
Axiomatic Analysis of Uncertainty Estimation For Retrieval Augmented
Generation

Anonymous ACL submission

Abstract

Large Language Models (LLMs) are valued for001
their strong performance across various tasks,002
but they also produce inaccurate or misleading003
outputs. Uncertainty Estimation (UE) quanti-004
fies the model’s confidence and helps users as-005
sess response reliability. However, existing UE006
methods have not been thoroughly examined007
in scenarios like Retrieval-Augmented Gener-008
ation (RAG), where the input prompt includes009
non-parametric knowledge. This paper shows010
that current UE methods cannot reliably assess011
correctness in the RAG setting. We further012
propose an axiomatic framework to identify de-013
ficiencies in existing methods and guide the de-014
velopment of improved approaches. Our frame-015
work introduces five constraints that an effec-016
tive UE method should meet after incorporating017
retrieved documents into the LLM’s prompt.018
Experimental results reveal that no existing UE019
method fully satisfies all the axioms, explaining020
their suboptimal performance in RAG. We fur-021
ther introduce a simple yet effective calibration022
function based on our framework, which not023
only satisfies more axioms than baseline meth-024
ods but also improves the correlation between025
uncertainty estimates and correctness.026

1 Introduction027

028 Large language models (LLMs) specializing in029

natural language generation (NLG) have recently030

demonstrated promising capabilities across various031

tasks (Mallen et al., 2023). However, LLMs are032

prone to generating incorrect information for multi-033

ple reasons, such as lack of parametric knowledge,034

temporal knowledge shifts (Zhao et al., 2024a; Ko-035

rdjamshidi et al., 2024), or noisy information intro-036

duced through retrieved documents in Retrieval-037

Augmented Generation (RAG) (Soudani et al.,038

2024; Min et al., 2023). As a result, the trustwor-039

thiness of LLM-generated responses has become040

a critical concern, directly impacting user satisfac-041

tion (Hou et al., 2024; Mahaut et al., 2024).042

    Old Trafford

        
       Context:
Manchester United Football Club is a professional football club … changed 
its name to Manchester United in 1902 and moved to its current stadium, 
Old Trafford, in 1910.

Wembley Stadium
      Question: What is the name of manchester      
      united stadium?

No-RAG RAG Uncertainty Change

Figure 1: For a given query, uncertainty can be com-
pared with and without RAG. For instance, when the
LLM answers correctly on its own, and RAG pro-
vides supporting evidence, uncertainty should decrease.
These intuitive principles form a framework for evaluat-
ing and interpreting uncertainty behavior in RAG.

Uncertainty Estimation (UE) is a widely studied 043

approach for assessing the reliability of LLM out- 044

puts. A UE method assigns an uncertainty score to 045

each (input, output) pair, reflecting its truthfulness. 046

Ideally, a perfect UE method would assign lower 047

uncertainty to correct samples and higher uncer- 048

tainty to incorrect ones (Duan et al., 2024). While 049

existing UE methods mainly focus on scenarios 050

where the input is just a query, real-world applica- 051

tions like RAG involve non-parametric knowledge 052

in more complex prompts (Huang et al., 2024). Re- 053

search shows that non-parametric knowledge sig- 054

nificantly influences LLM responses, often aligning 055

them with the provided context (Cuconasu et al., 056

2024; Mallen et al., 2023). Despite this, it is un- 057

clear how current UE methods account for non- 058

parametric knowledge. 059

In this paper, we investigate a critical question: 060

(RQ1) How do UE methods perform when the in- 061

put prompt includes non-parametric knowledge, 062

such as in RAG? We study UE in the context of 063

RAG with retrievers of varying effectiveness: (i) 064

a deliberately weak synthetic retriever that returns 065

irrelevant documents, (ii) an idealized retriever that 066

consistently ranks the gold document at the top, 067
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and (iii) several widely used retrievers with varying068

performance levels. Our findings unveil that the069

performance of existing UE methods is inconsis-070

tent and mainly deteriorates when non-parametric071

knowledge is included in the input prompt (Fig-072

ure 2). Most notably, improvements on the pro-073

posed UE methods in the literature do not add up074

when considering RAG setup (Table 1).075

Against this background, it is clear that UE re-076

quires a methodological departure; existing meth-077

ods are developed without paying attention to the078

specific properties that UE must satisfy in RAG079

setups. The question that arises here is (RQ2) What080

properties can guarantee optimal performance of081

UE considering LLMs’ both parametric and non-082

parametric knowledge? We approach this question083

theoretically using axiomatic thinking, proven ef-084

fective in various fields and tasks, including infor-085

mation retrieval (Fang and Zhai, 2005; Bondarenko086

et al., 2022), interpretability (Chen et al., 2024),087

and preference modeling (Rosset et al., 2023). In088

axiomatic thinking, a set of formal constraints is089

defined based on desired properties, which are then090

used as a guide to search for an optimal solution.091

In this work, we define an axiomatic framework092

for UE and establish five axioms considering the093

desired behavior of a UE method with and with-094

out external knowledge. Our axiomatic analysis095

reveals that current UE methods can satisfy only096

two of the axioms, violating the remaining three097

axioms in majority of cases.098

The axiomatic framework helps explaining defi-099

ciencies of existing UE methods for RAG setup.100

The next question is (RQ3) Can the axiomatic101

framework guide us in deriving an optimal UE102

method? We use the constraints of the axiomatic103

framework to define a calibration function based104

on three components. We implement three instanti-105

ations of this function and apply it to different UE106

methods on a number of representative datasets.107

The results show that the derived functions are not108

only more stable than the existing UE methods but109

also improve overall performance with respect to110

AUROC. This highlights two key insights: first, sat-111

isfying the axioms leads to performance improve-112

ments, and second, existing UE methods can still113

be used for RAG by incorporating an axiomatically114

informed coefficient.115

The main contributions of this paper include:116

(1) Analyzing existing UE methods and showing117

their deficiencies in RAG setup.118

(2) Proposing an axiomatic framework for UE with119

five formalized constraints and demonstrating defi- 120

ciencies of existing methods in satisfying them. 121

(3) Introducing a calibration function guided by ax- 122

ioms and showing consistent improvements of the 123

UE methods as a result of alignment with axioms. 124

2 Background 125

126UE methods are typically divided into white-box 127

approaches, which utilize token probabilities and 128

entropy (Kadavath et al., 2022; Kuhn et al., 2023), 129

and black-box approaches, which rely solely on 130

final outputs (Lin et al., 2024; Band et al., 2024). 131

This section reviews methods of both categories 132

that are explored in this paper. For further details 133

on related work, see Appendix A. 134

2.1 White-box Methods 135

Predictive Entropy (PE) for generative models 136

quantifies uncertainty as the entropy of responses 137

for an LLM input. The entropy is maximized when 138

all outcomes are equally likely, indicating low in- 139

formativeness (Kadavath et al., 2022; Kuhn et al., 140

2023). Given an LLM parametrized by θ and an 141

input x, the LLM uncertainty is estimated by com- 142

puting entropy using Monte-Carlo approximation: 143

PE(x, θ) = − 1

B

B∑
b=1

lnP (rb | x, θ) , (1) 144

where rb is a beam-sampled response and B is the 145

number of samples. The probability of generat- 146

ing a response r = {r1, r2, ..., rN}, comprising N 147

tokens, given the input x is computed as the prod- 148

uct of the conditional probabilities of each token, 149

given its preceding tokens and the input x. For a 150

model with parameters θ, the sequence probability 151

is defined as: 152

P (r | x, θ) =
N∏

n=1

P
(
rn | r<n, x; θ

)
, (2) 153

where r<n denotes the tokens generated before rn. 154

Semantic Entropy (SE) (Kuhn et al., 2023) ex- 155

tends PE by incorporating the semantic meaning 156

of sampled responses. In this approach, generated 157

samples are clustered into semantic clusters ci ∈ C, 158

and SE is defined as: 159

SE(x, θ) = − 1

|C|

|C|∑
i=1

log P̃ (ci | x, θ) , (3) 160

where ci represents a semantic cluster, containing 161

semantically similar responses. The cluster score 162

P̃ (ci|.) is computed as: 163

P̃ (ci | x, θ) =
∑
r∈ci

P (r | x, θ). 164
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Length Normalization and Semantic Awareness165

are two important components in UE. It has been166

observed that the sequence probability in Equa-167

tion (2) is biased against longer generations (Ma-168

linin and Gales, 2021). To address this, a length-169

normalized probability is introduced to generate170

equal weighting of tokens and reduce bias toward171

shorter sequences:172

Pln(r | x, θ) =
N∏

n=1

P
(
rn | r<n, x; θ

) 1
N .173

MARS (Bakman et al., 2024) and Token-174

SAR (Duan et al., 2024) further refined this175

approach by incorporating semantic importance.176

These approaches assign weights based on each to-177

ken’s contribution, resulting in the meaning-aware178

probability:179

Pme(r | x, θ) =
N∏

n=1

P
(
rn | r<n, x; θ

)w(r,x,N,n)
180

where w(r, x,N, n) is the importance weight for181

the n-th token. Both the length-normalized and182

meaning-aware probabilities can be used in the183

PE (1) and SE (3) equations.184

2.2 Black-box Methods185

We examine state-of-the-art semantic similarity-186

based methods (Lin et al., 2024), following187

these steps: (i) generate B sampled responses188

{r1, . . . , rB} for a given input x; (ii) compute pair-189

wise similarity scores ai,j = a(ri, rj) between the190

responses; and (iii) derive uncertainty from these191

scores. Three approaches are proposed for comput-192

ing uncertainty scores, described below.193

Sum of Eigenvalues (EigV) (Lin et al., 2024). SE194

groups responses into semantic equivalence subsets195

and uses their count (NumSet) as an uncertainty196

metric; greater diversity implies higher uncertainty.197

To compute a more nuanced and continuous value198

for uncertainty than NumSet, Lin et al. (2024) de-199

fine uncertainty as:200

UEigV(x) =
B∑

k=1

max (0, 1− λk) , (4)201

where λ1, . . . , λB are the eigenvalues of symmetric202

normalized Graph Laplacian (von Luxburg, 2007),203

defined as:204

L := I −D− 1
2WD− 1

2 .205

Here, W represents a symmetric weighted adja-206

cency matrix for a graph, where each node rep-207

resents a response ri for input x and weights are208

wi,j = (ai,j + aj,i)/2. The degree matrix D is209

defined as 210

Di,j =

{∑
j′∈[B]wi,j′ if i = j,

0 if i ̸= j.
(5) 211

Degree Matrix (Deg) relies on the degree matrix 212

in Eq. (5) to computer uncertainty. Here, the intu- 213

ition is that D reflects node connectivity, and nodes 214

with higher degrees indicate confident regions in 215

the LLM (Lin et al., 2024). Building on this, the 216

uncertainty score is computed by: 217

UDeg(x) = trace(BI −D)/B2. 218

Eccentricity (ECC) is defined as the average dis- 219

tance of response embeddings from their centroid, 220

which can serve as an uncertainty measure. Since 221

access to the embeddings is not possible in black- 222

box LLMs, the embeddings are driven from graph 223

Laplacian. Let u1, . . . ,uk ∈ RB be the k smallest 224

eigenvectors of L. For each response rj , define 225

the embedding as vj = [u1,j , . . . , uk,j ] (Ng et al., 226

2001), and its centroid as v′
j = vj − 1

B

∑B
j′=1 vj′ . 227

Uncertainty is computed as: 228

UECC(x) =
∥∥∥[v′⊤

1 , . . . ,v′⊤
B

]∥∥∥
2
. 229

3 Axiomatic Framework 230

231The assumption of an axiomatic framework for 232

UE is that by satisfying a set of formal constraints, 233

a UE method would likely have an optimal correla- 234

tion with correctness for both RAG and non-RAG 235

setups. To define the framework, we introduce 236

five axioms based on a set of functions that form 237

our search space for an optimal UE. These axioms, 238

while necessary, do not represent an exhaustive 239

set, as increasing the number of axioms can, in re- 240

ality, introduce stringent, contradictory, or biased 241

constraints. In the following, we introduce the func- 242

tions and constraints of our axiomatic framework. 243

3.1 Functions 244

We define UE as the task of learning a function 245

U that predicts a score s, quantifying the LLM’s 246

uncertainty for its output (Liu et al., 2024). For- 247

mally, let x be the input given to a generative LLM 248

Mθ, parameterized by θ. The uncertainty estimator 249

function is formulated as follows: 250

U : Mθ(x), r 7→ s 251

where the input consists of an LLM with the given 252

input x and a generated response r. In a non-RAG 253

setting, the input x is only the query q, while for 254

the RAG setup, the input x consists of a query q 255

and a context c, denoted as Mθ(q, c) = r. We 256
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define context c broadly, including an individual257

document or a set of documents.258

Before defining the axioms, we introduce func-259

tions that formalize the relation between a context,260

a query, and an LLM-generated response. These261

functions, defined based on Natural Language In-262

ference (NLI) (Pavlick and Callison-Burch, 2016;263

Williams et al., 2018), are as follows:264

Entailment (c ⊨ (q, r)): Given the context c, a265

human can infer that r is the correct response to266

q; i.e., the premise c entails the hypothesis (q, r)267

(asymmetric relation).268

Contradiction (c⊥(q, r)): Given the context c, a269

human can infer that r is an incorrect response to q;270

i.e., the premise c contradicts the hypothesis (q, r)271

and vice versa (symmetric relation).272

Independence (c#(q, r)): Given the context c, a273

human cannot infer any information about the cor-274

rectness of response r to query q; i.e., the premise c275

does not guarantee the truth or falsity of hypothesis276

(q, r) and vice versa (symmetric relation).277

Equivalence (r1 ≡ r2): Two LLM responses, r1278

and r2, convey the same meaning; i.e., the premise279

r1 entails the hypothesis r2 and vice versa (sym-280

metric relation).281

3.2 Axioms282

The axioms are defined based on two key assump-283

tions to ensure the validity of axioms and the three284

aforementioned functions:285

Assumption 1. The context c is trustworthy and286

contains factually correct information.287

Assumption 2. The context c given to the LLM288

for the query q does not contain contradictory in-289

formation about the query q.290

We now define five constraints that any reason-291

able UE method should satisfy, considering LLM’s292

both parametric and non-parametric knowledge.293

Our working hypothesis is that UE is a proxy for294

the correctness of the model (Bakman et al., 2024).295

Two of these constraints are proven based on this296

hypothesis, and three of them are intuitively driven.297

Theorem 1 (Positively Consistent). ∀q, c if298

Mθ(q) = r1, Mθ(q,c) = r2, r1 ≡ r2, c ⊨ (q, r2),299

then U(Mθ(q), r1) > U(Mθ(q, c), r2).300

This constraint states that if applying RAG does301

not alter the LLM’s response and the RAG con-302

text supports LLM’s generated response r2, the303

LLM’s internal belief aligns with the context. In304

such a scenario, the uncertainty after applying RAG305

should be lower than before, as the retrieved con- 306

text reinforces the LLM’s prior knowledge. For in- 307

stance, consider the example in Figure 1. Given the 308

query, "What is the name of Manchester United’s 309

stadium?" if the LLM initially generates the cor- 310

rect response, "Old Trafford," and the input con- 311

text mentions "Old Trafford" as the name of the 312

stadium, then the uncertainty value after applying 313

RAG should be lower than before. 314

Theorem 2 (Negatively Consistent). ∀q, c if 315

Mθ(q) = r1, Mθ(q, c) = r2, r1 ≡ r2, c⊥(q, r2), 316

then U(Mθ(q), r1) < U(Mθ(q, c), r2). 317

This constraint states that if the LLM’s response 318

remains unchanged after applying RAG, but the re- 319

trieved context c contradicts the generated response 320

r2, then the LLM’s internal belief does not align 321

with the context. In such a case, the uncertainty 322

after applying RAG should be higher than before, 323

as the retrieved information challenges the LLM’s 324

internal belief. For example, in Figure 1, if LLM’s 325

response before and after RAG is "Wembley Sta- 326

dium," and RAG context contradicts the LLM’s 327

response, then the uncertainty of the RAG response 328

should increase. This means that although the LLM 329

persists with its incorrect response, it does so with 330

a lower confidence. 331

Theorem 3 (Positively Changed). ∀q, c if 332

Mθ(q) = r1, Mθ(q, c) = r2, ¬(r1 ≡ r2), 333

c⊥(q, r1), c ⊨ (q, r2), then 334

U(Mθ(q), r1) > U(Mθ(q, c), r2). 335

Theorem 3 directly follows from the statement 336

in the following lemma: 337

Lemma 1. If Mθ(x1) = r1 , Mθ(x2) = r2, r1 is 338

False, r2 is True, then 339

U(Mθ(x1), r1) > U(Mθ(x2), r2). 340

Proof. Given Assumptions 1 and 2 and c⊥(q, r1), 341

then response r1 is False. Similarly, given that 342

c ⊨ (q, r2), then response r2 is True. Given 343

these events and Lemma 1, then U(Mθ(q), r1) > 344

U(Mθ(q, c), r2). 345

This constraint states that if the LLM’s response 346

changes from r1 to r2 after applying RAG, and 347

the RAG context c supports r2 while contradicting 348

r1, then the estimated uncertainty for r2 should be 349

lower than one for r1. For example, consider the 350

case illustrated in Figure 1. If the LLM initially 351

generates "Wembley Stadium" but then, after seeing 352

a context containing the correct response, changes 353

its output to "Old Trafford," the uncertainty of "Old 354
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Trafford" with RAG should be lower than the un-355

certainty of "Wembley Stadium" without RAG.356

Theorem 4 (Negatively Changed). ∀q, c if357

Mθ(q) = r1, Mθ(q, c) = r2, ¬(r1 ≡ r2),358

c ⊨ (q, r1), c⊥(q, r2), then359

U(Mθ(q), r1) < U(Mθ(q, c), r2).360

This theorem follows from the statement in the361

Lemma 1 with the following proof.362

Proof. The proof is similar to that of Theorem363

3. Given Assumptions 1 and 2 and c ⊨ (q, r1),364

then response r1 is correct. Similarly, response365

r1 is incorrect because c⊥(q, r1). Based on366

Lemma 1 and these events, then U(Mθ(q), r1) <367

U(Mθ(q, c), r2).368

This constraint states that if the LLM’s response369

changes from r1 to r2 after applying RAG, where370

r1 is correct, and r2 is incorrect, then the estimated371

uncertainty of r2 should be higher than the one for372

r1. In the example of Figure 1, the LLM generates373

the correct response "Old Trafford" and changes its374

response to "Wembley Stadium" in the RAG setup,375

which is incorrect. In this scenario, the uncertainty376

of the RAG response should be higher than that of377

the original response without RAG.378

Theorem 5 (Neutrally Consistent). ∀q, c if379

Mθ(q) = r1, Mθ(q, c) = r2, r1 ≡ r2, c#(q, r1),380

then U(Mθ(q), r1) ≈ U(Mθ(q, c), r2).381

This constraint states that if the LLM’s response382

remains unchanged after applying RAG, and the383

retrieved context c is unrelated to the query and384

responses r1 and r2, then the context neither sup-385

ports nor contradicts the LLM’s belief. In this case,386

the estimated salary should remain similar. For387

example, consider the query "Who wrote the book388

The Origin of Species?". If, in the RAG setup, the389

LLM is provided with the context shown in Fig-390

ure 1, which is unrelated to the query, then as long391

as the response remains unchanged, the uncertainty392

value should remain unaffected.393

3.3 Instantiation394

To empirically examine UE methods against these395

axioms, we need to define a specific instantia-396

tion of functions in our framework (cf. Sec. 3.1).397

We introduce two instantiations of these functions:398

reference-based and reference-free. The reference-399

based instantiation assumes the existence of a400

benchmark containing ground truth responses to401

queries. Such a benchmark is not available for402

reference-free instantiation.403

Reference-based. In this setup, we rely on ground 404

truth labels to check the condition of each axiom. 405

We assume that for every q, the correct response r̂ 406

is available in our ground truth. The implemen- 407

tation of Entailment and Contraction functions 408

then boils down to comparing the generated re- 409

sponse r against the ground truth response r̂. The 410

comparison is performed using a matching func- 411

tion M(r1, r2), which assesses whether the two 412

responses are equivalent. This function is also 413

used to implement the Equivalence function. For 414

datasets containing factual queries with short re- 415

sponses, M(.) is an Exact Match (EM) function, 416

which returns True if and only if the two responses 417

are identical on a token-by-token basis (Mallen 418

et al., 2023). Using this setup, the following condi- 419

tions can be inferred for our axioms: 420

Axiom 1. M(r1, r2) = True, M(r2, r̂) = True. 421

Axiom 2. M(r1, r2) = True, M(r2, r̂) = False. 422

Axiom 3. M(r1, r2) = False, M(r1, r̂) = False, 423

M(r2, r̂) = True. 424

Axiom 4. M(r1, r2) = False, M(r1, r̂) = True, 425

M(r2, r̂) = False. 426

Axiom 5. M(r1, r2) = True, c is not relevant to q. 427

Reference-free. Since access to the correctness la- 428

bels of LLM’s responses limits the applicability of 429

axioms to unseen queries, we propose a reference- 430

free implementation of axioms. Specifically, we 431

leverage an NLI classifier to assess the relationship 432

between the generated response and the context. 433

Following (Kuhn et al., 2023; Lin et al., 2024), we 434

implement Entailment by merging entailment and 435

neutral classes into a single class. The contradic- 436

tion class of the NLI classifier is considered as Con- 437

tradiction. Similar to the reference-based instantia- 438

tion, function M(.) is used for Equivalence. Using 439

these definitions, all axioms are implemented as 440

formalized, except for Axiom 5, which is imple- 441

mented similarly to the reference-based setup due 442

to the limitations of existing NLI methods in pre- 443

dicting the neutral relation. 444

4 Derivation of a Calibration Function 445

In this section, we search over the function space of 446

our axiomatic framework to drive calibration func- 447

tion that improves existing UE methods. To recap, 448

our formal constraints are built around four func- 449

tions that are examined for LLM responses without 450

and with RAG; i.e., r1 and r2. These functions 451

are of two types: (i) Equivalence that examines the 452

relation between two LLM generated responses, 453
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represented as E(r1, r2), and (ii) other functions454

that examine entailment, contradiction, and inde-455

pendence relations between context, query, and an456

LLM generated response, represented as R(c, q, r).457

We define a calibration coefficient by searching the458

space of our axiomatic constraints using these two459

types of functions:460

αax = k1 · E(r1, r2) + k2 · R(c, q, r1)+

k3 · R(c, q, r2),
461

where k1, k2, k3 are hyper parameters, and r1, r2462

represent LLM generated responses without and463

with RAG, respectively. The calibrated UE func-464

tion for RAG is then defined as:465

U(Mθ(c, q), r2)
cal = (k4−αax)·U(Mθ(c, q), r2).466

The hyper parameters k1–k4 are set to satisfy467

the axioms using a validation set. This calibration468

enables increasing the uncertainty score of RAG469

for samples associated with axioms 2 and 4 while470

decreasing it for samples related to axioms 1 and 3.471

4.1 Instantiation472

We propose three instantiations of the calibration473

function, where three different models are used to474

implement R.475

CTI. The first model is based on the Context-476

sensitive Token Identification (CTI) task, which477

has been applied in self-citation and groundedness478

evaluation (Sarti et al., 2024; Qi et al., 2024). In479

this approach, each token in r = {r1, r2, . . . , rN}480

is evaluated using a contrastive metric m (e.g., KL481

divergence, comparing the LLM’s response distri-482

butions with and without the context. The result-483

ing scores are {m1,m2, . . . ,mN}, where mn =484

KL(P (rn | r<n, (q, c); θ) ∥ P (rn | r<n, q; θ)).485

These scores are converted into binary values via486

the selector function SCTI. The overall relation487

score is then computed as:488

R(c, q, r) =
1

N

N∑
n=1

SCTI(mn).489
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PE 1.51 0.94 ∗ 0.84 ∗ 0.69 ∗ 0.62 ∗ 0.51 ∗

SE 5.66 3.73 ∗ 3.68 ∗ 3.53 ∗ 3.41 ∗ 3.26 ∗

PE+M 2.35 1.42 ∗ 1.26 ∗ 1.05 ∗ 0.92 ∗ 0.80 ∗

SE+M 6.47 4.05 ∗ 3.98 ∗ 3.77 ∗ 3.60 ∗ 3.45 ∗

Deg 0.48 0.05 ∗ 0.07 ∗ 0.06 ∗ 0.05 ∗ 0.03 ∗

ECC 0.68 0.03 ∗ 0.08 ∗ 0.08 ∗ 0.05 ∗ 0.04 ∗

EigV 4.18 1.08 ∗ 1.16 ∗ 1.17 ∗ 1.11 ∗ 1.08 ∗

Table 1: Average uncertainty values for various set-
tings. Lighter colors indicate lower uncertainty. Statis-
tically significant differences are compared to No Doc
are marked with ∗.

NLI. The second model employs an NLI-based 490

approach that quantifies the relationship using en- 491

tailment probability: 492

R(c, q, r) = N⊨(c, (q, r)). 493

MiniCheck. Finally, the third model employs 494

MiniCheck (Tang et al., 2024), which performs 495

sentence-level fact-checking using a fine-tuned 496

model. It produces a score between 0 and 1 in- 497

dicating how well the r is grounded in the c: 498

R(c, q, r) = MiniCheck(c, (q, r)). 499

In all three instantiations, the equivalence func- 500

tion E(r1, r2) is an NLI classifier, wherein the en- 501

tailment probability serves as a continuous measure 502

of similarity between r1 and r2 (Kuhn et al., 2023); 503

formally E(r1, r2) = N⊨(r1, r2). 504

5 Experimental Setup 505

506Datasets. We evaluate our approach on three 507

open-book QA datasets, Natural Questions (NQ- 508

open) (Lee et al., 2019), TriviaQA (Joshi et al., 509

2017), and POPQA (Mallen et al., 2023). All 510

datasets contain relevant passages for queries. 511

Experimental setup. Our experiments involve the 512

reproduction of existing UE methods for the RAG 513

setup. To ensure a fair comparison, we employ 514

LLMs that are used in the original papers: Llama2- 515

chat 7B and Mistral-7B. For uncertainty compu- 516

tation, 10 responses per query are generated with 517

a temperature setting of T = 1; for correctness 518

evaluation, the most likely response is considered. 519

Following (Kuhn et al., 2023), we use Deberta- 520

large model fine-tuned on MNLI as NLI classi- 521

fier. BM25, Contriever (Izacard et al., 2022), and 522

BM25+Reranker are used as retrievers. Manually 523
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UE PopQA
BM25 Contriever Doc+

Axiom 1: Positively Consistent ↓
PE 0.735 → 0.419 ∗ 0.735 → 0.408 ∗ 1.242 → 0.340 ∗

SE 3.781 → 3.205 ∗ 3.791 → 3.158 ∗ 4.682 → 3.113 ∗

PE+M 0.896 → 0.483 ∗ 0.881 → 0.458 ∗ 1.530 → 0.406 ∗

SE+M 4.102 → 3.286 ∗ 4.091 → 3.248 ∗ 5.146 → 3.173 ∗

EigV 1.951 → 1.166 ∗ 2.025 → 1.143 ∗ 4.074 → 1.078 ∗

ECC 0.417 → 0.110 ∗ 0.426 → 0.094 ∗ 0.710 → 0.055 ∗

Deg 0.220 → 0.048 ∗ 0.230 → 0.043 ∗ 0.496 → 0.022 ∗

Axiom 2: Negatively Consistent ↑
PE 1.068 → 0.746 0.820 → 0.593 1.083 → 0.597

SE 4.163 → 3.548 ∗ 4.104 → 3.381 ∗ 4.388 → 4.107

PE+M 1.309 → 0.844 1.016 → 0.782 1.328 → 0.684

SE+M 4.599 → 3.700 ∗ 4.481 → 3.610 ∗ 4.764 → 4.221

EigV 2.453 → 1.338 ∗ 2.088 → 1.274 ∗ 2.758 → 1.910

ECC 0.541 → 0.197 ∗ 0.477 → 0.152 ∗ 0.503 → 0.443

Deg 0.286 → 0.101 ∗ 0.228 → 0.073 ∗ 0.343 → 0.254
Axiom 3: Positively Changed ↓

PE 1.375 → 0.347 ∗ 1.416 → 0.298 ∗ 1.342 → 0.268 ∗

SE 4.889 → 3.015 ∗ 5.091 → 3.013 ∗ 4.884 → 3.051 ∗

PE+M 1.708 → 0.398 ∗ 1.735 → 0.374 ∗ 1.604 → 0.340 ∗

SE+M 5.514 → 3.072 ∗ 5.681 → 3.082 ∗ 5.379 → 3.099 ∗

EigV 4.131 → 1.139 ∗ 4.733 → 1.114 ∗ 4.449 → 1.102 ∗

ECC 0.790 → 0.085 ∗ 0.823 → 0.081 ∗ 0.780 → 0.072 ∗

Deg 0.547 → 0.044 ∗ 0.588 → 0.035 ∗ 0.544 → 0.032 ∗

Axiom 4: Negatively Changed ↑
PE 0.933 → 0.636 1.006 → 0.558 1.252 → 0.463

SE 4.152 → 3.552 ∗ 4.192 → 3.409 ∗ 4.830 → 3.690 ∗

PE+M 1.164 → 0.714 ∗ 1.298 → 0.748 ∗ 1.689 → 0.747

SE+M 4.553 → 3.690 ∗ 4.653 → 3.608 ∗ 5.381 → 4.007 ∗

EigV 2.593 → 1.449 ∗ 2.557 → 1.412 ∗ 3.567 → 1.449 ∗

ECC 0.540 → 0.262 ∗ 0.548 → 0.220 ∗ 0.707 → 0.237 ∗

Deg 0.320 → 0.128 ∗ 0.320 → 0.115 ∗ 0.463 → 0.140 ∗

Table 2: Comparison of changes in average uncertainty
values for Axioms 1–4 before (left) and after (right)
applying RAG with Llama2-chat. Colors green and

deep red indicate significant changes aligning or con-

flicting with axioms, respectively. Color shallow red
represents non-significant changes conflicting with ax-
ioms. Significance is marked by ∗.

chosen relevant and irrelevant documents are de-524

noted with Doc+ and Doc−, respectively.525

Metrics. We report the Exact Match for correct-526

ness and AUROC (Bakman et al., 2024) to evaluate527

the correlation between uncertainty and correct-528

ness. Statistically significant differences are re-529

ported with p-value < 0.01 using Wilcoxon test. For530

further experimental details, refer to Appendix B.531

6 Results532

533 6.1 Uncertainty Changes with RAG534

(RQ1) examines how the performance of UE meth-535

ods and their associated uncertainty values vary536

with and without context in the input prompt. Fig-537

ures 2 and 4 present accuracy and AUROC for538

different RAG settings. We observe inconsistent539

behavior of UE methods with and without RAG540

Unc. NQ-open TriviaQA PopQA

PE 2.072 → 2.248 ∗ 0.872 → 1.155 ∗ 0.897 → 0.909 ∗

SE 5.253 → 5.471 ∗ 3.863 → 4.158 ∗ 3.897 → 4.319 ∗

PE+M 4.791 → 4.805 1.415 → 1.699 ∗ 1.031 → 1.130 ∗

SE+M 7.993 → 7.933 4.540 → 4.817 ∗ 4.297 → 4.591

EigV 2.211 → 2.446 ∗ 1.757 → 1.870 ∗ 2.270 → 2.218

ECC 0.512 → 0.625 ∗ 0.382 → 0.448 ∗ 0.490 → 0.507

Deg 0.265 → 0.333 ∗ 0.171 → 0.211 ∗ 0.256 → 0.309

Table 3: Comparison of changes in average uncertainty
values for Axiom 5 before (left) and after(right) apply-
ing RAG with Llama2-chat. Color coding and signifi-
cance markers follow those in Table 2.

across different datasets, often displaying drop AU- 541

ROC for RAG cases, except for Doc+. While AU- 542

ROC should be independent accuracy, the results 543

suggest a correlation between the performance of 544

the RAG method and AUROC; esp. when con- 545

sidering irrelevant and relevant documents. This 546

indicates a bias of current UE methods towards 547

RAG generations. 548

To assess this bias further, we report on average 549

uncertainty values of these methods in Tables 1 550

and 5. The results reveal that incorporating any 551

context results in lower uncertainty values. Even 552

the inclusion of irrelevant contexts, which do not 553

enhance accuracy, leads to a significant reduction 554

in uncertainty scores. This suggests that current 555

UE methods produce lower uncertainty values in 556

the RAG setup without adequately accounting for 557

the relevance of the context. 558

6.2 Axiomatic Evaluation 559

The second research question (RQ2) investigates 560

properties (i.e., axioms) of UE methods that guar- 561

antee optimal performance, and assesses how these 562

axioms are satisfied by current UE methods. Ta- 563

bles 2 and 6 present the change in the average 564

uncertainty value Llama2-chat, from no-RAG to 565

RAG, for Axioms 1–4 using the Reference-based 566

implementation. The results indicate that Axioms 567

2 and 4 are largely unmet. Furthermore, MARS, 568

although being a state-of-the-art white-box method, 569

does not demonstrate improved axiom compliance. 570

Similar trends are observed with Mistral and other 571

datasets (see Table 7), underscoring the general- 572

ity of these findings. Additionally, the Reference- 573

free implementation of axioms (Table 9) strongly 574

correlate with the Reference-based findings, con- 575

firming that UE methods completely fail to satisfy 576

Axioms 2 and 4. This further shows the reliabil- 577

ity of reference-free implementation for axiomatic 578

evaluation of UE methods. 579

To evaluate Axiom 5, we add irrelevant context 580

(Doc−) for each query. Table 3 shows that only 581

7



UE NQ-open TriviaQA PopQA
A1 (%) A2 (%) A3 (%) A4 (%) AUROC A1 (%) A2 (%) A3 (%) A4 (%) AUROC A1 (%) A2 (%) A3 (%) A4 (%) AUROC

PE 60.19 47.85 77.35 51.16 64.87 45.53 43.78 70.26 66.88 68.18 66.19 42.46 87.57 38.17 61.59
+CTI 61.49 44.17 76.43 53.88 65.38 46.00 43.78 69.23 68.47 69.29 69.63 39.73 87.95 38.17 63.04
+NLI 66.02 47.24 77.57 55.43 67.21 48.45 45.77 71.28 68.47 69.40 68.77 41.10 88.15 41.22 63.09
+MCH 76.05 37.42 83.75 51.93 69.85 51.36 49.25 74.10 69.75 71.92 69.34 39.73 89.48 39.70 64.31
SE 77.35 33.75 91.53 36.05 67.49 50.14 35.82 84.62 54.78 73.44 71.92 31.51 94.07 29.01 63.79
+CTI 77.02 25.76 89.47 40.31 67.09 56.54 39.30 79.74 56.69 72.65 78.51 26.03 91.21 26.72 62.58
+NLI 79.61 40.49 86.72 50.00 69.77 68.96 46.77 80.77 62.74 74.72 71.63 38.36 92.73 41.22 67.86
+MCH 88.02 32.52 91.53 46.90 75.88 73.28 49.75 82.82 67.20 79.79 77.94 31.51 94.07 41.22 72.49
EigV 65.37 12.88 88.56 24.42 63.94 37.16 24.38 86.15 39.17 70.00 55.30 6.85 92.93 20.61 62.42
+CTI 77.35 20.25 90.16 34.50 66.82 66.89 30.85 86.15 48.41 72.54 80.80 19.18 93.50 29.77 61.51
+NLI 80.91 27.61 91.76 35.27 69.44 60.21 41.79 87.69 51.59 73.58 73.35 35.62 95.60 38.17 67.60
+MCH 88.67 23.93 93.82 34.88 73.60 74.88 40.30 90.00 55.41 78.34 83.09 24.66 96.75 32.82 72.18
ECC 61.49 9.82 83.06 18.99 63.57 34.24 14.43 73.59 30.89 68.23 52.44 6.84 87.38 18.32 62.06
+CTI 75.73 23.31 87.18 37.98 67.37 65.47 31.84 77.69 53.19 69.92 78.80 23.29 90.82 34.35 61.75
+NLI 78.64 32.52 87.18 42.64 68.96 58.04 42.79 77.44 59.87 71.31 71.35 32.88 92.16 42.75 66.44
+MCH 86.08 26.99 89.93 39.54 71.81 72.44 41.29 82.31 58.92 74.94 79.37 21.92 94.84 35.87 71.39

Table 4: Percentage of samples passing the axioms before and after calibration for Contriver with Llama2-chat. The
results show that as the number of samples passing the axioms increases, the AUROC also improves.

No Doc BM25
Contriever

Rerank Doc+
55

60

65

70

75

80

85

Tr
iv

ia
QA

PE

No Doc BM25
Contriever

Rerank Doc+

SE

No Doc BM25
Contriever

Rerank Doc+

EigV

No Doc BM25
Contriever

Rerank Doc+

ECC
No Doc Normal CTI NLI MiniCheck

Figure 3: Comparison of AUROC between the no-RAG and calibrated RAG settings for Llama2-chat for TriviaQA.
AUROC improves significantly, either surpassing the no-RAG setting or reducing the gap between them.

PE+M and SE+M partially satisfy Axiom 5 for582

Llama2. For Mistral (Table 8), all methods pass583

Axiom 5 for POPQA but not for the other datasets.584

These findings suggest that none of the existing UE585

methods fully satisfy Axiom 2, 4, and 5.586

6.3 Axiomatic Calibration587

Our third research question (RQ3) examines how588

our axiomatic framework can lead to designing589

an optimal UE method. Tables 4 and 10 present590

AUROC and percentage of samples passing the ax-591

ioms 1–4 before and after applying our calibration592

method. Axiom 5 is not assessed, as retrievers tend593

to retrieve relevant documents. We perform the594

experiments on four representative (and not cherry-595

picked) UE methods, as the results generalize to596

other methods as well. The calibration function is597

implemented using the three models described in598

Section 4.1, and Contriever is employed for RAG.599

The results show that calibration MiniCheck out-600

performs all implementations, improving percent-601

ages of all axioms for EigV and ECC and for most602

axioms in open-box methods. Most importantly,603

the results show as the percentage of samples satis-604

fying the axioms increases, the AUROC improves,605

showing the empirical validity of our axioms in606

improving UE methods. Moreover, Figures 3 and607

5 show that after calibration, the RAG AUROC608

becomes comparable to or even better than the609

No Doc baseline, suggesting that our calibration 610

method successfully compensates for the inefficien- 611

cies of existing UE methods in RAG. 612

7 Discussion and Conclusions 613

614In this paper, we examined existing uncertainty 615

estimation (UE) for the RAG setup and showed 616

they systematically generated low uncertainty val- 617

ues in the RAG setup without considering the rele- 618

vance of the given context to the query. We further 619

proposed an axiomatic evaluation framework for 620

UE in the RAG setup and defined five formal con- 621

straints that a UE method should satisfy when pro- 622

cessing both parametric and non-parametric knowl- 623

edge. These axioms were empirically validated 624

across multiple representative datasets, UE meth- 625

ods, and LLMs. Our results showed that none of 626

the existing UE methods pass all the axiom, pin- 627

pointing the problem in these methods. We fur- 628

ther derived a calibration function for adjusting UE 629

methods in the RAG setup and improvements in 630

both axiomatic evaluation and correlation with cor- 631

rectness. Future work includes developing a UE 632

method designed to naturally conform to the estab- 633

lished axioms. Another direction is assessing these 634

axioms in long-form responses and uncertainty- 635

based applications, such as Active RAG. 636

8



Limitations637

Axiomatic Uncertainty Estimator. In this study,638

we evaluate existing uncertainty estimation (UE)639

methods within the RAG setup and delineate the640

optimal behaviors that these methods should ex-641

hibit. Although we introduce a calibration function642

in Section 4, it may be more effective to develop an643

axiomatic UE model that inherently adheres to the644

prescribed axioms. Future research should leverage645

these principles in the construction of UE methods.646

Comprehensiveness of the Axioms. As discussed647

in Section 3, while our current axioms address most648

cases, additional axioms may be needed to cover649

all sample types. For example, consider when an650

LLM produces a different output after incorporat-651

ing a context, and both the initial and augmented652

responses contradict the context. In this scenario,653

our framework does not specify a change in uncer-654

tainty, though supplementary axioms might address655

this gap. Future research should develop axioms656

for such cases.657

Scalability and Applications. We investigated658

the impact of incorporating context into the in-659

put prompt on uncertainty measures. However,660

we did not explore other input modalities, such661

as multi-modal RAG, or alternative response for-662

mats, such as long-form responses, each of which663

presents unique challenges. Furthermore, applica-664

tions of uncertainty estimation, such as Adaptive665

RAG (Jiang et al., 2023; Cheng et al., 2024; Tao666

et al., 2024), hallucination detection (Geng et al.,667

2024), reasoning monitoring (Yin et al., 2024), and668

LLM-as-Judgment (Lee et al., 2024), fall outside669

the scope of this study. Future research should670

extend these findings to encompass diverse input671

types, response formats, and UE applications.672
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Appendix969

A Related Work970

971 Uncertainty Estimation (UE) seeks to quantify972

the confidence of LLMs in their predictions (Hou973

et al., 2024; Zhao et al., 2024b). UE methods are974

commonly divided into two groups: black-box and975

white-box approaches. Black-box methods rely976

solely on the LLM’s outputs without accessing in-977

ternal layers or generation logits. In addition to978

the semantic similarity-based methods discussed979

in Section 2, other black-box techniques exist. For980

example, verbalization methods prompt the model981

to explicitly report its confidence (e.g., “How con-982

fident are you that the answer is correct?”). Xiong983

et al. (2024) highlight that two key factors influ-984

ence the quality of verbalized confidence: (i) the985

prompting strategy, which includes techniques such986

as vanilla, Chain-of-Thought (CoT), self-probing,987

multi-step, and Top-K prompting, and (ii) the sam-988

pling strategy, employing methods like self-random989

sampling, prompting-based elicitation, and mis-990

leading prompts to generate multiple responses.991

Additionally, Epi-M (Zhou et al., 2024) incorpo-992

rates epistemic markers into the input prompt to993

facilitate well-calibrated confidence scores.994

White-box approaches, by contrast, leverage995

access to next-token prediction probabilities for996

uncertainty calculation. Beyond the methods997

covered in Section 2, several techniques have998

been proposed. For instance, P(True) (Ka-999

davath et al., 2022) measures the probability1000

that a model assigns to the correctness of a1001

given response by appending a sentence such as1002

Is the possible answer: (A) True (B) False.1003

The possible answer is: so that the probabil-1004

ity of generating “True” or “False” serves as the1005

measure. Similarly, P(IK) (Kadavath et al., 2022)1006

estimates the likelihood that the model “knows” the1007

correct answer, that is, the probability of generating1008

the correct response when sampling at unit temper-1009

ature. Furthermore, LARS (Yaldiz et al., 2024)1010

introduces a learning-based approach by training1011

a scoring model on token probabilities to enhance1012

uncertainty prediction.1013

Axiomatic Evaluation. Axiomatic thinking refers1014

to a problem-solving approach guided by a set of1015

axioms closely aligned with conventional scientific1016

methodologies (Amigó et al., 2020). More gener-1017

ally, this approach seeks solutions that satisfy all1018

predefined axioms, that is, the desirable properties1019

a solution should possess. 1020

Axiomatic thinking has been successfully ap- 1021

plied to the study of Information Retrieval (IR), 1022

thereby contributing both to the theoretical under- 1023

standing and the practical enhancement of existing 1024

retrieval models. The objective of Axiomatic IR 1025

is to establish formal constraints, or axioms, that 1026

delineate the essential properties an effective rank- 1027

ing model must satisfy (Völske et al., 2021). In 1028

this context, Fang et al. (2004) formally defined six 1029

fundamental constraints derived from empirical ob- 1030

servations of common characteristics in traditional 1031

retrieval functions. These constraints correspond 1032

to intuitive retrieval heuristics, such as term fre- 1033

quency weighting, term discrimination weighting, 1034

and document length normalization. Building on 1035

this foundation, Fang and Zhai (2005) proposed 1036

an axiomatic framework for the development of 1037

retrieval models. Their framework comprises an 1038

inductive scheme for function definitions, which 1039

provides a common basis for the analytical com- 1040

parison of different retrieval functions, as well as a 1041

set of formalized retrieval constraints adapted from 1042

(Fang et al., 2004). These axioms have been fur- 1043

ther examined in subsequent studies. For example, 1044

Chen et al. (2024) employed causal interventions 1045

to identify specific attention heads that encode a 1046

robust term frequency signal, thereby aligning with 1047

one of the original axioms. 1048

Beyond IR, axiomatic approaches have been ex- 1049

tended to other domains. For instance, Rosset et al. 1050

(2023) defined axioms representing the qualities 1051

that humans value in long-form answers, including 1052

usefulness, relevance, groundedness, truthfulness, 1053

and thoroughness. They generated training data 1054

corresponding to these principles and subsequently 1055

used it to train a preference model. 1056

B Experimental Setup 1057

Datasets. We conduct our experiments on three 1058

open-book Question Answering (QA) datasets: 1059

Natural Questions (NQ) (Kwiatkowski et al., 2019), 1060

TriviaQA (Joshi et al., 2017), and POPQA (Mallen 1061

et al., 2023). The NQ dataset comprises a large- 1062

scale collection of real-world queries derived from 1063

Google search data. Each entry includes a user 1064

query and the corresponding Wikipedia page that 1065

contains the answer. The NQ-open dataset (Lee 1066

et al., 2019), a subset of NQ, differs by remov- 1067

ing the restriction of linking answers to specific 1068

Wikipedia passages, thereby emulating a more gen- 1069
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Figure 4: Comparison of AUROC between no-RAG and RAG settings.

LM Unc. NQ-open TriviaQA PopQA
No Doc Doc− BM25 Cont. ReRa. Doc+ No Doc Doc− BM25 Cont. ReRa. Doc+ No Doc Doc− BM25 Cont. ReRa. Doc+

L
la

m
a2

-c
ha

t

PE 1.98 1.92 1.53 ∗ 1.41 ∗ 1.31 ∗ 1.19 ∗ 1.14 1.42 ∗ 1.05 ∗ 1.03 0.90 ∗ 0.96 ∗ 1.29 1.11 ∗ 0.54 ∗ 0.46 ∗ 0.35 ∗ 0.34 ∗

SE 5.40 5.09 ∗ 4.29 ∗ 4.20 ∗ 3.99 ∗ 3.88 ∗ 4.39 4.48 ∗ 3.89 ∗ 3.85 ∗ 3.66 ∗ 3.73 ∗ 4.86 4.37 ∗ 3.45 ∗ 3.30 ∗ 3.13 ∗ 3.19 ∗

PEM 3.90 3.89 3.33 ∗ 3.26 ∗ 3.12 ∗ 2.97 ∗ 1.74 2.06 ∗ 1.64 1.64 1.46 ∗ 1.51 ∗ 1.59 1.34 ∗ 0.65 ∗ 0.55 ∗ 0.44 ∗ 0.45 ∗

SEM 7.41 6.93 ∗ 5.97 ∗ 5.88 ∗ 5.62 ∗ 5.49 ∗ 5.16 5.21 4.51 ∗ 4.50 ∗ 4.22 ∗ 4.30 ∗ 5.38 4.71 ∗ 3.62 ∗ 3.43 ∗ 3.23 ∗ 3.27 ∗

Deg 0.52 0.36 ∗ 0.16 ∗ 0.13 ∗ 0.09 ∗ 0.07 ∗ 0.31 0.29 ∗ 0.17 ∗ 0.15 ∗ 0.11 ∗ 0.16 ∗ 0.52 0.32 ∗ 0.12 ∗ 0.09 ∗ 0.06 ∗ 0.05 ∗

ECC 0.64 0.60 ∗ 0.29 ∗ 0.23 ∗ 0.17 ∗ 0.14 ∗ 0.56 0.53 ∗ 0.33 ∗ 0.29 ∗ 0.23 ∗ 0.31 ∗ 0.71 0.54 ∗ 0.22 ∗ 0.17 ∗ 0.12 ∗ 0.10 ∗

EigV 3.06 2.48 ∗ 1.57 ∗ 1.42 ∗ 1.28 ∗ 1.21 ∗ 2.52 2.21 ∗ 1.65 ∗ 1.57 ∗ 1.41 ∗ 1.68 ∗ 4.25 2.28 ∗ 1.42 ∗ 1.31 ∗ 1.18 ∗ 1.17 ∗

M
is

tr
al

-v
0.

3

PE 1.98 1.28 ∗ 1.40 ∗ 1.46 ∗ 1.39 ∗ 1.32 ∗ 0.96 1.08 ∗ 0.83 ∗ 0.81 ∗ 0.72 ∗ 0.74 ∗ 1.51 0.94 ∗ 0.84 ∗ 0.69 ∗ 0.62 ∗ 0.51 ∗

SE 5.61 4.37 ∗ 4.32 ∗ 4.33 ∗ 4.19 ∗ 4.05 ∗ 4.29 4.27 ∗ 3.76 ∗ 3.74 ∗ 3.57 ∗ 3.67 ∗ 5.66 3.73 ∗ 3.68 ∗ 3.53 ∗ 3.41 ∗ 3.26 ∗

PEM 4.25 2.51 ∗ 3.29 ∗ 3.61 ∗ 3.48 ∗ 3.36 ∗ 1.73 1.88 ∗ 1.51 ∗ 1.54 ∗ 1.36 ∗ 1.41 ∗ 2.35 1.42 ∗ 1.26 ∗ 1.05 ∗ 0.92 ∗ 0.80 ∗

SEM 7.65 5.42 ∗ 5.94 ∗ 6.19 ∗ 6.01 ∗ 5.85 ∗ 4.99 4.98 ∗ 4.35 ∗ 4.37 ∗ 4.12 ∗ 4.27 ∗ 6.47 4.05 ∗ 3.98 ∗ 3.77 ∗ 3.60 ∗ 3.45 ∗

Deg 0.37 0.16 ∗ 0.13 ∗ 0.10 ∗ 0.07 ∗ 0.05 ∗ 0.20 0.18 ∗ 0.10 ∗ 0.10 ∗ 0.07 ∗ 0.19 ∗ 0.48 0.05 ∗ 0.07 ∗ 0.06 ∗ 0.05 ∗ 0.03 ∗

ECC 0.54 0.20 ∗ 0.18 ∗ 0.15 ∗ 0.11 ∗ 0.08 ∗ 0.37 0.32 ∗ 0.17 ∗ 0.19 ∗ 0.13 ∗ 0.17 ∗ 0.68 0.03 ∗ 0.08 ∗ 0.08 ∗ 0.05 ∗ 0.04 ∗

EigV 2.83 1.49 ∗ 1.40 ∗ 1.32 ∗ 1.23 ∗ 1.37 ∗ 2.04 1.65 ∗ 1.36 ∗ 1.39 ∗ 1.25 ∗ 1.41 ∗ 4.18 1.08 ∗ 1.16 ∗ 1.17 ∗ 1.11 ∗ 1.08 ∗

Table 5: Average uncertainty values for various settings. Lighter colors indicate lower uncertainty. Statistically
significant differences are compared to No Doc are marked with ∗.

eral real-world scenario. We obtain the gold docu-1070

ments for each query from the corpus and dataset1071

annotated by (Cuconasu et al., 2024) 1, in which the1072

gold documents are integrated with the original cor-1073

pus. For evaluation, we use the test set containing1074

2,889 queries. TriviaQA consists of trivia questions1075

sourced from the web (Jeong et al., 2024). To en-1076

sure a dataset size comparable to NQ-open, we ran-1077

domly sample 3,000 queries from its development1078

set. POPQA is an open-domain QA dataset de-1079

signed to evaluate factual knowledge, particularly1080

regarding long-tail entities. Constructed from 161081

diverse relationship types in Wikidata, POPQA is1082

originally a closed-book dataset comprising 14,0001083

QA pairs without gold document annotations. Con-1084

sequently, following (Soudani et al., 2024), we1085

consider the summary section of the correspond-1086

ing Wikipedia page as the gold document. Since1087

1Dataset: florin-hf/nq_open_gold

POPQA is entirely based on Wikipedia, we employ 1088

the same corpus for retrieval. To maintain consis- 1089

tency with the other datasets, we randomly select 1090

3,000 samples from the test set. Additionally, we 1091

create a validation set for each dataset, comprising 1092

10% of the test set (approximately 300 samples), 1093

which is used to compute calibration coefficients as 1094

described in Section 4. For NQ-open and TriviaQA, 1095

the validation set is sampled from the training set, 1096

whereas for POPQA, it is derived from the test set. 1097

Language Models. In accordance with es- 1098

tablished baselines, we select two generative 1099

LLMs: Llama2-chat-7B and Mistral-7B. For 1100

inputs that are not augmented with retrieved 1101

documents, we employ the following template: 1102

"Answer the question. Question: <question> 1103

Answer:" For inputs augmented with re- 1104

trieved documents, we utilize this tem- 1105

plate: "You are given a question, and 1106

you MUST respond with an answer (max 10 1107

13

https://huggingface.co/datasets/florin-hf/nq_open_gold


UE NQ-open TriviaQA PopQA
BM25 Contriever Doc+ BM25 Contriever Doc+ BM25 Contriever Doc+

Axiom 1: Positively Consistent ↓

PE 1.445 → 1.194 ∗ 1.535 → 1.216 ∗ 1.549 → 1.159 ∗ 0.700 → 0.753 ∗ 0.718 → 0.743 ∗ 0.731 → 0.724 ∗ 0.735 → 0.419 ∗ 0.735 → 0.408 ∗ 1.242 → 0.340 ∗

SE 4.656 → 3.933 ∗ 4.756 → 3.907 ∗ 4.800 → 3.823 ∗ 3.644 → 3.412 3.664 → 3.424 ∗ 3.738 → 3.388 ∗ 3.781 → 3.205 ∗ 3.791 → 3.158 ∗ 4.682 → 3.113 ∗

PE+M 3.389 → 3.124 3.412 → 3.052 ∗ 3.437 → 3.069 ∗ 1.051 → 1.110 ∗ 1.131 → 1.178 ∗ 1.141 → 1.120 0.896 → 0.483 ∗ 0.881 → 0.458 ∗ 1.530 → 0.406 ∗

SE+M 6.640 → 5.778 ∗ 6.705 → 5.632 ∗ 6.740 → 5.667 ∗ 4.142 → 3.832 ∗ 4.212 → 3.898 ∗ 4.293 → 3.824 ∗ 4.102 → 3.286 ∗ 4.091 → 3.248 ∗ 5.146 → 3.173 ∗

EigV 2.030 → 1.270 ∗ 2.129 → 1.189 ∗ 2.166 → 1.112 ∗ 1.622 → 1.318 ∗ 1.617 → 1.234 ∗ 1.679 → 1.254 ∗ 1.951 → 1.166 ∗ 2.025 → 1.143 ∗ 4.074 → 1.078 ∗

ECC 0.479 → 0.149 ∗ 0.538 → 0.120 ∗ 0.557 → 0.071 ∗ 0.346 → 0.228 ∗ 0.338 → 0.169 ∗ 0.367 → 0.180 ∗ 0.417 → 0.110 ∗ 0.426 → 0.094 ∗ 0.710 → 0.055 ∗

Deg 0.227 → 0.084 ∗ 0.262 → 0.061 ∗ 0.270 → 0.035 ∗ 0.144 → 0.087 ∗ 0.142 → 0.066 ∗ 0.155 → 0.067 ∗ 0.220 → 0.048 ∗ 0.230 → 0.043 ∗ 0.496 → 0.022 ∗

Axiom 2: Negatively Consistent ↑
PE 2.317 → 2.261 2.230 → 2.153 2.232 → 2.194 1.543 → 1.478 1.534 → 1.438 1.495 → 1.528 1.068 → 0.746 0.820 → 0.593 1.083 → 0.597

SE 5.626 → 4.989 ∗ 5.515 → 4.848 ∗ 5.572 → 4.841 ∗ 4.715 → 4.460 4.672 → 4.291 ∗ 4.897 → 4.638 ∗ 4.163 → 3.548 ∗ 4.104 → 3.381 ∗ 4.388 → 4.107

PE+M 5.284 → 4.891 ∗ 5.052 → 4.904 5.665 → 5.652 2.716 → 2.633 2.381 → 2.249 2.594 → 2.597 1.309 → 0.844 1.016 → 0.782 1.328 → 0.684

SE+M 8.566 → 7.579 ∗ 8.377 → 7.471 ∗ 8.914 → 7.962 ∗ 5.978 → 5.521 ∗ 5.737 → 5.170 ∗ 6.109 → 5.733 ∗ 4.599 → 3.700 ∗ 4.481 → 3.610 ∗ 4.764 → 4.221

EigV 2.410 → 1.694 ∗ 2.454 → 1.375 ∗ 2.340 → 1.216 ∗ 2.147 → 1.802 ∗ 2.271 → 1.700 ∗ 2.654 → 2.508 2.453 → 1.338 ∗ 2.088 → 1.274 ∗ 2.758 → 1.910

ECC 0.564 → 0.302 ∗ 0.600 → 0.240 ∗ 0.542 → 0.166 ∗ 0.554 → 0.382 ∗ 0.561 → 0.331 ∗ 0.617 → 0.600 0.541 → 0.197 ∗ 0.477 → 0.152 ∗ 0.503 → 0.443

Deg 0.304 → 0.172 ∗ 0.314 → 0.113 ∗ 0.299 → 0.069 ∗ 0.274 → 0.194 ∗ 0.294 → 0.186 ∗ 0.353 → 0.325 0.286 → 0.101 ∗ 0.228 → 0.073 ∗ 0.343 → 0.254
Axiom 3: Positively Changed ↓

PE 2.113 → 0.909 ∗ 1.989 → 0.939 ∗ 2.006 → 0.847 ∗ 1.481 → 0.665 ∗ 1.413 → 0.702 ∗ 1.403 → 0.653 ∗ 1.375 → 0.347 ∗ 1.416 → 0.298 ∗ 1.342 → 0.268 ∗

SE 5.606 → 3.589 ∗ 5.459 → 3.589 ∗ 5.500 → 3.544 ∗ 4.970 → 3.347 ∗ 4.966 → 3.469 ∗ 4.972 → 3.287 ∗ 4.889 → 3.015 ∗ 5.091 → 3.013 ∗ 4.884 → 3.051 ∗

PE+M 3.479 → 2.056 ∗ 3.420 → 1.991 ∗ 3.416 → 2.012 ∗ 2.001 → 0.917 ∗ 2.026 → 1.020 ∗ 1.930 → 0.938 ∗ 1.708 → 0.398 ∗ 1.735 → 0.374 ∗ 1.604 → 0.340 ∗

SE+M 7.268 → 4.703 ∗ 7.069 → 4.616 ∗ 7.101 → 4.637 ∗ 5.790 → 3.648 ∗ 5.804 → 3.825 ∗ 5.760 → 3.579 ∗ 5.514 → 3.072 ∗ 5.681 → 3.082 ∗ 5.379 → 3.099 ∗

EigV 3.692 → 1.220 ∗ 3.561 → 1.182 ∗ 3.551 → 1.159 ∗ 3.588 → 1.245 ∗ 3.625 → 1.346 ∗ 3.650 → 1.277 ∗ 4.131 → 1.139 ∗ 4.733 → 1.114 ∗ 4.449 → 1.102 ∗

ECC 0.756 → 0.144 ∗ 0.701 → 0.111 ∗ 0.714 → 0.115 ∗ 0.801 → 0.163 ∗ 0.807 → 0.218 ∗ 0.810 → 0.179 ∗ 0.790 → 0.085 ∗ 0.823 → 0.081 ∗ 0.780 → 0.072 ∗

Deg 0.507 → 0.065 ∗ 0.484 → 0.057 ∗ 0.488 → 0.051 ∗ 0.497 → 0.076 ∗ 0.502 → 0.093 ∗ 0.504 → 0.079 ∗ 0.547 → 0.044 ∗ 0.588 → 0.035 ∗ 0.544 → 0.032 ∗

Axiom 4: Negatively Changed ↑

PE 1.609 → 1.695 1.621 → 1.635 1.598 → 1.688 0.945 → 1.325 ∗ 0.889 → 1.364 ∗ 1.034 → 1.396 ∗ 0.933 → 0.636 1.006 → 0.558 1.252 → 0.463

SE 4.899 → 4.457 ∗ 4.899 → 4.437 ∗ 4.915 → 4.497 4.160 → 4.312 4.157 → 4.273 4.297 → 4.339 4.152 → 3.552 ∗ 4.192 → 3.409 ∗ 4.830 → 3.690 ∗

PE+M 3.446 → 3.653 3.522 → 3.692 3.465 → 4.158 1.566 → 2.123 ∗ 1.306 → 1.946 ∗ 1.486 → 2.178 ∗ 1.164 → 0.714 ∗ 1.298 → 0.748 ∗ 1.689 → 0.747

SE+M 6.764 → 6.286 ∗ 6.803 → 6.377 ∗ 6.643 → 6.442 4.953 → 5.121 4.769 → 4.933 4.983 → 5.088 4.553 → 3.690 ∗ 4.653 → 3.608 ∗ 5.381 → 4.007 ∗

EigV 2.262 → 1.582 ∗ 2.244 → 1.503 ∗ 2.233 → 1.367 ∗ 2.089 → 1.908 2.141 → 1.908 2.399 → 2.131 2.593 → 1.449 ∗ 2.557 → 1.412 ∗ 3.567 → 1.449 ∗

ECC 0.594 → 0.332 ∗ 0.565 → 0.295 ∗ 0.490 → 0.270 ∗ 0.501 → 0.453 0.542 → 0.456 0.614 → 0.555 0.540 → 0.262 ∗ 0.548 → 0.220 ∗ 0.707 → 0.237 ∗

Deg 0.301 → 0.163 ∗ 0.294 → 0.148 ∗ 0.308 → 0.123 ∗ 0.239 → 0.237 0.253 → 0.251 0.313 → 0.299 0.320 → 0.128 ∗ 0.320 → 0.115 ∗ 0.463 → 0.140 ∗

Table 6: Comparison of changes in average uncertainty values for Axioms 1–4 before (left) and after (right)
applying RAG with Llama2-chat. Axioms are implemented using the Reference-based method. Colors green

and deep red indicate significant changes aligning or conflicting with axioms, respectively. Color shallow red
represents non-significant changes conflicting with axioms. Significance is marked by ∗.

tokens) using either the provided document1108

or your memorized knowledge. Document:1109

<context> Question:<question> Answer:".1110

Although more sophisticated prompts were1111

examined in preliminary experiments, the marginal1112

improvement they offered relative to the simple1113

template did not justify their use, particularly1114

given the increased risk of model overfitting.1115

Furthermore, following MARS (Bakman et al.,1116

2024), we utilize the Huggingface library’s1117

"generate" function for model output generation.1118

We designate the token "." as the "eos_token_id" to1119

prevent the model from generating overly lengthy1120

paragraphs in response to closed-book questions.1121

We also set "num_beams" to 1, corresponding to1122

greedy decoding.1123

Retrieval Models. We employ a suite of re-1124

trieval models to acquire relevant contexts for1125

the RAG approach. The models utilized include1126

BM25 (Robertson and Zaragoza, 2009), Con-1127

triever (Izacard et al., 2022), and a two-stage re- 1128

ranking system. In the two-stage configuration, 1129

BM25 is applied for initial retrieval, followed by 1130

re-ranking using a pre-trained cross-encoder model, 1131

specifically, ms-marco-MiniLM-L-6-v2 from the 1132

sentence-transformers library. Additionally, 1133

we report results for two variations: Doc+, in 1134

which the gold context is incorporated into the in- 1135

put prompt, and Doc−, in which an irrelevant con- 1136

text is substituted. Although several methods exist 1137

to obtain irrelevant contexts (Zhao et al., 2024c), in 1138

our experiments, these are generated by randomly 1139

sampling a context from the corpus. 1140

NLI Models. A NLI classifier takes a se- 1141

quence pair (x1, x2) and outputs a label y ∈ 1142

{Contradiction,Neutral,Entailment} with corre- 1143

sponding probabilities. The two sequences are 1144

concatenated with a separator token [SEP] before 1145

input. To study ordering effects, we consider both 1146

x1[SEP]x2 and x2[SEP]x1. In the reference-free 1147
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UE NQ-open TriviaQA PopQA
BM25 Contriever Doc+ BM25 Contriever Doc+ BM25 Contriever Doc+

Axiom 1: Positively Consistent ↓

PE 1.620 → 1.332 ∗ 1.538 → 1.288 ∗ 1.544 → 1.232 ∗ 0.531 → 0.483 ∗ 0.549 → 0.494 ∗ 0.570 → 0.456 ∗ 0.893 → 0.673 ∗ 0.886 → 0.638 ∗ 1.368 → 0.419 ∗

SE 4.874 → 4.164 ∗ 4.876 → 4.060 ∗ 4.941 → 3.922 ∗ 3.460 → 3.265 ∗ 3.508 → 3.299 ∗ 3.565 → 3.241 ∗ 4.063 → 3.361 ∗ 4.162 → 3.354 ∗ 5.379 → 3.112 ∗

PE+M 3.682 → 3.283 ∗ 3.380 → 3.188 ∗ 3.395 → 3.080 ∗ 0.943 → 0.903 ∗ 0.987 → 0.948 ∗ 1.010 → 0.869 ∗ 1.220 → 0.942 ∗ 1.195 → 0.836 ∗ 2.115 → 0.615 ∗

SE+M 6.710 → 5.863 ∗ 6.531 → 5.746 ∗ 6.594 → 5.602 ∗ 3.839 → 3.638 ∗ 3.913 → 3.715 ∗ 3.971 → 3.615 ∗ 4.315 → 3.539 ∗ 4.424 → 3.459 ∗ 6.087 → 3.224 ∗

EigV 1.724 → 1.285 ∗ 1.788 → 1.172 ∗ 1.901 → 1.069 ∗ 1.277 → 1.129 ∗ 1.294 → 1.162 ∗ 1.344 → 1.114 ∗ 1.614 → 1.119 ∗ 1.837 → 1.095 ∗ 3.781 → 1.041 ∗

ECC 0.356 → 0.169 ∗ 0.381 → 0.104 ∗ 0.405 → 0.043 ∗ 0.155 → 0.082 ∗ 0.164 → 0.094 ∗ 0.187 → 0.076 ∗ 0.260 → 0.050 ∗ 0.288 → 0.052 ∗ 0.621 → 0.021 ∗

Deg 0.175 → 0.088 ∗ 0.185 → 0.053 ∗ 0.208 → 0.023 ∗ 0.063 → 0.038 ∗ 0.067 → 0.042 ∗ 0.076 → 0.030 ∗ 0.129 → 0.045 ∗ 0.157 → 0.033 ∗ 0.426 → 0.016 ∗

Axiom 2: Negatively Consistent ↑

PE 2.460 → 2.303 ∗ 2.353 → 2.321 2.377 → 2.374 1.512 → 1.397 1.226 → 1.228 1.477 → 1.421 ∗ 0.933 → 0.589 ∗ 0.804 → 0.450 ∗ 1.196 → 0.570

SE 5.846 → 5.233 ∗ 5.614 → 5.074 ∗ 5.619 → 4.966 ∗ 4.697 → 4.384 ∗ 4.449 → 4.133 ∗ 4.936 → 4.699 ∗ 4.407 → 3.314 ∗ 4.290 → 3.215 ∗ 4.620 → 3.442

PE+M 6.014 → 5.908 5.523 → 5.664 5.783 → 5.920 2.917 → 2.797 2.260 → 2.313 2.777 → 2.833 1.376 → 0.901 ∗ 1.230 → 0.762 ∗ 1.631 → 0.686

SE+M 9.087 → 8.557 ∗ 8.493 → 8.092 8.728 → 8.147 6.033 → 5.699 5.462 → 5.100 ∗ 6.121 → 6.009 4.819 → 3.551 ∗ 4.702 → 3.456 ∗ 4.875 → 3.504

EigV 2.177 → 1.529 ∗ 2.047 → 1.303 ∗ 1.869 → 1.071 ∗ 1.648 → 1.472 1.655 → 1.489 2.284 → 2.025 ∗ 2.041 → 1.098 ∗ 2.055 → 1.181 ∗ 2.188 → 1.143

ECC 0.507 → 0.256 ∗ 0.437 → 0.166 ∗ 0.453 → 0.040 ∗ 0.367 → 0.223 ∗ 0.394 → 0.243 ∗ 0.476 → 0.394 ∗ 0.338 → 0.065 ∗ 0.411 → 0.069 ∗ 0.514 → 0.041

Deg 0.260 → 0.134 ∗ 0.227 → 0.080 ∗ 0.210 → 0.022 ∗ 0.153 → 0.127 0.152 → 0.120 0.254 → 0.205 ∗ 0.200 → 0.030 ∗ 0.194 → 0.044 ∗ 0.260 → 0.055
Axiom 3: Positively Changed ↓

PE 1.972 → 1.038 ∗ 1.972 → 1.120 ∗ 2.020 → 1.097 ∗ 1.492 → 0.531 ∗ 1.446 → 0.515 ∗ 1.452 → 0.510 ∗ 1.837 → 0.734 ∗ 1.727 → 0.566 ∗ 1.458 → 0.403 ∗

SE 5.861 → 3.808 ∗ 5.813 → 3.855 ∗ 5.898 → 3.838 ∗ 5.527 → 3.337 ∗ 5.569 → 3.326 ∗ 5.497 → 3.364 ∗ 6.309 → 3.349 ∗ 6.227 → 3.276 ∗ 5.662 → 3.104 ∗

PE+M 3.917 → 2.599 ∗ 4.061 → 2.810 ∗ 4.063 → 2.762 ∗ 2.544 → 0.959 ∗ 2.545 → 1.033 ∗ 2.480 → 0.927 ∗ 2.935 → 0.970 ∗ 2.686 → 0.867 ∗ 2.244 → 0.594 ∗

SE+M 7.587 → 5.162 ∗ 7.662 → 5.299 ∗ 7.746 → 5.303 ∗ 6.542 → 3.690 ∗ 6.606 → 3.798 ∗ 6.465 → 3.716 ∗ 7.365 → 3.467 ∗ 7.156 → 3.436 ∗ 6.439 → 3.211 ∗

EigV 3.745 → 1.168 ∗ 3.449 → 1.131 ∗ 3.547 → 1.119 ∗ 3.575 → 1.191 ∗ 3.611 → 1.179 ∗ 3.470 → 1.210 ∗ 5.124 → 1.054 ∗ 5.217 → 1.055 ∗ 4.323 → 1.040 ∗

ECC 0.653 → 0.089 ∗ 0.633 → 0.072 ∗ 0.661 → 0.069 ∗ 0.756 → 0.110 ∗ 0.752 → 0.104 ∗ 0.747 → 0.131 ∗ 0.854 → 0.024 ∗ 0.841 → 0.024 ∗ 0.700 → 0.025 ∗

Deg 0.471 → 0.053 ∗ 0.450 → 0.048 ∗ 0.466 → 0.037 ∗ 0.462 → 0.053 ∗ 0.471 → 0.047 ∗ 0.454 → 0.063 ∗ 0.614 → 0.022 ∗ 0.615 → 0.021 ∗ 0.492 → 0.016 ∗

Axiom 4: Negatively Changed ↑

PE 1.450 → 1.284 ∗ 1.570 → 1.490 1.518 → 1.256 ∗ 0.791 → 1.173 ∗ 0.833 → 1.144 ∗ 0.881 → 1.021 0.941 → 0.881 1.014 → 0.807 1.660 → 0.913 ∗

SE 4.957 → 4.252 ∗ 5.039 → 4.543 ∗ 4.775 → 4.116 ∗ 4.173 → 4.356 ∗ 4.212 → 4.319 4.392 → 4.174 4.569 → 3.875 ∗ 4.739 → 3.709 ∗ 5.853 → 3.783 ∗

PE+M 3.045 → 2.901 3.421 → 3.597 3.159 → 2.924 1.383 → 1.989 ∗ 1.361 → 2.107 ∗ 1.424 → 1.849 1.323 → 1.354 1.447 → 1.303 2.705 → 1.735 ∗

SE+M 6.368 → 5.630 ∗ 6.674 → 6.349 6.181 → 5.549 4.743 → 5.076 ∗ 4.720 → 5.081 4.954 → 4.796 4.958 → 4.241 ∗ 5.184 → 4.062 ∗ 6.835 → 4.446 ∗

EigV 2.087 → 1.415 ∗ 2.115 → 1.497 ∗ 1.906 → 1.375 ∗ 1.850 → 1.593 1.944 → 1.710 2.103 → 1.594 ∗ 2.522 → 1.200 ∗ 2.565 → 1.222 ∗ 4.209 → 1.159 ∗

ECC 0.440 → 0.208 ∗ 0.438 → 0.238 ∗ 0.351 → 0.151 ∗ 0.362 → 0.293 0.378 → 0.323 0.420 → 0.298 0.437 → 0.091 ∗ 0.492 → 0.119 ∗ 0.700 → 0.068 ∗

Deg 0.243 → 0.138 ∗ 0.252 → 0.149 ∗ 0.222 → 0.109 ∗ 0.175 → 0.183 0.190 → 0.203 0.233 → 0.180 0.259 → 0.091 ∗ 0.280 → 0.092 ∗ 0.479 → 0.065 ∗

Table 7: Comparison of changes in average uncertainty values for Axioms 1–4 before (left) and after (right)
applying RAG with Mistral-v0.3. Axioms are implemented using the Reference-based method. Colors green

and deep red indicate significant changes aligning or conflicting with axioms, respectively. Color shallow red
represents non-significant changes conflicting with axioms. Significance is marked by ∗.

Unc. NQ-open TriviaQA PopQA

PE 2.227 → 1.778 ∗ 0.657 → 0.780 ∗ 1.014 → 1.087

SE 5.453 → 4.964 ∗ 3.570 → 3.892 ∗ 3.976 → 4.021

PE+M 5.634 → 4.293 ∗ 1.223 → 1.374 ∗ 1.686 → 1.759

SE+M 8.543 → 7.216 ∗ 4.089 → 4.463 ∗ 4.310 → 4.521

EigV 1.696 → 1.637 1.256 → 1.496 ∗ 1.215 → 1.452

ECC 0.357 → 0.335 0.154 → 0.300 ∗ 0.059 → 0.362

Deg 0.160 → 0.206 ∗ 0.056 → 0.128 ∗ 0.093 → 0.140

Table 8: Comparison of changes in average uncertainty
values for Axiom 5 before (left) and after(right) apply-
ing RAG with Mistral-v0.3. Color coding and signifi-
cance markers follow those in Table 7.

setting (Section 3.3), if either order yields a con-1148

tradiction, the input is labeled as such; otherwise,1149

it is labeled as entailment. In Section 4.1, we use1150

the maximum entailment probability from the two1151

orders.1152

Calibration Function. We perform a grid search1153

on the validation set of each dataset to determine1154

the axiomatic coefficients (k1, k2, k3, k4) as de-1155

scribed in Section 4. This grid search simultane- 1156

ously pursues two objectives: satisfying the axioms 1157

and maximizing the overall AUROC. For the CTI 1158

method, the optimal coefficients are (0.05, 0.75, 1159

0.20, 1.30); for the NLI and MiniCheck methods, 1160

the optimal coefficients are (0.05, 0.90, 0.05, 1.20) 1161

consistently across all datasets. 1162

Computational Cost. We conducted all experi- 1163

ments using Nvidia A-100 GPUs with 40 GB of 1164

memory, accumulating approximately 250 GPU 1165

hours. Due to the substantial computational de- 1166

mands, all results presented are based on a single 1167

run. 1168
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UE NQ-open TriviaQA PopQA
BM25 Contriever Doc+ BM25 Contriever Doc+ BM25 Contriever Doc+

Axiom 1: Positively Consistent ↓

PE 1.896 → 1.802 1.801 → 1.642 1.684 → 1.500 ∗ 0.796 → 0.848 ∗ 0.844 → 0.877 ∗ 0.929 → 0.952 ∗ 0.798 → 0.418 0.715 → 0.416 ∗ 0.818 → 0.191

SE 5.174 → 4.524 ∗ 5.071 → 4.344 ∗ 4.957 → 4.145 ∗ 3.779 → 3.533 3.823 → 3.569 ∗ 4.019 → 3.725 ∗ 3.869 → 3.260 ∗ 3.805 → 3.152 ∗ 3.700 → 3.053 ∗

PE+M 4.445 → 4.152 ∗ 4.162 → 4.013 ∗ 4.090 → 4.039 1.307 → 1.331 ∗ 1.368 → 1.392 1.564 → 1.559 0.930 → 0.490 0.820 → 0.486 ∗ 0.846 → 0.213 ∗

SE+M 7.716 → 6.855 ∗ 7.483 → 6.619 ∗ 7.380 → 6.577 ∗ 4.422 → 4.062 ∗ 4.495 → 4.142 ∗ 4.783 → 4.381 ∗ 4.185 → 3.354 ∗ 4.090 → 3.265 ∗ 3.909 → 3.080 ∗

EigV 2.248 → 1.451 ∗ 2.264 → 1.236 ∗ 2.183 → 1.105 ∗ 1.656 → 1.375 ∗ 1.704 → 1.296 ∗ 1.913 → 1.583 ∗ 2.088 → 1.215 ∗ 2.030 → 1.175 ∗ 2.126 → 1.145 ∗

ECC 0.546 → 0.224 ∗ 0.583 → 0.163 ∗ 0.548 → 0.080 ∗ 0.353 → 0.237 ∗ 0.369 → 0.187 ∗ 0.422 → 0.289 ∗ 0.447 → 0.133 ∗ 0.432 → 0.093 ∗ 0.405 → 0.071 ∗

Deg 0.264 → 0.123 ∗ 0.277 → 0.075 ∗ 0.262 → 0.032 ∗ 0.153 → 0.097 ∗ 0.161 → 0.081 ∗ 0.201 → 0.134 ∗ 0.222 → 0.058 ∗ 0.218 → 0.051 ∗ 0.236 → 0.040 ∗

Axiom 2: Negatively Consistent ↑

PE 1.978 → 2.037 1.717 → 1.507 1.705 → 1.173 ∗ 0.783 → 0.833 0.794 → 0.718 0.795 → 0.749 0.817 → 0.583 0.698 → 0.310 1.296 → 0.528

SE 5.499 → 5.108 5.039 → 4.210 ∗ 5.034 → 3.845 ∗ 3.707 → 3.740 3.744 → 3.521 3.897 → 3.568 3.570 → 3.238 3.698 → 3.119 ∗ 4.233 → 2.986

PE+M 4.707 → 4.579 3.438 → 3.295 3.483 → 3.027 1.029 → 1.185 1.047 → 0.987 1.024 → 1.030 0.817 → 0.542 0.640 → 0.332 1.262 → 0.637

SE+M 8.217 → 7.579 6.970 → 6.014 ∗ 6.959 → 5.525 ∗ 4.103 → 4.149 4.198 → 3.894 4.351 → 3.892 ∗ 3.771 → 3.321 ∗ 3.854 → 3.181 ∗ 4.458 → 3.029

EigV 2.563 → 2.233 2.610 → 1.464 ∗ 2.236 → 1.192 ∗ 1.811 → 1.537 ∗ 1.804 → 1.426 ∗ 1.970 → 1.632 ∗ 1.911 → 1.217 ∗ 2.015 → 1.175 ∗ 2.998 → 1.214

ECC 0.580 → 0.403 0.612 → 0.294 ∗ 0.626 → 0.169 ∗ 0.419 → 0.359 0.390 → 0.283 0.450 → 0.319 ∗ 0.406 → 0.142 ∗ 0.473 → 0.145 ∗ 0.667 → 0.058

Deg 0.308 → 0.255 0.331 → 0.125 ∗ 0.269 → 0.063 ∗ 0.177 → 0.141 0.173 → 0.111 ∗ 0.215 → 0.139 ∗ 0.217 → 0.077 ∗ 0.217 → 0.052 ∗ 0.407 → 0.093
Axiom 3: Positively Changed ↓

PE 1.800 → 1.239 ∗ 1.860 → 1.261 ∗ 1.816 → 1.063 ∗ 1.239 → 0.749 ∗ 1.287 → 0.851 ∗ 1.332 → 0.686 ∗ 1.348 → 0.397 ∗ 1.386 → 0.368 ∗ 1.358 → 0.264 ∗

SE 5.575 → 4.025 ∗ 5.603 → 4.055 ∗ 5.685 → 3.742 ∗ 4.773 → 3.511 ∗ 4.908 → 3.641 ∗ 5.029 → 3.312 ∗ 5.092 → 3.161 ∗ 5.203 → 3.135 ∗ 4.987 → 3.050 ∗

PE+M 3.630 → 3.003 ∗ 3.770 → 3.028 ∗ 3.704 → 2.785 ∗ 1.809 → 1.112 ∗ 1.943 → 1.297 ∗ 1.835 → 1.061 ∗ 1.723 → 0.470 ∗ 1.766 → 0.436 ∗ 1.655 → 0.331 ∗

SE+M 7.504 → 5.709 ∗ 7.565 → 5.705 ∗ 7.693 → 5.285 ∗ 5.504 → 3.907 ∗ 5.740 → 4.134 ∗ 5.771 → 3.681 ∗ 5.691 → 3.262 ∗ 5.782 → 3.228 ∗ 5.506 → 3.102 ∗

EigV 3.693 → 1.335 ∗ 3.822 → 1.321 ∗ 3.947 → 1.149 ∗ 3.377 → 1.332 ∗ 3.626 → 1.411 ∗ 3.840 → 1.281 ∗ 4.772 → 1.222 ∗ 5.100 → 1.197 ∗ 4.622 → 1.102 ∗

ECC 0.762 → 0.203 ∗ 0.760 → 0.207 ∗ 0.817 → 0.098 ∗ 0.738 → 0.213 ∗ 0.796 → 0.261 ∗ 0.845 → 0.162 ∗ 0.814 → 0.135 ∗ 0.855 → 0.125 ∗ 0.806 → 0.065 ∗

Deg 0.494 → 0.105 ∗ 0.517 → 0.100 ∗ 0.538 → 0.048 ∗ 0.460 → 0.097 ∗ 0.494 → 0.121 ∗ 0.525 → 0.076 ∗ 0.593 → 0.069 ∗ 0.630 → 0.059 ∗ 0.569 → 0.032 ∗

Axiom 4: Negatively Changed ↑

PE 2.027 → 1.829 2.245 → 1.342 ∗ 2.423 → 1.386 ∗ 1.139 → 1.017 1.017 → 0.911 1.427 → 1.067 1.248 → 0.874 1.600 → 0.543 1.964 → 0.223

SE 5.476 → 4.683 ∗ 5.494 → 4.245 ∗ 5.689 → 4.419 ∗ 4.626 → 4.176 ∗ 4.554 → 4.028 ∗ 4.523 → 3.697 ∗ 4.941 → 3.822 ∗ 4.678 → 3.879 ∗ 5.367 → 3.435 ∗

PE+M 3.922 → 3.817 3.501 → 2.822 ∗ 4.112 → 3.021 ∗ 1.649 → 1.611 1.465 → 1.570 1.646 → 1.313 1.634 → 1.153 1.784 → 0.621 2.302 → 0.339

SE+M 7.532 → 6.421 ∗ 7.092 → 5.728 ∗ 7.660 → 6.024 ∗ 5.387 → 4.771 ∗ 5.256 → 4.773 ∗ 5.135 → 4.003 ∗ 5.530 → 4.164 ∗ 5.171 → 4.041 ∗ 5.972 → 3.593 ∗

EigV 2.876 → 1.754 ∗ 3.040 → 1.550 ∗ 2.791 → 1.729 ∗ 2.919 → 1.995 ∗ 2.983 → 1.780 ∗ 2.887 → 2.134 3.995 → 1.683 ∗ 4.122 → 1.840 ∗ 5.520 → 1.421 ∗

ECC 0.685 → 0.343 ∗ 0.641 → 0.307 ∗ 0.505 → 0.395 0.705 → 0.499 ∗ 0.700 → 0.434 ∗ 0.741 → 0.433 ∗ 0.755 → 0.333 ∗ 0.799 → 0.429 ∗ 0.917 → 0.245 ∗

Deg 0.417 → 0.229 ∗ 0.442 → 0.171 ∗ 0.426 → 0.199 ∗ 0.384 → 0.253 ∗ 0.397 → 0.215 ∗ 0.405 → 0.269 0.508 → 0.215 ∗ 0.546 → 0.199 ∗ 0.688 → 0.120 ∗

Table 9: Comparison of changes in average uncertainty values for Axioms 1–4 before (left) and after (right)
applying RAG with Llama2-chat. Axioms are implemented using the Reference-free method. Colors green

and deep red indicate significant changes aligning or conflicting with axioms, respectively. Color shallow red
represents non-significant changes conflicting with axioms. Significance is marked by ∗.

UE NQ-open TriviaQA PopQA
A1 (%) A2 (%) A3 (%) A4 (%) AUROC A1 (%) A2 (%) A3 (%) A4 (%) AUROC A1 (%) A2 (%) A3 (%) A4 (%) AUROC

PE 69.77 42.95 80.54 45.21 64.40 63.88 39.05 87.24 61.30 79.14 70.57 22.22 89.17 44.23 65.72
+CTI 67.91 40.39 78.60 48.85 64.82 65.67 37.87 86.01 64.04 79.90 72.91 14.82 89.63 46.80 67.14
+NLI 70.81 42.31 80.54 52.81 66.50 65.88 42.01 86.42 64.04 79.78 74.23 24.69 93.09 46.80 68.65
+MCH 78.05 32.05 85.41 49.18 67.15 67.53 44.38 87.24 64.38 80.25 74.22 17.28 91.01 48.72 68.63
SE 76.40 32.69 90.54 37.62 65.66 65.88 31.36 91.36 51.71 78.83 74.22 16.05 95.39 33.97 68.53
+CTI 74.12 31.41 87.57 42.57 65.13 53.22 40.23 85.60 59.93 76.28 70.57 12.35 93.55 37.18 67.10
+NLI 70.39 42.95 87.03 49.51 66.92 51.57 48.52 86.83 62.67 77.01 69.01 25.93 94.24 39.74 70.53
+MCH 78.47 30.13 89.73 42.57 69.66 68.60 45.56 89.30 56.16 77.65 80.21 12.35 94.01 42.31 70.10
EigV 54.66 14.10 85.40 27.72 63.03 19.24 23.08 85.19 41.44 72.25 41.15 6.17 93.08 26.92 66.35
+CTI 71.22 24.36 87.30 37.95 65.06 47.93 47.34 88.89 60.27 74.79 68.23 16.05 93.55 39.74 65.23
+NLI 69.98 38.46 88.65 41.91 67.29 48.64 50.89 87.24 60.27 74.48 65.88 32.10 95.16 39.10 68.40
+MCH 77.85 28.85 92.16 36.63 68.45 68.81 45.56 90.95 53.43 75.81 83.07 12.35 96.31 37.18 70.39
ECC 53.00 13.46 81.62 26.07 62.87 18.31 14.79 78.60 35.62 71.72 40.62 4.93 92.16 23.08 66.28
+CTI 72.05 29.48 86.48 39.60 66.76 47.13 50.29 82.71 60.95 76.22 67.45 18.52 94.24 37.82 68.36
+NLI 70.18 39.74 87.29 43.23 67.59 48.35 50.29 84.36 62.32 75.77 65.88 29.63 95.62 36.53 69.91
+MCH 79.08 32.05 90.81 37.29 68.80 68.74 43.19 90.12 53.08 77.67 81.77 11.11 96.08 36.53 72.71

Table 10: Percentage of samples passing the axioms before and after calibration for Contriver with Mistral-v0.3.
The results show that as the number of samples passing the axioms increases, the AUROC also improves.
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Figure 5: Comparison of AUROC between the no-RAG and calibrated RAG settings for Llama2-chat for NQ-open
and PopQA datasets. AUROC improves significantly, either surpassing the no-RAG setting or reducing the gap
between them.
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Figure 6: Comparison of AUROC between the no-RAG and calibrated RAG settings for Mistral-v0.3. AUROC
improves significantly, either surpassing the no-RAG setting or reducing the gap between them.
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UE NQ-open TriviaQA PopQA
BM25 Contriever Doc+ BM25 Contriever Doc+ BM25 Contriever Doc+

Axiom 1: Positively Consistent ↓
PE 55.357 → 55.357 60.194 → 61.489 61.793 → 61.598 41.454 → 43.124 45.532 → 46.002 45.853 → 46.401 62.369 → 68.293 66.189 → 69.628 79.511 → 81.040

SE 66.964 → 70.982 77.346 → 77.023 79.337 → 83.041 47.446 → 55.894 50.141 → 56.538 52.191 → 58.059 69.338 → 79.443 71.920 → 78.510 88.073 → 86.544

PE+M 57.589 → 57.589 61.165 → 63.430 62.378 → 62.378 44.008 → 44.499 43.744 → 45.720 46.870 → 48.044 62.021 → 68.293 69.628 → 73.639 81.040 → 82.875

SE+M 64.286 → 68.304 76.375 → 76.375 72.904 → 73.099 47.348 → 55.599 48.354 → 57.008 52.504 → 58.059 69.686 → 80.488 73.639 → 79.656 89.602 → 88.073

EigV 58.036 → 71.875 65.372 → 77.346 69.981 → 84.795 35.265 → 64.047 37.159 → 66.886 38.498 → 57.199 53.659 → 83.275 55.301 → 80.802 81.346 → 91.743

ECC 54.464 → 72.321 61.489 → 75.728 68.226 → 84.016 32.122 → 62.279 34.243 → 65.475 34.977 → 55.634 50.523 → 80.836 52.436 → 78.797 77.064 → 88.379

Deg 55.804 → 57.589 64.401 → 65.049 70.565 → 70.565 34.283 → 35.069 36.595 → 37.065 37.950 → 38.419 54.007 → 55.401 55.014 → 55.874 81.346 → 81.346
Axiom 2: Negatively Consistent ↑

PE 46.237 → 44.086 47.853 → 44.172 47.059 → 44.118 52.299 → 50.575 43.781 → 43.781 56.477 → 56.218 49.275 → 44.928 42.466 → 39.726 57.143 → 57.143

SE 34.409 → 31.183 33.742 → 26.380 31.618 → 28.676 42.529 → 41.379 35.821 → 39.303 45.078 → 50.777 34.783 → 21.739 31.507 → 26.027 42.857 → 28.571

PE+M 39.247 → 39.247 42.945 → 38.037 47.794 → 46.324 49.425 → 47.701 41.791 → 41.791 52.332 → 53.886 44.928 → 43.478 43.836 → 42.466 57.143 → 57.143

SE+M 31.720 → 30.108 31.288 → 26.380 35.294 → 36.029 41.379 → 37.356 35.323 → 38.308 44.301 → 51.295 33.333 → 17.391 30.137 → 27.397 42.857 → 28.571

EigV 19.355 → 31.720 12.883 → 20.245 5.147 → 26.471 29.885 → 34.483 24.378 → 30.846 37.047 → 50.259 15.942 → 13.043 6.849 → 19.178 42.857 → 28.571

ECC 14.516 → 37.097 9.816 → 23.313 5.882 → 30.147 19.540 → 35.057 14.428 → 31.841 21.503 → 58.031 10.145 → 20.290 6.849 → 23.288 28.571 → 28.571

Deg 20.968 → 20.968 17.178 → 15.951 5.147 → 6.618 29.885 → 31.034 24.378 → 24.876 36.788 → 42.487 13.043 → 13.043 12.329 → 12.329 57.143 → 57.143
Axiom 3: Positively Changed ↓

PE 82.215 → 81.544 77.346 → 76.430 82.557 → 81.541 73.402 → 72.634 70.256 → 69.231 74.870 → 73.830 82.331 → 83.083 87.572 → 87.954 84.314 → 84.540

SE 93.289 → 93.289 91.533 → 89.703 93.057 → 91.194 86.445 → 83.632 84.615 → 79.744 88.042 → 83.882 93.233 → 90.226 94.073 → 91.205 92.534 → 88.235

PE+M 81.544 → 79.866 77.574 → 76.888 80.271 → 78.493 76.982 → 77.749 73.590 → 72.308 80.069 → 77.296 88.346 → 87.594 90.822 → 90.440 84.389 → 84.691

SE+M 90.604 → 88.591 88.787 → 85.812 88.654 → 86.198 86.957 → 84.143 84.359 → 80.000 88.562 → 84.922 93.609 → 92.857 94.455 → 92.543 93.439 → 89.668

EigV 90.604 → 91.611 88.558 → 90.389 89.077 → 91.025 86.189 → 85.166 86.154 → 86.154 83.709 → 86.308 91.353 → 90.977 92.925 → 93.499 86.652 → 89.367

ECC 82.886 → 87.919 83.066 → 87.185 82.557 → 86.622 79.028 → 80.563 73.590 → 77.692 75.390 → 80.243 86.466 → 89.850 87.380 → 90.822 82.730 → 86.652

Deg 90.604 → 90.940 87.414 → 87.643 89.331 → 89.670 85.934 → 86.189 86.410 → 85.128 85.442 → 85.789 91.353 → 90.977 92.543 → 92.543 86.576 → 86.501
Axiom 4: Negatively Changed ↑

PE 51.136 → 52.273 51.163 → 53.876 49.231 → 50.769 66.944 → 66.389 66.879 → 68.471 66.372 → 63.717 42.045 → 39.773 38.168 → 38.168 27.586 → 27.586

SE 36.080 → 40.625 36.047 → 40.310 44.615 → 40.000 55.556 → 58.889 54.777 → 56.688 52.212 → 57.522 31.818 → 36.364 29.008 → 26.718 25.287 → 22.989

PE+M 47.727 → 49.716 50.388 → 53.876 50.769 → 56.923 63.333 → 64.722 66.242 → 65.287 64.602 → 65.487 38.636 → 38.636 32.061 → 31.298 26.437 → 27.586

SE+M 38.636 → 41.193 40.698 → 42.636 41.538 → 49.231 55.278 → 57.500 53.503 → 56.369 53.097 → 55.752 31.250 → 33.523 28.244 → 24.427 24.138 → 20.690

EigV 24.432 → 34.091 24.419 → 35.271 16.923 → 18.462 38.333 → 51.944 39.172 → 48.408 38.938 → 51.327 21.591 → 35.795 20.611 → 29.771 8.046 → 12.644

ECC 19.602 → 39.205 18.992 → 37.984 16.923 → 30.769 30.556 → 57.500 30.892 → 53.185 26.549 → 60.177 18.182 → 44.318 18.321 → 34.351 8.046 → 19.540

Deg 25.284 → 26.989 24.806 → 27.132 20.000 → 23.077 42.500 → 45.278 42.357 → 44.904 42.478 → 44.248 22.727 → 23.864 19.084 → 19.084 11.494 → 11.494

Table 11: Changes in the percentage of samples that satisfy the axioms before and after calibration for Llama2-chat.
The relation function R is implemented using CTI.
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UE NQ-open TriviaQA PopQA
BM25 Contriever Doc+ BM25 Contriever Doc+ BM25 Contriever Doc+

Axiom 1: Positively Consistent ↓
PE 55.357 → 60.714 60.194 → 66.019 61.793 → 66.667 41.454 → 44.695 45.532 → 48.730 45.853 → 47.966 62.369 → 63.415 66.189 → 68.481 79.511 → 80.122

SE 66.964 → 73.661 77.346 → 80.259 79.337 → 79.922 47.446 → 58.743 50.141 → 58.231 52.191 → 57.433 69.338 → 73.868 71.920 → 74.785 88.073 → 81.040

PE+M 57.589 → 62.054 61.165 → 67.961 62.378 → 67.057 44.008 → 46.660 43.744 → 48.260 46.870 → 49.687 62.021 → 63.763 69.628 → 72.206 81.040 → 82.263

SE+M 64.286 → 70.089 76.375 → 77.023 72.904 → 74.269 47.348 → 58.350 48.354 → 58.325 52.504 → 57.825 69.686 → 76.655 73.639 → 75.072 89.602 → 84.709

EigV 58.036 → 71.429 65.372 → 82.201 69.981 → 86.160 35.265 → 59.136 37.159 → 60.960 38.498 → 59.077 53.659 → 73.868 55.301 → 74.785 81.346 → 85.933

ECC 54.464 → 70.982 61.489 → 78.641 68.226 → 84.795 32.122 → 55.403 34.243 → 58.043 34.977 → 55.399 50.523 → 72.474 52.436 → 71.347 77.064 → 84.404

Deg 55.804 → 56.250 64.401 → 64.401 70.565 → 70.955 34.283 → 35.069 36.595 → 36.877 37.950 → 38.185 54.007 → 55.052 55.014 → 57.307 81.346 → 81.040
Axiom 2: Negatively Consistent ↑

PE 46.237 → 47.312 47.853 → 47.239 47.059 → 46.324 52.299 → 54.598 43.781 → 45.274 56.477 → 58.549 49.275 → 49.275 42.466 → 41.096 57.143 → 57.143

SE 34.409 → 38.172 33.742 → 38.037 31.618 → 31.618 42.529 → 48.276 35.821 → 43.284 45.078 → 56.218 34.783 → 33.333 31.507 → 32.877 42.857 → 57.143

PE+M 39.247 → 43.011 42.945 → 41.718 47.794 → 50.735 49.425 → 54.023 41.791 → 41.294 52.332 → 56.218 44.928 → 46.377 43.836 → 45.205 57.143 → 57.143

SE+M 31.720 → 38.710 31.288 → 36.196 35.294 → 33.824 41.379 → 45.977 35.323 → 39.801 44.301 → 55.440 33.333 → 30.435 30.137 → 32.877 42.857 → 42.857

EigV 19.355 → 35.484 12.883 → 26.380 5.147 → 20.588 29.885 → 46.552 24.378 → 38.806 37.047 → 58.290 15.942 → 26.087 6.849 → 32.877 42.857 → 42.857

ECC 14.516 → 43.011 9.816 → 32.515 5.882 → 25.000 19.540 → 55.172 14.428 → 42.786 21.503 → 76.425 10.145 → 34.783 6.849 → 32.877 28.571 → 57.143

Deg 20.968 → 23.656 17.178 → 17.791 5.147 → 8.824 29.885 → 34.483 24.378 → 26.866 36.788 → 45.596 13.043 → 13.043 12.329 → 13.699 57.143 → 57.143
Axiom 3: Positively Changed ↓

PE 82.215 → 84.228 77.346 → 77.574 82.557 → 81.964 73.402 → 73.913 70.256 → 70.513 74.870 → 74.003 82.331 → 84.586 87.572 → 88.145 84.314 → 84.615

SE 93.289 → 88.591 91.533 → 86.270 93.057 → 86.113 86.445 → 84.910 84.615 → 80.513 88.042 → 84.749 93.233 → 91.729 94.073 → 92.161 92.534 → 87.029

PE+M 81.544 → 85.235 77.574 → 79.863 80.271 → 80.610 76.982 → 77.238 73.590 → 72.821 80.069 → 78.683 88.346 → 88.346 90.822 → 90.057 84.389 → 85.143

SE+M 90.604 → 87.248 88.787 → 84.211 88.654 → 82.557 86.957 → 84.655 84.359 → 81.026 88.562 → 86.482 93.609 → 92.105 94.455 → 93.690 93.439 → 88.235

EigV 90.604 → 92.617 88.558 → 91.533 89.077 → 90.517 86.189 → 87.724 86.154 → 87.436 83.709 → 86.655 91.353 → 93.609 92.925 → 95.602 86.652 → 90.875

ECC 82.886 → 88.255 83.066 → 87.185 82.557 → 86.791 79.028 → 84.655 73.590 → 77.436 75.390 → 78.163 86.466 → 91.353 87.380 → 92.161 82.730 → 88.537

Deg 90.604 → 89.933 87.414 → 86.270 89.331 → 89.162 85.934 → 86.189 86.410 → 86.154 85.442 → 84.749 91.353 → 91.353 92.543 → 92.352 86.576 → 86.652
Axiom 4: Negatively Changed ↑

PE 51.136 → 56.250 51.163 → 55.426 49.231 → 58.462 66.944 → 68.611 66.879 → 68.790 66.372 → 69.027 42.045 → 42.614 38.168 → 41.221 27.586 → 31.034

SE 36.080 → 49.432 36.047 → 50.000 44.615 → 52.308 55.556 → 65.000 54.777 → 64.013 52.212 → 64.602 31.818 → 42.045 29.008 → 41.985 25.287 → 31.034

PE+M 47.727 → 52.273 50.388 → 56.977 50.769 → 55.385 63.333 → 66.667 66.242 → 67.834 64.602 → 67.257 38.636 → 38.636 32.061 → 35.115 26.437 → 29.885

SE+M 38.636 → 51.136 40.698 → 53.488 41.538 → 56.923 55.278 → 62.778 53.503 → 64.013 53.097 → 61.947 31.250 → 38.068 28.244 → 39.695 24.138 → 29.885

EigV 24.432 → 35.795 24.419 → 36.047 16.923 → 33.846 38.333 → 57.500 39.172 → 53.185 38.938 → 53.982 21.591 → 36.932 20.611 → 38.931 8.046 → 18.391

ECC 19.602 → 43.466 18.992 → 42.636 16.923 → 36.923 30.556 → 65.556 30.892 → 59.873 26.549 → 65.487 18.182 → 46.591 18.321 → 42.748 8.046 → 25.287

Deg 25.284 → 29.545 24.806 → 27.907 20.000 → 24.615 42.500 → 47.222 42.357 → 48.089 42.478 → 48.673 22.727 → 24.432 19.084 → 21.374 11.494 → 16.092

Table 12: Changes in the percentage of samples that satisfy the axioms before and after calibration for Llama2-chat.
The relation function R is implemented using NLI.
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UE NQ-open TriviaQA PopQA
BM25 Contriever Doc+ BM25 Contriever Doc+ BM25 Contriever Doc+

Axiom 1: Positively Consistent ↓
PE 55.357 → 70.089 60.194 → 75.081 61.793 → 75.634 41.454 → 48.134 45.532 → 51.364 45.853 → 51.174 62.369 → 68.293 66.189 → 69.341 79.511 → 81.040

SE 66.964 → 78.571 77.346 → 86.408 79.337 → 90.058 47.446 → 72.299 50.141 → 73.283 52.191 → 73.083 69.338 → 81.533 71.920 → 77.937 88.073 → 86.544

PE+M 57.589 → 68.750 61.165 → 78.317 62.378 → 76.023 44.008 → 48.723 43.744 → 51.646 46.870 → 52.034 62.021 → 70.035 69.628 → 71.347 81.040 → 81.957

SE+M 64.286 → 75.446 76.375 → 86.731 72.904 → 87.329 47.348 → 71.709 48.354 → 72.907 52.504 → 72.457 69.686 → 82.230 73.639 → 78.223 89.602 → 87.156

EigV 58.036 → 77.679 65.372 → 87.702 69.981 → 93.177 35.265 → 70.432 37.159 → 74.882 38.498 → 74.257 53.659 → 82.927 55.301 → 83.095 81.346 → 95.413

ECC 54.464 → 76.786 61.489 → 86.084 68.226 → 92.398 32.122 → 66.306 34.243 → 72.437 34.977 → 70.736 50.523 → 80.488 52.436 → 79.370 77.064 → 93.272

Deg 55.804 → 57.143 64.401 → 65.372 70.565 → 70.175 34.283 → 35.560 36.595 → 37.535 37.950 → 39.202 54.007 → 54.704 55.014 → 55.587 81.346 → 81.346
Axiom 2: Negatively Consistent ↑

PE 46.237 → 52.151 47.853 → 39.877 47.059 → 38.971 52.299 → 57.471 43.781 → 49.254 56.477 → 60.622 49.275 → 46.377 42.466 → 39.726 57.143 → 57.143

SE 34.409 → 40.323 33.742 → 34.969 31.618 → 27.941 42.529 → 54.023 35.821 → 49.751 45.078 → 56.995 34.783 → 37.681 31.507 → 31.507 42.857 → 71.429

PE+M 39.247 → 46.774 42.945 → 34.969 47.794 → 40.441 49.425 → 58.621 41.791 → 48.756 52.332 → 59.585 44.928 → 43.478 43.836 → 39.726 57.143 → 71.429

SE+M 31.720 → 44.086 31.288 → 34.969 35.294 → 30.882 41.379 → 51.149 35.323 → 48.756 44.301 → 57.254 33.333 → 34.783 30.137 → 31.507 42.857 → 71.429

EigV 19.355 → 31.183 12.883 → 24.540 5.147 → 18.382 29.885 → 44.253 24.378 → 40.299 37.047 → 52.073 15.942 → 21.739 6.849 → 24.658 42.857 → 42.857

ECC 14.516 → 36.022 9.816 → 26.994 5.882 → 21.324 19.540 → 49.425 14.428 → 41.294 21.503 → 65.026 10.145 → 31.884 6.849 → 21.918 28.571 → 57.143

Deg 20.968 → 26.882 17.178 → 18.405 5.147 → 9.559 29.885 → 37.931 24.378 → 30.846 36.788 → 50.000 13.043 → 15.942 12.329 → 13.699 57.143 → 57.143
Axiom 3: Positively Changed ↓

PE 82.215 → 91.946 77.346 → 83.982 82.557 → 84.589 73.402 → 76.726 70.256 → 74.103 74.870 → 74.697 82.331 → 86.842 87.572 → 89.484 84.314 → 84.691

SE 93.289 → 93.960 91.533 → 90.847 93.057 → 89.331 86.445 → 88.491 84.615 → 82.821 88.042 → 84.575 93.233 → 94.361 94.073 → 94.073 92.534 → 89.216

PE+M 81.544 → 91.275 77.574 → 84.439 80.271 → 83.065 76.982 → 79.028 73.590 → 75.385 80.069 → 79.029 88.346 → 89.850 90.822 → 91.396 84.389 → 85.143

SE+M 90.604 → 93.289 88.787 → 90.847 88.654 → 87.214 86.957 → 89.258 84.359 → 83.846 88.562 → 85.442 93.609 → 95.113 94.455 → 94.264 93.439 → 90.121

EigV 90.604 → 94.295 88.558 → 93.822 89.077 → 91.871 86.189 → 90.026 86.154 → 90.000 83.709 → 89.081 91.353 → 96.241 92.925 → 96.750 86.652 → 94.646

ECC 82.886 → 89.933 83.066 → 89.931 82.557 → 88.400 79.028 → 87.724 73.590 → 82.308 75.390 → 84.749 86.466 → 93.985 87.380 → 94.837 82.730 → 92.911

Deg 90.604 → 89.933 87.414 → 86.499 89.331 → 89.331 85.934 → 86.701 86.410 → 85.128 85.442 → 83.882 91.353 → 91.729 92.543 → 92.352 86.576 → 86.275
Axiom 4: Negatively Changed ↑

PE 51.136 → 55.682 51.163 → 51.550 49.231 → 58.462 66.944 → 69.722 66.879 → 69.745 66.372 → 63.717 42.045 → 40.909 38.168 → 39.695 27.586 → 32.184

SE 36.080 → 48.011 36.047 → 46.512 44.615 → 53.846 55.556 → 65.833 54.777 → 67.197 52.212 → 63.717 31.818 → 46.023 29.008 → 41.221 25.287 → 36.782

PE+M 47.727 → 51.420 50.388 → 50.775 50.769 → 61.538 63.333 → 69.167 66.242 → 67.834 64.602 → 65.487 38.636 → 38.068 32.061 → 36.641 26.437 → 31.034

SE+M 38.636 → 50.568 40.698 → 48.450 41.538 → 56.923 55.278 → 62.778 53.503 → 66.879 53.097 → 64.602 31.250 → 43.182 28.244 → 39.695 24.138 → 34.483

EigV 24.432 → 35.227 24.419 → 34.496 16.923 → 32.308 38.333 → 55.278 39.172 → 55.414 38.938 → 53.982 21.591 → 34.091 20.611 → 32.824 8.046 → 17.241

ECC 19.602 → 42.330 18.992 → 39.535 16.923 → 33.846 30.556 → 61.389 30.892 → 58.917 26.549 → 61.062 18.182 → 41.477 18.321 → 35.878 8.046 → 21.839

Deg 25.284 → 29.830 24.806 → 28.295 20.000 → 26.154 42.500 → 49.167 42.357 → 49.363 42.478 → 50.442 22.727 → 26.136 19.084 → 22.137 11.494 → 19.540

Table 13: Changes in the percentage of samples that satisfy the axioms before and after calibration for Llama2-chat.
The relation function R is implemented using MiniCheck.
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