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Abstract

Machine unlearning is a promising approach to improve LLM safety
by removing unwanted knowledge from a trained model. However,
prevailing gradient-based unlearning methods suffer from issues such as
high computational costs, hyperparameter instability, poor sequential un-
learning capability, vulnerability to relearning attacks, low data efficiency,
and lack of interpretability. While Sparse Autoencoders are well-suited
to improve these aspects by enabling targeted activation-based unlearning,
prior approaches underperform gradient-based methods. This work
demonstrates that, contrary to these earlier findings, SAEs can significantly
improve unlearning when employed dynamically. We introduce Dynamic
SAE Guardrails (DSG), a novel method for precision unlearning that
leverages principled feature selection and a dynamic classifier. Our
experiments show DSG substantially outperforms leading unlearning
methods, achieving superior forget-utility trade-offs. DSG addresses
key drawbacks of gradient-based approaches for unlearning—offering
enhanced computational efficiency and stability, robust performance in
sequential unlearning, stronger resistance to relearning attacks, better data
efficiency including zero-shot settings, and more interpretable unlearning.1

1 Introduction

Machine unlearning, the process of removing specific information from trained LLMs, is
a promising tool for applications in safety, privacy, and model maintenance (Liu et al.,
2025). However, predominant gradient-based unlearning methods suffer from significant
limitations (Barez et al., 2025). Existing methods struggle to precisely balance forgetting
target data with preserving general utility (Thaker et al., 2025), incur high computational
costs (Cha et al., 2024), exhibit hyperparameter instability (Bu et al., 2024), degrade quickly
under sequential unlearning requests (Shi et al., 2024; Gao et al., 2025), are vulnerable to
relearning attacks (Hu et al., 2025; Deeb & Roger, 2024; Łucki et al., 2024), lack data effi-
ciency (Gao et al., 2024), and offer little interpretability (Xu et al., 2024). While interventions
using Sparse Autoencoders (SAEs) (Bricken et al., 2023) offer a potential path towards more
targeted, activation-based unlearning, existing SAE approaches have typically underper-
formed gradient-based approaches due to imprecise interventions that cause unintended
side effects (Farrell et al., 2024).

This paper demonstrates that, contrary to previous findings, SAEs can significantly improve
unlearning when employed dynamically. We introduce Dynamic SAE Guardrails (DSG),
a novel method that leverages SAEs for precise, efficient, and interpretable unlearning
in LLMs. DSG integrates Fisher Information-based feature selection to identify features
causally linked to the forget data, with a dynamic, input-dependent classifier that triggers
targeted feature clamping only when necessary. This conditional intervention acts as a
guardrail, preventing the model from accessing specific knowledge pathways for relevant

∗Work performed at Leonardo Labs, now at Prometeia S.p.A.
1Code is available at https://github.com/aashiqmuhamed/DynamicSAEGuardrails
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inputs while leaving general capabilities intact. Through extensive experiments on standard
benchmarks, we show that DSG not only achieves a superior balance between forgetting
and utility preservation compared to leading gradient-based and static SAE methods, but
also directly addresses their core limitations. Our main contributions are:

1. We introduce DSG, a new activation-based unlearning method featuring principled
SAE feature selection and a dynamic classifier for precise, conditional intervention.

2. We demonstrate empirically that DSG achieves a superior balance between forget-
ting and utility preservation compared to leading gradient-based and SAE-based
unlearning approaches on multiple benchmarks.

3. We show that DSG provides substantial benefits over gradient-based unlearning
such as greater hyperparameter stability, improved computational efficiency,
and sequential unlearning capability, enhanced resistance against relearning
attacks, enhanced data efficiency even in the zero-shot setting and interpretable
unlearning.

2 Background and Related Work

Unlearning in Large Language Models. Machine unlearning aims to modify a trained
target model M(D) to behave as if specific data, the forget set D f orget, had never been
part of its training data D (Bourtoule et al., 2021; Cao & Yang, 2015). The resulting model,
Munlearn, should ideally be indistinguishable from a model trained only on the retain
set Dretain = D \ D f orget. As retraining LLMs from scratch is computationally prohibitive,
research focuses on approximate unlearning (Liu et al., 2025). These methods face the
core challenge of balancing knowledge removal (forget quality) and maintaining general
capabilities (utility preservation) (Shi et al., 2024; Maini et al., 2024).

The dominant approach for approximate unlearning involves gradient-based optimization
(Liu et al., 2024). Methods like Gradient Ascent (GA) (Jang et al., 2023), Gradient Difference
(GradDiff) (Liu et al., 2022), Negative Preference Optimization (NPO) (Zhang et al., 2024),
and RMU (Li et al., 2024) finetune model weights to reduce the influence of D f orget, often us-
ing regularization (e.g., KL divergence) to protect utility (Maini et al., 2024; Yao et al., 2024).
However, these gradient-based techniques frequently suffer from significant limitations:
high computational cost (requiring backward passes), instability under hyperparameter tun-
ing, degraded performance under sequential unlearning requests (Gao et al., 2024), vulnera-
bility to relearning attacks (Hu et al., 2025), poor data efficiency, and a lack of interpretabil-
ity (Barez et al., 2025). These widespread challenges motivate the exploration of alternative
unlearning paradigms, such as the activation-based interventions explored in this work.

Sparse Autoencoders (SAEs). Modern DNNs operate in a regime of superposition, where
multiple features or capabilities are encoded along the same dimensions of hidden activa-
tions (Elhage et al., 2022). SAEs provide an unsupervised method for disentangling these
superposed representations into interpretable features (Bricken et al., 2023; Cunningham
et al., 2023). Given activations h ∈ Rdmodel from a specific layer or component of an LLM, an
SAE decomposes and reconstructs these activations using encoder and decoder functions:
f (h) := σ(Wench + benc) and ĥ( f ) := Wdec f + bdec. In other words, SAEs express model
activations as a sparse linear combination of interpretable feature vectors: h = ĥ + ε(h) =
∑dSAE

i=1 fi(h)vi + b + ε(h) where fi(h) ∈ R are scalar feature activations, vi ∈ Rdmodel are unit
vector feature directions, b ∈ Rdmodel is a bias term, and ε(h) ∈ Rdmodel is the SAE error term.
Wider SAEs continue to improve feature granularity and reduce the error term.

SAEs are trained on activations collected from the model processing pretraining data where
training is conducted separately for each layer or component of interest (e.g., residual
stream, attention outputs) using an objective that minimizes reconstruction loss while en-
forcing sparsity: L = ∥h − ĥ( f (h))∥2

2 + λ∥ f (h)∥0. Here λ is a sparsity penalty coefficient
encouraging most feature activations to be zero for any given input. In this work, we use
JumpReLU SAEs (Rajamanoharan et al., 2024), which enforce sparsity using a shifted Heav-
iside step function. The interpretability of SAE features stems from their sparse activation
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pattern—because features are only active for a small fraction of inputs, they must capture
meaningful patterns to be useful for reconstruction. The cost of training SAEs is amor-
tized across multiple downstream applications such as identifying and removing spurious
correlations in models (Marks et al., 2024) and steering behavior (O’Brien et al., 2024).

Farrell et al. (2024) developed an early approach using SAEs for unlearning by identifying
features that were frequently active on D f orget and applying a static intervention—clamping
these identified features when active at a token irrespective of overall context. However, this
produced substantial side-effects on general model utility and ultimately underperformed
gradient-based methods like RMU. In this work, we show that SAE unlearning can be
effective via a context-dependent intervention strategy rather than simple static clamping.

Further background details are provided in Appendix A.

3 Dynamic SAE Guardrails (DSG)

Figure 1: An illustration of DSG

DSG (Figure 1, Algorithm 1) is a targeted un-
learning method for LLMs that leverages the in-
terpretability of SAEs and combines: (1) a causal
framing that motivates feature selection, (2) a
theoretically justified feature importance scoring
based on Fisher Information (FI), (3) a dynamic,
input-dependent classification rule based on a
statistically optimal threshold, and (4) a targeted
clamping intervention to remove the influence
of selected features.

3.1 Causal Framework and Problem Setup

We frame unlearning through a causal perspective where Dforget and Dretain influence
model representations E and outputs Y through multiple pathways (Shen et al., 2024).
These include representation-mediated pathways (D → E → Y), potential direct influence
(D → Y), and intertwined knowledge (Dforget ↔ Dretain) where conceptual overlap exists
between the datasets. SAE features f j derived from E serve as interpretable mediators (Pearl,
2009) of information flow through these causal pathways. From this perspective, unlearning
involves blocking pathways from Dforget to Y while preserving the pathways from Dretain to
Y. DSG implements this causal intervention do( f j = −c) on forget features identified by
analyzing SAE activation patterns across both datasets.

3.2 Feature Selection: Identifying Causal Mediators via Fisher Information

To identify which SAE features, Fforget mediate the causal influence of Dforget, we establish
two key theoretical connections: first between FI and feature activation, and second between
FI and causal influence. We then describe our percentile based feature selection.

Theorem 1 (Fisher Information Approximation). For an SAE with small reconstruction
error and input h, the expected squared gradient of reconstruction loss with respect to fea-
ture j’s decoder weights θj,· is proportional to the second moment of that feature’s activation:
Eh[∥∇θi,·ℓ(h)

∥∥2
] ≈ ϵ2Eh[ f j(h)2] where w.h.p, reconstruction errors are bounded by ϵ2.

The proof of Theorem 1 is provided in Appendix B. This establishes that squared feature
activations are proportional to the Fisher Information of the corresponding decoder weights.

Theorem 2 (Fisher Information as a Proxy for Causal Feature Importance). Under standard
assumptions, Fisher Information associated with SAE features provides an approximation of their
causal influence as mediators between specific training data and model outputs. For any SAE feature
f j, the expected squared activation ED[ f j(h)2] on dataset D is proportional to the causal influence of
that feature as a mediator of information from D to model outputs.
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Proof of Theorem 2 is in Appendix C. Under these assumptions, a feature with large expected
squared activation on Dforget contributes significantly to the model’s FI with respect to that
data. This suggests that intervening on that feature (e.g., clamping its activation) would sub-
stantially affect the model’s output distribution when processing inputs similar to those in
Dforget. Squared activation serves as a computationally tractable proxy for causal influence.

Importance Scores. DSG obtains token-level SAE activations from each sequence in both
Dforget and Dretain, squares them, and aggregates the results into matrices Aforget ∈ RnF×dSAE

and Aretain ∈ RnR×dSAE (nF and nR are the total numbers of tokens in the respective datasets).
For each token t in sequence x, we have the activation f j(hx,t) of feature j on the hidden
state hx,t. Each entry of the activation matrices is thus Aforget[i, j] ≈

[
f j(hx,t)

]2 for a token
t in sequence x ∈ Dforget (and similarly for Aretain). From these, we compute the aver-
age squared activation per feature as forget score(j) = 1/nF ∑x∈Dforget ∑

|x|
t=1

[
f j(hx,t)

]2 and
retain score(j) = 1/nR ∑x∈Dretain ∑

|x|
t=1

[
f j(hx,t)

]2, and define the relative importance by
imp ratio(j) = forget score(j)

max{retain score(j),ε} , with ε > 0 to avoid division by zero. By Theorem 2 this
ratio represents the relative causal influence of feature j.

Algorithm 1 Dynamic SAE Guardrails (DSG)

Require: LLM with SAE features { f j}; datasets Dforget,Dretain; clamp strength c; percentiles
(pratio, pdyn); feature count nfeats
Feature Selection:

Compute feature importance scores and threshold τratio from percentiles
Identify Fforget = {j : imp ratio(j) ≥ τratio}
Sort Fforget by descending forget score(j) and select top nfeats features to form Snfeats

Dynamic Threshold Calibration:
Compute ρ(x) = 1

|x| ∑t 1[∃j ∈ Snfeats : f j(ht) > 0] for each x ∈ Dretain

Set threshold τ = Percentile({ρ(x)}x∈Dretain , pdyn)
Inference-Time Intervention:

For input sequence x, compute ρ(x) and classify as forget-relevant if ρ(x) > τ
If forget-relevant: For each token t and feature j ∈ Snfeats , set f ′j (ht) = −c
Otherwise: Preserve all feature activations

Percentile-Based Feature Selection. To select features most causally relevant to
Dforget, we employ a percentile-based approach using pratio to compute τratio as
Percentile({imp ratio(j)}dSAE

j=1 , pratio). Percentile(S, p) returns the value v such that p% of
elements in set S are less than or equal to v. For example, with pratio = 95, τratio is set so
95% of features have imp ratio(j) ≤ τratio. We define the set of forget-mediating features as
Fforget = {j : imp ratio(j) ≥ τratio}. To filter out noisy features, we sort features in Fforget by
descending forget score(j) and select the top nfeats to form the final intervention set Snfeats .

3.3 Dynamic Sequence-Level Classification and Intervention

DSG employs a dynamic input-dependent classification mechanism to minimize unintended
side-effects on content unrelated to the forget knowledge.
Definition 1 (Forget-Set Activated Token). A token xt is considered forget-set activated if at
least one feature j ∈ Snfeats has a positive activation: f j(ht) > 0.

For an input sequence x = (x1, . . . , xT) of length T, we define the statistic
ρ(x) = 1

T ∑T
t=1 1[∃ j ∈ Snfeats : f j(ht) > 0], representing the percentage of forget-set acti-

vated tokens. A high ρ(x) indicates that query x strongly relies on features we’ve identified
as causally linked to the forget knowledge.

Threshold Selection and Classification. We select a threshold τ ∈ [0, 1] based on
the distribution of ρ(x) on Dretain using τ = Percentile({ρ(x)}x∈Dretain , pdyn) which
controls the trade-off between unlearning effectiveness and performance preservation.
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Figure 2: Distribution of ρ(x) for unlearning on
WMDP-Bio. Threshold at 95th percentile (dashed
red line) separates MMLU from WMDP.

Empirically, we find ρ(x) is stochastically
larger on Dforget than on Dretain, as seen in
Figure 2, which shows the distribution for
both forget-domain queries (WMDP-Bio)
and general knowledge queries (MMLU).
τ is chosen to control the retain set’s
false-positive rate and separates forget-set
queries effectively, achieving high recall
on Dforget. On this example, DSG success-
fully transfers from retain set (WikiText)
and forget set to the test query set. We
define classifier C(x) = 1[ρ(x) > τ],
labeling inputs as either forget-relevant or
retain-relevant. The statistical optimality of
this thresholding approach follows from
Neyman-Pearson lemma:
Theorem 3 (Neyman-Pearson Optimality). If ρ(X) is stochastically larger under Dforget than
under Dretain, then among all classifiers with a false-positive rate at most α, the threshold test
C∗(x) = 1[ρ(x) > τ∗], where PrX∼Dretain [ρ(X) > τ∗] = α, maximizes the true-positive rate.
The proof appears in Appendix D and states that under the stochastic dominance assump-
tion, thresholding ρ(x) is the optimal classification approach for a given false-positive rate.

Conditional Clamping. Our intervention is conditional on the classifier C(x). When
C(x) = 1 (forget-relevant), for each token xt and feature j ∈ Snfeats , we set f ′j (ht) = −c,
where −c is a large negative constant we call clamp strength. This implements a targeted
do( f j(ht) = −c) operation, selectively severing the causal pathway only when the input query
is deemed forget-relevant. When C(x) = 0 (retain-relevant), we leave all features unchanged:
f ′j (ht) = f j(ht). This preserves the model’s original behavior for queries unrelated to the
targeted knowledge, minimizing side-effects and maintaining performance on Dretain.

The dynamic clamping in DSG contrasts with static clamping methods (Farrell et al., 2024),
which intervene based only on feature activation without sequence-level classification,
and risk inadequate coverage on Dforget or excessive side-effects on Dretain. DSG avoids
this suboptimal trade-off—we formally prove (Theorem 4, Appendix E) that for any static
approach, DSG achieves equal or greater coverage on Dforget with equivalent side-effects
on Dretain, providing a superior unlearning-utility trade-off.

4 Experiments and Results

4.1 Unlearning on WMDP

We evaluate DSG on the WMDP dataset (Li et al., 2024), which benchmarks hazardous
knowledge unlearning across multiple domains. We focus on WMDP-Bio (biosecurity) and
WMDP-Cyber (cybersecurity). For each domain, our unlearning setup uses domain-specific
Dforget—PubMed papers containing bio-weapon related content for WMDP-Bio and GitHub
repositories for WMDP-Cyber—and WikiText (Merity et al., 2016) as Dretain. We evaluate
unlearning effectiveness using the WMDP multiple-choice question test sets, which were
not exposed to models during the unlearning process.

Following SAEBench (Karvonen et al., 2025), we evaluate unlearning only on questions the
target model correctly answers across all 24 permutations of the 4 multiple-choice options.
This yields 522/1273 questions for WMDP-Bio and 275/1987 questions for WMDP-Cyber.
For evaluating model utility, we similarly filter MMLU questions that the model answers
correctly across all permutations. This yields 305 questions from history, computer science,
geography, and human aging for WMDP-Bio. For WMDP-Cyber, we use 371 MMLU
questions, replacing computer science with biology. Table 1 reports the configuration that
minimizes WMDP accuracy while maintaining at least 99% of the target model MMLU
accuracy along with with MT-Bench scores that measure general fluency.
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Figure 3: Unlearning performance on WMDP-Bio (left) and WMDP-Cyber (right). Higher MMLU
accuracy and lower WMDP accuracy is better. Clamp strengths (c) used for DSG points are shown as
annotations. DSG Pareto-dominates the top four baseline methods (RMU, SCRUB, Farrell et al., SSD).

Method WMDP Bio (↓) MMLU (↑) MT (↑)
HS Hist C. CS HS Geo H. Aging All

Target M 100.00 100.00 100.00 100.00 100.00 100.00 7.36

GA 99.44 98.18 100.00 100.00 100.00 99.35 7.44
NPO 97.95 99.99 88.88 100.00 98.82 99.35 7.29
SSD 99.44 100.00 100.00 100.00 98.82 99.68 7.24
SCRUB 94.97 99.09 100.00 100.00 98.82 99.35 6.09
Farrell et al. 59.22 100.00 100.00 100.00 96.47 99.03 7.33
RMU 50.00 99.08 100.00 100.00 98.81 99.47 7.21

DSG (Ours) 29.64 100.00 100.00 100.00 97.62 99.34 7.78

Table 1: Unlearning performance on WMDP-Bio. All represents the average MMLU score. MT-Bench
scores show 0.16 variance across 5 runs. DSG shows superior unlearning effectiveness compared to
baselines while maintaining high MMLU performance.

Experimental Setup. We implement DSG using gemma-2-2b-it model with
gemma-scope-2b-pt-res SAE (width 16k) (Lieberum et al., 2024) applied to layer 3
at ℓ0 142. We use Pdyn = 95 for both domains, and Pratio = 95 for WMDP-Bio and
Pratio = 90 for WMDP-Cyber. We compare DSG against several baselines across a broad
hyperparameter sweep: GA (Jang et al., 2023), NPO (Zhang et al., 2024), SSD (Foster et al.,
2024), SCRUB (Kurmanji et al., 2023),Farrell et al. (2024) and RMU (Li et al., 2024). Complete
hyperparameter details are provided in Appendix G.

Results. As shown in Table 1, DSG significantly outperforms all baselines on the WMDP-
Bio unlearning task, reducing accuracy to 29.64% compared to the next best method RMU
at 50.00%. It maintains high MMLU performance (99.34% average) and achieves the highest
MT-Bench score (7.78), showing superior preservation of general model capabilities. The
results on WMDP-Cyber (Appendix G.2) reinforce these findings. Figure 3 provides a more
comprehensive view of the unlearning-utility trade-off landscape, plotting all configurations
with MMLU accuracy above 95%. DSG Pareto-dominates all baseline methods: for any level
of utility preservation (MMLU accuracy), DSG achieves more effective unlearning.

This superior performance is coupled with significant practical advantages over gradient-
based methods in terms of computational efficiency and hyperparameter stability.
Gradient-based approaches often exhibit hyperparameter instability, where slight tuning
changes can drastically alter outcomes, risking poor unlearning or utility collapse. Further-
more, they require computationally costly backward passes through the LLM for optimiza-
tion. In contrast, DSG shows greater hyperparameter stability (Figure 3) and efficiency. It
requires only forward passes: one to gather feature statistics initially, and then lightweight
intervention during inference, completely avoiding expensive gradient calculations. This
combination of efficiency and stability makes DSG particularly advantageous for large
models and frequent unlearning where gradient computations impose substantial overhead.
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4.2 Unlearning on Muse

We evaluate DSG on MUSE (Shi et al., 2024) comprising two corpora: NEWS and BOOKS,
and focusing on six dimensions: verbatim memorization, knowledge memorization, privacy
leakage, utility preservation, forget set scalability, and sequential unlearning. MUSE
provides a challenging evaluation setting where forget and retain sets share substantial
domain overlap: in NEWS, both sets are drawn from the same distribution of BBC articles,
while in BOOKS, the forget set (Harry Potter books) and retain set (Harry Potter FanWiki)
contain highly related content.

C1. No Verbatim Mem. C2. No Knowledge Mem. C3. No Privacy Leak. C4. Utiltiy Preserv.
VerbMem on Dforget (↓) KnowMem on Dforget (↓) PrivLeak (∈ [−5%, 5%]) KnowMem on Dretain (↑)

NEWS
Target M 21.15 29.51 −88.16 26.78

GA 0.62 ↓ 97.1% 0.00 ↓ 100.0% -8.16 under-unlearn 0.09 ↓ 99.7%
GradDiff 2.81 ↓ 86.7% 0.71 ↓ 97.6% 93.10 over-unlearn 7.76 ↓ 71.0%
NPO 20.98 ↓ 0.8% 25.14 ↓ 14.8% -53.42 under-unlearn 29.02 ↑ 8.4%
SimNPO 21.14 ↓ 0.0% 27.70 ↓ 6.1% -89.84 under-unlearn 30.59 ↑ 14.2%
RMU 9.60 ↓ 54.6% 26.63 ↓ 9.8% 75.02 over-unlearn 26.41 ↓ 1.4%
DSG (Ours) 11.80 ↓ 44.2% 0.44 ↓ 98.5% 12.08 over-unlearn 25.65 ↓ 4.2%

BOOKS
Target M 15.80 33.90 −98.80 35.28

GA 2.61 ↓ 83.5% 0.17 ↓ 99.5% -1.58 acceptable 0.57 ↓ 98.4%
GradDiff 9.49 ↓ 39.9% 21.57 ↓ 36.4% -10.30 under-unlearn 23.66 ↓ 32.9%
NPO 14.41 ↓ 8.8% 28.21 ↓ 16.8% -97.24 under-unlearn 37.19 ↑ 5.4%
SimNPO 14.55 ↓ 7.9% 34.36 ↑ 1.4% -96.40 under-unlearn 36.62 ↑ 3.8%
RMU 14.89 ↓ 5.8% 32.59 ↓ 3.9% -97.58 under-unlearn 37.13 ↑ 5.2%
DSG (Ours) 8.73 ↓ 44.7% 1.79 ↓ 94.7% -23.18 under-unlearn 37.10 ↑ 5.2%

Table 2: Unlearning performance on MUSE. We highlight in green if the method satisfies the criterion
and red otherwise. For privacy leakage, large positive values suggest over-unlearning, while large
negative values suggest under-unlearning. DSG shows strong performance across all metrics, achiev-
ing substantial reductions in verbatim and knowledge memorization while maintaining high utility.

Experimental Setup. We create separate target models for NEWS and BOOKS by finetun-
ing gemma-2-2b-it on each corpus for 5 epochs using learning rate 10−5 and batch size 32.
For each target model, we implement DSG using gemma-scope-2b-pt-res SAE (width 16k)
applied to layer 3. For both domains, we use clamp strength 500, pratio = 95 and nfeats = 20.
We use pdyn = 90 for NEWS and pdyn = 95 for BOOKS, with the lower threshold for NEWS
enabling more effective verbatim memorization removal. For both scalability and sequential
unlearning, we use the best NEWS hyperparameters.

We compare DSG against: GA, GradDiff (Liu et al., 2022), NPO, SimNPO (Fan et al., 2024),
and RMU. Following MUSE, we train for 10 epochs using AdamW with learning rate 10−5

and batch size 32, selecting the last epoch checkpoint before utility falls below 90% of the
target model accuracy. Complete hyperparameters can be found in Appendix H.

Unlearning. Table 2 shows that DSG outperforms existing baselnes. It is effective at verba-
tim memorization removal (C1) with 44.2% reduction on NEWS and 44.7% on BOOKS. On
knowledge memorization (C2), DSG achieves near-complete removal with 98.5% reduction
on NEWS and 94.7% reduction on BOOKS, outperforming most baselines. On privacy
leakage (C3), while not within the ideal range, DSG performs better than the majority of
baselines. For utility preservation (C4), DSG maintains 95.8% of target model performance
on NEWS and achieves a 5.2% improvement on BOOKS compared to the target model.

Scalability. Figure 4(a) shows DSG is stable and robust when scaling to larger forget
sets. We evaluate performance across forget sets ranging from 0.8M to 3.3M tokens, and
DSG maintains its position in the ideal region (high retain set knowledge, low forget set
knowledge) even as the forget set size increases. In contrast, gradient-based methods
exhibit substantial degradation, with increasingly poor tradeoffs between retaining general
knowledge and forgetting targeted information.
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Figure 4: (a) Scalability: Performance across increasing forget
set sizes. (b) Sequential Unlearning: Performance across
sequential unlearning requests

Sequential Unlearning. Fig-
ure 4(b) illustrates DSG’s ef-
fectiveness across sequential
unlearning requests on four
disjoint NEWS folds. We imple-
ment two approaches: DSGall,
which cumulatively updates
feature importance scores based
on each new forget data request;
and DSGunion, which takes the
union of features selected inde-
pendently at each step and uses
this combined set to calculate
ρ(x) and threshold τ on DR. Both
approaches perform similarly
well, consistently maintaining
DSG in the ideal region where other methods rapidly degrade with each additional
unlearning operation. Gradient-based methods suffer from catastrophic forgetting during
sequential unlearning, where each update pushes the model further from its original
performance distribution. (Details in subsection H.2.)

4.3 Resistance to Relearning Attacks
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Figure 5: Relearning attack resistance across finetuning epochs. (a) DSG demonstrates superior
resistance to relearning compared to RMU. (b) Test-time DSG preserves MMLU utility better than
Train-time DSG while still providing significant protection.

We evaluate DSG’s resistance to relearning attacks in API-based threat models where
adversaries have query access but cannot directly manipulate model weights. This resistance
derives from the Superficial Alignment Hypothesis (Zhou et al., 2023), which posits that a
model’s activation geometry stabilizes during pretraining and changes minimally during
finetuning. Figure 9a confirms this empirically, showing high cosine similarity between
pre-finetuning and post-finetuning activation vectors, and activation magnitudes clustered
around 1.0. By operating on these stable activation patterns rather than weights, DSG creates
a more persistent defense. While obfuscation-based attacks have been proposed against
activation-based interventions (Bailey et al., 2024), they are less effective in API-based
black-box settings where attackers lack direct access to gradients and model representations.

Methodology. We evaluate two DSG defenses against relearning: (1) Test-time DSG, which
applies intervention only at inference time after model finetuning, and (2) Train-time DSG,
which integrates DSG during finetuning with frozen SAE parameters to filter gradients.
We test six configurations with google/gemma-2-2b-it as base model: Base, Base+Test-time
DSG, Base+Train-time DSG, Base+Train-time DSG+Test-time DSG, RMU (base model with
RMU unlearning applied), and RMU+Test-time DSG. The relearning attack consists of
finetuning each configuration on the WMDP-Bio test set for 10 epochs at learning rate 1e-5.

Results and Analysis. Figure 5(a) demonstrates clear differences in vulnerability to relearn-
ing attacks. Weight-based methods show high susceptibility, with RMU rapidly increasing

8



Published as a conference paper at COLM 2025

in WMDP-Bio accuracy when finetuned, eventually exceeding the base model’s finetuned
performance. The base model itself shows an initial performance decrease before increasing,
as the high learning rate temporarily undoes instruction tuning before relearning occurs.

Test-time DSG provides substantial protection, with RMU+Test-time DSG maintaining
near-random performance (25%) throughout training. However, Base+Test-time DSG shows
gradual vulnerability to relearning, with performance slowly increasing over finetuning
epochs. This gradual protection erosion reveals a limitation of test-time intervention alone.

Train-time DSG offers a distinct protective mechanism. Models finetuned with DSG active
show immediate reduction to random-level performance that persists through approxi-
mately six epochs before gradually recovering. This delayed recovery pattern suggests DSG
forces the model to develop entirely new processing circuits rather than simply reactivating
suppressed knowledge. Figure 9b supports this interpretation, showing significantly higher
training loss on WMDP-Bio compared to MMLU when finetuning with DSG active.

Combining both approaches (Train-time DSG+Test-time DSG) extends resistance through
epoch 7, demonstrating how these complementary mechanisms can be layered for enhanced
protection. However, these approaches involve utility trade-offs. Figure 5(b) shows that
while Base Finetuned and Base Finetuned+Test-time DSG maintain comparable MMLU
performance, Train-time DSG exhibits moderate utility decline at higher epoch counts.

DSG’s superior resistance to relearning attacks stems from its activation-based intervention
that leverages the stability of activation geometry during finetuning.

4.4 Data Efficiency and Zero-shot Interpretable Unlearning

Figure 6: Data efficiency analysis of DSG. (A) Performance across varying training data sizes compared
to RMU. (B) Zero-shot performance on WMDP-Bio (left) and WMDP-Cyber (right) using 20 features
selected via Neuropedia API with different τ thresholds (shown next to each data point).

We evaluate how DSG performs with limited forget and retain data on WMDP-Bio. Figure
6A shows DSG maintaining consistent performance when trained on 20-80% of the original
retain and forget datasets, preserving MMLU accuracy while keeping WMDP accuracy
below 40%. Only when dataset size falls below 20% does effectiveness noticeably decline,
with WMDP accuracy rising above 40%. In contrast, RMU shows inconsistent results across
different dataset sizes, indicating that gradient-based methods may be more unstable to
hyperparameter changes when data is limited.

For zero-shot evaluation, we implement DSG without any domain-specific forget or retain
data (Figure 6B), instead leveraging the interpretability of SAEs. We use Neuropedia (Lin,
2023) feature explanations to identify the forget set features by querying for concepts Biology
and Cybersecurity, selecting the top 20 relevant features (details in Appendix M). Both tasks
use the gemma-scope-2b-pt-res SAE (width 16k) at layer 3 (ℓ0 59). Since retain data is un-
available for dynamic threshold calibration, we sweep over static τ values, finding optimal
settings (τ = 60% for WMDP-Bio, τ = 20% for WMDP-Cyber). Even with features selected
purely based on their semantic descriptions and without dataset-specific tuning beyond τ,
these zero-shot DSG configurations outperform RMU and Farrell et al. (2024), demonstrating
the potential for effective unlearning guided directly by feature interpretability.

9
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4.5 Ablations

Figure 7: DSG Ablation studies (A) Static vs. dynamic clamping comparison with varying clamp
strengths [10-500] for 20 and 30 features. (B) Effect of dynamic threshold percentile (pdyn) on perfor-
mance (C) Impact of importance ratio threshold (pratio, range 75-95) for 20 and 30 features.

We evaluate each component of DSG by conducting ablation experiments on WMDP-Bio.

Dynamic Classification: Figure 7A compares DSG with dynamic classification against DSG
with static clamping from Farrell et al. (2024) While static clamping effectively removes
forget-set information at large clamp values (c > 100), it simultaneously reduces MMLU ac-
curacy because it treats all inputs identically regardless of their forget-relevance. In contrast,
our dynamic classifier only applies interventions when necessary based the statistical distri-
bution of forget-feature activations. This conditional approach maintains higher MMLU
accuracy (> 99%) while achieving comparable or better WMDP-Bio reduction.

Percentile-Based Feature Selection: DSG with static clamping leverages Fischer Information
for feature selection instead of feature sparsity in Farrell et al. (2024). As shown in Figure 7A,
across equivalent clamping strengths, this selection approach achieves 8% lower WMDP-Bio
accuracy on average while maintaining comparable MMLU performance, indicating more
precise identification of forget-relevant features.

Dynamic Threshold pdyn: Figure 7B shows the effect of pdyn on the forget-retain trade-off.
Higher percentiles (> 95) preserve more MMLU accuracy but allow more WMDP content
to pass through undetected, while lower percentiles (< 90) apply intervention more
aggressively but with increased side effects on general knowledge. The optimal range 90-95
balances these considerations, removing targeted knowledge while minimizing side effects.

Importance Ratio Threshold pratio: As shown in Figure 7C, varying pratio from 75-95
provides fine-grained control over feature selection. Higher values (95) select features
with stronger forget-retain differentiation, yielding more targeted intervention, while lower
values expand the feature set but may increase overlap with general knowledge features.
Additionally we observed that the dynamic classifier can compensate for a lower pratio
maintaining effective forget-set filtering even when feature selection is less discriminative.

Additional ablations in Appendix K show that DSG is remarkably robust to clamp strength
variations, and performs optimally with moderate feature counts. These findings highlight
DSG’s practical hyperparameter stability. Effective performance is maintained within
reliable ranges for thresholds pdyn/pratio (90-95), feature counts (10-20), alongside notable
robustness to clamp strength (100-500). Additionally, these hyperparameters transfer across
datasets, simplifying deployment compared to gradient-based methods.

5 Conclusion and Future Work

In this work, we introduced DSG, demonstrating that SAEs with dynamic classification
enable precise, activation-based unlearning that substantially outperforms gradient-based
methods across multiple benchmarks. While our evaluation focuses on Gemma-2-2B where
high-quality SAEs are available, extending DSG to larger models and diverse architec-
tural families remains an important avenue for future work, as does investigating how
performance scales with SAE width and training configurations.
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This work introduces Dynamic SAE Guardrails (DSG), a method for targeted unlearning in
large language models (LLMs). While designed to promote responsible AI by enabling the
removal of unwanted knowledge, several ethical considerations arise:

• Potential for misuse: While our focus is on removing hazardous or unwanted knowl-
edge, the same technology could potentially be used to censor information or suppress
viewpoints, leading to undesirable social consequences if deployed without careful
oversight. The zero-shot capabilities, while advantageous for data-scarce scenarios,
could be misused if the user-provided keywords are biased or used to target specific
groups/content unfairly.

• Over-reliance on interpretability: Although SAEs offer improved interpretability
compared to black-box models, feature interpretations are not always definitive or fully
reliable. Misinterpreting feature roles or over-relying on imperfect interpretations could
lead to unintended consequences, including the removal of valuable knowledge or the
failure to remove harmful content. The quality of feature interpretation depends on the
quality and representativeness of the data used to train and interpret the SAE.

• Limitations of unlearning: As with all approximate unlearning methods, DSG does
not guarantee complete removal of targeted knowledge. As we show, it reduces the
likelihood of the model generating outputs related to the forget set, but subtle traces or
indirect influences might persist. It is essential to acknowledge these limitations and
avoid presenting DSG as a perfect solution for knowledge removal.

• Dual-use concerns: The techniques developed in this work for improving model control
and safety could also be adapted by malicious actors to develop more sophisticated
attacks or to create models that resist safety interventions. We recognize this inherent
dual-use nature and emphasize the need for responsible development and sharing of
research findings.

• Computational Cost of SAE Training: The training of SAEs can be computationally
demanding, raising environmental concerns. However there are several open-source
SAEs, amortizing their cost, and the the inference-time efficiency of DSG offers some
mitigation compared to gradient-based unlearning approaches.

We believe the benefits of precise, controllable unlearning for enhancing AI safety outweigh
these risks, provided the technology is developed and deployed responsibly. We encourage
future work to address these limitations and explore more robust evaluation methods for
unlearning.

Reproducibility Statement

To facilitate reproducibility, we have provided detailed descriptions of our experimental
setups, including all relevant datasets, models, and hyperparameters. Specifics for each set
of experiments can be found as follows:

• WMDP Unlearning: Complete hyperparameter settings for DSG and all baseline
methods (GA, NPO, SSD, SCRUB, Farrell et al., RMU) are detailed in Appendix G.1.
Model and SAE details are provided in Section 4.1.

• MUSE Unlearning: Hyperparameters for DSG and baseline methods (GA, GradDiff,
NPO, SimNPO, RMU) are in Appendix H.1, with model details in Section 3.
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• Relearning Attacks (Section 4.3): Model and hyperparameter configurations for the
relearning experiments, including both train-time and test-time DSG interventions, are
given in Appendix I.5, along with the details in the main text.

• Data Efficiency and Zero-shot Experiments: Model, SAE, and hyperparameter details
for the data efficiency analysis and zero-shot evaluations are given in Appendix J.

• Ablations: All details related to the ablation studies, and chosen hyperparameters are
in Appendix K.

We have described the feature selection process, dynamic classification rule, and intervention
mechanism in sufficient detail to allow for reimplementation (Algorithm 1 and Section 3).
We have also released the code and relevant scripts necessary to reproduce our results.
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A Additional Background and Related Work Details

This appendix provides further details on concepts mentioned in the Background and
Related Work (Section 2).

A.1 Formal Goal of Unlearning

As introduced in the main text, machine unlearning aims to transform a model M(D),
initially trained on a dataset D = Dretain ∪ D f orget, into an unlearned model Munlearn. The
theoretical ideal of exact unlearning requires that Munlearn be computationally indistinguish-
able from a model M(Dretain) that was trained exclusively on the retain set Dretain from
the beginning (Bourtoule et al., 2021; Cao & Yang, 2015). Due to the computational cost
of retraining large language models from scratch, achieving exact unlearning is generally
impractical. Therefore, the field primarily focuses on developing approximate unlearning
methods. These methods aim to satisfy specific criteria related to effectively removing the
influence of D f orget while preserving the model’s performance on Dretain, without incurring
the cost of full retraining (Liu et al., 2025).

A.2 Unlearning Evaluation Metrics and Benchmarks

The evaluation of approximate unlearning methods typically involves measuring two
primary aspects: Forget Quality and Utility Preservation. Forget Quality quantifies the
successful removal of information pertaining to the forget set D f orget. Common metrics
include measuring the Forget Set Performance Degradation, which involves observing reduced
accuracy or increased loss on tasks specifically related to the content of D f orget (Shi et al.,
2024; Maini et al., 2024). Another aspect is assessing Memorization Metrics, which gauge
the model’s reduced ability to recall specific sequences or knowledge points verbatim from
D f orget (Shi et al., 2024). Furthermore, Privacy Leakage Metrics evaluate the decreased success
rate of Membership Inference Attacks (MIAs) that try to infer whether a given data point
was part of the original D f orget, often quantified using the Area Under the Curve (AUC) of
the MIA classifier (Shokri et al., 2017; Shi et al., 2024).

Conversely, Utility Preservation assesses how well the unlearned model retains its general
knowledge and capabilities on tasks unrelated to D f orget. This is commonly measured by
evaluating Retain Set Performance Preservation, which checks for maintained accuracy on
standard academic or commonsense reasoning benchmarks such as MMLU (Hendrycks
et al., 2020). Additionally, General Language Modeling Performance is often assessed by
ensuring minimal increase in perplexity or loss when the model processes large, general-
purpose text corpora like OpenWebText (Gokaslan et al., 2019) or WikiText (Merity et al.,
2016). Finally, Fluency and Coherence of the model’s generated text are important, often
evaluated through automated metrics, human judgment, or interaction with benchmark
chatbots like MT-Bench (Zheng et al., 2023). Standardized benchmarks like MUSE (Shi et al.,
2024), TOFU (Maini et al., 2024), WMDP (Li et al., 2024), and SAEBench (Karvonen et al.,
2025) provide datasets, tasks, and evaluation protocols designed to measure performance
across these diverse criteria.

A.3 Gradient-Based Unlearning Methods

Gradient-based unlearning techniques directly modify the weights θ of the original model
M(D) using optimization algorithms, typically variants of gradient descent or ascent.

Gradient Ascent (GA) represents a basic approach where the optimization objective is to
maximize the loss function (e.g., negative log-likelihood) on the forget set D f orget, thereby
pushing the model parameters away from configurations that accurately represent this data
(Jang et al., 2023). This method, however, often suffers from catastrophic forgetting of useful
knowledge if not carefully regularized.

Gradient Difference (GradDiff or NegGrad) attempts to balance forgetting and retention
by computing gradients for both minimizing loss on Dretain and maximizing loss on D f orget,
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then applying an update based on a combination (often a subtraction) of these gradients
(Liu et al., 2022).

Negative Preference Optimization (NPO) leverages insights from preference-based fine-
tuning methods like DPO (Rafailov et al., 2023), reformulating unlearning as learning to
disprefer outputs related to D f orget relative to some reference, which could be outputs from
the original model or data from Dretain (Zhang et al., 2024). Simplified variants like SimNPO
aim to reduce the computational overhead (Fan et al., 2024).

Representation Misdirection Unlearning (RMU) operates by injecting noise or applying
targeted shifts to the internal activations of the model at specific layers, but only when
processing inputs related to D f orget, while simultaneously using a regularization term to
keep activations on Dretain close to those of the original model (Li et al., 2024).

Selective Synaptic Dampening (SSD) aims for more targeted weight modification by
estimating the importance of individual parameters for both D f orget and Dretain (using
approximations based on Fisher information) and then selectively reducing the magnitude
of parameters found to be more critical for D f orget than for Dretain (Foster et al., 2024).

SCRUB employs a student-teacher knowledge distillation framework; it trains a copy of
the original model (the student) to diverge from the original frozen model (the teacher) on
D f orget inputs (typically by maximizing KL divergence) while simultaneously encouraging
the student to mimic the teacher on Dretain inputs (by minimizing KL divergence) (Kurmanji
et al., 2023).

Finally, many gradient-based methods incorporate explicit Regularization Techniques to
counteract the tendency towards catastrophic forgetting. Common regularizers include
minimizing the KL divergence between the probability distributions of the unlearned and
original models when evaluated on Dretain (Maini et al., 2024), or directly including a term
in the loss function that minimizes the model’s prediction error on Dretain (Yao et al., 2024).

A.4 Prior SAE Unlearning Work

The work by Farrell et al. (2024) is an early exploration into using Sparse Autoencoders
(SAEs) for machine unlearning. We describe their methodology here.

First, they computed the activation sparsity for each feature in the SAE dictionary, calculated
separately over the forget dataset (D f orget) and the retain dataset (Dretain). Sparsity here
refers to the fraction of input tokens for which a given feature has a non-zero activation.

Second, to mitigate potential damage to the model’s general capabilities, they filtered out
any features whose activation sparsity on the retain set Dretain exceeded a predetermined
threshold (e.g., a feature active on more than 1% of retain tokens might be excluded).

Third, from the pool of features that passed the retain-sparsity filter, they selected the
top-N features that exhibited the highest activation sparsity when measured on the forget
set D f orget. The assumption was that features frequently active on forget data are likely
responsible for encoding the knowledge to be removed.

Fourth, they implemented a static intervention mechanism during inference: whenever any
of the top-N selected features f j produced a positive activation ( f j(ht) > 0) for any token t,
its activation was clamped to a fixed negative value (e.g., -c). This clamping was applied
universally, regardless of the overall context of the input sequence.

This combination of sparsity-based feature selection and static clamping ultimately proved
limiting, leading to significant side effects on utility and performance inferior to contempo-
rary gradient-based methods like RMU on benchmarks such as WMDP-Bio. Recognizing
these limitations directly motivated our work (DSG), where we instead develop and apply
principled feature selection and dynamic, context-aware interventions.
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A.5 Relearning Attacks

Approximate unlearning methods, especially those modifying model weights, face another
significant challenge: relearning attacks (Deeb & Roger, 2024). In these attacks, an adversary
finetunes the unlearned model Munlearn to recover the supposedly forgotten information.
Such recovery is sometimes possible even using only data tangentially related to the original
forget set D f orget (Hu et al., 2025). The success of relearning attacks suggests that gradient-
based weight modifications may primarily suppress access to knowledge rather than truly
erasing it from the parameter space; subsequent finetuning can often reverse these weight
adjustments, particularly if it reinforces the target concepts.

The feasibility of relearning attacks strongly depends on the threat model. In an API-based
(black-box) setting, where adversaries only have query access, mounting effective relearning
attacks is more difficult, particularly if the provider restricts extensive finetuning or monitors
queries. Activation-based intervention methods like DSG, which modify internal states
rather than weights to control outputs for relevant inputs, may offer greater robustness in
this black-box scenario compared to weight modification techniques.

Although sophisticated obfuscation attacks targeting activation-based defenses exist (Bailey
et al., 2024), they typically require white-box access (e.g., gradients, internal states). Such
access is unavailable in a pure API setting, limiting their threat against deployed systems
focused on output safety via activation manipulation. DSG’s potential resilience against
relearning could stem from the relative stability of activation geometry during standard
finetuning, a phenomenon related to the Superficial Alignment Hypothesis (Zhou et al.,
2023). If DSG reliably identifies features encoding the target knowledge based on these
stable patterns and consistently applies interventions, the unlearning effect may prove more
durable against finetuning-based relearning attacks compared to methods reliant on weight
configurations.

B Fisher Information Approximation Proof

Theorem 1 (Approximate Fisher Information from SAE Features). Let a sparse autoencoder
(SAE) with reconstruction r̂(x) = z(x)Wdec be applied to data x ∼ D, where z(x) ∈ RF represents
latent activations and Wdec ∈ RF×D the decoder weights. Define the reconstruction loss as:

ℓ(x) =
1
2
∥r̂(x)− r(x)∥2

If the SAE is well-trained such that reconstruction error is small with high probability, then for
each row θi,· ∈ RD of Wdec (representing feature i), the expected squared gradient is approximately
proportional to the second moment of the feature activation.

Proof. We establish this result through careful analysis of the gradient structure in sparse
autoencoders.

Computing the Gradient of Decoder Weights. By definition of the reconstruction loss:

ℓ(x) =
1
2
∥r̂(x)− r(x)∥2

=
1
2
∥z(x)Wdec − r(x)∥2

For row i of Wdec, denoted θi,· ∈ RD, we compute the gradient:

∇θi,·ℓ(x) = ∇θi,·

[
1
2
∥z(x)Wdec − r(x)∥2

]
By the chain rule:

∇θi,·ℓ(x) = (z(x)Wdec − r(x)) · ∇θi,·(z(x)Wdec)
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Since z(x)Wdec is linear in θi,· with coefficient zi(x), we have:

∇θi,·(z(x)Wdec) = zi(x) · ID

where ID is the D-dimensional identity matrix. Therefore:

∇θi,·ℓ(x) = zi(x)(r̂(x)− r(x))

Computing the Squared Gradient Norm. Taking the squared norm of this gradient:

∥∇θi,·ℓ(x)∥2 = ∥zi(x)(r̂(x)− r(x))∥2

= zi(x)2∥r̂(x)− r(x)∥2

Taking the expectation over the data distribution:

Ex∼D [∥∇θi,·ℓ(x)∥2] = Ex∼D [zi(x)2∥r̂(x)− r(x)∥2]

Analyzing the Small Error Regime. When the SAE is well-trained, we can characterize its
performance with a high-probability bound on reconstruction error. Specifically, assume
there exist constants ϵ > 0 and δ > 0 such that:

P
(
∥r̂(x)− r(x)∥2 < ϵ2

)
> 1 − δ

where ϵ ≪ ∥r̂(x)∥ and δ is small. In other words, the squared reconstruction error is
bounded by ϵ2 with probability at least 1 − δ.

Under this high-probability bound, we can decompose the expectation:

E[zi(x)2∥r̂(x)− r(x)∥2] ≤ E[zi(x)2 · ϵ2 | ∥r̂(x)− r(x)∥2 < ϵ2] · (1 − δ) + Cδ

≤ ϵ2E[zi(x)2] + Cδ

where C is a bound on the expectation in the low-probability case. For small δ and finite C,
the second term becomes negligible, leaving:

E[zi(x)2∥r̂(x)− r(x)∥2] ≈ ϵ2E[zi(x)2]

Connection to Fisher Information. The Fisher Information Matrix for parameter θi,· is
defined as:

I(θi,·) = Ex∼D [∇θi,·ℓ(x)∇θi,·ℓ(x)⊤]

The trace of this matrix, which measures the overall sensitivity of the loss to changes in θi,·,
is precisely:

Tr(I(θi,·)) = Ex∼D [∥∇θi,·ℓ(x)∥2]

≈ ϵ2E[zi(x)2]

Interpretation. The above analysis shows that ( f j(x))2 = zj(x)2 serves as a natural impor-
tance measure for feature j. Features with larger average squared activations contribute
more significantly to reconstruction gradients and thus have higher Fisher Information
content. This justifies our approach of using squared activations to identify features most
strongly associated with specific knowledge domains.

C Connecting Fisher Information to Causal Influence

In this section, we establish how the Fisher Information associated with Sparse Autoen-
coder (SAE) features connects to their causal influence as mediators of information flow
in language models. Drawing inspiration from causal geometry (Chvykov & Hoel, 2020),
we provide a proof for why expected squared activation serves as a measure of feature
importance.
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Theorem 2 (Fisher Information as a Proxy for Causal Feature Importance). Under
assumptions of (i) near-deterministic mappings in the language model, (ii) well-defined causal
effects under feature interventions, (iii) small SAE reconstruction error, and (iv) approximate
feature independence, the Fisher Information associated with SAE features provides a principled
approximation of their causal influence. Specifically, for any feature f j, the expected squared feature
activation ED [ f j(h)2] for hidden state h on dataset D is proportional to the causal influence of that
feature as a mediator of information from D to model outputs.

Proof. We build upon the result in Appendix B, which showed that the expected squared
activation E[ f j(h)2] is proportional to the trace of the Fisher Information Matrix for the
corresponding decoder weights.

Causal Model Setup. Consider a language model (LM) that produces hidden states h(x) ∈
Rd. A Sparse Autoencoder (SAE) encodes h(x) into feature activations z = f (h) ∈ RdSAE ,
i.e. each feature is f j

(
h(x)

)
. Let Dforget and Dretain be two subsets of the training data. We

model the causal structure as:

Data −→ h(x) −→ z = f (h) −→ Y (model outputs)

Here, Y ∈ RdY represents the model’s output vector (e.g., logits or embeddings).

Assumptions.

1. Near-deterministic mapping. Conditioned on h, the model output Y is almost deter-
ministic (small Gaussian noise). Formally, p

(
Y | h

)
≈ N

(
µ(h), σ2I

)
with small σ2.

2. Well-defined feature interventions. We can perform do
(

f j = α
)
, meaning forcibly

setting feature j to α and thus severing its normal dependence on h.

3. Small SAE reconstruction error. Writing ĥ(z) ≈ W z, we assume ∥h − ĥ(z)∥ is small
with high probability.

4. Approximate feature independence. Features f j(h) are sufficiently sparse or decorre-
lated that cross-terms can be neglected.

Defining Causal Influence. We quantify the causal influence of feature f j by how much
the model’s output distribution p(Y) changes when we intervene to set f j to its normal
value f j(h) vs. forcing it to zero:

Influence( f j) = Eh∼D
[

DKL

(
p
(
Y | do( f j = f j(h))

) ∥∥ p
(
Y | do( f j = 0)

))]
A large KL means toggling f j from 0 to its actual value drastically shifts p(Y), so f j is a
strong mediator for D.

Expanding KL Divergence. Let gj : R → RdY describe how feature f j shifts the model’s
outputs. Since we forcibly set f j (an intervention), we ignore any prior correlations with h,
and under near-determinism the output distribution is approximated by:

p
(
Y | do( f j = α)

)
= N

(
gj(α), σ2I

)
For two different interventions do( f j = α) and do( f j = β), we can now derive the KL
divergence between the resulting output distributions. Using the standard formula for KL
divergence between multivariate Gaussians with the same covariance matrix:

DKL(N (µ1, Σ)∥N (µ2, Σ)) =
1
2
(µ1 − µ2)

TΣ−1(µ1 − µ2)
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Therefore:

DKL

(
p
(
Y | do( f j = α)

) ∥∥ p
(
Y | do( f j = β)

))
= DKL(N (gj(α), σ2I)∥N (gj(β), σ2I))

=
1
2
(gj(α)− gj(β))T(σ2I)−1(gj(α)− gj(β))

=
1

2σ2 (gj(α)− gj(β))T(gj(α)− gj(β))

=
1

2σ2

∥∥ gj(α)− gj(β)
∥∥2

First-Order Taylor Expansion. To make this expression more tractable, we use a first-order
Taylor expansion of gj(α) around β = 0:

gj(α) = gj(0) +
dgj

dα

∣∣∣
α=0

· α + o(α)

≈ gj(0) +
(
∇gj(0)

)
α

When α is sufficiently small, the higher-order terms o(α) become negligible. Substituting
this back into our KL divergence expression for the special case where β = 0:

DKL
(

p(Y|do( f j = α))∥p(Y|do( f j = 0))
)
=

1
2σ2 ∥gj(α)− gj(0)∥2

≈ 1
2σ2 ∥gj(0) +∇gj(0) · α − gj(0)∥2

=
1

2σ2 ∥∇gj(0) · α∥2

=
1

2σ2 α2 ∥∥∇gj(0)
∥∥2

This shows that the KL divergence (our measure of distribution change) grows quadratically
with the intervention magnitude α, with a proportionality constant determined by the
gradient norm ∥∇gj(0)∥2.

Expected Causal Influence. Now we can compute the expected causal influence by substi-
tuting α = f j(h) and taking the expectation over h ∼ D:

Influence( f j) = Eh∼D
[

DKL
(

p(Y|do( f j = f j(h)))∥p(Y|do( f j = 0))
)]

≈ Eh∼D
[ 1

2σ2 f j(h)2 ∥∥∇gj(0)
∥∥2

]
=

∥∇gj(0)∥2

2σ2 Eh∼D
[

f j(h)2
]

Thus, the expected causal influence of feature j as a mediator of information from dataset D is
directly proportional to the expected squared activation ED

[
f j(h)2], with a proportionality

constant
∥∇gj(0)∥2

2σ2 that depends on the sensitivity of the model’s outputs to changes in
feature j.

Connection to Fisher Information. The Fisher Information for the SAE’s decoder weights
θj,· satisfies I

(
θj,·

)
∝ Eh

[
f j(h)2] since the gradient w.r.t. θj,· includes f j(h) as a leading factor.

Therefore, E[ f j(h)2] tracks both the Fisher Information and the intervention-based notion
of causal influence we derived above, establishing a direct link: Causal Influence( f j) ∝
Fisher Information(θj,·) ∝ E[ f j(h)2]. In other words, features most important in a Fisher
Information sense are precisely those with greatest causal influence on model outputs.
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Implications for Feature Selection. By identifying features with high squared activations
on Dforget but low activations on Dretain, we can target mediators that specifically carry
forget set knowledge. Clamping these features to zero during inference selectively reduces
the model’s capacity to propagate information from Dforget while preserving performance
on Dretain.

Comparisons Across Datasets. For Dforget vs. Dretain, we earlier defined:

forget score(j) = EDforget

[
f j(h)2]

retain score(j) = EDretain

[
f j(h)2]

The ratio of causal influence of feature j for Dforget versus Dretain is:

EDforget
[Influence( f j)]

EDretain [Influence( f j)]
=

∥∇gj(0)∥2

2σ2 · EDforget
[ f j(h)2]

∥∇gj(0)∥2

2σ2 · EDretain[ f j(h)2]

=
EDforget

[ f j(h)2]

EDretain [ f j(h)2]

=
forget score(j)
retain score(j)

Thus, forget score(j)/retain score(j) precisely captures how much more f j mediates the
forget dataset relative to the retain dataset. This is the importance ratio we defined in Section
3, which directly quantifies the relative causal influence of feature j across datasets.

D Proof of Neyman-Pearson Optimality

Theorem 3 (Neyman-Pearson Optimality). Let Dforget and Dretain be the distributions of se-
quences from the forget and retain sets, respectively. If ρ(X) is stochastically larger under Dforget
than under Dretain (i.e., PrX∼Dforget

[ρ(X) ≥ t] ≥ PrX∼Dretain [ρ(X) ≥ t] for all t), then among all
classifiers with a false-positive rate at most α, the threshold test C∗(x) = 1[ρ(x) > τ∗], where
PrX∼Dretain [ρ(X) > τ∗] = α, maximizes the true-positive rate.

Proof. We adapt the classical Neyman-Pearson Lemma to our unlearning context. Our
goal is to find the optimal decision rule for classifying inputs as either forget-relevant or
retain-relevant.

Consider the class of all decision rules a : X → {clamp, no-clamp} with false-positive rate
at most α. That is, all rules a such that:

Pr
X∼Dretain

[a(X) = clamp] ≤ α

For each decision rule a, define its acceptance region A = {x ∈ X : a(x) = clamp}. The
constraint on false-positive rate translates to PrX∼Dretain [A] ≤ α.

Now, define the threshold-based decision rule a∗ as:

a∗(x) = 1[ρ(x) > τ∗]

where τ∗ is chosen such that PrX∼Dretain [ρ(X) > τ∗] = α. The acceptance region for this rule
is A∗ = {x : ρ(x) > τ∗}.

We need to prove that a∗ maximizes the true-positive rate among all rules with false-positive
rate at most α. In other words, for any rule a with PrX∼Dretain [a(X) = clamp] ≤ α, we must
show:

Pr
X∼Dforget

[a(X) = clamp] ≤ Pr
X∼Dforget

[a∗(X) = clamp]
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We use the stochastic dominance property: for any threshold t, PrX∼Dforget
[ρ(X) ≥ t] ≥

PrX∼Dretain [ρ(X) ≥ t]. This means that regions of higher ρ values are relatively more likely
under Dforget than under Dretain.

Consider any decision rule a with acceptance region A where PrX∼Dretain [A] ≤ α. Due
to the stochastic dominance property, we can always construct a threshold-based region
Ã = {x : ρ(x) > τ̃} such that: 1. PrX∼Dretain [Ã] = PrX∼Dretain [A] (same false-positive rate) 2.
PrX∼Dforget

[Ã] ≥ PrX∼Dforget
[A] (equal or higher true-positive rate)

This is because exchanging points from low-ρ regions in A with points from high-ρ regions
outside A (while maintaining the same false-positive rate) will always increase the true-
positive rate due to stochastic dominance.

If PrX∼Dretain [A] < α, we can further expand Ã to A∗ by lowering the threshold from τ̃ to τ∗,
which only increases the true-positive rate further.

Therefore, for any decision rule a with false-positive rate at most α:

Pr
X∼Dforget

[a(X) = clamp] = Pr
X∼Dforget

[A] ≤ Pr
X∼Dforget

[A∗] = Pr
X∼Dforget

[a∗(X) = clamp]

This establishes that the threshold test a∗(x) = 1[ρ(x) > τ∗] maximizes the true-positive
rate among all tests with false-positive rate at most α.

Practical Implications: This theorem establishes the statistical optimality of our thresholding
approach for making the binary decision of whether to apply an intervention. In particular,
it shows that our dynamic classification rule maximizes coverage on forget-set queries while
maintaining a controlled false-positive rate on retain-set queries.

E Proof of Dynamic Clamping Dominance

Theorem 4 (Dominance of Dynamic Clamping). Let Snfeats be a fixed subset of features identified
as forget-relevant. Consider the static approach astatic(x) that clamps features in Snfeats whenever they
activate, and the dynamic approach adynamic(x) that first classifies input x using C(x) = 1[ρ(x) >
τ] and only then applies clamping. Under the stochastic dominance assumption from Theorem 3,
there exists a threshold τ∗ such that adynamic achieves equal or greater coverage on Dforget than astatic
while maintaining equal side-effects on Dretain, making dynamic clamping strictly dominant in the
coverage-side effect trade-off.

Proof. We begin by formalizing the metrics used to evaluate both approaches and precisely
defining their operation.

Preliminaries and Definitions. Let X be the space of possible input sequences. For a
sequence x = (x1, . . . , xT) and its corresponding hidden states ht, we define:

• A token t is triggered by Snfeats if ∃j ∈ Snfeats such that f j(ht) > 0

• The fraction of triggered tokens in a sequence: ρ(x) = 1
T ∑T

t=1 1[∃j ∈ Snfeats :
f j(ht) > 0]

We consider two distributions: Dforget: The distribution of forget-relevant queries, and
Dretain: The distribution of retain-relevant queries.

The Two Approaches. For both approaches, we define a clamp set Bmethod ⊆ X as the set
of inputs where the method applies some clamping.

1. Static Approach (astatic): Clamps features in Snfeats whenever they activate on any token.
here the Clamp set is Bstat = {x : ∃t, j ∈ Snfeats such that f j(ht) > 0}.
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2. Dynamic Approach (adynamic): Computes ρ(x) and applies a threshold test ρ(x) > τ.
Only clamps if the sequence passes this test. The Clamp set for threshold τ: Bdyn(τ) = {x :
ρ(x) > τ}.

Performance Metrics. We define:

• Coverage: The probability that clamping occurs on forget-set queries

Coverage(method) = Pr
x∼Dforget

[x ∈ Bmethod]

• Side-effect: The probability that clamping occurs on retain-set queries

SideEffect(method) = Pr
x∼Dretain

[x ∈ Bmethod]

Step 1: Find the side-effect of the static approach. The static approach clamps whenever
any token has an activating feature in Snfeats . Therefore:

SideEffect(astatic) = Pr
x∼Dretain

[x ∈ Bstat] = α

Step 2: Find a threshold τ∗ that yields the same side-effect for the dynamic approach.
By our assumption that ρ(x) is stochastically larger on Dforget than on Dretain, we know that
Prx∼Dretain [ρ(x) > τ] is a strictly decreasing function of τ.

Therefore, there exists a threshold τ∗ ∈ [0, 1] such that:

Pr
x∼Dretain

[ρ(x) > τ∗] = α = Pr
x∼Dretain

[x ∈ Bstat]

This means:

SideEffect(adynamic(τ
∗)) = SideEffect(astatic)

Step 3: Show that coverage is greater for the dynamic approach. From Theorem 3, we
know that thresholding ρ(x) at τ∗ gives the optimal classifier for distinguishing between
Dforget and Dretain at false positive rate α.

More formally, among all sets A ⊆ X with Prx∼Dretain [x ∈ A] = α, the set Bdyn(τ
∗) = {x :

ρ(x) > τ∗} maximizes Prx∼Dforget
[x ∈ A].

Since Bstat is one such set with Prx∼Dretain [x ∈ Bstat] = α, we must have:

Pr
x∼Dforget

[x ∈ Bdyn(τ
∗)] ≥ Pr

x∼Dforget
[x ∈ Bstat]

Therefore:
Coverage(adynamic(τ

∗)) ≥ Coverage(astatic)

If ρ(x) is strictly stochastically larger on Dforget than on Dretain (which holds in practice as
forget-relevant features activate more frequently on forget-set queries), then this inequality
is strict.

We have established that for any static clamping approach, there exists a threshold τ∗ such
that the dynamic approach with this threshold achieves the same side-effect on the retain
set; and achieves equal or greater coverage on the forget set. This proves that dynamic
clamping dominates static clamping in the coverage-side effect trade-off.
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F Distribution of token activations on WMDP-Cyber

Figure 8 plots the distribution of forget-set activated tokens on WMDP-Cyber. The threshold
is chosen to control the retain set’s false positive rate and we find that pdyn = 95 typically
separates forget-set queries effectively achieving high recall on D f orget. On WMDP-Cyber,
DSG successfully transfers from the retain set (WikiText) and forget set to the test query set.

Figure 8: Distribution of forget-set activated tokens for WMDP-Cyber. Threshold at the 95th percentile
(dashed red line) effectively separates MMLU from WMDP.

G Unlearning on WMDP

G.1 Hyperparameter Details and Model Descriptions for Baselines

To ensure a comprehensive and fair comparison of unlearning methods, we conducted
extensive hyperparameter sweeps for each baseline, optimizing for both the effectiveness of
knowledge removal and the preservation of model utility. For all gradient-based methods,
we experimented with updating parameters in layers 3, 7, and 11 (as recommended in (Li
et al., 2024)), as well as all layers. Unless otherwise specified, all experiments used the
google/gemma-2-2b-it (Lieberum et al., 2024) model.

Dynamic SAE Guardrails (DSG). Our proposed method, DSG, is a non-gradient-based
intervention method that selectively removes hazardous knowledge by manipulating SAE
feature activations. DSG first identifies a subset of SAE features strongly indicative of the
knowledge to be forgotten, based on their differential activation patterns on forget and
retain datasets. During inference, DSG employs a dynamic classifier to assess the relevance
of input sequences. If a sequence is classified as forget-relevant based on the aggregate
activation of selected features, DSG dynamically clamps these features to a negative value.
This conditional, sequence-level clamping ensures that intervention is applied only when
necessary, minimizing side effects on benign inputs and preserving model utility.

We employed the gemma-scope-2b-pt-res SAE (width 16k) applied to layer 3 (ℓ0 142)
(Lieberum et al., 2024). The dynamic threshold percentile (pdyn) was fixed at 95. We swept
the importance ratio percentile (pratio), number of selected features, and clamp strength (c):

Hyperparameter Values Tested

Importance Ratio Percentile (pratio) 90, 95
Number of Features 10, 20, 30
Clamp Strength (c) 10, 25, 50, 100, 200, 300, 400, 500

Table 3: Hyperparameter sweep for Dynamic SAE Guardrails (DSG). Fixed values: pdyn = 95.

The best configurations were: WMDP-Bio (pratio = 95, features=20, c = 500) and WMDP-
Cyber (pratio = 90, features=30, c = 500).
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Representation Misdirection for Unlearning (RMU). RMU (Li et al., 2024) is a gradient-
based finetuning method that minimizes a composite loss function to achieve targeted
forgetting while preserving model utility. This loss combines a forget loss and a retain
loss. The forget loss acts on the model’s activations on the forget dataset, increasing their
norm in specific directions and making it difficult for later layers to process this information
effectively. Simultaneously, the retain loss regularizes the updated model’s activations on
the retain dataset, encouraging activations to stay close to the original model’s activations
on benign data.

Key hyperparameters include the steering coefficient, which controls how much the ac-
tivations are amplified on hazardous data, and the alpha parameter (α), which balances
utility preservation against knowledge removal. We focus unlearning only on the MLPs, as
recommended in Li et al. (2024).

Hyperparameter Values Tested

Steering Coefficient 1, 5, 10, 20, 100, 200, 400, 500, 800, 1000
Alpha (α) 0.01, 0.1, 1, 10, 100, 300, 500
Batch Size 4, 8
Steps 400, 800

Table 4: Hyperparameter sweep for RMU. Fixed values: Monitoring Layer ID=3, Learning Rate=5e-6.

The best configuration for WMDP-Bio used steering coefficient 400, alpha 100, monitoring
layer 3, learning rate 5e-6, batch size 8, and 400 steps. For WMDP-Cyber, we used steering
coefficient 500, alpha 10, monitoring layer 3, and batch size 8 with 400 steps.

Scalable Remembering and Unlearning unBound (SCRUB). SCRUB (Kurmanji et al.,
2023) employs a student-teacher framework for knowledge distillation-based unlearning.
It trains a student model, a clone of the original model, to forget hazardous knowledge
under the guidance of the original, frozen teacher model. During forget epochs, SCRUB
maximizes the KL divergence between student and teacher logits on the forget dataset. In
retain epochs, it minimizes this divergence on the retain dataset, guiding the student to
mimic the teacher on benign data.

We swept across values of beta (β), a weighting factor balancing knowledge distillation and
task-specific loss, while fixing alpha (α) and gamma (γ) at 1.0:

Hyperparameter Values Tested

Beta (β) 0.0001, 0.001, 0.01, 0.1, 1, 10
Learning Rate (lr) 1e-4, 1e-5, 5e-6
Batch Size 4, 8
Steps 400, 800

Table 5: Hyperparameter sweep for SCRUB. Fixed values: α = 1.0, γ = 1.0, KL Temperature=2.0.

The best configuration for WMDP-Bio used beta 0.01, learning rate 5e-6, batch size 8, and
400 maximum batches. For WMDP-Cyber, we used beta 0.1, learning rate 1e-5, batch size 8,
and 400 maximum batches.

Selective Synaptic Dampening (SSD). SSD (Foster et al., 2024) identifies and dampens
parameters more important for the forget set than the retain set. It adapts a method originally
developed for image classification to language modeling by modifying the loss function to
use log-perplexity. SSD calculates parameter importance scores based on gradients observed
for both forget and retain datasets, then applies a dampening factor to parameters with
higher importance for the forget dataset.

We performed a grid search spanning dampening thresholds and constants:
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Hyperparameter Values Tested

Threshold 0.1, 0.25, 0.5, 1, 2.5, 5
Dampening Constant 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1

Table 6: Hyperparameter sweep for Selective Synaptic Dampening (SSD).

The optimal configuration for WMDP-Bio used threshold 0.5 and dampening constant 1e-3.
For WMDP-Cyber, we used threshold 1.0 and dampening constant 1e-2.

Static SAE Clamping (Farrell et al.). This non-gradient-based approach (Farrell et al.,
2024) identifies salient SAE features and statically clamps their activations during inference
to remove unwanted knowledge. Unlike our dynamic approach, this method applies
feature clamping universally to all inputs whenever a selected feature activates, rather than
conditionally based on sequence-level classification.

We varied the retain threshold, multiplier (clamp value), and number of features:

Hyperparameter Values Tested

Retain Threshold 0.01, 0.001, 0.005, 0.1, 1
Multiplier (Clamp Value) 10, 25, 50, 100, 200, 500
Number of Features 5, 10, 20, 30, 50

Table 7: Hyperparameter sweep for Static SAE Clamping. Fixed value: Sequence Length=1024.

The best configurations were: WMDP-Bio (retain threshold=0.01, multiplier=200, features=5)
and WMDP-Cyber (retain threshold=0.005, multiplier=500, features=10).

Gradient Ascent (GA). GA (Jang et al., 2023) is a finetuning-based unlearning method
that directly minimizes the likelihood of correct predictions on the forget dataset using
gradient ascent. In contrast to standard finetuning which employs gradient descent, GA
utilizes gradient ascent to maximize the cross-entropy loss on the forget dataset, pushing
parameters in directions that increase prediction error on the targeted data.

We varied the learning rate and beta (β), the retain loss weight:

Hyperparameter Values Tested

Learning Rate (lr) 1e-5, 5e-5
Beta (Retain Loss Weight) 0.01, 0.1, 1.0, 5.0, 10.0

Table 8: Hyperparameter sweep for Gradient Ascent. Fixed values: Gamma=1.0, Batch Size=8,
Steps=400.

We explored both with and without retain data configurations. The best setting for WMDP-
Bio used learning rate 1e-5 with beta 1.0. For WMDP-Cyber, we used learning rate 1e-5 with
beta 0.1.

Negative Preference Optimization (NPO). NPO (Zhang et al., 2024) adapts preference
optimization techniques to treat the forget set as negative examples. It reframes unlearning
as preference learning, optimizing the model to assign lower likelihood to the forget set. The
beta parameter controls the extent to which the unlearned model’s output distribution can
diverge from the original model. To mitigate utility degradation and preserve performance
on benign data, NPO can be regularized using two distinct retain loss types: Negative
Log-Likelihood (NLL) and Kullback-Leibler (KL) divergence. NLL minimization directly
encourages the model to maintain high probabilities for correct tokens in the retain set,
calculated as the negative sum of log probabilities assigned to ground truth tokens. KL
divergence minimization encourages the probability distribution of the unlearned model to
remain close to that of the original model on retain set inputs, measured as the information
lost when approximating the original model’s distribution with the unlearned model’s
distribution.
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We tested NPO with various configurations:

Hyperparameter Values Tested

Alpha (Retain Loss Weight) 0.01, 0.1, 1.0
Beta (Temperature Parameter) 0.1, 1.0
Retain Loss Type NLL, KL

Table 9: Hyperparameter sweep for NPO. Fixed values: Gamma=1.0, Learning Rate=1e-5, Batch
Size=8, Steps=400.

The optimal settings for WMDP-Bio used alpha 0.1, beta 0.1, and KL divergence as the retain
loss type and WMDP-Cyber used alpha 1.0, beta 0.1, and KL divergence as the retain loss
type.

For all methods, we selected configurations that minimized WMDP accuracy while main-
taining at least 99% of the original model’s MMLU accuracy.

Compute. All finetuning and inference was performed on 4 A6000 GPUs in under a day.

G.2 Results on WMDP-Cyber

Table 10 shows the performance of various unlearning baselines on WMDP-Cyber dataset.
RMU is less effective on WMDP-Cyber (88.00%), likely due to the data inefficiency of
gradient-based methods on the smaller cyber forget set.

Method WMDP Cyber (↓) MMLU (↑) MT (↑)
HS Hist C. Bio HS Geo H. Aging All

Target M 100.00 100.00 100.00 100.00 100.00 100.00 7.36

GA 98.91 98.15 100.0 100.0 100.0 99.46 7.39
NPO 96.36 100.0 100.0 100.0 100.0 100.0 7.18
SSD 98.91 100.00 100.00 98.08 98.81 99.19 7.25
SCRUB 97.82 99.07 100.00 100.00 98.81 99.46 6.51
Farrell et al. 52.73 99.07 100.00 100.00 97.62 99.19 7.39
RMU 88.00 99.07 100.00 99.04 98.81 99.19 7.28

DSG (Ours) 26.74 99.07 100.00 100.00 100.00 99.73 7.66

Table 10: Unlearning performance on WMDP-Cyber. All represents the average MMLU score. MT-
Bench scores show 0.13 variance across 5 runs. DSG shows superior unlearning effectiveness compared
to other baselines while maintaining high MMLU performance.

G.3 MT-Bench Evaluation Details

To measure the impact of unlearning on the model’s general conversational abilities and
fluency, we utilized the MT-Bench benchmark (Zheng et al., 2023). Specifically, we report the
average score across two conversational turns (the two-turn average score), which provides
a measure of multi-turn conversational quality. Following standard MT-Bench protocol,
evaluations were conducted using GPT-4 (Achiam et al., 2023) as the judge to score the
model’s responses. To ensure the robustness of these fluency assessments, each model
configuration reported in Section 4.1 was evaluated 5 times using MT-Bench. The mean
scores presented in Table 1 and Table 10 reflect the average performance across these runs,
and the standard deviation across the 5 runs is noted in the respective table captions (0.16
for WMDP-Bio results, 0.13 for WMDP-Cyber results). Higher MT-Bench scores indicate
better preservation of general conversational capabilities after the unlearning procedure.
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H Unlearning on MUSE

H.1 Hyperparameter Details and Model Descriptions for Baselines

We provide implementation details for the baseline unlearning methods evaluated in our
experiments.

Gradient Ascent (GA). GA maximizes the loss on the forget set, directly opposing the
standard training objective to push the model away from the forget data’s distribution
(Jang et al., 2023). While straightforward, it often leads to catastrophic forgetting of general
knowledge.

Gradient Difference (GradDiff). GradDiff balances competing objectives by maximizing
the loss on the forget set while minimizing the loss on the retain set (Liu et al., 2022). Despite
this approach, GradDiff struggles to find an optimal trade-off, resulting in either over- or
under-unlearning.

Negative Preference Optimization (NPO). NPO reframes unlearning within a preference
learning framework, treating the forget set as negative preference data by adapting the
Direct Preference Optimization objective (Zhang et al., 2024). We use NPO with KL Diver-
gence Minimization that augments NPO with a KL divergence term to preserve utility by
minimizing distributional shift on benign data.

Simplified NPO (SimNPO). A computationally efficient variant of NPO that simplifies
the optimization process while retaining core principles of negative preference learning
(Fan et al., 2024). SimNPO trades some unlearning effectiveness for faster processing.

Representation Misdirection for Unlearning (RMU). RMU injects targeted noise into
specific layers to disrupt the model’s ability to process information related to the forget set (Li
et al., 2024). Its effectiveness depends heavily on precise noise targeting and hyperparameter
tuning. We injected noise in the 7th layer for both News and Books.

For all finetuning-based baselines (GA, GradDiff, NPO, SimNPO, RMU), we used AdamW
optimizer with a learning rate of 1e-5 and batch size of 32. We finetuned all parameters in
the model. The optimal checkpoint for each method was determined by selecting the first
epoch (within 10 epochs) where the unlearned model’s utility on the retain set fell below
90% that of the target model. Table 11 summarizes the optimal epochs or α values for each
method on both datasets.

Unlearning Method NEWS BOOKS

GA epoch 1 epoch 1
GradDiff epoch 2 epoch 3
NPO epoch 8 epoch 10
SimNPO epoch 10 epoch 10
RMU epoch 9 epoch 10

Table 11: Optimal epochs for baseline unlearning methods on MUSE benchmark, determined by
utility-based stopping criteria.

All finetuning and inference was performed on 4 A6000 GPUs in under a day.

H.2 Sequential Unlearning Strategies for DSG

In real-world scenarios, unlearning requests often arrive sequentially over time. An effective
unlearning method must be able to handle multiple, successive requests without significant
degradation in performance or utility. In Section 3, we evaluated DSG’s performance under
sequential unlearning using the MUSE benchmark (Shi et al., 2024) with four disjoint folds
of the NEWS corpus. We implemented and compared two strategies for adapting DSG
to this sequential setting, referred to as DSGall and DSGunion. Both strategies leverage the
core DSG mechanisms of feature selection and dynamic thresholding but differ in how they
aggregate information across multiple unlearning requests.
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Setup. Let k = 1, 2, . . . , K index the sequential unlearning requests. Each request k in-
troduces a new forget dataset DF,k. We assume the retain dataset DR remains constant
throughout the process. The goal at step k is to produce an unlearned model that effectively
forgets the cumulative forget data Dcumul

F,k = ∪k
i=1DF,i while preserving utility evaluated on

DR. Let nfeats be the desired number of features to select at each relevant stage.

Strategy 1: DSGall (Cumulative Score Update) This strategy treats the sequential unlearn-
ing problem as equivalent to unlearning a single, growing forget set Dcumul

F,k at each step k.
It maintains cumulative statistics required for calculating the feature importance scores.

• Cumulative Statistics: At step k, we need the aggregate sum of squared activa-
tions and the total number of tokens for all forget data seen so far. Let A2

F,i(j) =

∑x∈DF,i ∑
|x|
t=1[ f j(hx,t)]2 be the sum of squared activations for feature j on dataset DF,i,

and NF,i = ∑x∈DF,i
|x| be the total number of tokens in DF,i. The cumulative sums at

step k are:
Σ2

F,k(j) =
k

∑
i=1

A2
F,i(j)

Ncumul
F,k =

k

∑
i=1

NF,i

These sums can be updated incrementally as each new DF,k arrives, without needing to
store all previous datasets. The retain set statistics (A2

R(j) and NR) are computed once
from DR.

• Score Calculation: The importance scores are calculated using the cumulative statistics:

forget scoreall,k(j) =
Σ2

F,k(j)

Ncumul
F,k

retain score(j) =
A2

R(j)
NR

(constant across k)

imp ratioall,k(j) =
forget scoreall,k(j)

max{retain score(j), ε}
• Feature Selection: Using imp ratioall,k(j) and forget scoreall,k(j), select the feature set

Sall,k containing the top nfeats features, following the procedure in Algorithm 1 (filtering
by percentile pratio and ranking by forget score).

• Dynamic Threshold and Intervention: Calculate the activation statistic ρall,k(x) as
ρall,k(x) = (1/|x|)∑t 1[∃j ∈ Sall,k : f j(ht) > 0]. Calibrate the dynamic threshold
τall,k = Percentile({ρall,k(x)}x∈DR , pdyn). Apply conditional clamping using Sall,k and
τall,k during inference.

DSGall aims for the most accurate representation of feature importance with respect to all
forgotten data combined.

Strategy 2: DSGunion (Union of Feature Sets) This strategy selects features based on each
individual forget request DF,k and then uses the union of these feature sets for intervention.

• Independent Score Calculation: At step k, calculate importance scores using only the
current forget set DF,k and the retain set DR:

forget scoreindep,k(j) =
A2

F,k(j)
NF,k

retain score(j) =
A2

R(j)
NR

imp ratioindep,k(j) =
forget scoreindep,k(j)

max{retain score(j), ε}
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• Independent Feature Selection: Select the feature set Sindep,k containing the top nfeats
features based on imp ratioindep,k(j) and forget scoreindep,k(j).

• Union Set Formation: Maintain the cumulative union of feature sets identified at each
step:

Sunion,k = Sunion,k−1 ∪ Sindep,k (with Sunion,0 = ∅)

The size of Sunion,k may grow beyond nfeats.
• Dynamic Threshold and Intervention: Calculate the activation statistic ρunion,k(x) =

1
|x| ∑t 1[∃j ∈ Sunion,k : f j(ht) > 0]. Calibrate the dynamic threshold τunion,k =

Percentile({ρunion,k(x)}x∈DR , pdyn). Apply conditional clamping using Sunion,k and
τunion,k during inference.

DSGunion ensures that features deemed important for any past forget request are considered
for intervention, potentially capturing a broader range of forget-related concepts but possibly
leading to a larger intervention set over time.

Result. As reported in the main text (Figure 4(b)), both DSGall and DSGunion demonstrated
strong and stable performance across the four sequential unlearning requests on the MUSE
benchmark, significantly outperforming gradient-based methods which showed rapid
degradation.

I Relearning attack

I.1 Superficial Alignment Hypothesis
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Figure 9: (a) Distribution of activation cosine similarity and activation magnitude ratio between Base
and Finetuned models. Finetuning does not significantly change the underlying activation space. (b)
Train loss when finetuning Base model and Base+SAE model on WMDP and MMLU. Loss on WMDP
for the BASE+SAE model is significantly higher than on MMLU.

The resistance of DSG to relearning attacks can be understood through the lens of the
Superficial Alignment Hypothesis (Zhou et al., 2023), which posits that a model’s activation
geometry is established during pretraining and remains relatively stable during subsequent
finetuning. We provide empirical evidence supporting this hypothesis in Figure 9a, which
presents the distribution of activation cosine similarities and magnitude ratios between the
base and finetuned models.

The concentration of cosine similarity values near 1.0 indicates that finetuning preserves the
directional information in the activation space, with minimal rotational changes. Similarly,
the activation magnitude ratios cluster tightly around 1.0, demonstrating that the scale
of activations remains largely unchanged during finetuning. These findings align with
previous research suggesting that while weights may change substantially during finetuning,
the underlying activation patterns and geometry remain remarkably stable.

This stability of activation geometry is the basis for DSG’s effectiveness against relearning
attacks. By operating directly on these stable activation patterns rather than weights, DSG
establishes a more durable defense mechanism that persists even when adversaries attempt
to modify the model’s weights through finetuning.
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I.2 Train-time DSG Details

Beyond applying DSG only at inference (Test-time DSG), we explore integrating it directly
into the finetuning process itself to further enhance resistance against relearning attacks.
This approach, termed Train-time DSG, applies the standard DSG logic during each forward
pass of the finetuning/relearning phase.

Specifically, during finetuning on a potentially adversarial dataset (like the forget set itself
in a relearning attack scenario), Train-time DSG operates as follows:

1. For each input sequence x in a training batch, compute the hidden states ht and corre-
sponding SAE feature activations f j(ht).

2. Calculate the statistic ρ(x) based on the pre-selected forget feature set Snfeats.
3. Classify the sequence using the dynamic threshold τ: C(x) = 1[ρ(x) > τ].
4. Conditional Clamping: If C(x) = 1 (forget-relevant), modify the activations for features

j ∈ Snfeats by setting f ′j (ht) = −c for all tokens t. Otherwise, f ′j (ht) = f j(ht). These

potentially modified activations f ′ are then used for the reconstruction ĥ′ and subsequent
layers of the LLM.

5. The final loss (e.g., cross-entropy on the relearning task) is computed based on the LLM’s
output derived from these potentially clamped activations.

6. Gradient Blocking: During the backward pass, gradients flow back through the model as
usual. However, for any feature activation f j(ht) that was clamped to −c, the gradient
of the loss with respect to the upstream components (that produced ht) through that
specific feature pathway is effectively blocked. Setting the activation to a constant −c
detaches it from the upstream computations for the purpose of gradient calculation via
that feature’s contribution path. This is conceptually akin to applying a stop gradient
operation specifically on the clamped feature activations.

During this finetuning process, the parameters of the SAE itself (encoder Wenc, benc and
decoder Wdec, bdec) are kept frozen. This prevents the SAE from adapting to circumvent the
clamping intervention.

This dynamic gradient blocking prevents the finetuning process from easily undoing the
unlearning effect by simply adjusting weights to reactivate the specific features in Snfeats that
carry the forget-set information. When the model attempts to minimize loss on forget-set
examples by utilizing these features, Train-time DSG clamps them and blocks the relevant
gradient signal. This forces the model, if it attempts to relearn, to find potentially much less
direct or alternative pathways through other features or model components. This difficulty
in relearning via the original pathways contributes to the significantly higher training loss
observed on WMDP-Bio when finetuning with Train-time DSG active, as seen in Figure 9b.

I.3 Tamper-Resistant Safeguards

DSG functions as a tamper-resistant safeguard during finetuning by effectively filtering
gradients that would otherwise enable the model to relearn forgotten knowledge. Figure 9b
demonstrates this mechanism quantitatively, showing the training loss profiles when fine-
tuning the base model and the base model with DSG active on both WMDP-Bio (forget set)
and MMLU (retain set) datasets.

When DSG is active during finetuning, we observe significantly elevated training loss
values on WMDP-Bio compared to MMLU. This marked difference in loss profiles indicates
that DSG selectively impedes the model from reducing loss on forget set content while
allowing normal optimization on retain set content. This selective gradient filtering creates
an effective barrier against relearning targeted information.

The mechanism works because during finetuning, DSG constantly monitors activations
and applies clamping whenever forget-relevant features are activated above the dynamic
threshold. This intervention disrupts the gradient flow for targeted concepts, requiring
the model to develop entirely new processing pathways rather than simply recovering
previously established connections. This rewiring requirement explains the delayed recovery
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pattern observed in the main relearning experiments, where performance remains near
random for approximately six epochs before beginning to increase.

I.4 Relearning Attack at Learning Rate 1e-6
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Figure 10: Relearning attack performance with reduced learning rate (1e-6). All configurations show
minimal performance changes across finetuning epochs, demonstrating that relearning attack efficacy
is strongly dependent on learning rate.

To investigate the impact of learning rate on relearning attack efficacy, we conducted a
supplementary analysis using a reduced learning rate of 1e-6 (compared to 1e-5 in the
main experiments). Figure 10 presents WMDP-Bio accuracy across finetuning epochs for all
configurations under this reduced learning rate condition.

The results demonstrate minimal performance changes across all configurations throughout
the finetuning process. This stability indicates that relearning attack efficacy is strongly
dependent on learning rate, with lower rates substantially limiting the model’s ability
to recover forgotten knowledge. This finding has important implications for practical
deployment scenarios, suggesting that implementing learning rate constraints on model
access APIs could serve as an additional defense layer against relearning attacks.

I.5 Relearning Hyperparameters

For the relearning experiments, we used the RMU unlearned model as described in Sec-
tion 4.1, with RMU hyperparameters set to steering coefficient 400, alpha 100, monitoring
layer 3, AdamW optimizer, learning rate 5e-6, batch size 8, and 400 steps. For DSG config-
urations, we employed the optimal parameters identified in our WMDP-Bio experiments:
importance ratio percentile (pratio) of 95, feature count of 20, and clamp strength (c) of 500
for both test-time and train-time DSG interventions. The dynamic threshold percentile
(pdyn) was maintained at 95, consistent with our main experiments.

All finetuning and inference was performed on 2 A100 GPUs in under a day.

J Data Efficiency and Zero-shot Capabilities

J.1 Hyperparameters

Data Efficiency For the data efficiency experiments, we maintain consistent hyperparame-
ter settings across all data subsets to isolate the impact of dataset size. We use the optimal
DSG configuration identified for WMDP-Bio with 100% data, as shown in Table 12.
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Parameter Value

SAE gemma-scope-2b-pt-res SAE (width 16k)
SAE layer Layer 3, ℓ0 142
Importance ratio percentile (pratio) 95
Dynamic threshold percentile (pdyn) 95
Number of selected features 20
Clamp strength (c) 500

Table 12: DSG hyperparameters for data efficiency experiments

For RMU comparisons, we evaluate two approaches: (1) maintaining the same number of
training steps (400) across all data subsets, and (2) completing one full epoch over each
dataset subset. Maintaining the same number of training steps produced a better Pareto
front. We select the model with lower WMDP accuracy for each subset. The base RMU
configuration for WMDP-Bio is presented in Table 13.

Parameter Value

Steering coefficient 400
Alpha (α) 100
Monitoring layer 3
Learning rate 5e-6
Parameter subset MLP layers only

Table 13: RMU hyperparameters for data efficiency experiments

Zero-shot For zero-shot experiments, we vary only the dynamic threshold τ (as no retain
set is available for calibration) while keeping all other hyperparameters fixed at their optimal
values for each task, as shown in Table 14.

Parameter WMDP-Bio WMDP-Cyber

SAE layer Layer 3, ℓ0 59 Layer 3, ℓ0 59
Importance ratio percentile (pratio) 95 90
Feature selection 20 features 20 features via
Clamp strength (c) 500 500
τ range tested 0.1 to 0.9 (increments of 0.1) 0.1 to 0.9 (increments of 0.1)
Optimal τ 0.6 0.2

Table 14: Hyperparameters for zero-shot experiments

The optimal thresholds were determined to be τ = 0.6 for WMDP-Bio and τ = 0.2 for
WMDP-Cyber, as shown in Figure 6B.

K Ablations

This appendix provides comprehensive details on our ablation studies for DSG. We analyze
each component’s contribution to overall performance and explore sensitivity to various
hyperparameters.

K.1 Additional Ablations

DSG Clamp Strength c. The clamping parameter c determines the magnitude of inter-
vention applied to selected SAE features. As shown in Figure 11, WMDP-Bio accuracy
drops significantly at modest clamp values (c = 25), reaching near-optimal unlearning
performance, while MMLU accuracy remains above 99% for configurations with 10-20
features. For these optimal feature counts, performance remains remarkably stable across
a wide range of clamp strengths (100 ≤ c ≤ 500), demonstrating DSG’s robustness to this
parameter. By contrast Farrell et al. (2024) exhibit greater sensitivity to clamp values, as seen
in Figure 7A.
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Figure 11: Effect of clamp strength c on DSG performance across different feature counts. MMLU
accuracy (solid lines) remains consistently high (> 99%) for 10-20 features across all clamp values,
while WMDP-Bio accuracy (dashed lines) drops sharply even at modest clamp strengths (c = 25).
This demonstrates DSG’s ability to effectively remove targeted knowledge while preserving general
model capabilities with minimal parameter sensitivity.

DSG Number of Features. Across experiments, the number of features selected during
percentile-based feature selection represents a critical balance between coverage and preci-
sion. Selecting too few features may result in insufficient removal of forget-set information,
as some forget-set inputs might not activate the limited feature set strongly enough to trigger
intervention. Conversely, selecting too many features increases the risk of including noisy
features selected using importance scoring or less discriminative features that activate on
retain-set samples, potentially causing false positive detections and reducing model utility.

Our experiments consistently show that 20 features provides an optimal balance for both
WMDP-Bio and WMDP-Cyber domains. Configurations with 10 features occasionally
show reduced unlearning effectiveness despite good utility preservation, while 30-feature
configurations begin to impact retain-set performance at higher clamp strengths. The
precise optimal feature count may vary by domain and dataset characteristics as well as
SAE width, but the overall pattern of diminishing returns with increased feature counts
remains consistent.

Choice of Activation Statistic: Percentage vs. Raw Count. DSG’s dynamic classification
uses a sequence-level statistic derived from forget-feature (Snfeats ) activations. We compared
two statistics: (1) Percentage-based (ρ), the fraction of tokens where any j ∈ Snfeats activates
( f j(ht) > 0):

ρ(x) =
1
|x|

|x|

∑
t=1

1[∃j ∈ Snfeats : f j(ht) > 0]

and (2) Raw count-based (ρraw), the absolute number of such tokens:

ρraw(x) =
|x|

∑
t=1

1[∃j ∈ Snfeats : f j(ht) > 0]

Effective dynamic thresholding (calibrated on WikiText) requires low distributional distance
(Total Variation Distance, TVD) between retain sets (WikiText vs. MMLU) for generalization,
and high TVD between retain and forget sets (WikiText vs. WMDP) for discrimination
(Figure 12).

Empirically, ρ performs significantly better. For WMDP-Bio: (1) Retain alignment (WikiText
vs. MMLU): TVD(ρ) = 0.38 ± 0.03 vs. TVD(ρraw) = 0.88 ± 0.01, indicating ρ generalizes
better across retain sets. (2) Retain/Forget separation (WikiText vs. WMDP-Bio): TVD(ρ) =
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0.90 ± 0.02 vs. TVD(ρraw) = 0.41 ± 0.03, showing ρ discriminates more effectively. Similar
results hold for WMDP-Cyber (Figure 12).

The percentage-based statistic ρ outperforms ρraw due to its inherent normalization. Raw
counts (ρraw) are confounded by sequence length, whereas ρ measures activation density,
providing a length-invariant signal. This normalization improves both generalization across
retain data and discrimination from forget data, making ρ the more robust choice for DSG.
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Figure 12: Total Variation Distance (TVD) between WikiText and benchmark datasets using percentage-
based (ρ) vs. raw count-based (ρraw) metrics. Lower TVD between WikiText and MMLU indicates
better alignment of retain sets, while higher TVD between WikiText and WMDP indicates better
separation between retain and forget distributions. Percentage-based metrics consistently outperform
raw counts on both measures across all benchmarks.

K.2 Ablations Hyperparameter Details

Our ablation studies used the following hyperparameter configurations:

Clamp Strength and Feature Count. We evaluated DSG performance with feature counts
of 10, 20, and 30, across clamp strengths c ∈ {10, 25, 50, 100, 200, 300, 400, 500} and pratio =
95.

Feature Selection Comparison. To compare our percentile-based approach with Farrell
et al. (2024), we tested both methods using 20 and 30 features, with clamp values in the
range [10-500]. We set pratio = 95 for DSG and used the recommended threshold of 0.01 for
Farrell et al. (2024).

Dynamic Threshold. We varied pdyn from 60 to 97 using 20 and 30 features with c = 500
to examine the impact of threshold selection on the forget-retain trade-off.

Importance Ratio Threshold. We tested pratio values from 75 to 95 using 20 and 30 features
with c = 500 to assess feature selection stringency effects.

Activation Metrics. For comparing percentage vs. raw count metrics, we applied bootstrap
resampling with 1000 iterations, using Kernel Density Estimation to compute robust TVD
estimates between WikiText and test set distributions.

L Computational Cost (Inference Latency)

A practical consideration for deploying unlearning methods is their impact on inference
speed. We evaluated the latency introduced by DSG compared to the original model and a
static clamping baseline (Farrell et al., 2024).

Interventions using SAEs inherently introduce some latency compared to the original
LLM without the SAE. This overhead stems from two main sources: (1) The baseline
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cost of the SAE’s forward pass, which involves matrix multiplications for both encoding
(z = σ(Wench + benc)) and decoding (ĥ = Wdecz + bdec), scaling with the SAE’s width
(dsae); and (2) The cost of the specific intervention logic applied to the SAE features.

For DSG, this intervention logic involves two main steps beyond the standard SAE pass:
(a) calculating the ρ(x) statistic (fraction of forget-activated tokens) across the sequence’s
activations, and (b) conditionally applying the clamping intervention based on the ρ(x) > τ
comparison.

Table 15 presents the mean inference times (in seconds) and standard deviations over 100
samples (batch size 1) for processing sequences of varying lengths (256, 512, 1024 tokens).
These measurements were performed using the google/gemma-2-2b-it model (Lieberum
et al., 2024) and with the gemma-scope-2b-pt-res SAE (width 16k, applied at layer 3, ℓ0 142)
(Lieberum et al., 2024) on a single A6000 GPU.

As shown in Table 15, the total combined overhead (SAE matrix multiplications + inter-
vention logic) introduced by both static clamping and DSG is minimal. Specifically, DSG
increases latency by about 5% (ranging from approximately 3.6% to 7.3%) over the original
model across the tested sequence lengths. Importantly, the additional overhead incurred by
DSG’s dynamic classification logic (calculating ρ(x) and thresholding) compared to simple
static clamping is negligible indicating that the primary source of the observed latency
increase relative to the base LLM is the SAE’s own forward pass.

Seq Length Original Model (s) Static Clamping (s) Dynamic Clamping (DSG) (s)

256 tokens 0.0872 ± 0.0098 0.0933 ± 0.0091 (+7.0%) 0.0936 ± 0.0090 (+7.3%)
512 tokens 0.1618 ± 0.0061 0.1659 ± 0.0029 (+2.5%) 0.1676 ± 0.0047 (+3.6%)
1024 tokens 0.3300 ± 0.0081 0.3403 ± 0.0083 (+3.1%) 0.3420 ± 0.0081 (+3.6%)

Table 15: Comparison of Inference Latency Across Sequence Lengths for gemma-2-2b-it with
gemma-scope-2b-pt-res SAE. Data reported as mean ± std over 100 samples on a single A6000
GPU. Percentage increase relative to the Original Model shown in parentheses.

While DSG introduces this slight inference overhead, it is important to consider the broader
computational context. Gradient-based unlearning methods require computationally inten-
sive finetuning processes involving backward passes through the model for each unlearning
request. In contrast, DSG’s unlearning cost primarily involves a one-time computation of
activation statistics (which can be amortized across many uses) and the minimal, constant
inference-time overhead detailed above.

Therefore, DSG offers a highly efficient alternative for unlearning, achieving state-of-the-art
forgetting effectiveness and utility preservation with only a marginal increase in inference
latency. This makes it particularly attractive for scenarios requiring frequent or sequential
unlearning operations where the cost of repeated gradient-based finetuning would be
prohibitive.
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M Feature Interpretability

A key strength of Dynamic SAE Guardrails (DSG) is interpretable unlearning, especially
in zero-shot scenarios where domain-specific data is absent. To demonstrate this, we used
Neuronpedia API’s search by SAE (Lin, 2023) to directly identify Sparse Autoencoder (SAE)
features relevant to biosecurity and cybersecurity hazards. For WMDP-Bio and WMDP-
Cyber, “Biology” and “Cybersecurity” queries retrieved the top 20 feature IDs from the
gemma-scope-2b-pt-res SAE (width 16k) (Lieberum et al., 2024) applied to gemma-2-2b-it
layer 3 (ℓ0 59).

Table 16 shows the semantic alignment of these zero-shot features with the targeted knowl-
edge. Listing the top 20 SAE feature IDs for both domains, alongside Neuronpedia inter-
pretations, the table shows features for “Biology” consistently described with terms like
“biological processes”, “cellular functions”, and “genetics”—core concepts of biosecurity
risks. Similarly, “Cybersecurity” features are linked to “cyber threats”, “digital security”,
and “encryption,” reflecting cybersecurity risks in WMDP-Cyber. This highlights SAEs’
ability to extract topically precise features, even without task-specific data.

Figure 13 further illustrates this, visualizing activations on WMDP-Bio and WMDP-Cyber
forget set sequences. Figure 13A (WMDP-Bio) shows activations for IDs 373 and 10933
clustering around biological terms like “bacteria”, “cellular”, and “infection” while Figure
13B (WMDP-Cyber, IDs 15286 and 2905) shows clusters around cybersecurity terms like
“encryption”, “data”, and ”security.”

These examples and Table 16 show that zero-shot SAE feature selection captures se-
mantically rich, domain-relevant concepts associated with hazardous knowledge. This
interpretability is prescriptive for unlearning: by targeting these topically coherent features,
DSG achieves zero-shot interpretable unlearning. This is a key practical advantage over
gradient-based methods, which require task-specific data and lack inherent interpretability,
making DSG a uniquely transparent and data-efficient solution for mitigating hazardous
knowledge, especially in data-scarce or zero-shot deployment.

Figure 13: Feature Activations on Example Sequences from Forget Sets. (A) WMDP-Bio sequence
with words highlighted in green indicating activation values > 0 for feature ID (top) 373 and (bottom)
10933. (B) WMDP-Cyber sequence with words highlighted in green indicating activation values > 0
for feature ID (top) 15286 and (bottom) 2905. Activation magnitudes are reported above the words in
grey.
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Biology
ID Sentence

12382 Terms related to biological processes and structures in living organisms
9722 Concepts related to biological processes and systems
343 Terms related to biological processes and laboratory techniques
373 Scientific terminology related to biological processes and cellular functions
11 Scientific terms and concepts related to biology

15969 Terms related to biotechnology and bio-related fields
12117 Concepts related to biological or cellular processes and conditions, particularly focusing

on requirements, limitations, and energy dynamics
5877 Terms related to biological processes and molecular interactions
968 Terms related to biological or medical processes and conditions, especially those involv-

ing cellular or molecular biology
622 Scientific terminology related to cellular processes and functions

5231 Specific terminology related to biological processes and gene expression
10546 Biological and genetic terms or sequences
12037 Medical terms and technical jargon related to genetic and biological research
6150 Elements related to scientific terminology, particularly in genetics and molecular biology
5704 Scientific terms and jargon related to biological research

14747 Technical terminology and references related to biotechnology and medical research
8786 Scientific terminology related to molecular biology and laboratory procedures

10933 Terms related to biological research and medical methodologies
140 Technical terms and concepts related to biology and bioengineering

13527 Terms related to biological or medical research, particularly focusing on specific condi-
tions and associated microorganisms

Cybersecurity
ID Sentence

15331 Terms related to cyber threats and cybersecurity issues
2060 Explicit mentions of digital security concerns

15286 Concepts and terms related to digital security and data integrity
11015 Terms related to security and the act of securing something

364 References to security and related terms
4836 Concepts related to secure web connections and cryptocurrency surplus
2905 Terms related to data security and encryption

10931 References to national security and related governmental positions or actions
11716 Technical terms and language related to coding and software functionality, specifically

focusing on vulnerabilities
16160 Discussions related to technology and computer systems
6309 References to technology and its applications across various sectors

10543 Keywords related to safety and security measures in various contexts
11513 Terms related to computing and data centers
1803 References to Common Weakness Enumeration (CWE) identifiers

12681 Keywords related to safety and security
11520 References to information technology and IT-related concepts
11323 Key concepts related to digital citizenship and its implications in various contexts
10415 Key components of data processing and communication in systems, particularly fo-

cusing on the details of data packet headers and their significance for routing and
interpreting data

3943 References to computing systems and technologies
4686 References to technology and tech-related topics

Table 16: Top 20 SAE Features for Biology and Cybersecurity in Zero-Shot Setting. List of the top 20
SAE feature IDs identified by querying Neuronpedia with “Biology” and “Cybersecurity”, alongside
their corresponding Neuronpedia-provided interpretations, showing the semantic relevance of the
selected features to the targeted knowledge domains.
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