© ® N O g A~ W N =

Preference-Driven Multi-Objective Combinatorial
Optimization with Conditional Computation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent deep reinforcement learning methods have achieved remarkable success
in solving multi-objective combinatorial optimization problems (MOCOPs) by
decomposing them into multiple subproblems, each associated with a specific
weight vector. However, these methods typically treat all subproblems equally and
solve them using a single model, hindering the effective exploration of the solution
space and thus leading to suboptimal performance. To overcome the limitation, we
propose POCCO, a novel plug-and-play framework that enables adaptive selection
of model structures for subproblems, which are subsequently optimized based
on preference signals rather than explicit reward values. Specifically, we design
a conditional computation block that routes subproblems to specialized neural
architectures. Moreover, we propose a preference-driven optimization algorithm
that learns pairwise preferences between winning and losing solutions. We eval-
uate the efficacy and versatility of POCCO by applying it to two state-of-the-art
neural methods for MOCOPs. Experimental results across two classic MOCOP
benchmarks demonstrate its significant superiority and strong generalization.

1 Introduction

Multi-objective combinatorial optimization problems (MOCOPs) require optimizing multiple con-
flicting objectives in a discrete decision space. Due to their broad applications in manufacturing [[1]],
logistics [16]], and scheduling [[12], they have attracted significant attention from computer science and
operations research communities. Unlike single-objective problems, MOCOPs seek a set of Pareto
optimal solutions that capture trade-offs among objectives such as cost, makespan, and environmental
impact. Their NP-hard nature makes exact methods impractical for large instances [9, [11]], leading to
widespread use of heuristics. However, conventional heuristics often entail costly iterative searches
and require domain knowledge and fine-tuning, limiting their scalability and generalization.

Recent neural methods have achieved notable success in solving SOCOPs [2, 126116, 15,117,120 |34} [38]]
by learning decision policies in a data-driven manner. Building on this progress, researchers have
extended neural approaches to MOCOPs, which offer advantages such as avoiding heuristic design,
enabling GPU acceleration, and adapting to diverse problem variants. Most methods decompose
MOCOPs into scalarized subproblems, each defined by a weight vector, and apply deep reinforcement
learning (DRL) to approximate the Pareto front. Early works train separate models per subproblem
using transfer or meta-learning (21} [37]], but suffer from high computational cost and poor generaliza-
tion to unseen weights. PMOCO [23]] addresses this by using a weight-conditioned hypernetwork
to modulate model parameters within a single model, yet struggles with diverse weights. Recent
methods like CNH [10] and WE-CA [4] improve generalization by embedding weight vectors into
problem representations, achieving state-of-the-art performance across varying problem sizes.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

36
37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68

69

70

71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

Current SOTA methods typically rely on a single neural network with limited capacity to handle
all subproblems, which overcomplicates the learning task and results in suboptimal performance.
A straightforward solution to ease training and promote effective representation learning across
subproblems is to increase the model capacity. However, determining how much additional capacity to
allocate and where to introduce it within the architecture remains an open challenge. On the other hand,
neural methods often adopt REINFORCE [33]] as the training algorithm, relying solely on scalarized
objective values as reward signals to guide policy updates. Given its on-policy nature, REINFORCE
suffers from high gradient variance and lacks structured mechanisms for effective exploration [[19].
These issues are exacerbated in MOCOP settings, where the vast combinatorial action space makes
efficient exploration particularly difficult, ultimately hindering policy performance.

To address these issues, we propose POCCO (Preference-driven multi-objective combinatorial
Optimization with Conditional COmputation), a plug-and-play framework that augments neural
MOCOP methods with two complementary mechanisms. First, POCCO introduces a conditional
computation block into the decoder, where a sparse gating network dynamically routes each sub-
problem through either a selected subset of feed-forward (FF) experts or a parameter-free identity
(ID) expert. This design enables subproblems to adaptively select computation routes (i.e., model
structures) based on their context, efficiently scaling model capacity and facilitating more effective
representation learning. Second, POCCO replaces raw scalarized rewards with pairwise preference
learning. For each subproblem, the policy samples two trajectories, identifies the better one as the
winner, and maximizes a Bradley—Terry (BT) likelihood based on the difference in their average log-
likelihoods. Such comparative feedback guides the search toward policies that generate increasingly
preferred solutions, enabling exploration of the most promising regions of the search space and more
efficient convergence to higher-quality solutions.

Our contributions are summarized as follows: 1) Conceptually, we address two fundamental limita-
tions of existing approaches for solving MOCOPs: limited exploration within the vast solution space
and the reliance on a single, capacity-limited model, which can lead to inefficient learning and subop-
timal performance. 2) Technically, we propose a conditional computation block that dynamically
routes subproblems to tailored neural architectures. Additionally, we develop a preference-driven
algorithm leveraging implicit rewards derived from pairwise preference signals between winning
and losing solutions, modeled using the BT framework. 3) Experimentally, we demonstrate the
effectiveness and versatility of POCCO on classical MOCOP benchmarks using two SOTA neural
methods. Extensive results show that POCCO not only outperforms all baseline methods but also
exhibits superior generalization across diverse problem sizes.

2 Methodology

2.1 Overview

POCCO is a learning-based framework that trains a portfolio of policies to solve a set of scalarized
subproblems {(G, \;)}Y,, obtained by decomposing an MOCOP instance. Instead of forcing a single
policy to handle all subproblems which often yields bland and suboptimal behavior, POCCO promotes
specialization: each policy is encouraged to focus on a subset of subproblems, yielding a diverse
policy ensemble. Such diversity is known to enhance multi-task optimization [30] by expanding
the exploration space and ultimately improving solution quality. Technically, we achieve this
diversity by activating different subsets of model parameters through a CCO block, enabling distinct
computational paths to emerge for different subproblems. Moreover, POCCO should encourage
each policy to thoroughly explore the combinatorial solution space during training for reducing
suboptimality. To achieve this, we replace raw rewards with preference signals. For each subproblem
(G, \i), we construct a set of winning—losing solution pairs { (7%, 75:4) 1€ | Training then proceeds
by maximizing the likelihood of the winning solutions while minimizing that of the losing ones,
following a BT-style objective. This preference-driven training encourages the learned policy to
explore the most promising regions of the search space, leading to more efficient convergence toward
higher-quality solutions. Notably, POCCO is a generic, plug-and-play framework that can seamlessly
involve different neural solvers for MOCOPs. We demonstrate this by augmenting two SOTA
methods, CNH [10] and WE-CA [4], in Section 3}

88

89
90
91
92
93
94
95

96
97
98
99
100
101
102

103
104
105
106
107
108

109
110
111
112

113
114
115
116
17
118
119
120

Probability Probability

CCO Block T

Compatibility & Softmax Normalization

!

Conditional Computation Block

|
|
i
!
| L
!
|
!
!

Compatibility & Softmax

Multi-head Attention Multi-head Attention

d4 4141 4
©®-® ©®-®

(a) Backbone Decoder (b) POCCO Decoder (Ours)

Figure 1: Decoder structures of backbone and POCCO.

2.2 Conditional Computational Block

Most approaches employ a Transformer-based architecture, where the encoder generates joint node
embeddings {h;}!" , that capture the interaction between the instance G and the weight vector A,
and the decoder produces candidate solutions conditioned on these embeddings. We propose a CCO
block to increase the model capacity and promote policy diversity across subproblems. To maintain
efficiency, we integrate the CCO block solely into the decoder of the backbone model. This design
enables the generation of multiple diverse solutions through a single, computationally expensive
encoder pass, offering a favorable trade-off between empirical performance and computational cost.

As illustrated in Fig. [T} the CCO block comprises multiple FF experts and a single ID expert. We
insert this block between the multi-head attention (MHA) layer and the compatibility layer in the
decoder. Given a batch of MHA outputs {h%}Z_,, the CCO block dynamically routes each context
vector h? from the corresponding subproblem through either the FF or ID experts, forming distinct
computation paths that function as different policies. The ID expert allows the model to bypass the
FF computation, promoting architectural sparsity and specialization [13]]. Consequently, the CCO
block facilitates the learning of dedicated, weight-specific policies tailored to individual subproblems.

Formally, a CCO block consists of: 1) m FF experts { E1, E», . .., E,, } with independent trainable
parameters; 2) a parameter-free identity expert E,,1; 3) a router, implemented as a gating network
G parameterized by W, which determines how the inputs {hg}le are routed to the experts; and 4)
a skip connection followed by an instance normalization (IN) layer. Given a single context vector A2,
let G(h%) € R™*! denote the output of the gating network, which represents the expert selection
probabilities, and let E; (h%) denote the output of the j-th expert. The output of the CCO block is:

m—+1
ccont) =IN | 3 Gy, B, + 12) M

j=1

The sparse vector G (h?) activates only a small subset of experts, either parameterized FF experts or the
parameter-free ID expert, thereby enabling diverse computation paths while reducing computational
overhead. A typical implementation uses a Top k operator that retains the k largest logits and masks
the rest with —oo. In this case, the gating network output is: G(h%) = Softmax(Top k(h% - W¢)).

Our proposed CCO block aligns with the principles of recent advances in efficiently scaling
Transformer-based models along both width [28] and depth [27]. In specific, it combines of a
mixture-of-experts (MoE) layer, implemented using multiple FF experts to widen the network, with a
mixture-of-depths (MoD) layer, realized through an ID expert that allows inputs to skip computation.
Within the CCO block, each subproblem is adaptively routed to only a small subset of experts, grant-
ing the model the expressiveness of a significantly wider network while preserving computational
efficiency. As demonstrated in Section [3] this joint design achieves a better capacity—efficiency
trade-off than scaling either dimension in isolation.

121

122
123

124
125
126
127
128
129

130
131
132
133

134
135
136
137
138

139
140
141

142
143
144

145

146

147
148
149
150
151
152
153
154

155
156
157

159

160

161
162

2.3 Preference-driven MOCO

To mitigate the exploration inefficiencies inherent in REINFORCE algorithms, we optimize relative
preferences [25] instead of absolute objective values.

Generating preference pairs. For each scalarized subproblem (G, A;) in the training batch, the
policy pg samples two candidate solutions, 7 and 7'. We denote 7% < 7! if 7% is preferred over
7!, as determined by the ordering of their scalarized objective values. This evaluator ranks the two
solutions and designates the better one as the winning solution 7% and the other as the losing solution
7. A binary preference label y is then assigned, where y = 1 if 7% < 7!, and y = 0 otherwise. This
label serves as the supervision signal required for the preference-driven MOCO.

Defining an implicit reward. Distinct from DRL training paradigms that rely on raw objective values,
POCCO treats the average log-likelihood of a solution as an implicit reward fy, directly relating
preferences between solutions to their policy probabilities. This reward is inherently normalized by
sequence length |7|, thereby mitigating length bias between winning and losing solution pairs.

|7

1 1

Ja(m|G) = T log po(IG. \) = > log po(milmar, G, Ni). ©)
t=1

Learning from pairwise comparisons. We formulate preference learning (PL) as a probabilistic

binary classification problem through the BT model. Specifically, the BT model is a pairwise prefer-

ence framework that uses a function gy (-) to map reward differences into preference probabilities. It

assigns each solution a strength proportional to its implicit reward (defined in Eq. (2))) and predicts
the probability gy that the winning solution outranks the losing one:

go(m < 7| G N) = (B fo(m™ | G, N) — fo(m" | G.N)]), 3)

where o () is the sigmoid function, and 5 > 0 is a fixed temperature that controls the sharpness with
which the model distinguishes between unequal rewards. We maximize the likelihood of the collected
preferences, yielding the following loss function:

log po(m*|G, \i) log pe(7'|G, \i)
|| ||

L(0|py, G, /\i,w“’,wl) = —y log 0(5[]) 4

In practice, we collect multiple (7%, %) pairs per update, sum their losses, and backpropagate

through py. By maximizing the log-likelihood of go(7* < 7 | G, \;), the model is encouraged to

assign higher probabilities to preferred solutions 7 over less preferred ones 7'.

3 Experiments

3.1 Experimental settings

Training. We conduct extensive experiments to evaluate the effectiveness of the proposed POCCO
across two representative MOCOPs: the multi-objective traveling salesman problem (MOTSP)[24]
and the multi-objective capacitated vehicle routing problem (MOCVRP)[335]. In MOTSP, the objective
is to determine a tour that visits each node exactly once while minimizing multiple path lengths, each
calculated using a distinct set of coordinates corresponding to different objectives. In MOCVRP, a
fleet of capacity-constrained vehicles must serve all customer nodes and return to a central depot,
with the goals of minimizing the total travel distance and the length of the longest individual route.
We evaluate POCCO on three commonly used problem sizes: n = 20/50/100.

Hyperparameters. We implement POCCO on top of two SOTA neural MOCO methods, CNH [10]
and WE-CA [4], resulting in POCCO-C and POCCO-W, respectively. Most hyperparameters are
aligned with those used in the original CNH and WE-CA implementations. Both models are trained
for 200 epochs, with each epoch processing 100,000 randomly sampled instances and a batch size of
B = 64. We use the Adam optimizer [18]] with a learning rate of 3 x 10~* and a weight decay of
105, We generate the N = 101 weight vectors for decomposition using the method proposed in [[7].

Baselines. We compare POCCO with a broad range of baseline methods across three categories,
all employing weighted-sum (WS) scalarization to ensure fair comparison: (1) Single-model neural

163
164

166
167
168
169

170
171

172
173
174
175
176
177
178
179
180

181

182
183
184
185

Table 1: Performance on BiTSP and MOCVRP Instances

Bi-TSP20 Bi-TSP50 Bi-TSP100
Method HV Gap Time HV Gap Time HV Gap Time
WS-LKH 0.6270 0.00% 10m 0.6415 0.05% 1.8h 0.7090 -0.17% 6h
MOEA/D 0.6241 046% 1.7h 0.6316 159% 1.8h 0.6899 2.53% 2.2h
NSGA-II 0.6258 0.19% 6.0h 0.6120 4.64% 6.1h 0.6692 545% 6.5h
MOGLS 0.6279 -0.14% 1.6h 0.6330 137% 3.7h 0.6854 3.16% 11h
PPLS/D-C 0.6256 0.22% 26m 0.6282 2.12% 2.8h 0.6844 3.31% 11h
DRL-MOA 0.6257 0.21% 6s 0.6360 0.90% 9s 0.6970 1.53% 16s
MDRL 0.6271 -0.02% Ss 0.6364 0.84% 8s 0.6969 1.54% 14s
E 0.6271 -0.02% Ss 0.6364 0.84% 8s 0.6969 1.54% 15s
PMOCO 0.6259 0.18% 6s 0.6351 1.04% 12s 0.6957 1.71% 26s
NH 0.6270 0.00% 13s 0.6387 048% 16s 0.7019 0.83% 33s
POCCO-C 0.6275 -0.08% 14s 0.6409 0.14% 20s 0.7047 0.44% 42s
WE-CA 0.6270 0.00% 6s 0.6392 0.41% Os 0.7034 0.62% 18s
POCCO-W 0.6275 -0.08% 7s 0.6411 0.11% 14s 0.7055 0.32% 36s
CNH-Aug 0.6271 -0.02% 13m 0.6410 0.12% 39m 0.7054 034% 12m
POCCO-C-Aug 0.6270 0.00% 22m 0.6416 0.03% 4.0m 0.7071 0.10% 14m
WE-CA-Aug 0.6271 -0.02% 13m 0.6413 0.08% 3.6m 0.7066 0.17% 12m
POCCO-W-Aug 0.6270 0.00% 22m 0.6418 0.00% 4.0m 0.7078 0.00% 14m
MOCVRP20 MOCVRP50 MOCVRP100
Method HV Gap Time HV Gap Time HV Gap Time
MOEA/D 04255 1.07% 23h 04000 2.63% 29h 03953 333% 5.0h
NSGA-II 04275 0.60% 64h 0.3 5.16% 88h 03620 1147% 9.4h
MOGLS 04278 0.53% 9.0h 03984 3.02% 20h 03875 5.23% 72h
PPLS/D-C 04287 033% 1.6h 0.4007 246% 9.7h 03946 3.50% 38h
DRL-MOA 0.42 0.33% 8s 04076 0.78% 12s 04055 0.83% 21s
MDRL 04 0.23% 6s 04082 0.63% 13s 04056 0.81% 22s
EMNH 0.4299 0.05% 7s 04098 0.24% 12s 04072 042% 22s
PMOCO 0.4267 0.79% 6s 04036 1.75% 12s 0.3913 4.30% 22s
H 04287 0.33% 11s 04087 051% 155 0.4065 0.59% 25s
POCCO-C 94 0.16% 16s 04101 0.17% 25s 0.4079 0.24% 53s
WE-CA 0.4290 0.26% Ts 04089 046% 10s 0.4008 0.51% 21s
POCCO-W 0.4294 0.16% 8s 04102 0.15% 17s 04084 0.12% 46s
CNH-Aug 0.4299 0.05% 21s 04101 0.17% 45s 04077 029% 19m
POCCO-C-Aug 04302 -0.02% 31s 04108 0.00% 14m 04086 0.07% 2.4m
WE-CA-Aug 0.4300 0.02% 15s 04103 0.12% 36s 0.4081 0.20% 1.8m

POCCO-W-Aug 0.4301 0.00% 24s 0.4108 0.00% 12m 0.4089 0.00% 2.3m

MOCO approaches: This includes PMOCO [23]], and recent SOTA methods CNH [10], and WE-
CA [4]. Both CNH and WE-CA are unified model trained across problem size n € {20,21,---,100}.
(2) Multi-model neural MOCO approaches: This category covers methods like DRL-MOA [21],
MDRL [37], and EMNH [5]]. (3) Non-learnable approaches, including classical MOEAs and other
problem-specific heuristics: MOEA/D [36] and NSGA-II [8]], each run for 4,000 iterations, serve as
representative decomposition-based and dominance-based MOEAs, respectively. Finally, WS-LKH
combines weighted-sum scalarization with the powerful LKH solver [14,|29]] for solving MOTSP.

Inference. We evaluate all methods using three metrics: average hypervolume (HV) [31], average
gap, and total runtime per instance set. HV is a widely used indicator in multi-objective optimization
that reflects both the convergence and diversity of the solution set. A higher HV indicates better
performance. To ensure consistency, HV values are normalized to the range [0, 1] using the same
reference point for all methods. The gap is defined as the relative difference between a method’s
HYV and the HV of POCCO-W. Methods with the “-Aug” suffix apply instance augmentation [23]]
to further improve performance. To evaluate statistical significance, we use the Wilcoxon rank-sum
test [32] at a 1% significance level. The best result and others that are not significantly worse are
marked in bold, while the second-best and statistically similar results are underlined. All experiments
are implemented in Python and conducted on a machine with NVIDIA Ampere A100-80GB GPUs
and an AMD EPYC 7742 CPU. The code and dataset will be released publicly upon acceptance.

3.2 [Experimental results

Comparison analysis. The comparison results are presented in Table[I]} POCCO-W consistently
achieves superior performance over WE-CA across all benchmark scenarios, establishing itself as
the new SOTA results among neural MOCOP solvers. Similarly, POCCO-C outperforms CNH in
every case. Both variants also surpass their augmentation-based counterparts, WE-CA-Aug and

186
187
188
189
190
191
192
193
194
195
196
197
198

199
200
201
202

204

205
206
207
208
209
210
211
212
213
214
215
216

217

218
219
220
221
222
223
224
225

CNH-Aug, on Bi-TSP20 and MOCVRP100, highlighting POCCO’s enhanced ability to explore the
solution space and approximate high-quality Pareto fronts. When further combined with instance
augmentation, POCCO demonstrates additional performance gains. Please note that POCCO with
instance augmentation yields lower HV values compared with its non-augmented counterpart on Bi-
TSP20. This is because decomposition-based methods focus on optimizing individual subproblems
rather than ensuring overall solution diversity. While augmentation improves solution quality for
specific subproblems, it may reduce the number of non-dominated solutions, resulting in a smaller
HV. Compared with multi-model approaches that require training or fine-tuning separate models for
each subproblem, POCCO delivers superior results while maintaining a single shared model. Notably,
POCCO achieves better results on Bi-TSP50 than WS-LKH, a setting where previous neural solvers
have consistently failed. In terms of efficiency, POCCO significantly reduces computational time.
For example, POCCO-W-Aug solves Bi-TSP100 in only 14 minutes, while WE-LKH requires about
6.0 hours, with POCCO delivering comparable solution quality.

0.706
0.705 0.7371
07055 0737
0.706

0.7363,0.7364

0.700

0.705 0.736

0.7356 0.7356 0.7355

| :
0.735

>
> 0.695 20705
T 0.7346

f —=— WE-CA 0.704
0.6901 7 WE-CA-PL 0.734
0.704
/ —+ POCCO-W-RL 0.7333
06851 | —a POCCO-W 0703 1 0733

F g P & © 3
& oé’c & s & F &
& & FF S
&«

1 20 40 60 80 100 120 140 160 180 200
Epoch

(a) Validation curves (b) Bi-TSP100 (c) Bi-TSP200

Figure 2: Ablation study:(a) validates the effectiveness of PL; (b) and (c) verify the effects of different
CCO block variants.

Effectiveness of the PL. We assess the training efficiency of the PL by comparing it to REINFORCE
on the WE-CA and POCCO-W models using the Bi-TSP100 dataset. As shown by the validation
curves in Fig. 2a] PL achieves faster convergence despite identical network architectures. Notably,
for WE-CA, training with PL for 100 epochs reaches performance comparable to 200 epochs of
REINFORCE. Similar improvements are observed for POCCO-W. These results demonstrate that PL
effectively accelerates training process and achieves better performance with fewer training epochs.

Effectiveness of the CCO block. To evaluate the impact of the CCO block’s structure and placement,
we compare POCCO-W with WE-CA and several POCCO variants: POCCO-E (CCO inserted in
the encoder replacing the FF layer), POCCO-D (CCO replacing the final linear layer of MHA in the
decoder, using MLP experts), POCCO-ME (replacing CCO with a standard MoE layer), POCCO-MD
(replacing CCO with three MoD layers), POCCO-MED (using MoE in the encoder and MoD in place
of CCO), and POCCO-Emp (replacing the identity expert in CCO with an empty expert). As shown in
Fig. |7_5L all variants outperform WE-CA on the in-distribution Bi-TSP100, with POCCO-W, POCCO-
ME, and POCCO-Emp achieving the most notable gains. On the out-of-distribution Bi-TSP200 in Fig.
only POCCO-W and POCCO-Emp maintain strong performance, while POCCO-ME performs
worst, even underperforming WE-CA. These results highlight the importance of both the structure
and placement of the CCO block for achieving strong generalization across in- and out-of-distribution
settings.

4 Conclusion

This paper presents POCCO, a plug-and-play framework tailored for MOCOPs, which adaptively
routes subproblems through different model structures and leverages PL for more effective training.
POCCO is integrated into two SOTA neural solvers, and extensive experiments demonstrate its
effectiveness. Ablation studies further highlight the necessity of both CCO block and PL, and reveal
the critical impact of the design and placement of CCO block. We acknowledge certain limitations,
such as the limited capability to address real-world MOCOPs with complex constraints or large
problem sizes. Addressing these challenges may require constraint-handling mechanisms [3]] or
divide-and-conquer [22] strategies, which we leave for future work.

226

227
228
229

230
231
232

234
235

236
237

239
240
241

242
243
244

245
246

247
248
249

251

252
253
254

255
256
257

259
260

261
262

264
265

266
267

268
269

270
271
272

References

[1] Ehsan Ahmadi, Mostafa Zandieh, Mojtaba Farrokh, and Seyed Mohammad Emami. A multi
objective optimization approach for flexible job shop scheduling problem under random machine
breakdown by evolutionary algorithms. Computers & operations research, 73:56-66, 2016.

[2] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combi-
natorial optimization with reinforcement learning. In International Conference on Learning
Representations, 2017.

[3] Jieyi Bi, Yining Ma, Jianan Zhou, Wen Song, Zhiguang Cao, Yaoxin Wu, and Jie Zhang.
Learning to handle complex constraints for vehicle routing problems. In Advances in Neural
Information Processing Systems, volume 37, pages 93479-93509, 2024.

[4] Jinbiao Chen, Zhiguang Cao, Jiahai Wang, Yaoxin Wu, Hanzhang Qin, Zizhen Zhang, and
Yue-Jiao Gong. Rethinking neural multi-objective combinatorial optimization via neat weight
embedding. In The Thirteenth International Conference on Learning Representations, 2025.

[5] Jinbiao Chen, Jiahai Wang, Zizhen Zhang, Zhiguang Cao, Te Ye, and Siyuan Chen. Efficient
meta neural heuristic for multi-objective combinatorial optimization. Advances in Neural
Information Processing Systems, 36, 2024.

[6] Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial opti-
mization. In International Conference on Neural Information Processing Systems, volume 32,

pages 6281-6292, 2019.

[7] I Das and JE Dennis. Normal-boundary intersection: A new method for generating pareto-
optimal points in multieriteria optimization problems. SIAM J. Optimiz, 1996.

[8] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182-197, 2002.

[9] Matthias Ehrgott. Multicriteria optimization, volume 491. Springer Science & Business Media,
2005.

[10] Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, and
Guohua Wu. Conditional neural heuristic for multiobjective vehicle routing problems. IEEE
Transactions on Neural Networks and Learning Systems, 2024.

[11] Kostas Florios and George Mavrotas. Generation of the exact pareto set in multi-objective
traveling salesman and set covering problems. Applied Mathematics and Computation, 237:1—
19, 2014.

[12] Keivan Ghoseiri, Ferenc Szidarovszky, and Mohammad Jawad Asgharpour. A multi-objective
train scheduling model and solution. Transportation research part B: Methodological,
38(10):927-952, 2004.

[13] Jiayi Han, Liang Du, Hongwei Du, Xiangguo Zhou, Yiwen Wu, Weibo Zheng, and Donghong
Han. Slim: Let Ilm learn more and forget less with soft lora and identity mixture. In North
American Chapter of the Association for Computational Linguistics Annual Conference, 2025.

[14] Keld Helsgaun. An effective implementation of the lin—kernighan traveling salesman heuristic.
European journal of operational research, 126(1):106-130, 2000.

[15] André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. In International Conference on Learning Representations, 2021.

[16] Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi. Multi-objective vehicle routing
problems. European Journal of Operational Research, 189(2):293-309, 2008.

[17] Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing
problems. In International Conference on Neural Information Processing Systems, volume 34,
pages 10418-10430, 2021.

273
274

275
276

277
278
279

280
281

282
283

284
285

286
287
288

289
290
291

292
293
294

295
296
297

298
299
300

301

303
304

305
306
307

308
309

310
311

312
313

314
315
316

317
318
319

[18] Diederik P Kingma. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

[19] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforce-
ment learning: A survey. Information Fusion, 85:1-22, 2022.

[20] Jingwen Li, Yining Ma, Zhiguang Cao, Yaoxin Wu, Wen Song, Jie Zhang, and Yeow Meng Chee.
Learning feature embedding refiner for solving vehicle routing problems. IEEE Transactions
on Neural Networks and Learning Systems, 2023.

[21] Kaiwen Li, Tao Zhang, and Rui Wang. Deep reinforcement learning for multiobjective opti-
mization. IEEE Transactions on Cybernetics, 51(6):3103-3114, 2020.

[22] Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. In
Advances in Neural Information Processing Systems, volume 34, pages 26198-26211, 2021.

[23] Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective
combinatorial optimization. In International Conference on Learning Representations, 2022.

[24] Thibaut Lust and Jacques Teghem. The multiobjective traveling salesman problem: A survey
and a new approach. In Advances in Multi-Objective Nature Inspired Computing, pages 119-141.
Springer, 2010.

[25] Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. Advances in Neural Information Processing Systems, 37:124198-124235,
2024.

[26] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takdc. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, volume 31, 2018.

[27] David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys,
and Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based
language models. arXiv preprint arXiv:2404.02258, 2024.

[28] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. In International Conference on Learning Representations, 2017.

[29] Renato Tinés, Keld Helsgaun, and Darrell Whitley. Efficient recombination in the lin-kernighan-
helsgaun traveling salesman heuristic. In Parallel Problem Solving from Nature—PPSN XV: 15th
International Conference, Coimbra, Portugal, September 8—12, 2018, Proceedings, PartI 15,
pages 95-107. Springer, 2018.

[30] Lirui Wang, Xinlei Chen, Jialiang Zhao, and Kaiming He. Scaling proprioceptive-visual learning
with heterogeneous pre-trained transformers. Advances in Neural Information Processing
Systems, 37:124420-124450, 2024.

[31] Lyndon While, Philip Hingston, Luigi Barone, and Simon Huband. A faster algorithm for
calculating hypervolume. IEEE Transactions on Evolutionary Computation, 10(1):29-38, 2006.

[32] Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics:
Methodology and distribution, pages 196-202. Springer, 1992.

[33] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229-256, 1992.

[34] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement
heuristics for solving routing problems. IEEE Transactions on Neural Networks and Learning
Systems, 2021.

[35] Sandra Zajac and Sandra Huber. Objectives and methods in multi-objective routing problems:
a survey and classification scheme. European Journal of Operational Research, 290(1):1-25,
2021.

320
321

322
323
324

326
327

[36] Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712-731, 2007.

[37] Zizhen Zhang, Zhiyuan Wu, Hang Zhang, and Jiahai Wang. Meta-learning-based deep rein-
forcement learning for multiobjective optimization problems. IEEE Transactions on Neural
Networks and Learning Systems, 2022.

[38] Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable

neural methods for vehicle routing problems. In International Conference on Machine Learning,
2023.

	Introduction
	Methodology
	Overview
	Conditional Computational Block
	Preference-driven MOCO

	Experiments
	Experimental settings
	Experimental results

	Conclusion

