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Abstract

The sequential process of conceptualization001
and instantiation is essential to generalizable002
commonsense reasoning as it allows the ap-003
plication of existing knowledge to unfamiliar004
scenarios. However, existing works tend to un-005
dervalue the step of instantiation and heavily006
rely on pre-built concept taxonomies and hu-007
man annotations to collect both types of knowl-008
edge, resulting in a lack of instantiated knowl-009
edge to complete reasoning, high cost, and lim-010
ited scalability. To tackle these challenges,011
we introduce CANDLE (ConceptuAlization012
and INstantiation Distillation from Large Lan-013
guage ModEls), a distillation framework that014
iteratively performs contextualized conceptu-015
alization and instantiation over commonsense016
knowledge bases by instructing large language017
models to generate both types of knowledge018
with critic filtering. By applying CANDLE019
to ATOMIC (Sap et al., 2019a), we construct020
a comprehensive knowledge base comprising021
six million conceptualizations and instantiated022
commonsense knowledge triples. Both types023
of knowledge are firmly rooted in the origi-024
nal ATOMIC dataset, and intrinsic evaluations025
demonstrate their exceptional quality and diver-026
sity. Empirical results indicate that distilling027
CANDLE on student models provides benefits028
across three downstream tasks.029

1 Introduction030

Commonsense reasoning refers to the cognitive031

ability to make logical inferences and draw conclu-032

sions based on general knowledge and understand-033

ing of the world that is typically shared among034

individuals (Davis, 2014; Mueller, 2014). How-035

ever, a longstanding challenge is generalizability,036

as commonsense reasoning often necessitates ap-037

plying knowledge to novel situations beyond sim-038

ple pattern recognition or memorizing all special039

cases (Mortimer, 1995; Banaji and Crowder, 1989).040

One promising approach to address this is the chain041

PersonX enjoys 
exercising in the gym

PersonX enjoys 
[sports]

PersonX enjoys 
exercising in the 
[fitness facility]

[health 
lifestyle]

PersonX enjoys 
exercising in 

the [stadium]

PersonX enjoys 
[surfing]

PersonX enjoys 
[hiking]

[PersonX stays 
hydrated]

[PersonX 
avoid 

smoking]

[PersonX goes 
on a balanced 

diet]

stadium
↑

fitness facility

healthy lifestyle
↓

goes on a balanced diet

stay hydrated
↑

healthy lifestyle

healthy lifestyle
↓

avoid smoking

as a result, 
PersonX will: 
stay healthy

as a result, 
PersonX will: 

maintain physical 
well-being

Figure 1: Examples showing several chains of concep-
tualization and instantiation over the event PersonX
enjoys exercising in the gym. New inferential com-
monsense knowledge can be induced when placing the
instantiation back into the original context.

of conceptualization (Murphy, 2004) and instan- 042

tiation (Anderson et al., 1976), which, akin to 043

the process of conceptual induction and deduc- 044

tion in human reasoning (Tenenbaum et al., 2011), 045

involves conceptualizing instances derived from 046

known commonsense knowledge and subsequently 047

instantiating these concepts in new situations to 048

obtain the knowledge required for downstream rea- 049

soning. For example, in Figure 1, one can first 050

conceptualize enjoys exercising in the gym as a 051

healthy lifestyle, and then further instantiate it to 052

go on a balanced diet. This process allows for 053

the derivation of a novel event, PersonX goes on 054

a balanced diet, which may entail new common- 055

sense knowledge when connected with the original 056

event’s commonsense inferential tail. By possess- 057

ing substantial knowledge to initiate the process of 058
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conceptualization and instantiation, one can extrap-059

olate limited commonsense knowledge to a wide060

array of diverse scenarios.061

Yet, replicating this fundamental ability on ma-062

chines remains challenging due to the absence of063

both types of knowledge in widely used Common-064

Sense Knowledge Bases (CSKBs; Sap et al., 2019a;065

Speer et al., 2017). Various methods compensating066

the lack of conceptualization ability of language067

models have been proposed for entity-level (Durme068

et al., 2009; Song et al., 2011, 2015; Gong et al.,069

2016; He et al., 2020; Peng et al., 2022a) and070

event-level (Chen et al., 2020; He et al., 2022a;071

Wang et al., 2023b) conceptualizations by match-072

ing against concept taxonomies like Probase (Wu073

et al., 2012) and WordNet (Miller, 1995). However,074

several limitations still persist.075

Firstly, despite the importance of both conceptu-076

alization and instantiation, most existing works un-077

derestimate the importance of the second step while078

focusing solely on conceptualization and using the079

resulting abstract knowledge directly. Other stud-080

ies that concentrate on instantiations either over-081

look the conceptualization step entirely or only082

retrieve instances from the original CSKB, failing083

to introduce novel entities and events. Secondly,084

most conceptualization methods heavily depend085

on matching instances with concepts in concept086

taxonomies, such as Probase and WordNet, which087

have a limited scope and lack contextual informa-088

tion. Consequently, the derived conceptualizations089

are constrained in scale by these taxonomies and090

are formulated without considering proper contex-091

tualization, necessitating further verification in the092

original context. Lastly, the chain of conceptu-093

alization and instantiation can easily bring more094

than two orders of magnitude of data on top of the095

original CSKB. However, current acquisition and096

verification methods for both steps heavily rely on097

human annotation, which can be extremely costly098

as the scale of the CSKB increases.099

To address these gaps, we introduce CANDLE,100

a ConceptuAlization and INstantiation Distillation101

framework from Large Language ModEls (LLMs)102

to aid commonsense reasoning. Specifically, CAN-103

DLE marks the first to complete the chain of con-104

ceptualization and instantiation by instructing pow-105

erful LLMs to sequentially generate both types of106

knowledge based on concrete commonsense triples107

while carefully considering the original context108

throughout the process. We further alleviate the109

human annotation cost by employing two critic fil- 110

tering models to eliminate low-quality generations. 111

The instantiated knowledge, representing concrete 112

commonsense knowledge again, can be fed back 113

into CANDLE as input, iteratively augmenting the 114

original CSKB significantly. 115

By applying CANDLE to ATOMIC (Sap et al., 116

2019a), we construct a large-scale knowledge base 117

comprising 6.18 million conceptualizations and 118

instantiations from two powerful LLMs, Chat- 119

GPT (OpenAI, 2022) and LLAMA2 (Touvron et al., 120

2023). We demonstrate the intrinsic efficacy of 121

CANDLE through automatic and human evalu- 122

ations, highlighting the ability to generate high- 123

quality and diverse knowledge (Section 5.1). We 124

further show the extrinsic benefits of CANDLE by 125

leveraging the generated knowledge as complemen- 126

tary training data to distill student models that yield 127

improvements across three downstream tasks, in- 128

cluding CSKB conceptualization, generative com- 129

monsense inference, and zero-shot commonsense 130

question answering (Section 5.2). 131

2 Related Works 132

2.1 Conceptualization and Instantiation 133

Conceptualization aims to abstract a set of enti- 134

ties or events into a general concept, thereby form- 135

ing abstract commonsense knowledge within its 136

original context (Murphy, 2004). Subsequently, in- 137

stantiation ground the derived concept into other 138

instances and events to introduce new common- 139

sense knowledge. Existing works primarily fo- 140

cused on entity-level conceptualization (Durme 141

et al., 2009; Song et al., 2011, 2015; Liu et al., 142

2022; Peng et al., 2022a), with He et al. (2022a) 143

pioneering the construction of an event conceptual- 144

ization benchmark by extracting concepts for social 145

events from WordNet (Miller, 1995) synsets and 146

Probase (Wu et al., 2012). Wang et al. (2023b,a) 147

further proposed a semi-supervised framework for 148

conceptualizing CSKBs and demonstrated that ab- 149

stract knowledge can enhance commonsense in- 150

ference modeling and question answering. Wang 151

et al. (2023d) constructed an abstraction bench- 152

mark based on eventualities from ASER (Zhang 153

et al., 2022). Regarding instantiation, Allaway et al. 154

(2023) introduced a controllable generative frame- 155

work to identify valid instantiations for abstract 156

knowledge automatically. However, none of the 157

existing studies have fully completed the chain of 158

conceptualization and instantiation, with each fo- 159
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CSKB Conceptualized
 CSKB

Instantiated CSKB

(1) Contextualized Conceptualization

PersonX arrives at the [bar], as a result, PersonX wants to relax.
How can [bar] be conceptualized in this context?

Social Gathering Place

…bar

PersonX arrives at the [Social Gathering Place], as a result, PersonX wants to relax.

How can [Social Gathering Place] be instantiated in this context?

Entertainment Venue

…

310K 
Triples 6.18M Conceptualizations 6.18M Instantiations
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…
…
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a result, PersonX wants to relax
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st
an

ti
at

e
d

 
K

n
o

w
le

d
ge

A
b

st
ra

ct
K

n
o

w
le

d
ge

PersonX arrives at the 
[Social Gathering 
Place], as a result, 

PersonX wants to relax

PersonX arrives at the 
[Entertainment 

Venue], as a result, 
PersonX wants to relax

(3) Iterative Distillation with Critic Filtering
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(2) Contextualized Instantiation

Figure 2: Overview of our CANDLE framework. A running example with PersonX arrives at the bar, as a result,
PersonX wants to relax is shown in the figure, where bar is first conceptualized and then instantiated by LLMs. The
instantiations can be integrated back into the original CSKB and become input for the framework again.

cusing on only one aspect. Human annotation is160

also frequently applied for data collection and ver-161

ification, which is both expensive and limited in162

scalability. Additionally, the downstream benefits163

of instantiated commonsense knowledge have not164

been thoroughly explored, leaving a significant gap165

in improving commonsense reasoning models.166

2.2 Commonsense Knowledge Distillation167

Recent breakthroughs in LLMs (OpenAI, 2022,168

2023) have led to numerous efforts in distilling169

commonsense knowledge into datasets for train-170

ing performant student models. West et al. (2022);171

Sclar et al. (2022); Bhagavatula et al. (2023); West172

et al. (2023) followed the pipeline of symbolic173

knowledge distillation, which uses human-crafted174

prompts to extract specific types of knowledge175

from LLMs for training downstream models. He176

et al. (2022b) proposed to transfer distilled knowl-177

edge from a ranker to a retriever, resulting in a178

more robust commonsense generator. Chae et al.179

(2023) and Kim et al. (2023) focused on distilling180

conversational responses from LLMs to enhance181

dialogue agents with commonsense knowledge and182

high-quality rationales. In this paper, we share sim-183

ilar aspirations and propose a chain of distillation184

framework that sequentially obtains abstract and185

instantiated knowledge from powerful LLMs. Em-186

pirical results show that our framework offers more187

substantial downstream benefits than traditional188

symbolic knowledge distillation methods.189

3 Definitions and Datasets190

We follow the definitions proposed by He et al.191

(2022a) and Wang et al. (2023b) to formulate con-192

ceptualization and instantiation. Denote the triples193

in the original CSKB as Do = {(ho, r, t)|ho ∈194

Ho, r ∈ R, t ∈ T}, where Ho, R, and T are the set 195

of heads, relations, and tails in the original CSKB. 196

The objective of conceptualization is to form a con- 197

ceptualized head event, denoted as ha, from the 198

original head ho. This is achieved by linking a 199

component i ⊆ ho to a concept c, forming ha by 200

replacing i with c. Consequently, abstract knowl- 201

edge is formed by combining the conceptualized 202

head event with the original relation and tail, rep- 203

resented by (ha, r, t). In the next step, the goal 204

of instantiation is to associate the concept c ⊆ ha 205

with a new instance i′. This process enables the for- 206

mation of new commonsense knowledge in the for- 207

mat of (hi′ , r, t), where hi′ is obtained by replacing 208

c ⊆ ha with i′. In this paper, we use ATOMIC (Sap 209

et al., 2019a) as the original CSKB Do, which con- 210

tains 310K (ho, r, t) triples after dropping those 211

with wildcards and 18,839 unique ho head events. 212

AbstractATOMIC (He et al., 2022a) is used as the 213

source of instances i for every head event ho. 214

4 CANDLE 215

This section introduces our CANDLE framework, 216

illustrated in Figure 2. Our framework can be out- 217

lined in three steps: (1) Instruct ChatGPT to gener- 218

ate contextualized conceptualizations based on the 219

triples in the original CSKB. (2) Instruct LLAMA2 220

to instantiate the conceptualizations obtained in 221

Step 1. (3) Apply critic-filtering to the generations 222

in both steps and close the loop by reintroducing 223

the instantiations back to the CSKB. 224

4.1 Contextualized Conceptualization 225

Previous methods for collecting conceptualizations 226

rely on heuristically matching instances against 227

concepts from WordNet and Probase. However, 228

they suffer from limited concept coverage, resulting 229
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in a lack of knowledge diversity after instantiation,230

and require additional verification to ensure that231

concept c fits into the original context (ho, r, t). To232

address both issues, we propose to utilize ChatGPT233

as a loose teacher to collect conceptualizations in a234

one-step inference manner. Following Brown et al.235

(2020) and West et al. (2022), we use a few-shot236

prompt to instruct ChatGPT:237

<TASK-PROMPT>
<EX1-INP><EX1-OUT>
. . .
<EXN−1-INP><EXN−1-OUT>
<EXN-INP>

238

where <TASK-PROMPT> is a task instruction that239

explains how to conceptualize an event and240

<EX1-INP><EX1-OUT> are human authored exam-241

ples of conceptualizations for events sampled from242

ATOMIC. For each example, (ho, r, t, i) are in-243

cluded in the input, and c is the output. Finally, we244

provide the Nth input as <EXN-INP> and ask Chat-245

GPT to generate the corresponding conceptualiza-246

tion as <EXN-OUT>. This ensures that ChatGPT not247

only learns the relationship between instances i and248

their conceptualizations c but also performs such249

abstraction in a contextualized manner, ensuring250

the plausibility of the generated conceptualization251

c within the original context (ho, r, t). In this paper,252

we set N = 6 and obtain Nc = 20 conceptualizations253

for every event ho.254

4.2 Contextualized Instantiation255

After conceptualizing all events, we proceed to in-256

stantiate them by instructing an open-source LLM257

to reduce the cost as the scale of instantiation is258

Nc = 20 times larger than that of conceptualiza-259

tion. We use LLAMA2-13B as the loose teacher260

model in view of the pilot study that it can also261

generate high-quality instantiation knowledge (Ap-262

pendix G). We employ a similar prompt as de-263

scribed in Section 4.1, with the modification of264

replacing <TASK-PROMPT> with the explanation of265

instantiating a conceptualized event and chang-266

ing <EX1-INP><EX1-OUT> to human-authored ex-267

amples of instantiations for abstract common-268

sense knowledge triples. (ha, r, t, c) are included269

in the input and i′ is the expected output. By270

learning from these examples, LLAMA2 is ex-271

pected to generate the corresponding instantiation272

i′ (<EXN-OUT>) based on the given abstract knowl-273

edge triple (ha, r, t, c) (<EXN-INP>). We set N =274

11 and produce only one instantiation for each con-275

ceptualized event ha due to the significant amount276

of conceptualizations obtained in the previous step. 277

Appendix A provides more details regarding the 278

distillation process. 279

4.3 Iterating with Critic Filtering 280

Following West et al. (2022), we use critic filter- 281

ing models to eliminate low-quality generations 282

from LLMs. Specifically, we utilize a DeBERTa- 283

v3-large conceptualization discriminator, provided 284

by Wang et al. (2023b), and VERA-T5-xxl, pro- 285

vided by Liu et al. (2023), to evaluate the quality 286

of the generated conceptualizations and instantia- 287

tions, respectively. We set an empirical threshold 288

value t to serve as the cutoff point for discarding 289

generations with scores below t. In Section 5.1, 290

we present evaluations conducted to determine the 291

optimal value for t. For all downstream applica- 292

tions, we set t = 0.9. Post-filtering, the instantiated 293

triples (hi′ , r, t) can be reintroduced as the input 294

for conceptualizations again as they continue to 295

represent concrete commonsense knowledge. This 296

iterative process of conceptualization and instan- 297

tiation forms a loop, which enables continuously 298

augmenting a CSKB. In this paper, we execute 299

the loop only once, but multiple iterations hold 300

the promise of significantly enhancing the CSKB’s 301

knowledge coverage. 302

5 Evaluations and Analysis 303

In this section, we evaluate CANDLE from both 304

intrinsic and extrinsic perspectives. Intrinsically, 305

we demonstrate the high quality and diversity of 306

conceptualizations and instantiations generated by 307

CANDLE (Section 5.1). Extrinsically, we explore 308

the benefits by applying the distilled knowledge to 309

downstream tasks (Section 5.2). 310

5.1 Distillation Evaluations 311

Statistics and Quality. We present CANDLE 312

distillation statistics based on ATOMIC in Table 1, 313

showing its superiority in scale and concept cover- 314

age compared to other benchmarks. Even with a 315

strict critic filtering threshold (t = 0.9), CANDLE 316

maintains its leading position, having the highest 317

count of total and unique knowledge for both types. 318

To assess the quality of the distilled knowledge, we 319

recruit four expert annotators to conduct human 320

evaluations on the plausibility of the generated con- 321

ceptualizations and instantiations. They are asked 322

to annotate the plausibility of 3,000 randomly sam- 323

pled abstract commonsense triples (ha, r, t) and 324
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Corpus Conceptualization Instantiation

Size (Unq.)/K Accept Size (Unq.)/K Accept

AbsATM 503.5 (31.22) - None -
EXEM 0.650 (0.650) - 25.12 (25.12) -

CANDLE 6,181 (853.5) 82.6% 6,181 (676.7) 77.9%
(critic0.5) 4,002 (498.4) 88.1% 4,176 (512.7) 84.4%
(critic0.7) 3,272 (382.2) 93.5% 3,098 (455.9) 89.1%
(critic0.9) 2,137 (219.4) 97.2% 2,208 (382.1) 94.5%

Table 1: Statistics and expert acceptance rates of CAN-
DLE in comparison to AbstractATOMIC (AbsATM; He
et al., 2022a) and Exemplar (EXEM; Allaway et al.,
2023). Unq stands for unique.

3,000 instantiated triples (hi′ , r, t) from the dis-325

tilled knowledge set. Accepted triples are those326

deemed plausible by all annotators. We then an-327

alyze accepted triple ratios for different levels of328

critic filtering, as shown in Table 1. Our findings329

show that LLMs have impressive conceptualization330

and instantiation abilities, with initial plausibility331

rates of 82.6% and 77.9% for both types of knowl-332

edge, respectively. Critic filtering improves plausi-333

bility by up to 14.6% and 16.6%, demonstrating the334

effectiveness of our measures in maintaining high-335

quality distilled knowledge. For more annotation336

details, refer to Appendix E.337

Conceptualization Diversity. The process of ab-338

stracting an event into highly diverse conceptualiza-339

tions plays a crucial role in CANDLE. It is of signif-340

icant importance because the greater the diversity341

of conceptualizations, the broader the knowledge342

coverage becomes upon instantiation. This, in turn,343

enhances the overall knowledge coverage within344

the distillation process. To examine the diversity of345

the top 10,000 popular distilled conceptualizations,346

we obtain their hypernyms by matching against347

Probase (Wu et al., 2012) and present a visualiza-348

tion in Figure 3. It reveals that our distilled concep-349

tualizations possess a high level of diversity across350

various categories, forming a comprehensive and351

intricate knowledge base.352

5.2 Downstream Applications353

In this section, we explore the downstream ap-354

plications of CANDLE. By applying CANDLE355

to ATOMIC, the distilled conceptualizations and356

instantiations form a large-scale expansion of357

the original CSKB, which contains high-quality358

abstract and concrete commonsense knowledge.359

Leveraging both types of knowledge as supple-360

mentary training data, we enhance various down-361

stream commonsense reasoning models. Specifi-362

cally, we utilize distilled conceptualizations in the363

CSKB conceptualization task (Wang et al., 2023b),364

while instantiations are used in generative common-365
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Figure 3: Hypernyms distribution of the top 10,000
popular conceptualizations distilled from CANDLE.

sense inference (COMET; Bosselut et al., 2019) 366

and zero-shot commonsense QA tasks (Ma et al., 367

2021). Due to space constraints, please refer to Ap- 368

pendix B, C, D for task setups, dataset descriptions, 369

and implementation details, respectively. 370

5.2.1 CSKB Conceptualization 371

Task Setup. The CSKB conceptualization task 372

evaluates a model’s ability to conceptualize a 373

CSKB through two binary classification subtasks, 374

which are crucial for performing CSKB conceptu- 375

alization inference upon concept taxonomies (He 376

et al., 2022a). The first subtask, event conceptual- 377

ization, aims to determine whether ho can be cor- 378

rectly conceptualized using ha, where ha is derived 379

by replacing an instance i ⊂ ho with its linked con- 380

cept c. The second subtask, triple conceptualiza- 381

tion, aims to assess the plausibility of a conceptu- 382

alized triple (ha, r, t) that represents abstract com- 383

monsense knowledge. Accuracy is used as the eval- 384

uation metric. Following Wang et al. (2023b), we 385

use the AbstractATOMIC dataset provided by He 386

et al. (2022a) as the evaluation benchmark. 387

To obtain our distilled models for these tasks, we 388

first synthesize negative samples from CANDLE 389

distilled conceptualizations. For event conceptu- 390

alizations, a random concept from another head 391

event without common words is selected as the 392

negative candidate, while for triple conceptualiza- 393

tion, a tail of another head event without common 394

words under the same relation is selected. We then 395

fine-tune language models on a balanced mixture 396

of CANDLE distillation and synthesized negative 397
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Model Type Backbone Model / Method Event Conceptualization Triple Conceptualization

Validation Testing Validation Testing

Pre-trained
Langauge
Models

RoBERTa-large 340M 77.28 77.99 81.77 82.69
DeBERTa-v3-large 435M 78.02 78.27 82.18 82.96
GPT2-XL 1.5B 53.71 56.10 47.65 47.21
PseudoReasoner (RoBERTa-large) 78.33 78.91 79.69 80.27
PseudoReasoner (DeBERTa-v3-large) 79.03 79.21 79.89 80.07
CAT (RoBERTa-large) 340M 78.51 78.53 82.27 83.02
CAT (DeBERTa-v3-large) 435M 79.55 79.39 82.88 83.52

Large
Language
Models

ChatGPT (openai/gpt-3.5-turbo) 69.29 68.65 68.54 68.12
+ Five-shot Exemplars 69.42 70.40 70.27 72.08
+ Chain-of-thought 74.82 72.32 71.48 72.85

LLAMA2 7B 46.29 43.90 40.81 41.25
+ Five-shot Exemplars 47.92 44.89 74.67 76.80

LLAMA2 13B 48.17 48.59 48.31 48.55
+ Five-shot Exemplars 49.29 49.90 80.67 82.08

Mistral-v0.1 7B 46.29 43.90 58.09 58.07
+ Five-shot Exemplars 51.00 50.06 65.09 69.80

LLAMA2 (LoRA Fine-tuned) 7B 75.80 76.27 79.89 82.15
Mistral-v0.1 (LoRA Fine-tuned) 7B 75.71 76.76 79.59 80.35
VERA-T5 5B 70.76 70.29 72.60 76.85
VERA-T5 (Fine-tuned) 5B 75.69 76.21 80.13 81.25

CANDLE
Distilled
(Ours)

RoBERTa-large 340M 80.69↑2.18 80.99↑2.46 83.11↑0.84 84.50↑1.48
DeBERTa-v3-large 435M 80.97↑1.42 81.14↑1.75 83.64↑0.76 84.64↑1.12
LLAMA2 (LoRA Fine-tuned) 7B 77.48↑1.68 78.27↑2.00 81.68↑1.79 83.40↑1.25
Mistral-v0.1 (LoRA Fine-tuned) 7B 77.77↑2.06 78.29↑1.53 81.95↑2.36 82.54↑2.19
VERA-T5 (Fine-tuned) 5B 77.54↑1.85 78.03↑1.82 82.79↑2.66 83.61↑2.36

Table 2: Performances (Accuracy%) on CSKB conceptualization tasks. The best performances within each model
type are underlined, and the best among all models are bold-faced.

samples to train two models, each serving as a398

pre-trained general discriminator in their respective399

task domain. These two models are subsequently400

fine-tuned on the training sets of AbstractATOMIC401

to fit into the benchmark, and their performances402

on the validation and test sets are reported.403

Baselines. We evaluate our distilled models by404

comparing them against several baselines. These405

include supervised fine-tuned language models406

like RoBERTa-Large (Liu et al., 2019), DeBERTa-407

V3-Large (He et al., 2023), GPT-2 (Radford408

et al., 2019), LLAMA2 (Touvron et al., 2023),409

Mistral (Jiang et al., 2023), and VERA (Liu410

et al., 2023), as well as semi-supervised meth-411

ods such as PsuedoReasoner (Fang et al., 2022)412

and CAT (Wang et al., 2023b). Due to computa-413

tional power limitations, we utilize LoRA (Hu et al.,414

2022) for fine-tuning LLMs. As additional base-415

lines, we also consider prompting LLMs, including416

LLAMA2, Mistral, and ChatGPT. We explore both417

direct zero-shot prompting and alternative methods,418

such as with five-shot exemplars (Wei et al., 2023)419

and chain-of-thought reasoning (Wei et al., 2022).420

Results and Analysis. Table 2 shows the results.421

CAT trained with DeBERTa-v3-large outperforms422

all other baselines for both tasks. Among LLMs,423

LLAMA and Mistral perform well after fine-tuning,424

but they struggle in prompting scenarios. However, 425

pre-training on CANDLE’s distilled conceptualiza- 426

tions consistently improves results for both tasks. 427

For example, Mistral shows a significant improve- 428

ment of 1.54% and 2.19% on two tasks compared 429

to directly fine-tuning on AbstractATOMIC. Addi- 430

tionally, the distilled DeBERTa-v3-large surpasses 431

all baseline models and achieves state-of-the-art 432

performance. This can be attributed to the dis- 433

tilled conceptualizations obtained from CANDLE, 434

which grant the model a more comprehensive un- 435

derstanding of conceptualizations and subsequently 436

enhance its discriminatory capabilities. 437

5.2.2 Generative Commonsense Inference 438

Task Setup. The task of generative common- 439

sense inference modeling (COMET; Bosselut et al., 440

2019) asks the model to generate commonsense 441

tails t based on given head ho and relation r in- 442

puts. Following Hwang et al. (2021), we use the 443

full test set of ATOMIC20
20 as our evaluation bench- 444

mark. We use several automatic metrics for eval- 445

uation, including BLEU (Papineni et al., 2002), 446

ROUGE-L (Lin, 2004), METEOR (Lavie and Agar- 447

wal, 2007), CIDEr (Vedantam et al., 2015), and 448

BERTScore (Zhang et al., 2020). Meanwhile, four 449

expert annotators are recruited to conduct expert 450

evaluations of the generations. They are asked to 451
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Training Data Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L CIDEr BERTScore Human

Backbone: GPT2-XL (Radford et al., 2019) 1.5B
Zero-shot 4.350 1.598 0.732 0.293 5.702 5.030 0.792 37.11 14.50
ATOMIC 45.72 29.18 21.12 16.15 29.97 49.69 64.61 76.09 70.50
ATOMIC20

20 42.15 25.77 17.82 13.14 29.82 47.61 63.70 70.39 76.50
ATOMIC-10X 45.38 29.20 21.09 16.15 30.09 49.86 65.02 75.89 77.50
AbstractATOMIC 45.30 29.08 21.00 16.06 29.98 48.61 63.98 75.56 71.50
CANDLE Distilled 50.71 33.85 25.55 20.43 32.45 51.91 69.68 76.86 78.50

Backbone: ChatGPT (OpenAI, 2022) (openai/gpt-3.5-turbo)
Zero-shot 11.82 4.258 1.891 0.926 13.87 13.73 4.350 49.28 78.50
Five-shot 26.32 12.50 7.160 4.415 18.60 24.65 8.313 58.69 81.00
Chain-of-thought 9.906 3.568 1.556 0.736 11.85 11.02 2.905 46.17 64.00

Backbone: LLAMA2 (Touvron et al., 2023) 7B
Zero-shot 18.26 7.453 3.594 1.945 15.90 20.28 8.872 48.23 48.50
Five-shot 31.22 16.87 9.767 5.989 19.74 27.67 17.83 58.41 65.50
ATOMIC 42.04 23.01 14.10 9.125 27.80 42.90 53.17 71.52 68.50
ATOMIC20

20 41.07 22.46 13.62 8.619 27.74 42.42 53.28 71.77 74.00
ATOMIC-10X 42.07 23.08 14.14 9.198 28.14 42.75 53.69 71.93 76.50
AbstractATOMIC 42.78 23.64 14.58 9.471 27.74 42.55 53.12 71.51 71.00
CANDLE Distilled 43.86 24.40 15.12 10.00 28.36 43.86 54.25 72.94 79.50

Table 3: Performances (%) of the commonsense inference modeling task (COMET) on the full test set of ATOMIC20
20.

The best ones within each backbone are underlined, and the best among all is bold-faced.

annotate the plausibility of 200 randomly selected452

commonsense triple generations under each setting,453

and the resulting plausibility rates are reported.454

Similar to training distilled models in previous455

tasks, we first pre-train GPT2 and LLAMA2-7B456

on critic-filtered CANDLE instantiations, where457

each (hi′ , r, t) triple is concatenated into a sen-458

tence via natural language templates. Subsequently,459

we fine-tune these models on the training split of460

ATOMIC20
20 to fit them into the benchmark. Finally,461

we report their performances on the test set.462

Baselines. For baselines, we separately train463

GPT2 and LLAMA2-7B on the training sets of464

ATOMIC, ATOMIC20
20, ATOMIC10X (West et al.,465

2022), and AbstractATOMIC. These models are466

then fine-tuned on the training split of ATOMIC20
20467

and evaluated on its test set. We also include their468

zero-shot prompting performances, with LLAMA2469

being evaluated with five-shot exemplars. Chat-470

GPT’s performances under zero-shot, five-shot, and471

chain-of-thought settings are also reported.472

Results and Analysis. Table 3 shows the re-473

sults. Among the baselines, models pre-trained474

on ATOMIC-10X achieve the highest expert ac-475

ceptance rate, surpassing those trained on Abstrac-476

tATOMIC. This may be because ATOMIC-10X477

covers a wider range of commonsense relations478

consistent with ATOMIC20
20. However, CANDLE479

distilled models achieve the highest scores com-480

pared to baselines with the same backbone model.481

For example, the CANDLE distilled LLAMA-7B482

model improves BERTScore by 1.01% and expert-483

plausibility by 3.00% compared to the best baseline.484

It also outperforms ChatGPT in all automatic met- 485

rics while maintaining a high plausibility rate of 486

around 80%. This emphasizes the advantages of us- 487

ing CANDLE distilled instantiations for COMET 488

training over traditional symbolic knowledge distil- 489

lation methods or conceptualization augmentation. 490

5.2.3 Zero-shot Commonsense QA 491

Task Setup. The task of zero-shot commonsense 492

QA involves selecting the most plausible option 493

for commonsense questions without any supervi- 494

sion signals from benchmark data. We follow 495

the most effective pipeline by Ma et al. (2021), 496

which fine-tune language models on QA pairs syn- 497

thesized from knowledge in CSKBs. The head 498

ho and relation r of a (ho, r, t) triple are trans- 499

formed into a question using natural language 500

prompts, with the tail t serving as the correct an- 501

swer option. Distractors or negative examples 502

are generated by randomly sampling tails from 503

triples that do not share common keywords with 504

the head. In addition to directly synthesizing 505

from knowledge triples in ATOMIC, we augment 506

ATOMIC by sampling triples from ATOMIC-10X, 507

AbstractATOMIC, and CANDLE instantiations. 508

The number of sampled triples is the same as in 509

the original ATOMIC dataset. We then synthe- 510

size them into QA pairs to train different base- 511

line models and CANDLE distilled models. For 512

our distilled models, we utilize QA pairs sourced 513

from CANDLE-instantiation augmented ATOMIC 514

to train a DeBERTa-v3-large model using the 515

marginal ranking loss and a T5-xxl model (Raffel 516
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Model/Method CSKB a-NLI CSQA PIQA SIQA WG Avg.

Pre-trained Language Models
RoBERTa-L (Liu et al., 2019) - 65.5 45.0 67.6 47.3 57.5 56.6
DeBERTa-v3-L (He et al., 2023) - 59.9 25.4 44.8 47.8 50.3 45.6
Self-talk (Shwartz et al., 2020) - - 32.4 70.2 46.2 54.7 -
SMLM (Banerjee and Baral, 2020) * 65.3 38.8 - 48.5 - -
COMET-DynGen (Bosselut et al., 2021) ATOMIC - - - 50.1 - -
MICO (Su et al., 2022) ATOMIC - 44.2 - 56.0 - -
STL-Adapter (Kim et al., 2022) ATOMIC 71.3 66.5 71.1 64.4 60.3 66.7
DeBERTa-v3-L (MR) (Ma et al., 2021) ATM10X 75.1 71.6 79.0 59.7 71.7 71.4
DeBERTa-v3-L (MR) (Ma et al., 2021) ATOMIC 76.0 67.0 78.0 62.1 76.0 71.8
CAR-DeBERTa-v3-L (Wang et al., 2023a) ATOMIC 78.9 67.2 78.6 63.8 78.1 73.3
CAR-DeBERTa-v3-L (Wang et al., 2023a) AbsATM 79.6 69.3 78.6 64.0 78.2 73.9
DeBERTa-v3-L (CANDLE Distilled) CANDLE 81.2↑1.6 69.9↑0.6 80.3↑1.7 65.9↑1.9 78.3↑0.1 74.9↑1.0

Large Language Models
GPT-3.5 (text-davinci-003) - 61.8 68.9 67.8 68.0 60.7 65.4
ChatGPT (gpt-3.5-turbo) - 69.3 74.5 75.1 69.5 62.8 70.2

+ Chain-of-thought - 70.5 75.5 79.2 70.7 63.6 71.9
+ Self-consistent chain-of-thought - 73.2 75.7 81.7 69.7 64.1 72.9

GPT-4 (gpt-4) - 75.0 43.0 73.0 57.0 77.0 65.0
LLAMA2 (7B; Touvron et al., 2023) - 57.5 57.8 78.8 48.3 69.2 62.3
LLAMA2 (13B; Touvron et al., 2023) - 55.9 67.3 80.2 50.3 72.8 65.3
Mistral-v0.1 (7B; Jiang et al., 2023) - 51.0 59.6 83.0 42.9 75.3 62.4
VERA-T5-xxl (Liu et al., 2023) ATOMIC 71.2 61.7 76.4 57.7 67.5 66.9
VERA-T5-xxl (Liu et al., 2023) ATM10X 70.3 59.5 75.1 58.2 67.2 66.1
VERA-T5-xxl (Liu et al., 2023) AbsATM 73.2 63.0 77.2 58.1 68.1 68.0
VERA-T5-xxl (CANDLE Distilled) CANDLE 73.8↑0.6 64.7↑1.7 77.6↑0.4 59.4↑1.2 71.3↑3.2 69.4↑1.4

Table 4: Zero-shot evaluation results (Accuracy%) on five commonsense question answering benchmarks. The best
results are bold-faced, and the second-best ones are underlined. ATM10X stands for ATOMIC-10X (West et al.,
2022) and AbsATM stands for AbstractATOMIC (He et al., 2022a).

et al., 2020) following the training regime of VERA.517

We evaluate the performance of all models on the518

validation split of Abductive NLI (aNLI; Bhagavat-519

ula et al., 2020), CommonsenseQA (CSQA; Tal-520

mor et al., 2019), PhysicalIQA (PIQA; Bisk et al.,521

2020), SocialIQA (SIQA; Sap et al., 2019b), and522

WinoGrande (WG; Sakaguchi et al., 2021). Accu-523

racy is used as the evaluation metric.524

Baselines. First, we report performances of525

vanilla RoBERTa-Large, DeBERTa-v3-Large,526

Self-talk (Shwartz et al., 2020), COMET-527

DynaGen (Bosselut et al., 2021), SMLM (Banerjee528

and Baral, 2020), MICO (Su et al., 2022), MR (Ma529

et al., 2021), STL-Adapter (Kim et al., 2022), and530

the previous state-of-the-art method, CAR (Wang531

et al., 2023a). For MR and CAR, DeBERTa-v3-532

Large is used as the backbone, and their perfor-533

mances on ATOMIC-10X and AbstractATOMIC534

are also reported. For LLMs, we report the perfor-535

mances of prompting GPT3.5 (Brown et al., 2020),536

ChatGPT, GPT4 (OpenAI, 2023), LLAMA2, and537

Mistral in a zero-shot manner. For ChatGPT, its per-538

formances with chain-of-thought (Wei et al., 2022)539

and self-consistency chain-of-thought (Wang et al.,540

2023c) prompting are also reported. We also train541

several VERA-T5-xxl baselines on different sets of542

QA pairs as LLM baselines.543

Results and Analysis. Table 4 shows the results, 544

demonstrating that CANDLE distilled models gen- 545

eralize better than the baselines across several com- 546

monsense QA benchmarks. For instance, VERA 547

demonstrates an average improvement of 1.4% 548

compared to the best baseline. This can be at- 549

tributed to the inclusion of new entities and events 550

in CANDLE instantiations that are absent in other 551

CSKBs, where CANDLE instantiations can aid 552

in answering commonsense questions that require 553

knowledge of these new instances. Furthermore, 554

the distilled DeBERTa-v3-large model outperforms 555

all baselines, including methods utilizing LLMs. 556

This also indicates that augmenting with CANDLE 557

distilled instantiations provides a more significant 558

advantage compared to using symbolically distilled 559

or abstract knowledge as training data. 560

6 Conclusion 561

This paper introduces CANDLE, a distillation 562

framework that realizes the chain of conceptualiza- 563

tion and instantiation over CSKBs. We demonstrate 564

the efficacy of CANDLE through comprehensive 565

evaluations of the distilled knowledge and its pos- 566

itive impact on downstream tasks. Our research 567

sheds light on distilling LLMs to enable more ro- 568

bust and generalizable commonsense reasoning. 569
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Limitations570

The major limitation of CANDLE lies in the signif-571

icant cost of distilling LLMs to obtain substantial572

knowledge. While the instantiation step of CAN-573

DLE utilizes the open foundation model LLAMA2,574

the conceptualization is still performed by Chat-575

GPT due to the unsatisfactory performance of other576

open-source LLMs and the high quality of Chat-577

GPT’s generation. Consequently, a considerable578

amount of funding is required to distill conceptual-579

izations for CANDLE to function effectively.580

Furthermore, it should be noted that CANDLE581

has only been validated on ATOMIC. However,582

CANDLE is not limited to any specific format of583

commonsense knowledge, allowing it to operate584

on any CSKB. Future research can address this585

by extending the evaluation of CANDLE to other586

CSKBs and conducting follow-up experiments to587

explore their benefits on more downstream tasks.588

Another interesting direction to investigate is uti-589

lizing the chain of conceptualization and instantia-590

tion as a foundation for enhancing weak-to-strong591

generalization (Burns et al., 2023). By conceptual-592

izing and instantiating weak supervision data, we593

can generate more robust and generalized training594

signals, which ultimately strengthens the learning595

process. This can also be effectively incorporated596

into the training process of self-rewarding language597

models (Yuan et al., 2024).598

Ethics Statement599

To avoid generating harmful or unethical content600

from LLMs like ChatGPT and LLAMA2, we re-601

cruit four expert annotators, who are graduate and602

undergraduate students specializing in machine603

commonsense in natural language processing, to604

verify the ethics and potential harm of the gen-605

erated content. A thorough assessment of a ran-606

dom sample has been conducted, and no significant607

harm has been identified. All training and evalua-608

tion datasets used are publicly available and shared609

under open-access licenses solely for research pur-610

poses, aligning with their intended usage. These611

datasets have been carefully anonymized and desen-612

sitized to protect data privacy and confidentiality.613

The expert annotators involved in this study are614

fully aware of the annotation protocol and the in-615

tended use of their annotations. Their participation616

in this research is voluntary, and they have agreed617

to contribute without receiving any compensation.618

Thus, the authors believe that this paper does not619

raise any ethical concerns. 620
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Appendices 1170

A Distillation Details 1171

This section provides additional details about the 1172

CANDLE distillation process not covered in the 1173

main body text. First, we present the prompts used 1174

to instruct ChatGPT to perform contextualized con- 1175

ceptualizations and LLAMA2 to perform contextu- 1176

alized instantiation. For prompting ChatGPT to dis- 1177

till conceptualizations, we use a few-shot prompt 1178

as shown below: 1179

Following the given examples, you are 1180

required to conceptualize the instance 1181

(enclosed by []) in the last given event 1182

into abstract concepts. The concept 1183

should still fit into the instance’s 1184

original sentence. Make sure that 1185

the generated abstract concepts are 1186

general and not simply hypernyms of the 1187

instance. 1188

. . . 1189

Event <i>: PersonX enjoys drinking in 1190

the [bar], as a result, PersonX feels 1191

relaxed. [bar] can be conceptualized as 1192

Social Gathering Place 1193

. . . 1194

Event <N>: PersonX likes [painting on 1195

the beach], as a result, PersonX will go 1196

to the beach. [painting on the beach] 1197

can be conceptualized as 1198

Similarly, for prompting LLAMA2-13B to dis- 1199

till instantiations based on previously generated 1200

conceptualizations, we use a few-shot prompt as 1201

shown below: 1202

Following the given examples, you are 1203

required to instantiate the concept 1204

(enclosed by []) in the last given 1205

event into entities or events. If the 1206

event only contains the concept, then 1207

instantiate it to an event starting 1208

with a subject PersonX or PersonY. If 1209

the event contains other words, then 1210

instantiate it to an entity. The 1211

instance should still fit into the 1212

original sentence. Make sure that the 1213

generated instance is specific. 1214

. . . 1215

Event <i>: PersonX enjoys drinking in 1216

the [Social Gathering Place], as a 1217

14
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Abs.ATM CANDLE

#Unq. event 15,388 15,359
#Unq. instance 21,493 21,442
#Unq. conceptualization 31,227 853,499
#Tot. conceptualization 503,588 6,181,391
#Unq. instantiation - 676,737
#Tot. instantiation - 6,181,391

Avg. #concept/event 32.73 173.33
Avg. #Unq. concept/event 28.33 167.76
Avg. #concept/instance 23.43 124.16
Avg. #Unq. concept/instance 17.27 100.88

Table 5: Statistics of conceptualizations and instantia-
tions in AbstractATOMIC (Abs.ATM; He et al., 2022a)
and CANDLE. Tot. stands for total, Unq. stands for
unique, and Avg. stands for average.

Relation ATOMIC Abs.ATM CANDLE

xEffect 78,832 938,330 964,765
oEffect 28,351 333,845 346,363
xWant 101,249 1,170,835 1,322,810
oWant 43,079 484,570 551,391
xReact 62,969 510,476 480,259
oReact 26,570 224,706 208,538
xNeed 74,272 900,429 894,338
xAttr 110,791 838,191 810,958
xIntent 45,490 519,813 601,969

Total 572,053 5,921,195 6,181,391

Table 6: Statistics of abstract commonsense knowl-
edge triples by relations in ATOMIC, AbstractATOMIC
(Abs.ATM; He et al., 2022a), and CANDLE.

result, PersonX feels relaxed. [Social1218

Gathering Place] can be instantiated as1219

beer festival1220

. . .1221

Event <N>: PersonX likes [exercise], as1222

a result, PersonX will go to the stadium.1223

[exercise] can be conceptualized as1224

These prompts are consistent with our descrip-1225

tions in Section 4.1 and Section 4.2, where the task1226

description is first presented, followed by human-1227

authored examples, and finally, the event we want1228

to conceptualize or instantiate. We also leverage1229

several tricks in the prompt, such as numbering1230

the examples, generating concepts instead of hyper-1231

nyms, and keeping the generated responses concise.1232

Finally, we parse the generations via manually de-1233

fined rules and compile them into a dataset.1234

Additionally, we introduce some generation set-1235

tings when prompting LLMs. For ChatGPT, we ac-1236

cess it through the official OpenAI APIs1. The code1237

of the accessed version is gpt-3.5-turbo-0613.1238

1https://chat.openai.com/

We set the temperature to 1.0 and the maximum 1239

length for generated tokens to 200. To conceptu- 1240

alize all events in ATOMIC into 20 conceptual- 1241

izations each, the time required for the distillation 1242

process is approximately ten days and the financial 1243

budget is around 1500 USD. 1244

For LLAMA2, we access it via the 1245

Huggingface Library (Wolf et al., 2020). 1246

The code of the accessed model is 1247

meta-llama/Llama-2-13b-chat-hf2. When 1248

prompting, we use the Top-k sampling decoding 1249

strategy and set k = 10. We set the maximum 1250

length of generated tokens to 200. The models 1251

are hosted on sixteen NVIDIA-V100 GPUs, and 1252

the time required to distill the entire dataset is 1253

approximately one month. 1254

After collecting 20 conceptualizations for ev- 1255

ery head event in ATOMIC and further instanti- 1256

ating them to new entities and events, we con- 1257

struct an expanded knowledge base of ATOMIC. 1258

We also include more statistics, as shown in Ta- 1259

ble 5 and Table 6. For instantiations, they share the 1260

same relational distribution as abstract common- 1261

sense triples since we only instantiate them once. 1262

These statistics indicate that, compared to Abstrac- 1263

tATOMIC, which is the only available conceptual- 1264

ization benchmark based on ATOMIC, CANDLE 1265

contains more abstract commonsense triples and 1266

many more unique conceptualizations. Accord- 1267

ing to our results, it can also be expected that the 1268

abstract knowledge distilled from CANDLE is of 1269

better quality than AbstractATOMIC, which human 1270

annotations or any filtering have not verified. 1271

For critic filtering, we use the state-of-the- 1272

art conceptualization discriminator developed 1273

by Wang et al. (2023b). This discriminator is uti- 1274

lized to assess the plausibility of CANDLE distilled 1275

conceptualizations. It considers the original event, 1276

the instance being conceptualized, and the target 1277

concept as its inputs and generates a score ranging 1278

from 0 to 1 to represent plausibility. For instantia- 1279

tion, we use the pre-trained VERA model released 1280

by Liu et al. (2023). We convert the instantiated 1281

commonsense knowledge triple into a declarative 1282

statement and request an estimation of its plausibil- 1283

ity from VERA. This estimation is provided as a 1284

score ranging from 0 to 1. The output scores from 1285

both models serve as the critical values assigned 1286

to each CANDLE distillation. These critical val- 1287

ues are then subjected to further filtering based on 1288

2https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
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various thresholds.1289

Additionally, following Wang et al. (2023d), we1290

calculate the percentage of unique abstract con-1291

cepts using BLEU soft uniqueness (Zhu et al., 2018;1292

West et al., 2022). We define a concept, denoted as1293

x, as unique if BLEU1(C, x) < 0.5, where C rep-1294

resents all concepts that share the same head event1295

and identified instance with x in AbstractATOMIC.1296

Here, 0.5 serves as an empirical threshold. Our dis-1297

tillation process yields 92.3% unique conceptual-1298

izations, indicating a significantly higher diversity1299

than previous datasets.1300

Similarly, we evaluate the uniqueness of the1301

newly introduced head events resulting from our1302

chain of conceptualization and instantiation. To1303

determine uniqueness, we define an instantiated1304

head event, referred to as hi′ , as unique if1305

BLEU1(ho, hi′) < 0.5, where ho represents the1306

original head event in ATOMIC. The threshold of1307

0.5 is an empirical threshold. Our empirical results1308

demonstrate that 78.6% of the instantiated events1309

are unique compared to ATOMIC, highlighting the1310

effectiveness of CANDLE in enhancing the seman-1311

tic coverage of the CSKB.1312

B Task Setups1313

B.1 CSKB Conceptualization1314

We follow the task definition of He et al. (2022a)1315

and Wang et al. (2023b) to formulate the CSKB1316

conceptualization task. Specifically, conceptual-1317

izing an event-centric CSKB to derive abstract1318

commonsense knowledge comprises two steps (?):1319

event conceptualization and triple conceptualiza-1320

tion, which correspond to two subtasks studied in1321

this paper. Denote the triples in the original CSKB1322

as Do = {(ho, r, t)|ho ∈ Ho, r ∈ R, t ∈ T},1323

where Ho, R, and T are the set of heads, relations,1324

and tails in the original CSKB. The first step only1325

operates on head events without considering the1326

context in r and t. The goal of event conceptualiza-1327

tion is to produce a conceptualized head event ha1328

from the original head ho to represent an abstrac-1329

tion of ho. In the second step, the task is to verify1330

whether the conceptualized head ha still makes1331

sense in the context of r and t, as r and t will1332

further restrict the level of abstractness in ha. Plau-1333

sible (ha, r, t) triples will be considered as valid1334

abstract commonsense knowledge. By enhancing1335

the performance of discriminative models on these1336

tasks, they can function as more precise critic fil-1337

ters and automate the conceptualization process of1338

a CSKB when linked to concept taxonomies. 1339

B.2 Generative Commonsense Inference 1340

The task of generative commonsense inference was 1341

studied by both Bosselut et al. (2019) and Hwang 1342

et al. (2021). It requires a generative model to com- 1343

plete the tail t of a commonsense assertion based 1344

on a given pair of head h and commonsense rela- 1345

tion r. In this paper, we follow Hwang et al. (2021) 1346

and use ATOMIC20
20 as the evaluation benchmark, 1347

in which the full testing set is used for model eval- 1348

uation. The task of COMET is important in the do- 1349

main of commonsense as it serves as a fundamental 1350

component for numerous high-level applications 1351

that necessitate commonsense reasoning, such as 1352

zero-shot commonsense question answering with 1353

self-talk (Shwartz et al., 2020) and dynamic graph 1354

construction (Bosselut et al., 2021), narrative rea- 1355

soning (Peng et al., 2022b), and dialogue gener- 1356

ation (Tu et al., 2022). Improving COMET can 1357

potentially benefit other domains that require com- 1358

monsense understanding. 1359

B.3 Zero-shot Commonsense QA 1360

The task of zero-shot commonsense QA evaluates 1361

a model’s reasoning generalizability on unseen QA 1362

entries without any supervision signals from the 1363

corresponding annotated training data. Several 1364

methods have been proposed to tackle this task, 1365

including those by Shwartz et al. (2020); Bosselut 1366

et al. (2021); Kim et al. (2022); Shi et al. (2023). 1367

The most effective pipeline, as suggested by Ma 1368

et al. (2021), injects commonsense knowledge into 1369

language models via fine-tuning on QA pairs syn- 1370

thesized from knowledge in CSKBs. During the 1371

fine-tuning process, the head ho and relation r of 1372

a (ho, r, t) triple from a CSKB are transformed 1373

into a question using natural language prompts, 1374

with the tail t serving as the correct answer op- 1375

tion. Distractors or negative examples are gener- 1376

ated by randomly sampling tails from triples that 1377

do not share common keywords with the head. This 1378

fine-tuning procedure enhances the model’s knowl- 1379

edge not only for QA benchmarks constructed from 1380

CSKBs but also improves its ability to answer un- 1381

seen commonsense questions in a more generalized 1382

manner. In this paper, we follow the task defini- 1383

tion, model training, and model evaluation pipeline 1384

by Ma et al. (2021) to study the impact of distilling 1385

student models from CANDLE instantiations. For 1386

baselines, we compare models trained on QA pairs 1387

synthesized from ATOMIC, ATOMIC-10X, and 1388
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Data Type Train Dev Test

Dl #event 107,384 12,117 11,503
#triple 65,386 8,403 7,408

Du #event 304,983 36,023 31,578
#triple 4,851,272 499,523 570,400

Table 7: Statistics of labeled data Dl and unlabeled data
Du in AbstractATOMIC.

AbstractATOMIC. For ATOMIC-10X, 0.9 is used1389

as the critic filtering threshold.1390

C Dataset Descriptions1391

This section covers additional details and statistics1392

of datasets and benchmarks used in downstream1393

task evaluations.1394

C.1 CSKB Conceptualization1395

In CSKB Conceptualization tasks, we use the Ab-1396

stractATOMIC (He et al., 2022a) dataset as the1397

evaluation benchmark. It is a benchmark dataset1398

built upon ATOMIC and consists of event conceptu-1399

alization data and abstract knowledge triples. The1400

event conceptualizations are based on head events1401

in ATOMIC, identified through syntactic parsing1402

and matching with rules to search for concept can-1403

didates in Probase (Wu et al., 2012) and Word-1404

Net (Miller, 1995). The abstract knowledge triples1405

connect conceptualized head events with their non-1406

abstract counterparts from ATOMIC, forming com-1407

monsense knowledge at the concept level. Human1408

annotations are used to verify the correctness of1409

some conceptualizations and their resulting abstract1410

commonsense triples. In total, 131K conceptual-1411

izations of 7K (45%) ATOMIC head events and1412

81K (1.3%) conceptualized triples are manually an-1413

notated, with a large number remaining unlabeled.1414

The data is partitioned by following ATOMIC’s1415

original split of head events. Detailed statistics are1416

shown in Table 7. In this paper, we evaluate all1417

models using the test set from the annotated subset1418

as the evaluation data. Meanwhile, we obtain CAN-1419

DLE distilled models using the training set from the1420

annotated subset to fine-tune discriminative models1421

pre-trained on CANDLE conceptualizations. Su-1422

pervised baselines are trained on the training set of1423

AbstractATOMIC, while semi-supervised baselines1424

also leverage the unlabeled data.1425

C.2 Generative Commonsense Inference1426

To evaluate COMET, we adopt the same evalua-1427

tion setting employed by Hwang et al. (2021) for1428

aNLI CSQA PIQA SIQA WG

#QA Pairs 1,532 1,221 1,838 1,954 1,267
#Options 2 5 2 3 2

Table 8: Statistics on the number of QA pairs and the
number of options for each question in benchmarks used
in the zero-shot commonsense QA task.

assessing commonsense generative models on the 1429

ATOMIC20
20 dataset’s test set. We use the entire test 1430

set, consisting of 34,689 triples across 23 different 1431

commonsense relations, to ensure the robustness of 1432

the evaluation. Additionally, we use the full train- 1433

ing set to fine-tune models that were pre-trained on 1434

various CSKBs and CANDLE instantiations to fit 1435

them into the benchmark. 1436

Recently, West et al. (2023) successfully trained 1437

a powerful commonsense inference generator using 1438

an open-format symbolic knowledge distillation 1439

framework. Once they release their data and mod- 1440

els, we will incorporate them as another baseline 1441

in our comparisons. 1442

C.3 Zero-shot Commonsense QA 1443

We follow Ma et al. (2021); Wang et al. (2023a); 1444

Shi et al. (2023) and use the validation split of 1445

five commonsense QA benchmarks: Abductive 1446

NLI (aNLI; Bhagavatula et al., 2020), Common- 1447

senseQA (CSQA; Talmor et al., 2019), Physi- 1448

calIQA (PIQA; Bisk et al., 2020), SocialIQA 1449

(SIQA; Sap et al., 2019b), and WinoGrande 1450

(WG; Sakaguchi et al., 2021). These benchmarks 1451

evaluate different aspects, including abductive 1452

reasoning, concept-level commonsense reasoning, 1453

physical commonsense understanding, emotional 1454

and social commonsense reasoning, and pronoun 1455

resolution. The validation splits are used as the of- 1456

ficial test sets may not be publicly available. Statis- 1457

tics on the number of QA pairs and the number of 1458

options per question are reported in Table 8. 1459

D Implementation Details 1460

This section provides additional implementation 1461

details in downstream task evaluations. 1462

First, we use the Huggingface3 Library (Wolf 1463

et al., 2020) to build all models. We reproduce 1464

all baselines according to implementation details 1465

described in their original papers. The reported 1466

results are consistent with their original papers if 1467

the same experiment is included. For CANDLE 1468

3https://huggingface.co/
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Task Prompt

Event. Given the event “PersonX enjoys drinking in the bar,” can “bar” be conceptualized as “entertainment venue”?
Here, conceptualized means represented by a general concept. Answer ’Yes’ or ’No’ only without any other word.

Triple.
Given the assertion: PersonX enjoys drinking in entertainment venue, as a result, PersonX feels relaxed.
entertainment venue is a general concept and represents many possible instances.
Is this assertion plausible? Answer ’Yes’ or ’No’ only without any other word.

COMET Please complete the given commonsense assertion with a few words. Don’t extend writing afterward.
PersonX hears strange noises, as a result, PersonX will

aNLI

Premise: Jim decided to be a rockstar.
Choice A: but didn’t know how to play an instrument. Jim signed up for guitar lessons.
Choice B: Jim knew he would need to have a nickname. Jim signed up for guitar lessons.
Which one is more likely to happen, given the premise? Only answer A or B without any other word.

CSQA

Question: He was at the gym trying to build muscle, what is it called that he is trying to build muscle on?
Choice A: body of animal
Choice B: arm
Choice C: bodybuilder
Choice D: body of dog
Choice E: human body
Which choice is correct? Only answer A or B or C or D or E without any other word.

PIQA

Goal: To remove an avocado from the shell
Choice A: cut the avocado lengthwise, remove the pit, and scoop with a spoon
Choice B: cut the avocado width wise, remove the pit, and scoop with a spoon
Which choice can achieve the goal? Only answer A or B without any other word.

SIQA

Question: Robin went to the polls and posted her ballot for the candidate she wanted.
As a result, Robin wanted to:
Choice A: bomb the candidate
Choice B: attend a rally
Choice C: go home.
Which choice is correct? Only answer A or B or C without any other word.

WG

Question: Jessica enjoyed a simple, basic life with Betty, but
Choice A: Jessica was bored having a quiet existence.
Choice B: Betty was bored having a quiet existence.
Which choice is correct? Only answer A or B without any other word.

Table 9: Prompts used for evaluating LLM baselines across various tasks in a zero-shot scenario. Event. stands for
event conceptualization discrimination and Triple. stands for triple conceptualization discrimination.

distilled models, please refer to the subsections1469

(Appendix D.1, D.2, D.3) below.1470

For methods involving LLMs, we use their1471

instruction fine-tuned versions as the backbone1472

for the baselines. For LLAMA2, the accessed ver-1473

sion is meta-llama/Llama-2-7b/13b-chat-hf.1474

For Mistral, we use mistralai/Mistral1475

-7B-Instruct-v0.1. This remains consistent1476

whether we prompt them directly or fine-tune1477

them for downstream tasks, as we have observed1478

that the instruction-finetuned versions generally1479

result in better performance. For ChatGPT,1480

we access it through Microsoft Azure APIs4.1481

The code of the accessed version for ChatGPT1482

is gpt-35-turbo-20230515, and for GPT4 is1483

gpt-4-20230515. The maximum generation1484

length is set to 100 tokens for all tasks. For1485

fine-tuning LLAMA2 and Mistral, we use the open1486

4https://azure.microsoft.com/en-us/products/ai-services/

code base of LLaMa-Factory5. Please refer to the 1487

subsections below for hyperparameter settings. 1488

All experiments are conducted on sixteen 1489

NVIDIA-V100 (32G) GPUs. 1490

For baselines involving prompting LLMs, we fol- 1491

low the approach done by Robinson and Wingate 1492

(2023) and Chan et al. (2023), where each task 1493

is formulated in either a generative format or as 1494

multiple-choice QA. Table 9 shows the prompts 1495

used in zero-shot prompting scenarios. To incorpo- 1496

rate five-shot exemplars, we include five randomly 1497

selected examples from the training set of each 1498

benchmark. These examples are merged into the 1499

prompt using the same format as the question, with 1500

the addition of including the answer at the end. For 1501

chain-of-thought reasoning, we prompt LLM in a 1502

two-step inference process. In the first step, we 1503

delve deeper into the question by requesting an 1504

5https://github.com/hiyouga/LLaMA-Factory
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intermediate-step rationale. Then, in the second1505

step, we seek an answer based on the question and1506

the previous step’s response by asking LLM to an-1507

swer “Yes or No only” or select the correct option1508

from a set of answers directly.1509

D.1 CSKB Conceptualization1510

For RoBERTa and DeBERTa-v3, we use a learning1511

rate of 5e-6 and a batch size of 64. To optimize the1512

models, we use an AdamW optimizer (Loshchilov1513

and Hutter, 2019) and evaluate the model’s perfor-1514

mance every 25 steps. The maximum sequence1515

lengths for the tokenizers are set to 25 and 351516

for the two discriminative subtasks, respectively.1517

Early stopping is used where the best checkpoint1518

is selected when the largest validation accuracy is1519

achieved. The models are trained on CANDLE1520

distillation for one epoch and fine-tuned on the1521

training set of AbstractATOMIC for one epoch.1522

For LLMs, such as LLAMA2 and Mistral, we1523

use LoRA for fine-tuning, and the LoRA rank and1524

α are set to 64 and 64. We use an Adam (Kingma1525

and Ba, 2015) optimizer with a learning rate of 5e-1526

6 and a batch size of 64. The models are fine-tuned1527

for two epochs, and the checkpoint with the highest1528

validation set accuracy is selected. All experiments1529

are repeated three times using different random1530

seeds, and the average performances are reported.1531

For VERA, we follow the exact same imple-1532

mentation6 as released by Liu et al. (2023). To1533

transform our binary classification subtasks into1534

declarative formats, we begin by converting each1535

piece of data into a declarative sentence using pre-1536

defined natural language templates. Next, we cre-1537

ate a corresponding negative statement by simply1538

incorporating the word “not” into the correct sen-1539

tence. For instance, a pair of statements is: “Per-1540

sonX enjoys drinking at the bar. Bar is a social1541

gathering place.” and “PersonX enjoys drinking at1542

the bar. Bar is not a social gathering place.” The ac-1543

cessed backbone model is liujch1998/vera, and1544

all other hyperparameter settings follow the default1545

implementation. The model is trained on CANDLE1546

distillation for one epoch and then fine-tuned on1547

AbstractATOMIC for another.1548

D.2 Generative Commonsense Inference1549

For COMET, we implement the open-sourced code1550

by Hwang et al. (2021) as our base to fine-tune1551

the GPT2 model. The model is first pre-trained on1552

6https://github.com/liujch1998/vera

CANDLE instantiations for one epoch, followed by 1553

fine-tuning on ATOMIC20
20 for another epoch. An 1554

Adam (Kingma and Ba, 2015) optimizer is used 1555

with a learning rate of 1e-5 and a batch size of 32. 1556

A linear scheduler is used to decrease the learning 1557

rate gradually. 1558

For LLAMA2-7B, we fine-tune it with the Deep- 1559

Speed framework (Aminabadi et al., 2022) by using 1560

FP16 as the precision. We optimize the model with 1561

an Adam (Kingma and Ba, 2015) optimizer with 1562

a learning rate of 1e-4 and a batch size of 64. The 1563

maximum length for the input and generated sen- 1564

tence concatenation is 500. We warm up the model 1565

with 3000 steps and evaluate the model every 1000 1566

steps. A linear scheduler is also used. The LoRA 1567

rank is set to 8, and the α is set to 32. 1568

In Table 10, we present supplementary automatic 1569

evaluation results, including models that have been 1570

pre-trained solely on CSKBs and CANDLE instan- 1571

tiations without subsequent fine-tuning. 1572

D.3 Zero-shot Commonsense QA 1573

For the task of zero-shot commonsense QA, we 1574

adopt the code base provided by Wang et al. 1575

(2023a)7 and Liu et al. (2023)8 to train two CAN- 1576

DLE distilled models. All hyperparameters and op- 1577

timization strategies are kept unchanged from their 1578

original implementations as default settings. The 1579

models are trained for two epochs using QA pairs 1580

obtained from augmented-ATOMIC, including aug- 1581

mentations from ATOMIC-10X, AbstractATOMIC, 1582

and CANDLE instantiations. 1583

Meanwhile, we present a comprehensive table 1584

presenting the results of all current methodologies 1585

for the task of zero-shot commonsense QA in Ta- 1586

ble 12. Notably, our CANDLE distilled models 1587

continue to exhibit strong performance compared 1588

to other models pre-trained on QA pairs sourced 1589

from multiple CSKBs. This serves as compelling 1590

evidence for the efficacy of CANDLE. 1591

E Annotation Details 1592

This paper utilizes expert annotations to assess the 1593

quality of distilled conceptualizations and instanti- 1594

ations, as well as evaluate the generations of differ- 1595

ent models for the COMET downstream task. Four 1596

graduate students with ample experience in natural 1597

language processing research and expertise in com- 1598

monsense reasoning are recruited as expert annota- 1599

7https://github.com/HKUST-KnowComp/CAR
8https://github.com/liujch1998/vera
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Training Data Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L CIDEr BERTScore

Backbone: GPT2-XL (Radford et al., 2019) 1.5B
Zero-shot 4.350 1.598 0.732 0.293 5.702 5.030 0.792 37.11
ATOMIC 32.23 19.06 13.27 10.28 17.63 25.50 20.15 58.39

+ Finetune 45.72 29.18 21.12 16.15 29.97 49.69 64.61 76.09
ATOMIC20

20 42.15 25.77 17.82 13.14 29.82 47.61 63.70 70.39
ATOMIC-10X 33.69 18.82 11.71 7.910 18.78 25.69 19.29 61.47

+ Finetune 45.38 29.20 21.09 16.15 30.09 49.86 65.02 75.89
AbstractATOMIC 29.46 17.16 11.89 9.019 17.42 24.30 19.95 57.83

+ Finetune 45.30 29.08 21.00 16.06 29.98 48.61 63.98 75.56
CANDLE Distilled 26.91 16.44 12.31 10.28 17.66 23.66 21.36 57.15

+ Finetune 50.71 33.85 25.55 20.43 32.45 51.91 69.68 76.86

Backbone: ChatGPT (OpenAI, 2022) (openai/gpt-3.5-turbo)
Zero-shot 11.82 4.258 1.891 0.926 13.87 13.73 4.350 49.28
Five-shot 26.32 12.50 7.160 4.415 18.60 24.65 8.313 58.69
Chain-of-thought 9.906 3.568 1.556 0.736 11.85 11.02 2.905 46.17

Backbone: LLAMA2 (Touvron et al., 2023) 7B
Zero-shot 18.26 7.453 3.594 1.945 15.90 20.28 8.872 48.23
Five-shot 31.22 16.87 9.767 5.989 19.74 27.67 17.83 58.41
ATOMIC 29.94 16.44 10.03 6.631 19.02 25.75 18.71 59.68

+ Finetune 42.04 23.01 14.10 9.125 27.80 42.90 53.17 71.52
ATOMIC20

20 41.07 22.46 13.62 8.619 27.74 42.42 53.28 71.77
ATOMIC-10X 33.06 17.65 9.986 6.078 19.22 25.32 17.80 61.25

+ Finetune 42.07 23.08 14.14 9.198 28.14 42.75 53.69 71.93
AbstractATOMIC 26.08 13.27 7.799 5.018 15.08 21.20 14.78 56.83

+ Finetune 42.78 23.64 14.58 9.471 27.74 42.55 53.12 71.51
CANDLE Distilled 28.93 15.56 9.468 6.140 18.60 25.37 17.20 60.27

+ Finetune 43.86 24.40 15.12 10.00 28.36 43.86 54.25 72.94

Table 10: Full performances (%) of the commonsense inference modeling task (COMET) on the full test set of
ATOMIC20

20 (Hwang et al., 2021). The best performances using each backbone are underlined, and the best among
all backbones are bold-faced. Finetune refers to fine-tuning back on the training set of ATOMIC20

20.
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Figure 4: Ablation results examining the impact of dif-
ferent threshold values in CANDLE’s critic filtering.

tors to carry out the annotations. Their participation1600

in the annotation process is voluntary and unpaid,1601

in accordance with local laws, and is considered1602

a contribution to this paper. Detailed instructions1603

are provided to the annotators for each task, en-1604

suring that they understand the requirements thor-1605

oughly. For CANDLE distillation evaluation, the1606

annotators are asked to determine (1) the correct-1607

ness of the conceptualizations and instantiations1608

and (2) the plausibility of their formed triples. For1609

COMET generation evaluation, they are asked to1610

determine the plausibility of the generated triples. 1611

For each question, we also highlight the part to be 1612

considered by the annotators for their convenience. 1613

The annotation process is conducted independently, 1614

without any internal discussions among the annota- 1615

tors regarding the results. For each task, two anno- 1616

tators independently vote for each triple, and only 1617

when both annotators provide a positive vote will 1618

the triple be considered accepted or plausible. To 1619

prevent bias and ensure impartial results for CAN- 1620

DLE, the task input is randomly shuffled during the 1621

annotation process. As a result, the expert anno- 1622

tators achieve a pairwise agreement (IAA; Landis 1623

and Koch, 1977) of 0.80 and a Fleiss-kappa (Fleiss, 1624

1971) of 0.61, indicating a remarkably high level 1625

of internal agreement. 1626

F Ablation Study 1627

In this section, we examine the impact of our 1628

critic filters on the ablation of CAN-DLE. Specif- 1629

ically, we investigate the effect of different lev- 1630

els of critic threshold or completely abandoning 1631

critic filtering on downstream tasks. We conduct 1632

four experiments with different settings, denoted 1633

20



Original Concept./Instant. Critic

PersonX swims in the lake,
as a result, PersonX feels,
tired.

PersonX swims in freshwater, as a result, PersonX feels, tired. 0.97
PersonX swims in the sea, as a result, PersonX feels, tired. 0.87

PersonX swims, as a result, PersonX feels, tired. 0.89
PersonX swims every week, as a result, PersonX feels, tired. 0.81

PersonX is sitting in class,
as a result, PersonX will,
learns something.

PersonX is sitting in instructional period, as a result, PersonX will, learns something. 0.54
PersonX is sitting in a math class, as a result, PersonX will, learns something. 0.75

PersonX study, as a result, PersonX will, learns something. 0.78
PersonX learns how to do the exam, as a result, PersonX will, learns something. 0.81

PersonX buys PersonY a gift,
as a result, PersonY feels,
joyful.

remembrance, as a result, PersonY feels, joyful. 0.19
PersonX reminisce, as a result, PersonY feels, joyful. 0.27

PersonX shopping, as a result, PersonY feels, joyful. 0.61
PersonX buys a new toy for PersonY, as a result, PersonY feels, joyful. 0.90

PersonX always fought,
as a result, PersonY feels,
angry.

PersonX always violent behavior, as a result, PersonY feels, angry. 0.98
PersonX always punch others hardly, as a result, PersonY feels, angry. 0.91

combative personality, as a result, PersonY feels, angry. 0.98
PersonX PersonX likes to join a fight, as a result, PersonY feels, angry. 0.85

PersonX gets a new bike,
as a result, PersonX wants,
to ride it.

PersonX gets a transportation tool, as a result, PersonX wants, to ride it. 0.92
PersonX gets a motor, as a result, PersonX wants, to ride it. 0.98

bike possession, as a result, PersonX wants, to ride it. 0.93
PersonX has a nice bicycle, as a result, PersonX wants, to ride it. 0.89

PersonX spends time with PersonY,
PersonX is seen as,
social.

PersonX spends love-building period with PersonY, PersonX is seen as, social. 0.05
PersonX spends time in love with PersonY, PersonX is seen as, social. 0.37

social activity, PersonX is seen as, social. 0.64
PersonX enjoys going to parties, PersonX is seen as, social. 0.73

PersonX hears sirens,
as a result, PersonX will,
make way to the siren.

emergency response, as a result, PersonX will, make way to the siren. 0.37
PersonX sees an ambulance coming, as a result, PersonX will, make way to the siren. 0.74

PersonX hears loud noise, as a result, PersonX will, make way to the siren. 0.67
PersonX hears a fire truck beeping, as a result, PersonX will, make way to the siren. 0.77

Table 11: Case studies of conceptualizations and instantiations distilled from CANDLE in their original context.
Original stands for the original triple sampled from ATOMIC. In the Concept./Instant. column, each box contains
an abstract commonsense triple that includes conceptualization, followed by an instantiated commonsense triple
with instantiation. We demonstrate two ways to conceptualize each original triple from ATOMIC.

as t ∈ {0, 0.5, 0.7, 0.9}, where t = 0 corresponds1634

to abandoning critic filtering and using all distilled1635

knowledge as complementary training data. For1636

detailed statistics, please refer to Table 1. For each1637

value of t, we select the distilled knowledge with a1638

critic score higher than t and utilize it as comple-1639

mentary training data to train student models for1640

the three downstream tasks. We employ the same1641

training strategies described in the main body of1642

the paper. In the case of CSKB conceptualization1643

and zero-shot commonsense QA tasks, we utilize1644

DeBERTa-v3-large as the backbone model, with1645

accuracy as the evaluation metric. For COMET,1646

we use GPT2 and evaluate using the BERTScore1647

as the evaluation metric. The results are visual-1648

ized in Figure 4. Our analysis reveals a consistent1649

trend where higher threshold values yield improved1650

performance, indicating the reliability of our critic1651

filter. However, it is worth noting that setting the1652

threshold above 0.9 may potentially lead to even1653

better performance. Nevertheless, such a trade-off1654

comes with a downside: it reduces the amount of 1655

usable knowledge in each distillation round, which 1656

can impede the iterative process. The reason for 1657

this is that when the number of distilled conceptual- 1658

izations and instantiations decreases significantly in 1659

each round, CANDLE is unable to incorporate new 1660

instantiated data for future distillation iterations. 1661

As a result, the “convergence” of those high-critic 1662

data occurs prematurely in CANDLE. 1663

G Case Study 1664

We present some examples in Table 11 to show 1665

conceptualizations and instantiations generated by 1666

CANDLE, along with their corresponding critic 1667

values assigned by our critic-filtering discrimi- 1668

nators. It can be observed that both ChatGPT 1669

and LLAMA2 exhibit the ability to generate high- 1670

quality knowledge based on given instructions. Fur- 1671

thermore, they can introduce novel conceptualiza- 1672

tions and events during the distillation chain, effec- 1673

tively meeting our expectations of CANDLE. 1674
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Model/Method CSKB a-NLI CSQA PIQA SIQA WG Avg.

Pre-trained Language Models
Random Vote - 50.0 20.0 50.0 33.3 50.0 40.7
Majority Vote - 50.8 20.9 50.5 33.6 50.4 41.2
GPT2-L (Radford et al., 2019) - 56.5 41.4 68.9 44.6 53.2 52.9
RoBERTa-L (Liu et al., 2019) - 65.5 45.0 67.6 47.3 57.5 56.6
DeBERTa-v3-L (He et al., 2023) - 59.9 25.4 44.8 47.8 50.3 45.6
Self-talk (Shwartz et al., 2020) - - 32.4 70.2 46.2 54.7 -
SMLM (Banerjee and Baral, 2020) * 65.3 38.8 - 48.5 - -
COMET-DynGen (Bosselut et al., 2021) ATOMIC - - - 50.1 - -
MICO (Su et al., 2022) ATOMIC - 44.2 - 56.0 - -
STL-PLM (Kim et al., 2022) ATOMIC 71.6 64.0 72.2 63.2 60.5 66.3
MTL (Kim et al., 2022) CWWV 69.6 67.3 72.5 52.0 57.2 63.7
MTL (Kim et al., 2022) CSKG 69.8 67.1 72.0 61.9 59.3 66.0
STL-Adapter (Kim et al., 2022) ATOMIC 71.3 66.5 71.1 64.4 60.3 66.7
STL-Adapter (Kim et al., 2022) CSKG 71.5 66.7 72.1 64.7 59.0 66.8
RoBERTa-L (MR) (Ma et al., 2021) ATM10X 70.8 64.2 71.7 61.0 60.7 65.7
RoBERTa-L (MR) (Ma et al., 2021) ATOMIC 70.8 64.2 72.1 63.1 59.2 65.9
RoBERTa-L (MR) (Ma et al., 2021) CWWV 70.0 67.9 72.0 54.8 59.4 64.8
RoBERTa-L (MR) (Ma et al., 2021) CSKG 70.5 67.4 72.4 63.2 60.9 66.8
DeBERTa-v3-L (MR) (Ma et al., 2021) ATM10X 75.1 71.6 79.0 59.7 71.7 71.4
DeBERTa-v3-L (MR) (Ma et al., 2021) ATOMIC 76.0 67.0 78.0 62.1 76.0 71.8
ZS-Fusion (Kim et al., 2022) CWWV 69.6 67.6 73.1 53.7 59.5 64.7
ZS-Fusion (Kim et al., 2022) CSKG 72.4 68.3 73.0 66.7 60.9 68.3
MKIF (Guan et al., 2023) CSKG 72.5 71.0 73.1 - 61.0 -
CAR-RoBERTa-L (Wang et al., 2023a) ATOMIC 72.3 64.8 73.2 64.8 61.3 67.3
CAR-RoBERTa-L (Wang et al., 2023a) AbsATM 72.7 66.3 73.2 64.0 62.0 67.6
CAR-DeBERTa-v3-L (Wang et al., 2023a) ATOMIC 78.9 67.2 78.6 63.8 78.1 73.3
CAR-DeBERTa-v3-L (Wang et al., 2023a) AbsATM 79.6 69.3 78.6 64.0 78.2 73.9
DeBERTa-v3-L (CANDLE Distilled) CANDLE 81.2↑1.6 69.9↑0.6 80.3↑1.7 65.9↑1.9 78.3↑0.1 74.9↑1.0

Large Language Models
GPT-3.5 (text-davinci-003) - 61.8 68.9 67.8 68.0 60.7 65.4
ChatGPT (gpt-3.5-turbo) - 69.3 74.5 75.1 69.5 62.8 70.2

+ Chain-of-thought - 70.5 75.5 79.2 70.7 63.6 71.9
+ Self-consistent chain-of-thought - 73.2 75.7 81.7 69.7 64.1 72.9

GPT-4 (gpt-4) - 75.0 43.0 73.0 57.0 77.0 65.0
LLAMA2 (7B; Touvron et al., 2023) - 57.5 57.8 78.8 48.3 69.2 62.3
LLAMA2 (13B; Touvron et al., 2023) - 55.9 67.3 80.2 50.3 72.8 65.3
Mistral-v0.1 (7B; Jiang et al., 2023) - 51.0 59.6 83.0 42.9 75.3 62.4
VERA-T5-xxl (Liu et al., 2023) ATOMIC 71.2 61.7 76.4 57.7 67.5 66.9
VERA-T5-xxl (Liu et al., 2023) ATM10X 70.3 59.5 75.1 58.2 67.2 66.1
VERA-T5-xxl (Liu et al., 2023) AbsATM 73.2 63.0 77.2 58.1 68.1 68.0
VERA-T5-xxl (CANDLE Distilled) CANDLE 73.8↑0.6 64.7↑1.7 77.6↑0.4 59.4↑1.2 71.3↑3.2 69.4↑1.4

Supervised Learning & Human Performance
RoBERTa-L (Supervised) - 85.6 78.5 79.2 76.6 79.3 79.8
DeBERTa-v3-L (Supervised) - 89.0 82.1 84.5 80.1 84.1 84.0
VERA-T5 (Multitask Supervised) - 83.9 77.8 88.5 80.1 92.4 84.5
Human Performance - 91.4 88.9 94.9 86.9 94.1 91.2

Table 12: Full zero-shot evaluation results (Accuracy%) on five commonsense question answering benchmarks. The
best results are bold-faced, and the second-best ones are underlined. ↑ signifies the improvement CANDLE-distilled
models achieve compared to the best baseline with the same backbone model. ATM10X stands for ATOMIC-
10X (West et al., 2022) and AbsATM stands for AbstractATOMIC (He et al., 2022a). All scores are retrieved from
their original papers. For the GPT-X series, some results are retrieved from West et al. (2023).
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