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Abstract

Interaction tests are crucial in the sciences, particularly in pairwise perturbation
experiments where they can be used to reveal causal relationships in a system.
Recently, Zuheng et al. [2024] proposed a framework and statistical tests for
detecting pairwise interactions from unstructured data like images. While effective,
these tests can be prohibitively expensive due to training costs that are quadratic in
the number of perturbations. To address this, we explore alternative score-based
interaction tests that can be linear in the number of perturbations. In particular,
we propose using the aggregated Kernelized Stein Discrepancy (KSD, Schrab
et al. 2023) as a formal hypothesis test. In our experiments, we compare to the
Fisher Divergence (FD)—a score-based test that scales quadratically in the number
of experiments—and show that: (i) with low-dimensional inputs, both methods
perform well; (ii) with high-dimensional inputs like images, KSD’s sensitivity to
kernel choice hurts performance; and (iii) projecting high-dimensional data into
lower-dimensional spaces solves this issue for KSD, resulting in an effective and
computationally-efficient interaction test.

1 Introduction

Detecting interactions between experimental perturbations is a common and significant challenge in
many scientific fields. This is particularly true for pairwise perturbation experiments which seek to
understand the effect of combined/paired interventions on system in order to reveal interactions that
would be missed by single interventions [Lehner, 2011]. For example, synthetic lethality [Nijman,
2011] relationships between genes occur when knocking out an individual gene results in no effect
on a cell, but knocking out pairs of genes results in the cell dying. To detect these relationships,
the dominant approach is to pre-select an outcome variable of interest—such as cell viability in
the synthetic lethality example. However, this approach is limited as it can only detect interactions
if one has selected the correct outcome variable. Recently, Zuheng et al. [2024] showed that it is
possible to detect these interactions from unstructured data (such as the pixels in an image) using
a Kullback–Leibler (KL) divergence-based interaction test. While effective, this method requires
fitting a quadratic number of models in order to estimate these KL divergences. For large screening
experiments, this can be computationally prohibitive.
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In this work, we propose an alternative approach based on the (Stein) score function, ∇x log p(x),
which is estimated by many of the popular diffusion modelling techniques [Ho et al., 2020]. We show
that it is possible to test for the same dependencies using the Kernelized Stein Discrepancy (KSD,
Liu et al. 2016, Chwialkowski et al. 2016, Gretton et al. 2012). This approach allows us to estimate
the condition score function from single-perturbation experiments, and test for dependence using
samples come from the double-perturbation experiments. As a result, we only need to fit an estimator
for the score across a linear number of perturbations.

In our experiments, we compare the KSD to two alternative methods on synthetic data: (1) the exact
Fisher Divergence (FD), which also uses score functions but involves fitting the score for all pairwise
perturbations (i.e. a quadratic number of condition); and (2) the KL-based test originally proposed by
Zuheng et al. [2024]. We find that the KSD is effective in low-dimensional settings but struggles with
high-dimensional images. However, by employing an appropriate low-dimensional representation,
we are able to achieve similar performance to that seen in the low-dimensional experiments. In
particular, we find that the final hidden layer of a classifier is the most effective feature space for
testing interactions.

2 Related Work

While we do not attempt to disentangle latent variables, our approach to detecting interactions
builds on the modelling assumptions from causal representation learning [e.g. Hyvarinen et al., 2019,
Schölkopf, 2021, Lachapelle et al., 2022, Lippe et al., 2023, Buchholz et al., 2023, Ahuja et al., 2023,
Zhang et al., 2024], by assuming the observation of a nonlinear mixing function of latent variables.
Like Varici et al. [2023], we leverage the score function, but do not attempt to disentangle latent
variables. If successful, disentangling latent variables would be sufficient to test for independence
directly, but disentanglement is extremely challenging in practice because most methods rely on
untestable assumptions that are difficult to verify in scientific applications. Our tests of separability is
based on the framework introduced by Zuheng et al. [2024], which tests the notion of independence
by leveraging assumptions about separable concepts [Wang et al., 2024]. Like us, Wang et al. uses
the score functions, but they assume separability holds rather than attempting to test for it. Our test is
built on the kernelized Stein Discrepancy which has been explored in [Liu et al., 2016, Chwialkowski
et al., 2016, Gretton et al., 2012] which is based on Stein’s method [Stein, 1972]; for an accessible
introduction to the KSD, see Liu [2016].

3 Background

3.1 Latent separability

We follow a similar setup as introduced by Zuheng et al. [2024] with a slightly different presentation.
We assume that observation X obeys the following generative process involving latent random
variable Z and noise variable U :

Xt = f(Zt, U), where Zt ∼ pZ(z|T = t), U ∼ pU , T ⊥⊥ U, T ̸⊥⊥ Z, U ⊥⊥ Z. (1)

Here T denotes the perturbation variable and t indexes the experimental perturbations. Throughout,
we assume that there are n single perturbations, denoted as δi := {T = i} (∀i ∈ [n]), and

(
n
2

)
pairwise perturbations, denoted as δij := δi ∩ δj (i ̸= j). And we take δ0 = {T = 0} to represent
the unperturbed environment. T ̸⊥⊥ Z, T ⊥⊥ U yield that the perturbation only intervenes the latent
variable Z but not the noise U , and the structural equation f does not get intervened as well. Hence,
Eq. (1) ensures that X ⊥⊥ (T1, . . . , Tn)|Z. Throughout we assume that the latent variable Z admits a
causal factorization, such that,

pZ(z) =

L∏
l=1

pZl
(zl|Pa(zl)), (2)

where ∀l ∈ [L],Pa(Zl) ⊆ {Z1, . . . , ZL} denotes the parent nodes of zl, the set of latent variables
that causally influence Zl. Each perturbation targets a subset of latents, inducing a soft intervention,
which changes the corresponding conditional distributions (note that hard interventions which remove
the depencence on causal parents are a special case). For example, suppose that the latent variable Zi
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is targeted by the intervention δi, then pZi(zi|Pa(zi)) gets changed into p†Zi
(zi|Pa(zi)), hence

pZ(z|δi) = p†Zi
(zi|Pa(zi)) ·

∏
l ̸=i

pZl
(zl|Pa(zl)).

This model leads to a natural interpretation of the interaction between two perturbations: if two
perturbations are non-interacting, they should target distinct latent factors. Zuheng et al. [2024]
formally define this relationship as separability.
Definition 3.1. Denote I(t) the index of latent variables that are targeted by the perturbation t.
Perturbations δi, δj are separable if I(i) ∩ I(j) = ∅.

Zuheng et al. showed that separability has a testable implication: if δi and δj are separable, then,

log
p(x|δi)
p(x|δ0)

+ log
p(x|δj)
p(x|δ0)

= log
p(x|δij)
p(x|δ0)

.

In Theorem 3.2, we show a similar relationship based on score functions (the gradients of the log-
densities) instead of log-densities, given an injectivity condition on the structural equation f . Notably,
despite the similar implications, Theorem 3.2 operates in a more general setting compared to Zuheng
et al. [2024, Theorem 3.6]. Specifically, we do not explicitly assume a diffeomorphism between the
latent variable Z and the observation X .
Theorem 3.2. In the model described by Eq. (1), further assume that the structural equation f is
injective. Then, if perturbations δi and δj are separable, we have

s(x|δij) = s(x|δi) + s(x|δj)− s(x|δ0), (3)

where s(x|δi) = ∇x log p(x|δi) for all i ∈ [n].

On the right-hand side of Eq. (3), s(x|δi) + s(x|δj)− s(x|δ0) should be considered as the intended
score function of the double perturbation group when δi and δj are separable. In contrast, s(x|δij)
represents the actual score function.

3.2 Exact Fisher divergence and kernelized Stein discrepancy

In this section, we review two statistical divergences involving score functions of distributions, the
Fisher divergence and the kernelized Stein discrepancy, which will be used to quantify the violation
of the score additivity Eq. (3) between a pair of perturbations.

Fisher divergence (FD) FD [Hyvärinen et al., 2009, Lyu, 2009] measures the discrepancy between
two distributions p, q by comparing their score function. It is defined as:

DF (p||q) := Ex∼p

[
∥∇ log p(x)−∇ log q(x)∥2

]
.

Notice that DF (p||q) = 0 if and only if p = q, making it a valid statistical divergence. In practice, if
the score functions ∇ log p(x) and ∇ log q(x) (or their estimates) are available, FD can be estimated
using Monte Carlo samples from p.

Kernelized stein discrepancy (KSD) KSD [Liu et al., 2016, Chwialkowski et al., 2016, Gorham
and Mackey, 2015] is a nonparametric measure that assesses the goodness-of-fit between a target
distribution p and a model distribution q by leveraging Stein’s method [Stein, 1972] and reproducing
kernel Hilbert spaces (RKHS). It is defined as:

Ds(p||q) := max
∥f∥H≤1

Ex∼p [f(x)sq(x) +∇xf(x)] (4)

where sq(x) := ∇x log q(x), H is a RKHS associated to some positive definite kernel k(·, ·). When
both p and q have smooth densities, Eq. (4) has a more explicit expression provided with the choice
of kernel k:

Ds(p||q) := Ex,x′∼p [uq (x, x
′)] ,

where uq (x, x
′) is the Steinized kernel expressed as follows:

sq(x)
T k (x, x′) sq (x

′) + sq(x)
T∇x′k (x, x′) +∇xk (x, x

′)
T
sq (x

′) + tr (∇x,x′k (x, x′)) .
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In fact, KSD can also be viewed as a specific maximum mean discrepancy (MMD) [Gretton et al.,
2012] with kernel uq . For most choice of k, Ds(p||q) = 0 if and only if p = q.

In practice, one can estimate Ds(p||q) unbiasedly via i.i.d. samples {xi} from q as follows:

D̂s(p||q) =
1

n(n− 1)

∑
1≤i ̸=j≤n

uq (xi, xj) . (5)

An important property of this estimator is that it only requires the score function sq and samples from
p. Moreover, the statistical properties of this estimate are well-understood for both cases when p = q
and p ̸= q [Liu et al., 2016], enabling the use of KSD for nonparametric goodness-of-fit hypothesis
testing without the need for explicit density estimation [Liu et al., 2016, Chwialkowski et al., 2016,
Schrab et al., 2023].

4 Score-based pairwise interaction test

Now we are ready to present our methodology of pairwise interaction test. To test the separability for
a given pair of perturbations δi, δj , we aim to measure how well the composition of single perturbation
scores characterize the double perturbation score—the relationship described in Eq. (3). Specifically,
we need a principled metric to quantify the violation of Eq. (3).

A natural option is to measure the FD between the left side and right side of Eq. (3) using the
estimated scores of all perturbation groups, i.e.,∫

∥ŝ(x|δij)− ŝ(x|δi)− ŝ(x|δj) + ŝ(x|δ0)∥2 p(x|δij)dx, (6)

where ŝ denotes the estimated score functions obtained from the data of corresponding perturbation
group. In our experiments, we estimate the scores using the denoising diffusion probabilistic model
(DDPM) [Ho et al., 2020], and compute the expectation using samples from double perturbation
group p(x|δij). As previously explained, Eq. (6) should be interpreted as the FD between the true
data distribution under the double perturbation and the separability model.

However, this still requires us to learn the score functions for all pairwise combinations of pertur-
bations (ŝij), resulting in a quadratic computational cost with respect to the total number of single
perturbations. Moreover, while this method provides a measure of the violation of the score addi-
tivity relationship, it lacks a rigorous statistical framework for determining whether the separability
assumption for δi, δj is indeed violated.

We can address both problems using KSD. Specifically, we first estimate ŝsep
ij := ŝ(x|δi) + ŝ(x|δj)−

ŝ(x|δ0), which can be interpreted as the estimated score function for the double perturbation group
under the separability model. Then, we obtain the KSD estimator Eq. (5) using data from p(x|δij) and
ŝsep
ij . This amounts to measure the goodness-of-fit of the data distribution p(x|δij) to the separability

model. Notice that the KSD estimates only involve learning scores for the single perturbation groups,
avoiding the quadratic training cost as using the FD estimates (which require scores from the double
perturbation group as well).

To address the second issue, we use a KSD based non-parametric goodness-of-fit testing procedure
called the aggregated KSD test [Schrab et al., 2023], which is a variant of KSD-based goodness-of-fit
test that allows users to combine multiple KSD test results evaluated on different choice of kernels.
Then, it uses the bootstrap method to estimate the p-value for the hypothesis test

H0 : ssep
ij (x) = ∇ log p(x|δij), H1 : ssep

ij (x) ̸= ∇ log p(x|δij).
This allows us to draw justified statistical conclusion whether the separability relationship holds (null
hypothesis).

4.1 KSD test on learned embeddings

In our experiments, both the FD and KSD scores, as well as the aggregated KSD test, work effectively
for low-dimensional observations. However, we find that in our image examples, the KSD-based
method fails to perform reliably in the raw pixel space; the estimated KSD fails to reveal the true
interaction relationships, and statistical conclusions from the aggregated KSD test are unreliable.
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The fundamental reason is the lack of appropriate kernel choices when data do not follow Euclidean
geometry. Typically, for kernel-based tests, we choose Gaussian kernels, Matérn kernels, or inverse
quadratic kernels, all of which implicitly assume the data is defined in a Euclidean space. However,
the pixel space of image data is clearly not Euclidean. Furthermore, the power of kernel-based tests
decays with increasing dimensionality [Gao and Shao, 2023].

Therefore, for high-dimensional data, we first learn a low-dimensional embedding and then apply
the KSD framework to these embeddings. The question then arises: How should we learn this
embedding? Heuristically, one can obtain the embedding using the encoder from a trained Variational
Autoencoder (VAE) or by extracting features from the last layer of a classifier. Interestingly, we
can show that in our model assumptions Eq. (1), the representation layer from a classifier can be a
preferred choice.

Proposition 4.1 states that the propensity score p(T |X), which is an estimatable quantity using
classifiers, captures all relevant information about perturbation T with respect to the latent variable Z.
Indeed, in our experiments, we find the embedding learned via a classifier significantly outperforms
those learned from VAEs.

Proposition 4.1. Denote the propensity score π(z) := p(T |Z = z) ∈ [0, 1]#perturbations. Under the
same assumption of Theorem 3.2, we have that propensity scores given the observation X equals to
the one given the latent Z, i.e., π(Z) = π(X). Furthermore, T ⊥⊥ Z|π(X).

We remark that this result was previously established in multimodality matching literature [Xi and
Hartford, 2024]. It’s also worth noting that the Fisher Divergence works relatively well on both
low- and high-dimensional data. The general precedure for estimating FD and KSD in high-dim is
depicted in Fig. 4.

5 Experiments

Setup All experiments are performed on generated synthetic data. We consider two main types of
data, low dimensional which are 3 dimensional real numbers and high dimensional which are 32x32x3
images. For both cases, we assume 4 perturbation classes labelled A − D and 3 latent variables.
The DAG structure as well as the data generation process can be found in Appendix A.2.1. We
evaluate how well the Fisher Divergence and KSD detects the separability of the perturbation classes
using three main experiment settings: (1) low dimensional with analytical score functions, (2) low
dimensional with estimated score functions, and (3) high dimensional with estimated score functions.
We estimate the scores using a Denoising Diffusion Probabilistic Model (DDPM) framework [Ho
et al., 2020]. For setting (3), we also evaluate the KSD using the estimated score function of a lower
dimensional embedding representation of the images. As baseline for setting (2) and (3), we compare
the results with the log density estimates separability score estimates from the [Zuheng et al., 2024].
Further details on the data generation, model training, and evaluation are found in Appendix A.

Low Dimension For all the following results, it is important to note that the most top left and most
bottom right quadrants should have the highest interaction value e.g. most bright since interventions
A & B and C & D are interacting. Figure 1 evaluates the interaction using analytical scores.
Both subfigures 1a and 1b show that Fisher Divergence and KSD correctly identifies interacting
perturbations.

(a) Fisher Div. (b) KSD

Figure 1: Separability of synthetic low dimensional (tabular) data evaluated using Fisher Divergence
and KSD on exact analytical score functions.

5



Figure 2 presents the results of using estimated scores to evaluate the separability of interventions
with 3 dimensional real number observations. In both subfigures 2a and 2b, the KL-divergence of
log densities and the Fisher Divergence of scores are nearly identical in successfully identifying the
correct interacting pairs, while also keeping the non-interacting pairwise values low. Subfigure 2c
demonstrates that while KSD is effective at detecting the correct interacting pairs with the correct
p-value accepts and reject, it assigns relatively higher values to the non-interacting pairs compared to
the previous methods.

(a) KL Div. & Log Density (b) Fisher Div. (c) KSD

Figure 2: Separability of synthetic low dimensional (tabular) data evaluated using Fisher Divergence
and KSD on estimated score functions.

High-Dimension Figure 3 presents the results of using estimated scores to evaluate the separability
of interventions with high dimensional 32x32x3 images. The KL Divergence between log densities
shows that it correctly identifies the interacting interventions with equal magnitude of separability
value. For the KSD evaluation, two different score estimation methods are used where we estimate
score functions from the images directly and we also estimate score functions from a learned
embedding space. In 3d, we use a 4 dimensional embedding space obtained from the last layer
of a classifier. The results of the KSD using the embedding space is very similar to the Fisher
Divergence that identifies the correct interacting interventions. Contrary to this, the KSD using
the score function trained on the image directly performs very poorly with incorrectly identified
interacting interventions.

(a) KL Div. & Log Density (b) Fisher Div. (c) KSD (Images) (d) KSD (Embeddings, dim=4)

Figure 3: Separability of synthetic high dimensional (image) data evaluated using Fisher Divergence
and KSD on estimated score functions in images and embedding space.

6 Discussion

We have shown that score-based methods are effective for detecting interactions in pairwise pertur-
bation experiments, performing similarly to the KL divergence between log-density ratios under
comparable conditions. While the Fisher Divergence method still has quadratic training costs in the
number of perturbations,mirroring the computational challenges of using the KL divergence, KSD
has linear training costs in the number of perturbations since it only requires score estimators for
single perturbations (and data from pairwise experiments).

Limitations One of the main limitations of this paper lies in the evaluation, which was conducted
solely on synthetic tabular and image data with relatively-simple data-generating processes. While
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this serves as a promising first step in validating the use of score functions for interaction detection, it
falls short of capturing the complexity found in real-world pairwise perturbation experiments, such as
gene knockout studies, drug combinations, or material science applications, where interactions are
often more nuanced and challenging to detect. Another main limitation is that unlike our synthetic
examples where we have access to ground truth, in real-world examples we do know at which noise
time step is best to evaluate the separability. Correctly evaluating separability heavily relies on
knowing the correct noising timesteps is appropriate.

Future work In our experiments, we focused solely on a single score estimation method—the
DDPM. Exploring alternative methods, such as Flow Matching with interpolants with characterizable
score functions, could provide valuable insights into how Fisher Divergence and KSD evaluations
might change. We also did not assess the sensitivity of these score-based methods to noise, which is
a crucial factor in real-world data. It would be important to evaluate how robust these methods are
when applied to noisy or incomplete data.

References
K. Ahuja, D. Mahajan, Y. Wang, and Y. Bengio. Interventional causal representation learning. In

International conference on machine learning, pages 372–407. PMLR, 2023.

S. Buchholz, G. Rajendran, E. Rosenfeld, B. Aragam, B. Schölkopf, and P. K. Ravikumar. Learning
linear causal representations from interventions under general nonlinear mixing. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=q131tA7HCT.

K. Chwialkowski, H. Strathmann, and A. Gretton. A kernel test of goodness of fit. In International
conference on machine learning, pages 2606–2615. PMLR, 2016.

H. Gao and X. Shao. Two sample testing in high dimension via maximum mean discrepancy. Journal
of Machine Learning Research, 24(304):1–33, 2023.

J. Gorham and L. Mackey. Measuring sample quality with stein’s method. Advances in neural
information processing systems, 28, 2015.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test.
The Journal of Machine Learning Research, 13(1):723–773, 2012.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition, 2015. URL
https://arxiv.org/abs/1512.03385.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models, 2020. URL https:
//arxiv.org/abs/2006.11239.

A. Hyvärinen, J. Hurri, P. O. Hoyer, A. Hyvärinen, J. Hurri, and P. O. Hoyer. Estimation of
non-normalized statistical models. Natural Image Statistics: A Probabilistic Approach to Early
Computational Vision, pages 419–426, 2009.

A. Hyvarinen, H. Sasaki, and R. Turner. Nonlinear ica using auxiliary variables and generalized
contrastive learning. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 859–868. PMLR, 2019.

A. Kotelnikov, D. Baranchuk, I. Rubachev, and A. Babenko. Tabddpm: Modelling tabular data with
diffusion models, 2022. URL https://arxiv.org/abs/2209.15421.

S. G. Krantz and H. R. Parks. Geometric integration theory. Springer Science & Business Media,
2008.

S. Lachapelle, P. Rodriguez, Y. Sharma, K. E. Everett, R. L. PRIOL, A. Lacoste, and S. Lacoste-
Julien. Disentanglement via mechanism sparsity regularization: A new principle for nonlinear
ICA. In B. Schölkopf, C. Uhler, and K. Zhang, editors, Proceedings of the First Conference on
Causal Learning and Reasoning, volume 177 of Proceedings of Machine Learning Research, pages
428–484. PMLR, 11–13 Apr 2022. URL https://proceedings.mlr.press/v177/
lachapelle22a.html.

7

https://openreview.net/forum?id=q131tA7HCT
https://openreview.net/forum?id=q131tA7HCT
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2209.15421
https://proceedings.mlr.press/v177/lachapelle22a.html
https://proceedings.mlr.press/v177/lachapelle22a.html


B. Lehner. Genetic interactions. Current Biology, 21(20):R811–R815, 2011.

P. Lippe, S. Magliacane, S. Löwe, Y. M. Asano, T. Cohen, and E. Gavves. BISCUIT: Causal
representation learning from binary interactions. In R. J. Evans and I. Shpitser, editors, Proceedings
of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, volume 216 of Proceedings
of Machine Learning Research, pages 1263–1273. PMLR, 31 Jul–04 Aug 2023. URL https:
//proceedings.mlr.press/v216/lippe23a.html.

Q. Liu. A short introduction to kernelized stein discrepancy. 2016. URL https://api.
semanticscholar.org/CorpusID:16209224.

Q. Liu, J. Lee, and M. Jordan. A kernelized Stein discrepancy for goodness-of-fit tests. In Interna-
tional conference on machine learning, pages 276–284. PMLR, 2016.

S. Lyu. Interpretation and generalization of score matching. In Uncertainty in Artificial Intelligence,
2009.

T. maintainers and contributors. Torchvision: Pytorch’s computer vision library. https://github.
com/pytorch/vision, 2016.

S. M. Nijman. Synthetic lethality: general principles, utility and detection using genetic screens in
human cells. FEBS letters, 585(1):1–6, 2011.

B. Schölkopf. Toward causal representation learning. Proceedings of the 37th International Con-
ference on Machine Learning (ICML), 2021. URL https://proceedings.mlr.press/
v139/scholkopf21a.html.

A. Schrab, B. Guedj, and A. Gretton. Ksd aggregated goodness-of-fit test, 2023. URL https:
//arxiv.org/abs/2202.00824.

C. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent
random variables. In Proceedings of the sixth Berkeley symposium on mathematical statistics
and probability, volume 2: Probability theory, volume 6, pages 583–603. University of California
Press, 1972.

B. Varici, E. Acarturk, K. Shanmugam, A. Kumar, and A. Tajer. Score-based causal representation
learning with interventions, 2023. URL https://arxiv.org/abs/2301.08230.

P. von Platen, S. Patil, A. Lozhkov, P. Cuenca, N. Lambert, K. Rasul, M. Davaadorj, D. Nair, S. Paul,
S. Liu, W. Berman, Y. Xu, and T. Wolf. Diffusers: State-of-the-art diffusion models, 2024. URL
https://github.com/huggingface/diffusers.

Z. Wang, L. Gui, J. Negrea, and V. Veitch. Concept algebra for (score-based) text-controlled
generative models, 2024. URL https://arxiv.org/abs/2302.03693.

J. Xi and J. Hartford. Propensity score alignment of unpaired multimodal data. arXiv preprint
arXiv:2404.01595, 2024.

J. Zhang, K. Greenewald, C. Squires, A. Srivastava, K. Shanmugam, and C. Uhler. Identifiability
guarantees for causal disentanglement from soft interventions. Advances in Neural Information
Processing Systems, 36, 2024.

Zuheng, Xu, M. Jain, A. Denton, S. Whitfield, A. Didolkar, B. Earnshaw, and J. Hartford. Automated
discovery of pairwise interactions from unstructured data, 2024. URL https://arxiv.org/
abs/2409.07594.

8

https://proceedings.mlr.press/v216/lippe23a.html
https://proceedings.mlr.press/v216/lippe23a.html
https://api.semanticscholar.org/CorpusID:16209224
https://api.semanticscholar.org/CorpusID:16209224
https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://proceedings.mlr.press/v139/scholkopf21a.html
https://proceedings.mlr.press/v139/scholkopf21a.html
https://arxiv.org/abs/2202.00824
https://arxiv.org/abs/2202.00824
https://arxiv.org/abs/2301.08230
https://github.com/huggingface/diffusers
https://arxiv.org/abs/2302.03693
https://arxiv.org/abs/2409.07594
https://arxiv.org/abs/2409.07594


A Appendix

A.1 Proofs

Proof of Theorem 3.2. By the injectivity of f , we can apply the generalized change of variable
formula [Krantz and Parks, 2008, Lemma 5.1.4] to express log p(x|T ) by:

log p(x|T ) = log pZ,U (f
−1(x)|T ) + log |

(
Jf−1(x)

)
|

= log pZ([f
−1(x)]Z |T ) + log pU ([f

−1(x)]U |T ) + log |
(
Jf−1(x)

)
|

= log pZ([f
−1(x)]Z |T ) + log pU ([f

−1(x)]U ) + log |
(
Jf−1(x)

)
|,

where

Jf−1(x) =

√√√√det

([
∂

∂x
f−1(x)

]T [
∂

∂x
f−1(x)

])
, if dim(X) > dim(Z) + dim(U),

Jf−1(x) =

√√√√det

([
∂

∂x
f−1(x)

] [
∂

∂x
f−1(x)

]T)
, if dim(X) < dim(Z) + dim(U),

Jf−1(x) = det

([
∂

∂x
f−1(x)

])
, if dim(X) = dim(Z) + dim(U),

the second equality is by Z ⊥⊥ U , and the last equality is by T ⊥⊥ Z.

Given the separability assumption and Eq. (2), following the identical derivation as in the proof of
Zuheng et al. [2024, Theorem 3.6.] yields that

log p(x|δij) = log p(x|δi) + log p(x|δj)− log p(x|δ0).
Taking gradient with respect to x on both side completes the proof.

A.2 Experiment Details

Below is a summary of the methodology comparison between the Fisher Divergence and KSD method
using high dimensional data.

(a) Fisher Div. (b) KSD

Figure 4: Interaction tests. (a) Fisher Divergence can be used with low- and high-dimensional
data but needs to be trained on both single and pairwise/double perturbations. (b) KSD requires
low-dimensional data (for the score estimator), but can be trained using only single perturbations. To
use KSD on high-dimensional data, we learn low-dimensional embedding of the data.

A.2.1 Data Generating Process

As mentioned in Section 5, we consider 4 perturbation classes labelled A−D and their corresponding
pairwise combinations which intervene on 3 latent variables labelled Z1−Z3 as visualized in Figure
5. We consider a binary intervention, that is the latent variables have the following distributions

P1 ∼
{

Normal(0, 1) if unperturbed
Normal(3, 1) if perturbed by (A) or/and (B)

P2 ∼
{

Normal(0, 1) if unperturbed
Normal(3, 1) if perturbed by (B)

P3 ∼
{

Normal(0, 1) if unperturbed
Normal(3, 1) if perturbed by (C) or/and (D)
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(a) Low Dimension (b) High Dimension

Figure 5: DAG Structure between interventions (A − D) and latent space (Z1 − Z3). Note that
interventions A & B and C & D are interacting since they have overlapping latent variables.

and so the joint probability distribution of the latent Z is

PZ(z1, z2, z3) = P (z1) · P (z2) · P (z3)

We generate observations for each perturbation by first sampling latent variables using the joint
probability distribution of Z. To generate low-dimensional observations (3 dimensional real numbers),
we use a deterministic g which consists a 5-layer Multi layer perceptron (MLP) with LeakyReLU
activations. To generate high-dimensional observations (images), we use the latent variables as values
for the x and y coordinates for the small foreground balls which provides the perturbation and random
background balls which provides the noise. Figure 6 bottom row shows examples of the generated
images.

A.2.2 Model Architecture & Training

The main score estimation method used is the Denoising Diffusion Probabilistic model [Ho et al.,
2020]. For the low-dimensional score function estimation, we use an conditional MLP that is loosely
based on the Tab-DDPM [Kotelnikov et al., 2022] that contains several fully connected layer with
ReLU activations that incorporates perturbation information as an input embedded with the timestep.
The diffusion process encodes the time using the standard cos and sin encoding with 1000 timesteps.
For the high-dimensional score function estimation, we use a conditional UNet architecture from
Hugging Face [von Platen et al., 2024] composed of standard down-sample blocks, bottle-neck, and
up-sample blocks. Perturbation information is incorporated as label projected onto an embedding
space and used as input along with the pixel information. We ensure model quality by comparing the
generated images with actual images to determine overall quality of the model as shown in Figure 6.

For the high-dimensional experiments, extra processing was done in order to perform KSD evaluation
using a lower dimensional embedding space. The embeddings were obtained using the last layer of
a classification model that uses a standard ResNet architecture from torchvision [maintainers and
contributors, 2016]. In order to choose the dimensionality of the embedding space, we evaluate the
KSD of score functions obtained from {4, 8, 16, 32} embedding space. Figure 7 show that the best
embedding space dimension is 4.

We also consider higher dimensions like {192, 384} by using a standard convolutional autoencoder
He et al. [2015] with the corresponding dimensions. As shown in Figure 7, the KSD does not perform
well in detecting the correct interacting interventions.

For both the low- and high-dimensional cases, the models were trained for 10,000 epochs with an
AdamW optimizer and learning rate 1e-3 and an MSE-loss and were trained on NVIDIA H100 GPUs.

A.2.3 Evaluation Details

To evaluate the Fisher Divergence and KSD test statistic, we used score function estimators derived
from a DDPM framework. This required selecting a specific noising time step for evaluation. Given
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Figure 6: Generated images from Denoising Diffusion Probabilistic model trained on synthetic
images. Top row contains generated images and bottom row contains actual images.

(a) dim = 4 (classifier) (b) dim = 8 (classifier) (c) dim = 16 (classifier)

(d) dim = 32 (classifier) (e) dim = 192 (autoencoder) (f) dim = 384 (autoencoder)

Figure 7: Separability values of KSD using score functions trained on various n-dimensional
embedding space.
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access to ground truth data, we chose the time step that empirically minimized both Type I and Type
II error rates. As shown in Figure 8, the optimal time step was around t = 400 − 500, which we
utilized in our results.

(a) Fisher Div. (b) KSD

Figure 8: Error rate of Fisher Divergence and KSD test over diffusion noise timesteps.
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