Wo = [W —W, Omx(w—Zm)]
Then we have that |7 |2, |[W2||2 = O(1) and W5ReLU(W; X ) = W X. We can then turnoff the LayerNorm after the

attention module and prune Wy to be 0, which effectively removes the effect of attention and rely solely on the residual link.
The proof can now be completed by applying Lemma D.8. [

We will then show that two pruned Transformer layers can approximate a fixed smaller Transformer layer. The key technical
difficulty is approximating the attention module and bounding the error of the approximation after LayerNorm. We will first
show a lemma showing the Lipschitzness of the LayerNorm (with cutoff at some constant C).

Lemma D.10. For LayerNorm function defined as LN(z) = m, x € R™, there exists constant C depending
on C, such that for any x,y € R™, it holds that,

|iN@) - LN@) |, < Gl -yl

Proof. We will proceed by a case analysis:

L I[P Lala. [Poylle < C.then |[LN(@) — LN(y) |, = PPl < Lo~y

2. T [PLalls, [PLylls > C. then |LN(2) — LN(y)|| = Ppa=urle 41— f2esle) < 2o -y

3. 1 [Pl < Cand [Pyl > C. then [LN(2) — LN(y)|| = [Paglnlle 4 [Pl — fRutle| < 21—y,
The cases exhaust all possibilities, thus the proof is completed. O

We also need to show there exists a pruning of the value matrix in 7jurge such that it has eigenvalues with magnitude O(1).

Lemma D.11. For a matrix W € RWarge XWiaree yyith probability at least 1 — 6, there exists a pruning of W, named W',
such that all the nonzero entries is contained in a d x d submatrix of W' that satisfies that (1) all its eigenvalues are within
(%, 1), (2) the index of row specifying the submatrix and the index of column specifying the submatrix are disjoint.

Proof. As Wiarge = 2(m log(g)), hence we can split Wi.fp,.. /2], Imisrge/2] +1imiarge 100 (M X (M blocks, each with
width at least O(log((Tm)) 8. Within each block, with probability 1 — %, there exists at least one entry that has value at least
1. We can then choose d disjoint entries in W that are all at least &, indexed with {(a;, b;) };c[q) Where a; < a; and b; < b;
for i < j. We can then prune all other entries to zero. Consider the submatrix defined by entries (a, b) for a € {a; };em and
b € {b;}icm- Then, this submatrix will be diagonal and contains eigenvalues within (%, 1). Further {a; }iem and {b; }iem
must be disjoint because a; < [Miarge/2] < b;. The proof is then completed. O]

Next, we show that two random Transformer layers can be pruned to approximate a given Transformer layer.

Lemma D.12. Under the condition of Theorem 3.4, for any matrix W € R4 _||[W ||, = O(1), § € (0,1) and t € [4L), for
any | € [L], with probability 1 — 0, there exists an unstructured pruning of’ﬁggﬁ, 7;{52;;1), named '7;0(126, 7255;;1) , satisfying
that VX € RN with | X. ;|| = O(1), Vi € [N],

VR € ROmense N T (TON(X 6 R i)~ TOX <

Proof. We will prune the larger transformer in the following order.

80(-) hides absolute constants arising from the change of basis in the logarithm.
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1. We will prune W‘(f 1) according to Lemma D.11 and name the pruned matrix W‘(/t +1)/. By Lemma D.11, all the nonzero

entries is contained in a d x d submatrix of W’ that satisfies that all its eigenvalues are within (%, 1). We will prune

W‘(/t 1 in this way, named W‘(,t 1’ and assume WLOG the submatrix is the one specified by row 1. ..d and column
d+1...2d and name the submatrix as W.

2. We will then prune 7}5;26 according to Lemma D.9 to output e-approximation of X, ; @ (W‘173 LWTSZ)X;,Z») ®
A.; for some vectors A.;. As W is defined as the submatrix pruned by W‘(,t +1), it holds that
WY (X (WWP X)) @A) = P X, g @ o,

3. We will then prune WI((tH) and Wg b according to Lemma D.7 to approximate attention patterns. We will choose
boolean matrix Mg, Mg such that for any x € R and g € R™arze =™

|(Mi @ WD) (Mg @ WS (2@ a)) = (W) TWha) @ 07we=7)| < efa].

We can then have that the attention pattern for the large transformer at layer ¢ 4 1 can approximate the small one. That is,
for any x € R?, ||z||2 = O(1) and @ € R™arse=m,

o (@eaT (o Wi (Mg o WS @ e a)) —o (o (W) W) | < 0f0)

Combined with previous approximation on W‘(,t +' (X i D (W*1W7J(Z)X Z) &) A;J) and the Lipschitzness of the
LayerNorm, we have that the first m dimensions of the output after LayerNorm of the large Transformer at layer ¢ 4 1
can e-approximate the output after LayerNorm of the smaller Transformer at layer /.

4. We will finally prune the MLP in the projection function of 7D 1o approximate P, f() with f(*) being the MLP in

large
the projection function of the projection function of 7).

The proof is then complete. O
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E. Experiments
E.1. Training Details

For Figure 1, we train 2-layer standard GPT on Dyck, , with sequence length no longer than 28. For (a), we train with
hidden dimension and network width 200 and learning rate 3e-4. For (b), (¢), (d), we train with hidden dimension and FFN
width 50 and learning rate 3e-3.

For Figure 2, for (a), we train 1-layer transformer without residual link, FFN and the final LayerNorm before the linear
head. The hidden dimensions and FFN widths are fixed as 500. For (a), we train the network with learning rate le-2 and for
(), (¢), (d) we train the network with learning rate 3e-3.

let o, denote the one-hot embedding where o, [t] = 1,

e(Tt,d) = O¢txD+d; (Type 1)
G(Ttyd) = 0y ® [cos (04) ,sin (04)], (Type 2)
04 = arctan (d/(D 4+ 2 — d)),

e(nyd) =0; P og. (Type 3)

Operator @ means the concatenation of two vectors. Equation (Type 1) is the standard one-hot embedding for 7 4.
and Equation (Type 3) is the concatenation of one-hot embedding of types and depths. Finally, Equation (Type 2) is the
embedding constructed in Yao et al. (2021).

E.2. Guiding The Transformer To Learn Balanced Attention

c .

-8 12 ° Contrastlve. ] Figure 6: Relationship Between Balance Violation
% 1'2 | Default Training |and Length Generalization. Accuracy from Trans-
S 1' 0l formers with minimal first layer with embedding Type
) 0' gl 1, using both standard training and contrastive regu-
g 0' 6 ° So,, s ": larization (Equation (30)). Standard training leas to
r_‘g 0'4 | " St e, . :: high balance V.iola.tions which negatively cor.relate with
m 0: 51 o . o o * length generalization performance. Contrastive regular-

Q Q Q leatlon helps reduce the balance violation and improve
’1(:) P ,\o) QO ’1(/0 \g) ’\6 Q" the length generalization performance.
® v 9 9Y 9 Q
Q Q Q7 Q7 Q7 O 0 N
Length Generalization Acc

In our experiments, we observe that although models learned via standard training that can generalize well in distribution,
the length generalization performance is far from optimal. This implies that the models are not finding the correct algorithm
for parsing Dyck when learning from finite samples. A natural question is: can we guide Transformers towards correct
algorithms, as measured by better generalization on longer Dyck sequences?

In the following, we measure length generalization performance by testing the accuracy of the model on valid Dyck prefixes
with length randomly sampled from 400 to 500, which approximately correspond o 16 times the length of the training
sequences. We will show generalization can be improved by regularizing the attentions to be more balanced, inspired by
results in Section 3.

Balance violation negatively correlates with length generalization accuracy We denote the balance violation of a
Transformer as 8 := Eq.q 5 ; [Sa,da i, i/ Pa, j] for S, P defined in Equations (5) and (7). Theorem 3.2 predicts that for models
with a minimal first layer, perfect length generalization requires J to be zero. Beyond such idealized condition, it is natural
to ask whether a small yet positive 3 correlates with length generalization accuracy in practice. Our results show a moderate
correlation (—0.38 SpearmanR with p-value 0.014) based on over 40 random initializations (Figure 6).

Given the correlation, we design a contrastive training objective to reduce the balance violation, which ideally would lead to
improved length generalization. Specifically, let p, denote a prefix of r nested pairs of brackets of for r ~ U([D]), and
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let 7 (s | pr @ s) denote the logits for s when 7T takes as input the concatenation of p, and s. We define the contrastive
regularization Reonrasive($) as the mean squared error between the logits of 7 (s) and 7 (s | p, @ s), taking expectation
over r and p,.:

Erv(io).p, 1T (s | pr &) = T(s)l|7] - (30)

Following the same intuition as in the proof of Theorem 3.2, if the model can perfectly length-generalize, then the contrastive
loss will be zero. We then train the model with contrastive loss and observe that the balance violation is reduced and the
length generalization performance is improved (Figure 6).

E.3. Additional Results on Dyck Prefix

In the experiment presented in the main text, we perform experiments on complete Dyck sequences, which is a special case
of Dyck prefixes. In this section, we present additional experiments on Dyck prefixes Dyck, 4 og.

Attention Patterns We first perform experiments on attention patterns. The qualitative results are shown in Figures 7
and 9. We can observe that the attention patterns are still diverse and do not commonly show stack-like patterns. We also
calculate the attention variation °, and find that the attention variation is 0.34, based on 30 models with a minimal first layer
and different random seeds. In contrast, for models with a standard first layer and without position encodings, the attention
variation is surprisingly high, reaching 14.51. The high value is caused by the large distance between attention patterns
like Figure 7 (c) and (d); that is, between patterns that attend more to the current positions, and patterns that attend more
heavily to the initial position. The difference is even increased when we consider longer sequence (Figure 8). Similarly, the
variation is also high for models with linear position embedding, reaching 11.92. This shows that the attention patterns are
still diverse and do not commonly show stack-like patterns.
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(F ( ( ( |
( ( ( (
( ( ( (
( ( ( (
) ) ) )
) ) B > )
) ) . ) )
) ) ) )
S . C C ) ))) S C C ) ))) S . C C )y )y S C ) )))
(a) With Position (b) With Position (c) Without Position (d) Without Position
Embedding Embedding Embedding Embedding

Figure 7: Second-layer attention patterns of two-layer Transformers on Dyck Prefix: Models for (a),(b) are under the
same setup but different random seeds; similarly for (c),(d). All models reach > 97% accuracy (defined in ??). In the
heatmap, darker color indicates larger value. As we can observe, the attention patterns still show much variance.

Balanced Violations We also test the relationship with the balance violation with length generalization on Dyck prefixes,
similar to Figure 6. We observe that although the negative correlation is not presented as in the case of Dyck sequences,
contrastive regularization still helps reduce the balance violation and significantly improve the length generalization
performance. This shows that for Dyck prefixes, while the balance violation may not be predictive of the length generalization
performance, it is still possible to reduce the balance violation and improve the length generalization performance. The
results are shown in Figure 10.

9Recall from ?? that the attention variation between two attention patterns Aq, A € RNVXN s defined as Variation(A1, A2) =
A1 = Az |7
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Figure 8: Second-layer attention patterns of two-layer Transformers on Longer Dyck Prefix: Models for (a),(b) are
under the same setup but different random seeds. All models reach > 97% accuracy (defined in ??). In the heatmap, darker

color indicates larger value.
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Figure 9: Second-layer attention patterns of two-layer Transformers with a minimal first layer: (a), (b) are based on
embedding Type 1 with different random seeds. (c), (d) are based on embedding Type 2 and Type 3. Different embedding
functions lead to diverse attention patterns, most of which are not stack-like.
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