
Preference-Driven Multi-Objective Combinatorial
Optimization with Conditional Computation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent deep reinforcement learning methods have achieved remarkable success1

in solving multi-objective combinatorial optimization problems (MOCOPs) by2

decomposing them into multiple subproblems, each associated with a specific3

weight vector. However, these methods typically treat all subproblems equally and4

solve them using a single model, hindering the effective exploration of the solution5

space and thus leading to suboptimal performance. To overcome the limitation, we6

propose POCCO, a novel plug-and-play framework that enables adaptive selection7

of model structures for subproblems, which are subsequently optimized based8

on preference signals rather than explicit reward values. Specifically, we design9

a conditional computation block that routes subproblems to specialized neural10

architectures. Moreover, we propose a preference-driven optimization algorithm11

that learns pairwise preferences between winning and losing solutions. We eval-12

uate the efficacy and versatility of POCCO by applying it to two state-of-the-art13

neural methods for MOCOPs. Experimental results across two classic MOCOP14

benchmarks demonstrate its significant superiority and strong generalization.15

1 Introduction16

Multi-objective combinatorial optimization problems (MOCOPs) require optimizing multiple con-17

flicting objectives in a discrete decision space. Due to their broad applications in manufacturing [1],18

logistics [16], and scheduling [12], they have attracted significant attention from computer science and19

operations research communities. Unlike single-objective problems, MOCOPs seek a set of Pareto20

optimal solutions that capture trade-offs among objectives such as cost, makespan, and environmental21

impact. Their NP-hard nature makes exact methods impractical for large instances [9, 11], leading to22

widespread use of heuristics. However, conventional heuristics often entail costly iterative searches23

and require domain knowledge and fine-tuning, limiting their scalability and generalization.24

Recent neural methods have achieved notable success in solving SOCOPs [2, 26, 6, 15, 17, 20, 34, 38]25

by learning decision policies in a data-driven manner. Building on this progress, researchers have26

extended neural approaches to MOCOPs, which offer advantages such as avoiding heuristic design,27

enabling GPU acceleration, and adapting to diverse problem variants. Most methods decompose28

MOCOPs into scalarized subproblems, each defined by a weight vector, and apply deep reinforcement29

learning (DRL) to approximate the Pareto front. Early works train separate models per subproblem30

using transfer or meta-learning [21, 37], but suffer from high computational cost and poor generaliza-31

tion to unseen weights. PMOCO [23] addresses this by using a weight-conditioned hypernetwork32

to modulate model parameters within a single model, yet struggles with diverse weights. Recent33

methods like CNH [10] and WE-CA [4] improve generalization by embedding weight vectors into34

problem representations, achieving state-of-the-art performance across varying problem sizes.35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Current SOTA methods typically rely on a single neural network with limited capacity to handle36

all subproblems, which overcomplicates the learning task and results in suboptimal performance.37

A straightforward solution to ease training and promote effective representation learning across38

subproblems is to increase the model capacity. However, determining how much additional capacity to39

allocate and where to introduce it within the architecture remains an open challenge. On the other hand,40

neural methods often adopt REINFORCE [33] as the training algorithm, relying solely on scalarized41

objective values as reward signals to guide policy updates. Given its on-policy nature, REINFORCE42

suffers from high gradient variance and lacks structured mechanisms for effective exploration [19].43

These issues are exacerbated in MOCOP settings, where the vast combinatorial action space makes44

efficient exploration particularly difficult, ultimately hindering policy performance.45

To address these issues, we propose POCCO (Preference-driven multi-objective combinatorial46

Optimization with Conditional COmputation), a plug-and-play framework that augments neural47

MOCOP methods with two complementary mechanisms. First, POCCO introduces a conditional48

computation block into the decoder, where a sparse gating network dynamically routes each sub-49

problem through either a selected subset of feed-forward (FF) experts or a parameter-free identity50

(ID) expert. This design enables subproblems to adaptively select computation routes (i.e., model51

structures) based on their context, efficiently scaling model capacity and facilitating more effective52

representation learning. Second, POCCO replaces raw scalarized rewards with pairwise preference53

learning. For each subproblem, the policy samples two trajectories, identifies the better one as the54

winner, and maximizes a Bradley–Terry (BT) likelihood based on the difference in their average log-55

likelihoods. Such comparative feedback guides the search toward policies that generate increasingly56

preferred solutions, enabling exploration of the most promising regions of the search space and more57

efficient convergence to higher-quality solutions.58

Our contributions are summarized as follows: 1) Conceptually, we address two fundamental limita-59

tions of existing approaches for solving MOCOPs: limited exploration within the vast solution space60

and the reliance on a single, capacity-limited model, which can lead to inefficient learning and subop-61

timal performance. 2) Technically, we propose a conditional computation block that dynamically62

routes subproblems to tailored neural architectures. Additionally, we develop a preference-driven63

algorithm leveraging implicit rewards derived from pairwise preference signals between winning64

and losing solutions, modeled using the BT framework. 3) Experimentally, we demonstrate the65

effectiveness and versatility of POCCO on classical MOCOP benchmarks using two SOTA neural66

methods. Extensive results show that POCCO not only outperforms all baseline methods but also67

exhibits superior generalization across diverse problem sizes.68

2 Methodology69

2.1 Overview70

POCCO is a learning-based framework that trains a portfolio of policies to solve a set of scalarized71

subproblems {(G, λi)}Ni=1, obtained by decomposing an MOCOP instance. Instead of forcing a single72

policy to handle all subproblems which often yields bland and suboptimal behavior, POCCO promotes73

specialization: each policy is encouraged to focus on a subset of subproblems, yielding a diverse74

policy ensemble. Such diversity is known to enhance multi-task optimization [30] by expanding75

the exploration space and ultimately improving solution quality. Technically, we achieve this76

diversity by activating different subsets of model parameters through a CCO block, enabling distinct77

computational paths to emerge for different subproblems. Moreover, POCCO should encourage78

each policy to thoroughly explore the combinatorial solution space during training for reducing79

suboptimality. To achieve this, we replace raw rewards with preference signals. For each subproblem80

(G, λi), we construct a set of winning–losing solution pairs {(πw,j , πl,j)}Kj=1. Training then proceeds81

by maximizing the likelihood of the winning solutions while minimizing that of the losing ones,82

following a BT-style objective. This preference-driven training encourages the learned policy to83

explore the most promising regions of the search space, leading to more efficient convergence toward84

higher-quality solutions. Notably, POCCO is a generic, plug-and-play framework that can seamlessly85

involve different neural solvers for MOCOPs. We demonstrate this by augmenting two SOTA86

methods, CNH [10] and WE-CA [4], in Section 3.87

2

Multi-head Attention

ℎ! ℎ" ℎ#… ℎ$! ℎ$"

𝑄𝐾 𝑉

Probability

Multi-head Attention

ℎ! ℎ" ℎ#… ℎ$! ℎ$"

𝑄𝐾 𝑉

Probability

Conditional Computation Block

(a) Backbone Decoder (b) POCCO Decoder (Ours)

CCO Block

Router

FF

ℎ%

FF FF FF ID

NormalizationCompatibility & Softmax Compatibility & Softmax

ℎ%

Figure 1: Decoder structures of backbone and POCCO.

2.2 Conditional Computational Block88

Most approaches employ a Transformer-based architecture, where the encoder generates joint node89

embeddings {hi}ni=0 that capture the interaction between the instance G and the weight vector λi,90

and the decoder produces candidate solutions conditioned on these embeddings. We propose a CCO91

block to increase the model capacity and promote policy diversity across subproblems. To maintain92

efficiency, we integrate the CCO block solely into the decoder of the backbone model. This design93

enables the generation of multiple diverse solutions through a single, computationally expensive94

encoder pass, offering a favorable trade-off between empirical performance and computational cost.95

As illustrated in Fig. 1, the CCO block comprises multiple FF experts and a single ID expert. We96

insert this block between the multi-head attention (MHA) layer and the compatibility layer in the97

decoder. Given a batch of MHA outputs {hb
c}Bb=1, the CCO block dynamically routes each context98

vector hb
c from the corresponding subproblem through either the FF or ID experts, forming distinct99

computation paths that function as different policies. The ID expert allows the model to bypass the100

FF computation, promoting architectural sparsity and specialization [13]. Consequently, the CCO101

block facilitates the learning of dedicated, weight-specific policies tailored to individual subproblems.102

Formally, a CCO block consists of: 1) m FF experts {E1, E2, . . . , Em} with independent trainable103

parameters; 2) a parameter-free identity expert Em+1; 3) a router, implemented as a gating network104

G parameterized by WG, which determines how the inputs {hb
c}Bb=1 are routed to the experts; and 4)105

a skip connection followed by an instance normalization (IN) layer. Given a single context vector hb
c,106

let G(hb
c) ∈ Rm+1 denote the output of the gating network, which represents the expert selection107

probabilities, and let Ej(h
b
c) denote the output of the j-th expert. The output of the CCO block is:108

CCO(hb
c) = IN

m+1∑
j=1

G(hb
c)jEj(h

b
c) + hb

c

 . (1)

The sparse vector G(hb
c) activates only a small subset of experts, either parameterized FF experts or the109

parameter-free ID expert, thereby enabling diverse computation paths while reducing computational110

overhead. A typical implementation uses a Top k operator that retains the k largest logits and masks111

the rest with −∞. In this case, the gating network output is: G(hb
c) = Softmax

(
Top k(hb

c ·WG)
)
.112

Our proposed CCO block aligns with the principles of recent advances in efficiently scaling113

Transformer-based models along both width [28] and depth [27]. In specific, it combines of a114

mixture-of-experts (MoE) layer, implemented using multiple FF experts to widen the network, with a115

mixture-of-depths (MoD) layer, realized through an ID expert that allows inputs to skip computation.116

Within the CCO block, each subproblem is adaptively routed to only a small subset of experts, grant-117

ing the model the expressiveness of a significantly wider network while preserving computational118

efficiency. As demonstrated in Section 3, this joint design achieves a better capacity–efficiency119

trade-off than scaling either dimension in isolation.120

3

2.3 Preference-driven MOCO121

To mitigate the exploration inefficiencies inherent in REINFORCE algorithms, we optimize relative122

preferences [25] instead of absolute objective values.123

Generating preference pairs. For each scalarized subproblem (G, λi) in the training batch, the124

policy pθ samples two candidate solutions, πw and πl. We denote πw ⋖ πl if πw is preferred over125

πl, as determined by the ordering of their scalarized objective values. This evaluator ranks the two126

solutions and designates the better one as the winning solution πw and the other as the losing solution127

πl. A binary preference label y is then assigned, where y = 1 if πw ⋖ πl, and y = 0 otherwise. This128

label serves as the supervision signal required for the preference-driven MOCO.129

Defining an implicit reward. Distinct from DRL training paradigms that rely on raw objective values,130

POCCO treats the average log-likelihood of a solution as an implicit reward fθ, directly relating131

preferences between solutions to their policy probabilities. This reward is inherently normalized by132

sequence length |π|, thereby mitigating length bias between winning and losing solution pairs.133

fθ(π|G, λi) =
1

|π|
log pθ(π|G, λi) =

1

|π|

|π|∑
t=1

log pθ(πt|π<t,G, λi). (2)

Learning from pairwise comparisons. We formulate preference learning (PL) as a probabilistic134

binary classification problem through the BT model. Specifically, the BT model is a pairwise prefer-135

ence framework that uses a function gθ(·) to map reward differences into preference probabilities. It136

assigns each solution a strength proportional to its implicit reward (defined in Eq. (2)) and predicts137

the probability gθ that the winning solution outranks the losing one:138

gθ
(
πw ⋖ πℓ | G, λi

)
= σ

(
β [fθ(π

w | G, λi)− fθ(π
ℓ | G, λi)]

)
, (3)

where σ(·) is the sigmoid function, and β > 0 is a fixed temperature that controls the sharpness with139

which the model distinguishes between unequal rewards. We maximize the likelihood of the collected140

preferences, yielding the following loss function:141

L(θ|pθ,G, λi, π
w, πl) = −y log σ

(
β[

log pθ(π
w|G, λi)

|πw|
− log pθ(π

l|G, λi)

|πl|
]
). (4)

In practice, we collect multiple (πw, πℓ) pairs per update, sum their losses, and backpropagate142

through pθ. By maximizing the log-likelihood of gθ
(
πw ⋖ πℓ | G, λi

)
, the model is encouraged to143

assign higher probabilities to preferred solutions πw over less preferred ones πl.144

3 Experiments145

3.1 Experimental settings146

Training. We conduct extensive experiments to evaluate the effectiveness of the proposed POCCO147

across two representative MOCOPs: the multi-objective traveling salesman problem (MOTSP)[24]148

and the multi-objective capacitated vehicle routing problem (MOCVRP)[35]. In MOTSP, the objective149

is to determine a tour that visits each node exactly once while minimizing multiple path lengths, each150

calculated using a distinct set of coordinates corresponding to different objectives. In MOCVRP, a151

fleet of capacity-constrained vehicles must serve all customer nodes and return to a central depot,152

with the goals of minimizing the total travel distance and the length of the longest individual route.153

We evaluate POCCO on three commonly used problem sizes: n = 20/50/100.154

Hyperparameters. We implement POCCO on top of two SOTA neural MOCO methods, CNH [10]155

and WE-CA [4], resulting in POCCO-C and POCCO-W, respectively. Most hyperparameters are156

aligned with those used in the original CNH and WE-CA implementations. Both models are trained157

for 200 epochs, with each epoch processing 100,000 randomly sampled instances and a batch size of158

B = 64. We use the Adam optimizer [18] with a learning rate of 3× 10−4 and a weight decay of159

10−6. We generate the N = 101 weight vectors for decomposition using the method proposed in [7].160

Baselines. We compare POCCO with a broad range of baseline methods across three categories,161

all employing weighted-sum (WS) scalarization to ensure fair comparison: (1) Single-model neural162

4

Table 1: Performance on BiTSP and MOCVRP Instances
Bi-TSP20 Bi-TSP50 Bi-TSP100

Method HV Gap Time HV Gap Time HV Gap Time
WS-LKH 0.6270 0.00% 10m 0.6415 0.05% 1.8h 0.7090 -0.17% 6h
MOEA/D 0.6241 0.46% 1.7h 0.6316 1.59% 1.8h 0.6899 2.53% 2.2h
NSGA-II 0.6258 0.19% 6.0h 0.6120 4.64% 6.1h 0.6692 5.45% 6.9h
MOGLS 0.6279 -0.14% 1.6h 0.6330 1.37% 3.7h 0.6854 3.16% 11h
PPLS/D-C 0.6256 0.22% 26m 0.6282 2.12% 2.8h 0.6844 3.31% 11h
DRL-MOA 0.6257 0.21% 6s 0.6360 0.90% 9s 0.6970 1.53% 16s
MDRL 0.6271 -0.02% 5s 0.6364 0.84% 8s 0.6969 1.54% 14s
EMNH 0.6271 -0.02% 5s 0.6364 0.84% 8s 0.6969 1.54% 15s
PMOCO 0.6259 0.18% 6s 0.6351 1.04% 12s 0.6957 1.71% 26s
CNH 0.6270 0.00% 13s 0.6387 0.48% 16s 0.7019 0.83% 33s
POCCO-C 0.6275 -0.08% 14s 0.6409 0.14% 20s 0.7047 0.44% 42s
WE-CA 0.6270 0.00% 6s 0.6392 0.41% 9s 0.7034 0.62% 18s
POCCO-W 0.6275 -0.08% 7s 0.6411 0.11% 14s 0.7055 0.32% 36s
CNH-Aug 0.6271 -0.02% 1.3m 0.6410 0.12% 3.9m 0.7054 0.34% 12m
POCCO-C-Aug 0.6270 0.00% 2.2m 0.6416 0.03% 4.0m 0.7071 0.10% 14m
WE-CA-Aug 0.6271 -0.02% 1.3m 0.6413 0.08% 3.6m 0.7066 0.17% 12m
POCCO-W-Aug 0.6270 0.00% 2.2m 0.6418 0.00% 4.0m 0.7078 0.00% 14m

MOCVRP20 MOCVRP50 MOCVRP100
Method HV Gap Time HV Gap Time HV Gap Time
MOEA/D 0.4255 1.07% 2.3h 0.4000 2.63% 2.9h 0.3953 3.33% 5.0h
NSGA-II 0.4275 0.60% 6.4h 0.3896 5.16% 8.8h 0.3620 11.47% 9.4h
MOGLS 0.4278 0.53% 9.0h 0.3984 3.02% 20h 0.3875 5.23% 72h
PPLS/D-C 0.4287 0.33% 1.6h 0.4007 2.46% 9.7h 0.3946 3.50% 38h
DRL-MOA 0.4287 0.33% 8s 0.4076 0.78% 12s 0.4055 0.83% 21s
MDRL 0.4291 0.23% 6s 0.4082 0.63% 13s 0.4056 0.81% 22s
EMNH 0.4299 0.05% 7s 0.4098 0.24% 12s 0.4072 0.42% 22s
PMOCO 0.4267 0.79% 6s 0.4036 1.75% 12s 0.3913 4.30% 22s
CNH 0.4287 0.33% 11s 0.4087 0.51% 15s 0.4065 0.59% 25s
POCCO-C 0.4294 0.16% 16s 0.4101 0.17% 25s 0.4079 0.24% 53s
WE-CA 0.4290 0.26% 7s 0.4089 0.46% 10s 0.4068 0.51% 21s
POCCO-W 0.4294 0.16% 8s 0.4102 0.15% 17s 0.4084 0.12% 46s
CNH-Aug 0.4299 0.05% 21s 0.4101 0.17% 45s 0.4077 0.29% 1.9m
POCCO-C-Aug 0.4302 -0.02% 31s 0.4108 0.00% 1.4m 0.4086 0.07% 2.4m
WE-CA-Aug 0.4300 0.02% 15s 0.4103 0.12% 36s 0.4081 0.20% 1.8m
POCCO-W-Aug 0.4301 0.00% 24s 0.4108 0.00% 1.2m 0.4089 0.00% 2.3m

MOCO approaches: This includes PMOCO [23], and recent SOTA methods CNH [10], and WE-163

CA [4]. Both CNH and WE-CA are unified model trained across problem size n ∈ {20, 21, · · · , 100}.164

(2) Multi-model neural MOCO approaches: This category covers methods like DRL-MOA [21],165

MDRL [37], and EMNH [5]. (3) Non-learnable approaches, including classical MOEAs and other166

problem-specific heuristics: MOEA/D [36] and NSGA-II [8], each run for 4,000 iterations, serve as167

representative decomposition-based and dominance-based MOEAs, respectively. Finally, WS-LKH168

combines weighted-sum scalarization with the powerful LKH solver [14, 29] for solving MOTSP.169

Inference. We evaluate all methods using three metrics: average hypervolume (HV) [31], average170

gap, and total runtime per instance set. HV is a widely used indicator in multi-objective optimization171

that reflects both the convergence and diversity of the solution set. A higher HV indicates better172

performance. To ensure consistency, HV values are normalized to the range [0, 1] using the same173

reference point for all methods. The gap is defined as the relative difference between a method’s174

HV and the HV of POCCO-W. Methods with the “-Aug” suffix apply instance augmentation [23]175

to further improve performance. To evaluate statistical significance, we use the Wilcoxon rank-sum176

test [32] at a 1% significance level. The best result and others that are not significantly worse are177

marked in bold, while the second-best and statistically similar results are underlined. All experiments178

are implemented in Python and conducted on a machine with NVIDIA Ampere A100-80GB GPUs179

and an AMD EPYC 7742 CPU. The code and dataset will be released publicly upon acceptance.180

3.2 Experimental results181

Comparison analysis. The comparison results are presented in Table 1. POCCO-W consistently182

achieves superior performance over WE-CA across all benchmark scenarios, establishing itself as183

the new SOTA results among neural MOCOP solvers. Similarly, POCCO-C outperforms CNH in184

every case. Both variants also surpass their augmentation-based counterparts, WE-CA-Aug and185

5

CNH-Aug, on Bi-TSP20 and MOCVRP100, highlighting POCCO’s enhanced ability to explore the186

solution space and approximate high-quality Pareto fronts. When further combined with instance187

augmentation, POCCO demonstrates additional performance gains. Please note that POCCO with188

instance augmentation yields lower HV values compared with its non-augmented counterpart on Bi-189

TSP20. This is because decomposition-based methods focus on optimizing individual subproblems190

rather than ensuring overall solution diversity. While augmentation improves solution quality for191

specific subproblems, it may reduce the number of non-dominated solutions, resulting in a smaller192

HV. Compared with multi-model approaches that require training or fine-tuning separate models for193

each subproblem, POCCO delivers superior results while maintaining a single shared model. Notably,194

POCCO achieves better results on Bi-TSP50 than WS-LKH, a setting where previous neural solvers195

have consistently failed. In terms of efficiency, POCCO significantly reduces computational time.196

For example, POCCO-W-Aug solves Bi-TSP100 in only 14 minutes, while WE-LKH requires about197

6.0 hours, with POCCO delivering comparable solution quality.198

1 20 40 60 80 100 120 140 160 180 200
Epoch

0.685

0.690

0.695

0.700

0.705

HV

WE-CA
WE-CA-PL
POCCO-W-RL
POCCO-W

(a) Validation curves

WE
-CA

PO
CC
O-E

PO
CC
O-D

PO
CC
O-M

E

PO
CC
O-M

D

PO
CC
O-M

ED

PO
CC
O-E
mp

PO
CC
O-W

0.703

0.704

0.704

0.705

0.705

0.706

0.706

HV

0.7034

0.7041
0.7043

0.7053

0.7042
0.7045

0.7052
0.7055

(b) Bi-TSP100

WE
-CA

PO
CC
O-E

PO
CC
O-D

PO
CC
O-M

E

PO
CC
O-M

D

PO
CC
O-M

ED

PO
CC
O-E
mp

PO
CC
O-W

0.733

0.734

0.735

0.736

0.737

HV

0.7346

0.7356 0.7356

0.7333

0.7355

0.7363 0.7364

0.7371

(c) Bi-TSP200

Figure 2: Ablation study:(a) validates the effectiveness of PL; (b) and (c) verify the effects of different
CCO block variants.

Effectiveness of the PL. We assess the training efficiency of the PL by comparing it to REINFORCE199

on the WE-CA and POCCO-W models using the Bi-TSP100 dataset. As shown by the validation200

curves in Fig. 2a, PL achieves faster convergence despite identical network architectures. Notably,201

for WE-CA, training with PL for 100 epochs reaches performance comparable to 200 epochs of202

REINFORCE. Similar improvements are observed for POCCO-W. These results demonstrate that PL203

effectively accelerates training process and achieves better performance with fewer training epochs.204

Effectiveness of the CCO block. To evaluate the impact of the CCO block’s structure and placement,205

we compare POCCO-W with WE-CA and several POCCO variants: POCCO-E (CCO inserted in206

the encoder replacing the FF layer), POCCO-D (CCO replacing the final linear layer of MHA in the207

decoder, using MLP experts), POCCO-ME (replacing CCO with a standard MoE layer), POCCO-MD208

(replacing CCO with three MoD layers), POCCO-MED (using MoE in the encoder and MoD in place209

of CCO), and POCCO-Emp (replacing the identity expert in CCO with an empty expert). As shown in210

Fig. 2b, all variants outperform WE-CA on the in-distribution Bi-TSP100, with POCCO-W, POCCO-211

ME, and POCCO-Emp achieving the most notable gains. On the out-of-distribution Bi-TSP200 in Fig.212

2c, only POCCO-W and POCCO-Emp maintain strong performance, while POCCO-ME performs213

worst, even underperforming WE-CA. These results highlight the importance of both the structure214

and placement of the CCO block for achieving strong generalization across in- and out-of-distribution215

settings.216

4 Conclusion217

This paper presents POCCO, a plug-and-play framework tailored for MOCOPs, which adaptively218

routes subproblems through different model structures and leverages PL for more effective training.219

POCCO is integrated into two SOTA neural solvers, and extensive experiments demonstrate its220

effectiveness. Ablation studies further highlight the necessity of both CCO block and PL, and reveal221

the critical impact of the design and placement of CCO block. We acknowledge certain limitations,222

such as the limited capability to address real-world MOCOPs with complex constraints or large223

problem sizes. Addressing these challenges may require constraint-handling mechanisms [3] or224

divide-and-conquer [22] strategies, which we leave for future work.225

6

References226

[1] Ehsan Ahmadi, Mostafa Zandieh, Mojtaba Farrokh, and Seyed Mohammad Emami. A multi227

objective optimization approach for flexible job shop scheduling problem under random machine228

breakdown by evolutionary algorithms. Computers & operations research, 73:56–66, 2016.229

[2] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combi-230

natorial optimization with reinforcement learning. In International Conference on Learning231

Representations, 2017.232

[3] Jieyi Bi, Yining Ma, Jianan Zhou, Wen Song, Zhiguang Cao, Yaoxin Wu, and Jie Zhang.233

Learning to handle complex constraints for vehicle routing problems. In Advances in Neural234

Information Processing Systems, volume 37, pages 93479–93509, 2024.235

[4] Jinbiao Chen, Zhiguang Cao, Jiahai Wang, Yaoxin Wu, Hanzhang Qin, Zizhen Zhang, and236

Yue-Jiao Gong. Rethinking neural multi-objective combinatorial optimization via neat weight237

embedding. In The Thirteenth International Conference on Learning Representations, 2025.238

[5] Jinbiao Chen, Jiahai Wang, Zizhen Zhang, Zhiguang Cao, Te Ye, and Siyuan Chen. Efficient239

meta neural heuristic for multi-objective combinatorial optimization. Advances in Neural240

Information Processing Systems, 36, 2024.241

[6] Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial opti-242

mization. In International Conference on Neural Information Processing Systems, volume 32,243

pages 6281–6292, 2019.244

[7] I Das and JE Dennis. Normal-boundary intersection: A new method for generating pareto-245

optimal points in multieriteria optimization problems. SIAM J. Optimiz, 1996.246

[8] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist247

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,248

6(2):182–197, 2002.249

[9] Matthias Ehrgott. Multicriteria optimization, volume 491. Springer Science & Business Media,250

2005.251

[10] Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, and252

Guohua Wu. Conditional neural heuristic for multiobjective vehicle routing problems. IEEE253

Transactions on Neural Networks and Learning Systems, 2024.254

[11] Kostas Florios and George Mavrotas. Generation of the exact pareto set in multi-objective255

traveling salesman and set covering problems. Applied Mathematics and Computation, 237:1–256

19, 2014.257

[12] Keivan Ghoseiri, Ferenc Szidarovszky, and Mohammad Jawad Asgharpour. A multi-objective258

train scheduling model and solution. Transportation research part B: Methodological,259

38(10):927–952, 2004.260

[13] Jiayi Han, Liang Du, Hongwei Du, Xiangguo Zhou, Yiwen Wu, Weibo Zheng, and Donghong261

Han. Slim: Let llm learn more and forget less with soft lora and identity mixture. In North262

American Chapter of the Association for Computational Linguistics Annual Conference, 2025.263

[14] Keld Helsgaun. An effective implementation of the lin–kernighan traveling salesman heuristic.264

European journal of operational research, 126(1):106–130, 2000.265

[15] André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial266

optimization problems. In International Conference on Learning Representations, 2021.267

[16] Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi. Multi-objective vehicle routing268

problems. European Journal of Operational Research, 189(2):293–309, 2008.269

[17] Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing270

problems. In International Conference on Neural Information Processing Systems, volume 34,271

pages 10418–10430, 2021.272

7

[18] Diederik P Kingma. Adam: A method for stochastic optimization. In International Conference273

on Learning Representations, 2015.274

[19] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforce-275

ment learning: A survey. Information Fusion, 85:1–22, 2022.276

[20] Jingwen Li, Yining Ma, Zhiguang Cao, Yaoxin Wu, Wen Song, Jie Zhang, and Yeow Meng Chee.277

Learning feature embedding refiner for solving vehicle routing problems. IEEE Transactions278

on Neural Networks and Learning Systems, 2023.279

[21] Kaiwen Li, Tao Zhang, and Rui Wang. Deep reinforcement learning for multiobjective opti-280

mization. IEEE Transactions on Cybernetics, 51(6):3103–3114, 2020.281

[22] Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. In282

Advances in Neural Information Processing Systems, volume 34, pages 26198–26211, 2021.283

[23] Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective284

combinatorial optimization. In International Conference on Learning Representations, 2022.285

[24] Thibaut Lust and Jacques Teghem. The multiobjective traveling salesman problem: A survey286

and a new approach. In Advances in Multi-Objective Nature Inspired Computing, pages 119–141.287

Springer, 2010.288

[25] Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a289

reference-free reward. Advances in Neural Information Processing Systems, 37:124198–124235,290

2024.291

[26] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement292

learning for solving the vehicle routing problem. In Advances in Neural Information Processing293

Systems, volume 31, 2018.294

[27] David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys,295

and Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based296

language models. arXiv preprint arXiv:2404.02258, 2024.297

[28] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,298

and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts299

layer. In International Conference on Learning Representations, 2017.300

[29] Renato Tinós, Keld Helsgaun, and Darrell Whitley. Efficient recombination in the lin-kernighan-301

helsgaun traveling salesman heuristic. In Parallel Problem Solving from Nature–PPSN XV: 15th302

International Conference, Coimbra, Portugal, September 8–12, 2018, Proceedings, Part I 15,303

pages 95–107. Springer, 2018.304

[30] Lirui Wang, Xinlei Chen, Jialiang Zhao, and Kaiming He. Scaling proprioceptive-visual learning305

with heterogeneous pre-trained transformers. Advances in Neural Information Processing306

Systems, 37:124420–124450, 2024.307

[31] Lyndon While, Philip Hingston, Luigi Barone, and Simon Huband. A faster algorithm for308

calculating hypervolume. IEEE Transactions on Evolutionary Computation, 10(1):29–38, 2006.309

[32] Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics:310

Methodology and distribution, pages 196–202. Springer, 1992.311

[33] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-312

ment learning. Machine learning, 8(3):229–256, 1992.313

[34] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement314

heuristics for solving routing problems. IEEE Transactions on Neural Networks and Learning315

Systems, 2021.316

[35] Sandra Zajac and Sandra Huber. Objectives and methods in multi-objective routing problems:317

a survey and classification scheme. European Journal of Operational Research, 290(1):1–25,318

2021.319

8

[36] Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary algorithm based on320

decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.321

[37] Zizhen Zhang, Zhiyuan Wu, Hang Zhang, and Jiahai Wang. Meta-learning-based deep rein-322

forcement learning for multiobjective optimization problems. IEEE Transactions on Neural323

Networks and Learning Systems, 2022.324

[38] Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable325

neural methods for vehicle routing problems. In International Conference on Machine Learning,326

2023.327

9

	Introduction
	Methodology
	Overview
	Conditional Computational Block
	Preference-driven MOCO

	Experiments
	Experimental settings
	Experimental results

	Conclusion

