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Abstract

Understanding how grid cells perform path integration calculations remains a
fundamental problem. In this paper, we conduct theoretical analysis of a general
representation model of path integration by grid cells, where the 2D self-position
is encoded as a higher dimensional vector, and the 2D self-motion is represented
by a general transformation of the vector. We identify two conditions on the
transformation. One is a group representation condition that is necessary for
path integration. The other is an isotropic scaling condition that ensures locally
conformal embedding, so that the error in the vector representation translates
conformally to the error in the 2D self-position. Then we investigate the simplest
transformation, i.e., the linear transformation, uncover its explicit algebraic and
geometric structure as matrix Lie group of rotation, and explore the connection
between the isotropic scaling condition and a special class of hexagon grid patterns.
Finally, with our optimization-based approach, we manage to learn hexagon grid
patterns that share similar properties of the grid cells in the rodent brain. The
learned model is capable of accurate long distance path integration. Code is
available at https://github.com/ruiqigao/grid-cell-path.

1 Introduction

Imagine walking in the darkness. Purely based on the sense of self-motion, one can gain a sense
of self-position by integrating the self motion - a process often referred to as path integration [10,
14, 21, 15, 27]. While the exact neural underpinning of path integration remains unclear, it has been
hypothesized that the grid cells [21, 17, 40, 24, 23, 12] in the mammalian medial entorhinal cortex
(mEC) may be involved in this process [20, 30, 22]. The grid cells are so named because individual
neurons exhibit striking firing patterns that form hexagonal grids when the agent (such as a rat)
navigates in a 2D open field [18, 21, 16, 6, 34, 5, 7, 11, 29, 1]. The grid cells also interact with the
place cells in the hippocampus [28]. Unlike a grid cell that fires at the vertices of a lattice, a place
cell often fires at a single (or a few) locations.

The purpose of this paper is to understand how the grid cells may perform path integration calculations.
We study a general optimization-based representational model in which the 2D self-position is
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represented by a higher dimensional vector and the 2D self-motion is represented by a transformation
of the vector. The vector representation can be considered position encoding or position embedding,
where the elements of the vector may be interpreted as activities of a population of grid cells. The
transformation can be realized by a recurrent network that acts on the vector. Our focus is to study
the properties of the transformation.

Specifically, we identify two conditions for the transformation: a group representation condition and
an isotropic scaling condition, under which we demonstrate that the local neighborhood around each
self-position in the 2D physical space is embedded conformally as a 2D neighborhood around the
vector representation of the self-position in the neural space.

We then investigate the simplest special case of the transformation, i.e., linear transformation, that
forms a matrix Lie group of rotation, under which case we show that the isotropic scaling condition
is connected to a special class of hexagonal grid patterns. Our numerical experiments demonstrate
that our model learns clear hexagon grid patterns of multiple scales which share observed properties
of the grid cells in the rodent brain, by optimizing a simple loss function. The learned model is also
capable of accurate long distance path integration.

Contributions. Our work contributes to understanding the grid cells from the perspective of represen-
tation learning. We conduct theoretical analysis of (1) general transformation for path integration by
identifying two key conditions and a local conformal embedding property, (2) linear transformation
by revealing the algebraic and geometric structure and connecting the isotropic scaling condition
and a special class of hexagon grid patterns, and (3) integration of linear transformation model and
linear basis expansion model via unitary group representation theory. Experimentally we learn clear
hexagon grid patterns that are consistent with biological observations, and the learned model is
capable of accurate path integration.

2 General transformation

2.1 Position embedding

(a) physical space (b) neural space

Figure 1: The local 2D polar system around self-
position x in the 2D physical space (a) is embedded
conformally as a 2D polar system around vector v(x) in
the d-dimensional neural space (b), with a scaling factor
s (so that δ r in the physical space becomes sδ r in the
neural space while the angle θ is preserved).

Consider an agent (e.g., a rat) navigating within
a 2D open field. Let x = (x1,x2) be the self-
position of the agent. We assume that the self-
position x in the 2D physical space is repre-
sented by the response activities of a popula-
tion of d neurons (e.g., d = 200), which form
a vector v(x) = (vi(x), i = 1, ...,d)> in the d-
dimensional “neural space”, with each element
vi(x) representing the firing rate of one neuron
when the animal is at location x.

v(x) can be called position encoding or posi-
tion embedding. Collectively, (v(x),∀x) forms
a codebook of x ∈ R2, and (v(x),∀x) is a 2D
manifold in the d-dimensional neural space, i.e.,
globally we embed R2 as a 2D manifold in the
neural space. Locally, we identify two condi-
tions under which the 2D local neighborhood around each x is embedded conformally as a 2D
neighborhood around v(x) with a scaling factor. See Fig. 1. As shown in Section 3.3, the conformal
embedding is connected to the hexagon grid patterns.

2.2 Transformation and path integration

At self-position x, if the agent makes a self-motion ∆x = (∆x1,∆x2), then it moves to x+∆x.
Correspondingly, the vector representation v(x) is transformed to v(x+∆x). The general form of
the transformation can be formulated as:

v(x+∆x) = F(v(x),∆x). (1)

The transformation F(·,∆x) can be considered a representation of ∆x, which forms a 2D additive
group. We call Eq. (1) the transformation model. It can be implemented by a recurrent network to
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derive a path integration model: if the agent starts from x0, and makes a sequence of moves (∆xt , t =
1, ...,T ), then the vector is updated by vt = F(vt−1,∆xt), where v0 = v(x0), and t = 1, ...,T .

2.3 Group representation condition

The solution to the transformation model (Eq. (1)) should satisfy the following condition.
Condition 1. (Group representation condition) (v(x),∀x) and (F(·,∆x),∀∆x) form a representa-
tion of the 2D additive Euclidean group R2 in the sense that

F(v(x),0) = v(x), ∀x; (2)
F(v(x),∆x1 +∆x2) = F(F(v(x),∆x1),∆x2), ∀x,∆x1,∆x2. (3)

(F(·,∆x),∀∆x) is a Lie group of transformations acting on the codebook manifold (v(x),∀x).
The reason for (2) is that if ∆x = 0, then F(·,0) should be the identity transformation. Thus the
codebook manifold (v(x),∀x) consists of fixed points of the transformation F(·,0). If F(·,0) is
furthermore a contraction around (v(x),∀x), then (v(x),∀x) are the attractor points.

The reason for (3) is that the agent can move in one step by ∆x1 +∆x2, or first move by ∆x1, and
then move by ∆x2. Both paths would end up at the same x+∆x1 +∆x2, which is represented by the
same v(x+∆x1 +∆x2).

The group representation condition is a necessary self-consistent condition for the transformation
model (Eq. (1)).

2.4 Egocentric self-motion

Self-motion ∆x can also be parametrized egocentrically as (∆r,θ), where ∆r is the displacement along
the direction θ ∈ [0,2π], so that ∆x= (∆x1 = ∆r cosθ ,∆x2 = ∆r sinθ). The egocentric self-motion
may be more biologically plausible where θ is encoded by head direction, and ∆r can be interpreted
as the speed along direction θ . The transformation model then becomes

v(x+∆x) = F(v(x),∆r,θ), (4)

where we continue to use F(·) for the transformation (with slight abuse of notation). (∆r,θ) form a
polar coordinate system around x.

2.5 Infinitesimal self-motion and directional derivative

In this subsection, we derive the transformation model for infinitesimal self-motion. While we use
∆x or ∆r to denote finite (non-infinitesimal) self-motion, we use δx or δ r to denote infinitesimal
self-motion. At self-position x, for an infinitesimal displacement δ r along direction θ , δx= (δx1 =
δ r cosθ ,δx2 = δ r sinθ). See Fig. 1 (a) for an illustration. Given that δ r is infinitesimal, for any
fixed θ , a first order Taylor expansion of F(v(x),δ r,θ) with respect to δ r gives us

v(x+δx) = F(v(x),δ r,θ) = F(v(x),0,θ)+F ′(v(x),0,θ)δ r+o(δ r)
= v(x)+ fθ (v(x))δ r+o(δ r), (5)

where F(v(x),0,θ) = v(x) according to Condition 1, and fθ (v(x)) := F ′(v(x),0,θ) is the first
derivative of F(v(x),∆r,θ) with respect to ∆r at ∆r = 0. fθ (v(x)) is the directional derivative of
F(·) at self-position x and direction θ .

For a fixed θ , (F(·,∆r,θ),∀∆r) forms a one-parameter Lie group of transformations, and fθ (·) is the
generator of its Lie algebra.

2.6 Isotropic scaling condition

With the directional derivative, we define the second condition as follows, which leads to locally
conformal embedding and is connected to hexagon grid pattern.
Condition 2. (Isotropic scaling condition) For any fixed x, ‖ fθ (v(x))‖ is constant over θ .

Let f0(v(x)) denote fθ (v(x)) for θ = 0, and fπ/2(v(x)) denote fθ (v(x)) for θ = π/2. Then we
have the following theorem:
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Theorem 1. Assume group representation condition 1 and isotropic scaling condition 2. At any
fixed x, for the local motion δx= (δ r cosθ ,δ r sinθ) around x, let δv = v(x+δx)−v(x) be the
change of vector and s = ‖ fθ (v(x))‖, then we have ‖δv‖= s‖δx‖. Moreover,

δv = fθ (v(x))δ r+o(δ r) = f0(v(x))δ r cosθ + fπ/2(v(x))δ r sinθ +o(δ r), (6)

where f0(v(x)) and fπ/2(v(x)) are two orthogonal basis vectors of equal norm s.

See Supplementary for a proof and Fig. 1(b) for an illustration. Theorem 1 indicates that the local 2D
polar system around self-position x in the 2D physical space is embedded conformally as a 2D polar
system around vector v(x) in the d-dimensional neural space, with a scaling factor s (our analysis is
local for any fixed x, and s may depend on x). Conformal embedding is a generalization of isometric
embedding, where the metric can be changed by a scaling factor s. If s is globally constant for all x,
then the intrinsic geometry of the codebook manifold (v(x),∀x) remains Euclidean, i.e., flat.

Why isotropic scaling and conformal embedding? The neurons are intrinsically noisy. During
path integration, the errors may accumulate in v. Moreover, when inferring self-position from visual
image, it is possible that v is inferred first with error, and then x is decoded from the inferred v. Due
to isotropic scaling and conformal embedding, locally we have ‖δv‖= s‖δx‖, which guarantees
that the `2 error in v translates proportionally to the `2 error in x, so that there will not be adversarial
perturbations in v(x) that cause excessively big errors in x. Specifically, we have the following
theorem.
Theorem 2. Assume the general transformation model (Eq. (4)) and the isotropic scaling condition.
For any fixed x, let s = ‖ fθ (v(x))‖, which is independent of θ . Suppose the neurons are noisy:
v = v(x)+ ε , where ε ∼N (0,τ2Id) and d is the dimensionality of v. Suppose the agent infers its
2D position x̂ from v by x̂ = argminx′ ‖v−v(x′)‖2, i.e., v(x̂) is the projection of v onto the 2D
manifold formed by (v(x′),∀x′). Then we have

E‖x̂−x‖2 = 2τ
2/s2. (7)

See Supplementary for a proof.

Connection to continuous attractor neural network (CANN) defined on 2D torus. The group
representation condition and the isotropic scaling condition appear to be satisfied by the CANN
models [2, 6, 7, 29, 1] that are typically hand-designed on a 2D torus. See Supplementary for details.

3 Linear transformation

After studying the general transformation, we now investigate the linear transformation of v(x), for
the following reasons. (1) It is the simplest transformation for which we can derive explicit algebraic
and geometric results. (2) It enables us to connect the isotropic scaling condition to a special class of
hexagon grid patterns. (3) In Section 4, we integrate it with the basis expansion model, which is also
linear in v(x), via unitary group representation theory.

For finite (non-infinitesimal) self-motion, the linear transformation model is:
v(x+∆x) = F(v(x),∆x) =M(∆x)v(x), (8)

where M(∆x) is a matrix. The group representation condition becomes M(∆x1 +∆x2)v(x) =
M(∆x2)M(∆x1)v(x), i.e., M(∆x) is a matrix representation of self-motion ∆x, and M(∆x)
acts on the coding manifold (v(x),∀x)). For egocentric parametrization of self-motion (∆r,θ), we
can further write M(∆x) =Mθ (∆r) for ∆x = (∆r cosθ ,∆r sinθ), and the linear model becomes
v(x+∆x) = F(v(x),∆r,θ) =Mθ (∆r)v(x).

3.1 Algebraic structure: matrix Lie algebra and Lie group

For the linear model (Eq. (8)), the directional derivative is: fθ (v(x)) = F ′(v(x),0,θ) =
M ′

θ
(0)v(x) =B(θ)v(x), where B(θ) =M ′

θ
(0), which is the derivative of Mθ (∆r) with respect

to ∆r at 0. For infinitesimal self-motion, the transformation model in Eq. (5) becomes
v(x+δx) = (I+B(θ)δ r)v(x)+o(δ r), (9)

where I is the identity matrix. It can be considered a linear recurrent network where B(θ) is the
learnable weight matrix. We have the following theorem for the algebraic structure of the linear
transformation.
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Theorem 3. Assume the linear transformation model so that for infinitesimal self-motion (δ r,θ), the
model is in the form of Eq. (9), then for finite displacement ∆r,

v(x+∆x) =Mθ (∆r)v(x) = exp(B(θ)∆r)v(x). (10)

Proof. We can divide ∆r into N steps, so that δ r = ∆r/N→ 0 as N→ ∞, and

v(x+∆x) = (I+B(θ)(∆r/N)+o(1/N))Nv(x)→ exp(B(θ)∆r)v(x) (11)

as N→ ∞. The matrix exponential map is defined by exp(A) = ∑
∞
n=0 An/n!.

The above math underlies the relationship between matrix Lie algebra and matrix Lie group in
general [38]. For a fixed θ , the set of Mθ (∆r) = exp(B(θ)∆r) for ∆r ∈ R forms a matrix Lie group,
which is both a group and a manifold. The tangent space of Mθ (∆r) at identity I is called matrix Lie
algebra. B(θ) is the basis of this tangent space, and is often referred to as the generator matrix.

Path integration. If the agent starts from x0, and make a sequence of moves ((∆rt ,θt), t = 1, ...,T ),
then the vector representation of self-position is updated by

vt = exp(B(θt)∆rt)vt−1, (12)

where v0 = v(x0), and t = 1, ...,T .

Approximation to exponential map. For a finite but small ∆r, exp(B(θ)∆r) can be approximated
by a second-order (or higher-order) Taylor expansion

exp(B(θ)∆r) = I+B(θ)∆r+B(θ)2
∆r2/2+o(∆r2). (13)

3.2 Geometric structure: rotation, periodicity, metic and error correction

If we assume B(θ) = −B(θ)>, i.e., skew-symmetric, then I +B(θ)δ r in Eq. (9) is a rotation
matrix operating on v(x), due to the fact that (I+B(θ)δ r)(I+B(θ)δ r)> = I+O(δ r2). For finite
∆r, exp(B(θ)∆r) is also a rotation matrix, as it equals to the product of N matrices I+B(θ)(∆r/N)
(Eq. (11)). The geometric interpretation is that, if the agent moves along the direction θ in the
physical space, the vector v(x) is rotated by the matrix B(θ) in the neural space, while the `2 norm
‖v(x)‖2 remains fixed. We may interpret ‖v(x)‖2 = ∑

d
i=1 vi(x)

2 as the total energy of grid cells.
See Fig. 1(b).

The angle of rotation is given by ‖B(θ)v(x)‖δ r/‖v(x)‖, because ‖B(θ)v(x)‖δ r is the arc length
and ‖v(x)‖ is the radius. If we further assume the isotropic scaling condition, which becomes that
‖ fθ (v(x))‖= ‖B(θ)v(x)‖ is constant over θ for the linear model, then the angle of rotation can be
written as µδ r, where µ = ‖B(θ)v(x)‖/‖v(x)‖ is independent of θ . Geometrically, µ tells us how
fast the vector rotates in the neural space as the agent moves in the physical space. In practice, µ

can be much bigger than 1 for the learned model, thus the vector can rotate back to itself in a short
distance, causing the periodic patterns in the elements of v(x). µ captures the notion of metric.

For µ � 1, the conformal embedding in Fig. 1 (b) magnifies the local motion in Fig. 1 (a), and
this enables error correction [34]. More specifically, we have the following result, which is based on
Theorem 2.

Proposition 1. Assume the linear transformation model (Eq. (9)) and the isotropic scaling condition
2. For any fixed x, let µ = ‖B(θ)v(x)‖/‖v(x)‖. Suppose v= v(x)+ε , where ε ∼N (0,τ2Id) and
τ2 = α2(‖v(x)‖2/d), so that α2 measures the variance of noise relative to the average magnitude of
(vi(x)

2, i= 1, ...,d). Suppose the agent infers its 2D position x̂ from v by x̂= argminx′ ‖v−v(x′)‖2.
Then we have

E‖x̂−x‖2 = 2α
2/(µ2d). (14)

See Supplementary for a proof. By the above proposition, error correction of grid cells is due to
two factors: (1) higher dimensionality d of v(x) for encoding 2D positions x, and (2) a magnifying
µ � 1 (our analysis is local for any fixed x, and µ may depend on x).
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3.3 Hexagon grid patterns formed by mixing Fourier waves

In this subsection, we make connection between the isotropic scaling condition 2 and a special class
of hexagon grid patterns created by linearly mixing three Fourier plane waves whose directions are
2π/3 apart. We show such linear mixing satisfies the linear transformation model and the isotropic
scaling condition.
Theorem 4. Let e(x) = (exp(i〈a j,x〉), j = 1,2,3)>, where (a j, j = 1,2,3) are three 2D vectors of
equal norm, and the angle between every pair of them is 2π/3. Let v(x) =Ue(x), where U is an
arbitrary unitary matrix. Let B(θ) =U ∗D(θ)U , where D(θ) = diag(i〈a j,q(θ)〉, j = 1,2,3), with
q(θ) = (cosθ ,sinθ)>. Then (v(x),B(θ)) satisfies the linear transformation model (Eq. (9)) and
the isotropic scaling condition 2. Moreover, B(θ) is skew-symmetric.

See Supplementary for a proof. We would like to emphasize that the above theorem analyzes a
special case solution to our linear transformation model, but our optimization-based learning method
does not assume any superposition of Fourier basis functions as in the theorem. Our experimental
results are learned purely by optimizing a loss function based on the simple assumptions of our model
with generic vectors and matrices.

We leave it to future work to theoretically prove that the isotropic scaling condition leads to hexagon
grid patterns in either the general transformation model or the linear transformation model. The
hexagon grid patterns are not limited to superpositions of three plane waves as in the above theorem.

3.4 Modules

Biologically, it is well established that grid cells are organized in discrete modules [4, 37] or blocks.
We thus partition the vector v(x) into K blocks, v(x) = (vk(x),k = 1, ...,K). Correspondingly the
generator matrices B(θ) = diag(Bk(θ),k = 1, ...,K) are block diagonal, so that each sub-vector
vk(x) is rotated by a sub-matrix Bk(θ). For the general transformation model, each sub-vector
is transformed by a separate sub-network. By the same argument as in Section 3.2, let µk =
‖Bkvk(x)‖/‖vk(x)‖, then µk is the metric of module k.

4 Interaction with place cells

4.1 Place cells

For each v(x), we need to uniquely decode x globally. This can be accomplished via interaction
with place cells. Specifically, each place cell fires when the agent is at a specific position. Let
A(x,x′) be the response map of the place cell associated with position x′. It measures the adjacency
between x and x′. A commonly used form of A(x,x′) is the Gaussian adjacency kernel A(x,x′) =
exp(−‖x−x′‖2/(2σ2)). The set of Gaussian adjacency kernels serve as inputs to our optimization-
based method to learn grid cells.

4.2 Basis expansion

Figure 2: Illustration of basis expansion
model A(x,x′) = ∑

d
i=1 ui,x′vi(x), where

vi(x) is the response map of i-th grid cell,
shown at the bottom, which shows 5 dif-
ferent i. A(x,x′) is the response map of
place cell associated with x′, shown at the
top, which shows 3 different x′. ui,x′ is
the connection weight.

A popular model that connects place cells and grid cells
is the following basis expansion model (or PCA-based
model) [13]:

A(x,x′) = 〈v(x),u(x′)〉=
d

∑
i=1

ui,x′vi(x), (15)

where v(x) = (vi(x), i = 1, ...,d)>, and u(x′) = (ui,x′ , i =
1, ...,d)>. Here (vi(x), i = 1, ...,d) forms a set of d basis
functions (which are functions of x) for expanding A(x,x′)
(which is a function of x for each place x′), while u(x′)
is the read-out weight vector for place cell at x′ and needs
to be learned. See Fig. 2 for an illustration. Experimental
results on biological brains have shown that the connections
from grid cells to place cells are excitatory [42, 31]. We thus
assume that ui,x′ ≥ 0 for all i and x′.
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4.3 From group representation to basis functions

The vector representation v(x) generated (or constrained) by the linear transformation model (Eq.
(8)) can serve as basis functions of the PCA-based basis expansion model (Eq. (15)), due to the
fundamental theorems of Schur [41] and Peter-Weyl [38], which reveal the deep root of Fourier
analysis and generalize it to general Lie groups. Specifically, if M(∆x) is an irreducible unitary
representation of ∆x that forms a compact Lie group, then the elements {Mi j(∆x)} form a set of
orthogonal basis functions of ∆x. Let v(x) = M(x)v(0) (where we choose the origin 0 as the
reference point). The elements of v(x), i.e., (vi(x), i = 1, ...,d), are linear mixings of the basis
functions {Mi j(x)}, so that they themselves form a new set of basis functions that serve to expand
(A(x,x′),∀x′) that parametrizes the place cells. Thus group representation in our path integration
model is a perfect match to the basis expansion model, in the sense that the basis functions are results
of group representation.

The basis expansion model (or PCA-based model) (Eq. (15)) assumes that the basis functions
are orthogonal, whereas in our work, we do not make the orthogonality assumption. Interest-
ingly, the learned transformation model generates basis functions that are close to being orthogonal
automatically. See Supplementary for more detailed explanation and experimental results.

4.4 Decoding and re-encoding

For a neural response vector v, such as vt in Eq. (12), the response of the place cell associated
with location x′ is 〈v,u(x′)〉. We can decode the position x̂ by examining which place cell has the
maximal response, i.e.,

x̂= argmax
x′
〈v,u(x′)〉. (16)

After decoding x̂, we can re-encode v← v(x̂) for error correction. Decoding and re-encoding can
also be done by directly projecting v onto the manifold (v(x),∀x), which gives similar results. See
Supplementary for more analysis and experimental results.

5 Learning

We learn the model by optimizing a loss function defined based on three model assumptions discussed
above: (1) the basis expansion model (Eq. (15)), (2) the linear transformation model (Eq. (10)) and
(3) the isotropic scaling condition 2. The input is the set of adjacency kernels A(x,x′),∀x,x′. The
unknown parameters to be learned are (1) (v(x) = (vk(x),k = 1, ...,K),∀x), (2) (u(x′),∀x′) and
(3) (B(θ),∀θ). We assume that there are K modules or blocks and B(θ) is skew-symmetric, so
that B(θ) are parametrized as block-diagonal matrices (Bk(θ),k = 1, ...,K),∀θ) and only the lower
triangle parts of the matrices need to be learned. The loss function is defined as a weighted sum of
simple `2 loss terms constraining the three model assumptions: L = L0 +λ1L1 +λ2L2, where

L0 = Ex,x′ [A(x,x
′)−〈v(x),u(x′)〉]2, (basis expansion) (17)

L1 =
K

∑
k=1

Ex,∆x‖vk(x+∆x)− exp(Bk(θ)∆r)vk(x)‖2, (transformation) (18)

L2 =
K

∑
k=1

Ex,θ ,∆θ [‖Bk(θ +∆θ)vk(x)‖−‖Bk(θ)vk(x)‖]2. (isotropic scaling) (19)

In L1, ∆x = (∆r cosθ ,∆r sinθ). λ1 and λ2 are chosen so that the three loss terms are of similar
magnitudes. A(x,x′) are given as Gaussian adjacency kernels. For regularization, we add a penalty
on ‖u(x′)‖2, and further assume u(x′)≥ 0 so that the connections from grid cells to place cells are
excitatory [42, 31]. However, note that u(x′)≥ 0 is not necessary for the emergence of hexagon grid
patterns as shown in the ablation studies.

Expectations in L0, L1 and L2 are approximated by Monte Carlo samples. L is minimized by
Adam [25] optimizer. See Supplementary for implementation details.

It is worth noting that, consistent with the experimental observations, we assume individual place
field A(x,x′) to exhibit a Gaussian shape, rather than a Mexican-hat pattern (with balanced excitatory
center and inhibitory surround) as assumed in previous basis expansion models [13, 33] of grid cells.
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ReLU non-linearity. We also experiment with a non-linear transformation model where a ReLU
activation is added. See Supplementary for details.

6 Experiments

Figure 3: Hexagonal grid firing patterns emerge in the learned network. Every response map shows the firing
pattern of one neuron (i.e, one element of v) in the 2D environment. Every row shows the firing patterns of the
neurons within the same block or module.

We conduct numerical experiments to learn the representations as described in Section 5. Specifically,
we use a square environment with size 1m × 1m, which is discretized into a 40× 40 lattice. For
direction, we discretize the circle [0,2π] into 144 directions and use nearest neighbor linear interpola-
tions for values in between. We use the second-order Taylor expansion (Eq. (13)) to approximate the
exponential map exp(B(θ)∆r). The displacement ∆r are sampled within a small range, i.e., ∆r is
smaller than 3 grids on the lattice. For A(x,x′), we use a Gaussian adjacency kernel with σ = 0.07.
v(x) is of d = 192 dimensions, which is partitioned into K = 16 modules, each of which has 12 cells.

6.1 Hexagon grid patterns

Fig. 3 shows the learned firing patterns of v(x) = (vi(x), i = 1, ...,d) over the 40×40 lattice of x.
Every row shows the learned units belonging to the same block or module. Regular hexagon grid
patterns emerge. Within each block or module, the scales and orientations are roughly the same, but
with different phases or spatial shifts. For the learned B(θ), each element shows regular sine/cosine
tuning over θ . See Supplementary for more learned patterns.

Figure 4: Multi-modal distribution of grid
scales of the learned model grid cells. The
scale ratios closely match the real data [37].

Table 1: Summary of gridness scores of the patterns learned
from different models. To determine valid grid cells, we
apply the same threshold of gridness score as in [3], i.e.,
gridness score > 0.37. For our model, we run 5 trials and
report the average and standard deviation.

Model Gridness score (↑) % of grid cells

[3] (LSTM) 0.18 25.20
[33] (RNN) 0.48 56.10
Ours 0.90 ± 0.044 73.10 ± 1.33

We further investigate the characteristics of the learned firing patterns of v(x) using measures
adopted from the literature of grid cells. Specifically, the hexagonal regularity, scale and orientation
of grid-like patterns are quantified using the gridness score, grid scale and grid orientation [26, 32],
which are determined by taking a circular sample of the autocorrelogram of the response map.
Table 1 summarizes the results of gridness scores and comparisons with other optimization-based
approaches [3, 33]. We apply the same threshold to determine whether a learned neuron can be
considered a grid cell as in [3] (i.e., gridness score > 0.37). For our model, 73.10% of the learned
neurons exhibit significant hexagonal periodicity in terms of the gridness score. Fig. 4 shows the
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histogram of grid scales of the learned grid cell neurons (mean 0.33, range 0.21 to 0.49), which
follows a multi-modal distribution. The ratio between neighboring modes are roughly 1.52 and 1.51,
which closely matches the theoretical predictions [39, 36] and also the empirical results from rodent
grid cells [37]. Collectively, these results reveal striking, quantitative correspondence between the
properties of our model neurons and those of the grid cells in the brain.

Connection to continuous attractor neural network (CANN) defined on 2D torus. The fact that
the learned response maps of each module are shifted versions of a common hexagon periodic pattern
implies that the learned codebook manifold forms a 2D torus, and as the agent moves, the responses
of the grid cells undergo a cyclic permutation. This is consistent with the CANN models hand-crafted
on 2D torus. See Supplementary for a detailed discussion.

Ablation studies. We conduct ablation studies to examine whether certain model assumptions are
empirically important for the emergence of hexagon grid patterns. The conclusions are highlighted as
follows: (1) The loss term L2 (Eq. (19)) constraining the isotropic scaling condition is necessary for
learning hexagon grid patterns. (2) The constraint u(x′)≥ 0 is not necessary for learning hexagon
patterns, but the activations can be either excitatory or inhibitory without the constraint. (3) The
skew-symmetric assumption on B(θ) is not important for learning hexagon grid pattern. (4) Hexagon
patterns always emerge regardless of the choice of block size and number of blocks. (5) Multiple
blocks or modules are necessary for the emergence of hexagon grid patterns of multiple scales. See
Fig. 5 for several learned patterns and Supplementary for the full studies.

(a) without L2 (b) without u(x′)≥ 0 (c) without skew-symmetry

Figure 5: Learned response maps in ablation studies where a certain model assumption is removed. (a) Remove
the loss term L2. (b) Remove the assumption u(x′)≥ 0. (c) Remove the skew-symmetric assumption on B(θ).

6.2 Path integration

We then examine the ability of the learned model on performing multi-step path integration, which
can be accomplished by recurrently updating vt (Eq. (12)) and decoding vt to xt for t = 1, ...,T (Eq.
(16)). Re-encoding vt ← v(xt) after decoding is adopted. Fig. 6(a) shows an example trajectory of
accurate path integration for number of time steps T = 30. As shown in Fig. 6(b), with re-encoding,
the path integration error remains close to zero over a duration of 500 time steps (< 0.01 cm, averaged
over 1,000 episodes), even if the model is trained with the single-time-step transformation model
(Eq. (18)). Without re-encoding, the error goes slight higher but still remains small (ranging from 0.0
to 4.2 cm, mean 1.9 cm in the 1m × 1m environment). Fig. 6(c) summarizes the path integration
performance by fixing the number of blocks and altering the block size. The performance of path
integration would be improved as the block size becomes larger, i.e., with more neurons in each
module. When block size is larger than 16, path integration is very accurate for the time steps tested.

Error correction. See Supplementary for numerical experiments on error correction, which show
that the learn model is still capable of path integration when we apply Gaussian white noise errors or
Bernoulli drop-out errors to vt .

6.3 Additional experiments on path planning and egocentric vision

We also conduct additional experiments on path planning and egocentric vision with our model.
Path planning can be accomplished by steepest ascent on the adjacency to the target position. For
egocentric vision, we learn an extra generator network that generates the visual image given the
position encoding formed by the grid cells. See Supplementary for details.
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Figure 6: The learned model can perform accurate path integration. (a) Black: example trajectory. Red: inferred
trajectory. (b) Path integration error over number of time steps, for procedures with re-encoding and without
re-encoding. (c) Path integration error with fixed number of blocks and different block sizes, for 50 and 100 time
steps. The error band in (b) and error bar in (c) are standard deviations computed over 1,000 episodes.

7 Related work

Our work is related to several lines of previous research on modeling grid cells. First, RNN
models have been used to model grid cells and path integration. The traditional approach uses
simulation-based models with hand-crafted connectivity, known as continuous attractor neural
network (CANN) [2, 6, 7, 29, 1]. On the other hand, more recently two pioneering papers [9, 3]
developed optimization-based RNN approaches to learn the path integration model and discovered
that grid-like response patterns can emerge in the optimized networks. These results are further
substantiated in [33, 8]. Our work analyzes the properties of the general recurrent model for path
integration, and these properties seem to be satisfied by the hand-crafted CANN models. Our method
belongs to the scheme of optimization-based approaches, and the learned response maps share similar
properties as assumed by the CANN models.

Second, our work differs from the PCA-based basis expansion models [13, 33, 35] in that, unlike PCA,
we make no assumption about the orthogonality between the basis functions, and the basis functions
are generated by the transformation model. Furthermore, in previous basis expansion models [13, 33],
place fields with Mexican-hat patterns (with balanced excitatory center and inhibitory surround) had
to be assumed in order to obtain hexagonal grid firing patterns. However, experimentally measured
place fields in biological brains were instead well characterized by Gaussian functions. Crucially, in
our model, hexagonal grids emerge from learning with Gaussian place fields, and there is no need to
assume any additional surround mechanisms or difference of Gaussians kernels.

In another related paper, [19] proposed matrix representation of 2D self-motion, while our work
analyzes general transformations. Our investigation of the special case of linear transformation model
reveals the matrix Lie group and the matrix Lie algebra of rotation group. Our work also connects the
linear transformation model to the basis expansion model via unitary group representation theory.

8 Conclusion

This paper analyzes the recurrent model for path integration calculations by grid cells. We identify a
group representation condition and an isotropic scaling condition that give rise to locally conformal
embedding of the self-motion. We study a linear prototype model that reveals the matrix Lie group
of rotation, and explore the connection between the isotropic scaling condition and hexagon grid
patterns. In addition to these theoretical investigations, our numerical experiments demonstrate that
our model can learn hexagon grid patterns for the response maps of grid cells, and the learned model
is capable of accurate long distance path integration.

In this work, the numerical experiments are mostly limited to the linear transformation model, with
the exception of an experiment with ReLU non-linearity. We will conduct experiments on the other
non-linear transformation models, especially the forms assumed by the hand-crafted continuous
attractor neural networks. Moreover, we assume that the agent navigates within a square open-field
environment without obstacles or rewards. It is worthwhile to explore more complicated environments,
including 3D environment.
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